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SUMMARY

CEP104 is an evolutionarily conserved centrosomal
and ciliary tip protein.CEP104 loss-of-functionmuta-
tions are reported in patients with Joubert syndrome,
but their function in the etiology of ciliopathies is
poorly understood. Here, we show that cep104
silencing in zebrafish causes cilia-related manifesta-
tions: shortened cilia in Kupffer’s vesicle, heart later-
ality, and cranial nerve development defects. We
show that another Joubert syndrome-associatedcilia
tip protein, CSPP1, interacts with CEP104 at
microtubules for the regulation of axoneme length.
We demonstrate in human telomerase reverse
transcriptase-immortalized retinal pigmented epithe-
lium (hTERT-RPE1) cells that ciliary translocation of
Smoothened in response toHedgehogpathway stim-
ulation is both CEP104 and CSPP1 dependent. How-
ever,CEP104 is not required for theciliary recruitment
of CSPP1, indicating that an intra-ciliary CEP104-
CSPP1 complex controls axoneme length and
Hedgehog signaling competence. Our in vivo and
in vitro analyses of CEP104 define its interaction
with CSPP1 as a requirement for the formation of
Hedgehogsignaling-competent cilia, defects that un-
derlie Joubert syndrome.

INTRODUCTION

The primary cilium is a signaling organelle formed by a confined

microtubule (MT)-based cell membrane protrusion that origi-

nates from the modified mother centriole of the centrosome

(basal body). Generation of a signaling-competent primary

cilium from the centrosome is a multi-step process. It is initi-

ated by the re-organization of the distal end of the mother

centriole and the recruitment of pre-ciliary membrane, and

completed by docking to the cell membrane and maturation

of the ciliary axoneme and membrane. A highly specialized re-

gion at the base of the MT axoneme, the transition zone (TZ),

regulates the exchange of membrane-bound and soluble cyto-

solic factors with the cell body (Reiter et al., 2012). Ciliary

compartmentalization is further regulated by the intraflagellar

transport system (IFT), which mediates anterograde (base to

tip) with IFT-B cargo via kinesin-2 and retrograde (tip to base)

with IFT-A complex-bound cargo via dynein 2 motors (Tasch-

ner and Lorentzen, 2016). Kinesin-2 motors and the IFT-B

sub-complex are known to promote ciliogenesis via the anter-

ograde ciliary transport of soluble axonemal cargoes such as

tubulin (Kozminski et al., 1995; Bhogaraju et al., 2013).

Emerging evidence has implicated IFT-A also in the ciliary

entrance of specific G protein-coupled receptors via Tubby

family adaptor proteins (Mukhopadhyay et al., 2010; Pal

et al., 2016), and IFT-B complex members and dynein 2 motors

were shown to promote the ciliary export of specific membrane

proteins, such as the Sonic hedgehog (SHH) signaling pathway

receptors Patched1 and Smoothened (Keady et al., 2012;

Eguether et al., 2014), via the Bardet-Biedl syndrome protein

complex (BBSome), an IFT cargo adaptor (Lechtreck, 2015;

Nachury, 2018). The restricted ciliary expression of receptor

molecules allows cell surface area-independent sensitivity to

surrounding ligands and orientation-dependent signal reception

within a tissue context (Mahjoub, 2013). Several key pathways

in vertebrate development and tissue homeostasis depend on

primary cilia, including Hedgehog (Hh), WNT, transforming

growth factor b (TGF-b) and platelet-derived growth factor
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receptor a (PDGFR-a) signaling (Bangs and Anderson, 2017;

Christensen et al., 2017; May-Simera and Kelley, 2012). Struc-

tural and/or functional cilium defects conferred by inherited mu-

tations in ciliary and/or centrosomal protein-encoding genes

are acknowledged as a leading cause of developmental disor-

ders and degenerative diseases, collectively called ciliopathies

(Waters and Beales, 2011; Reiter and Leroux, 2017). Affected

individuals typically present with multi-system pathologies of

the brain and/or neurological system, eye, kidney, skeleton,

and other organs relying on ciliary signaling and function.

Joubert syndrome (JBTS) is a rare autosomal recessive cili-

opathy classified by a characteristic mal-development of the

mid- and/or hindbrain (manifesting as a ‘‘molar tooth sign’’ on

brain MRI). Besides developmental delay, ataxia, and intellec-

tual disabilities, retinal dystrophy and cystic kidney disease

(nephronophthisis, NPHP) frequently co-occur (Romani et al.,

2013). To date, JBTS-causing mutations have been identified

in 35 genes (JBTS1–JBTS35; MIM Phenotypic series MIM:

PS213300), partially overlapping with related ciliopathies such

as Meckel-Gruber syndrome (MKS), Senior-Løken syndrome

(SLSN), BBS, and NPHP (Sang et al., 2011). The majority of

JBTS genes have been tied to the regulation of the Hh signaling

pathway and function of the TZ (Garcia-Gonzalo et al., 2011;

Yang et al., 2015; Chih et al., 2011). A subset of four JBTS pro-

teins localizes to the ciliary tip, and these proteins have

opposing effects on cilium structure: cells depleted of KIF7

(JBTS12) or KIAA0556 (JBTS26) have extended axonemes

(He et al., 2014; Dafinger et al., 2011; Sanders et al., 2015),

as opposed to cells with reduced CSPP1 (JBTS21) or

CEP104 (JBTS25), which manifest shortened or absent axo-

nemes (Patzke et al., 2010; Akizu et al., 2014; Shaheen et al.,

2014; Tuz et al., 2014; Satish Tammana et al., 2013; Jiang

et al., 2012). Of note, the cilia phenotype of CEP104 mutation

carriers has not yet been reported, nor has genetic silencing

been tested in vertebrate models. Studies in human telomerase

reverse transcriptase-immortalized retinal pigmented epithe-

lium (hTERT-RPE1) cells revealed that CEP104 interacts with

MT plus end-tracking (EB1/EB3) and centriolar capping com-

plex (CEP97/CP110) proteins (Jiang et al., 2012). CEP104 is

lost from the mother centriole upon the induction of ciliogenesis

and localizes to the tip of the axoneme (Satish Tammana et al.,

2013; Jiang et al., 2012). Recent structural analyses and inter-

action studies defined a tubulin-binding chTOG domain in the

central part of CEP104 and an NEK1/CP110 binding zinc-finger

array in its C-terminal domain (Rezabkova et al., 2016; Al-Jas-

sar et al., 2017). However, axonemal interaction partners of

CEP104 remain elusive.

Here, we report ciliopathy-associated developmental defects

in cep104-targeted zebrafish and identify CSPP-L, the large and

predominantly expressed CSPP1 (JBTS21) splice isoform

(Patzke et al., 2010), as a direct interaction partner of CEP104.

The characterization of CEP104 and CSPP-L in genetically engi-

neered hTERT-RPE1 cell line models determines the interaction

of these ciliary tip proteins as a requirement for Hh signaling-

competent axoneme formation. Our in vivo and in vitro studies

tie CEP104 physically and functionally to the existing JBTS pro-

tein network and provide a pathogenic basis for CEP104 muta-

tions in humans with JBTS.

RESULTS

Ciliary Defects and Ciliopathy Phenotypes in cep104

Zebrafish Morphants
CEP104 is a highly conserved gene in ciliated organisms (Fig-

ures S1A–S1D) for which deleterious mutations were reported

in JBTS patients (Srour et al., 2015). CEP104 function has not

yet been interrogated in vertebrate development, and CEP104

has not previously been shown to physically interact with

components of the JBTS protein network. To study the effect

of cep104 depletion in Danio rerio (zebrafish), we injected

morpholino oligonucleotides targeting the single ortholog

cep104 at the translation site (cep104 translation blocking

morpholino oligonucleotide [ATG MO]) and a splice junction

(cep104 splice MO). Morphant zebrafish at 48 h post fertiliza-

tion (hpf) displayed cardiac phenotypes, mild tail curvature,

and microophthalmia (Figures 1A–1C and S2A–S1C). The

combined injection of cep104 ATG MO and cep104 splicing

MO potentiated the severity of morphant phenotypes (Fig-

ure 1D). RT-PCR and western blotting of whole zebrafish

mRNA and/or protein revealed aberrant cep104 RNA splicing

and significant protein knockdown of cep104 in 48 hpf mor-

phant embryos (Figures 1E and S2D). The gross morpholog-

ical changes could be rescued by co-injection of human

CEP104 mRNA (Figure S2E), confirming the specificity of the

morpholinos. Immunofluorescence microscopy (IFM) of the

pronephros revealed no obvious cilia defects (Figure S2F). In

contrast, analysis of Kupffer’s vesicle, a ciliated organelle

important for left-right axis formation, showed a ciliary defect,

with a reduction in ciliary length (Figures 1F and 1G), which

was rescued by the co-administration of CEP104 mRNA. In

addition to pericardial edema, which was not directly related

to laterality defects, cardiac defects included abnormal car-

diac looping, with reversed or no looping seen in 55% of mor-

phants, which was also rescued by co-injection with CEP104

mRNA (Figures 1H and 1I). Most relevant in regard to JBTS,

characteristic developmental defects were observed within

the brains of cep104 zebrafish morphants. The transgenic ze-

brafish line, islet1-GFP, allows visualization of the cranial mo-

tor neurons. In morphant embryos, islet1-GFP positivity was

disrupted with the loss of the overall neuronal structure and

with a specific, recurrent loss of oculomotor neurons. Notably,

the degree of cranial nerve defect did not necessarily correlate

with the severity in body structure abnormalities, indicating

that the neuronal phenotype is not secondary to a more gen-

eral developmental defect. This specific phenotype was

rescued by co-administration of CEP104 mRNA (Figures 1J

and 1K). Additional analysis of the F0 populations of cep104

crispants confirmed the specificity of the gross morphological

changes, as well as the heart looping, Kupffer’s vesicle cilia,

and cranial nerve defects seen in cep104 morphants (Figures

S2G–S2Q). Severe crispants and morphants showed some

yolk sac abnormalities, which are likely to be linked to the

pericardial edema. These data reveal that cep104 knockdown

phenotypes are highly consistent with a ciliopathy syndrome

and suggest a role for cep104 in cilia formation within

Kupffer’s vesicle, as well as development of the heart and cra-

nial nerves in zebrafish.
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Identification of Microtubule-Associated CEP104-
CSPP-L Complexes
A key to understanding the underlying mechanism of the zebra-

fish phenotype is to place CEP104within known ciliopathy-asso-

ciated protein networks. We identified an interaction of CEP104

with the JBTS protein CSPP-L (the larger and predominantly ex-

pressed isoform of CSPP1) in a bi-directional yeast two-hybrid

screen of an arrayed cDNA panel encoding 163 ciliary proteins

or protein fragments (Table S1; Figures S3A–S3D). This finding

was supported by BirA(R118G)-CEP104 proximity labeling

studies in Hek293 cells (Al-Jassar et al., 2017; Gupta et al.,

2015), as well as co-fractionation of endogenous proteins in

hTERT-RPE1 and Hek293T cells during sucrose gradient centri-

fugation and size exclusion chromatography (Figures S3E and

S3F). We validated the interaction of CSPP-L and CEP104 in

reciprocal co-immunoprecipitation experiments using EGFP-

tagged CEP104 and CSPP-L full-length or truncated constructs

(Figures 2A–2C). The localization pattern of the N-terminally fluo-

rescent protein-tagged CEP104 to the distal end of centrioles

and the cilia axoneme, and to some extent MT plus ends,

closely resembles that reported for endogenous CEP104

(Figures S3G and S3H; Satish Tammana et al., 2013; Jiang

et al., 2012). CSPP-L and known CEP104-interacting proteins

CEP97, CP110, and CEP290 co-purified with EGFP-CEP104.

Figure 1. cep104 Knockdown in Zebrafish

Embryos Leads to Ciliopathy Phenotypes

(A–C) 48 hpf morphant zebrafish display mild and

severe pericardial edema and cardiac defects (*)

following cep104 knockdown and additional phe-

notypes in severe morphants of mild tail curvature

and microopthalmia, with a quantified reduction in

area expressed as a ratio to control embryos of

0.45 (p < 0.0001, unpaired t test, n = 39 versus 28

control).

(D) Percentage of zebrafish displaying phenotypes

following injection of cep104 splice MO and

translation blocking morpholino cep104 ATG MO

alone or in combination (control n = 98, cep104

splice MO n = 166, cep104 ATG MO n = 95,

cep104 splice MO + cep104 ATG MO n = 77).

(E) Western blotting (WB) of cep104 at 48 hpf in

zebrafish uninjected and injected with cep104

ATG MO and cep104 splice MO.

(F) IFM of cilia and cell junctions (a-acetylated

tubulin, red) in Kupffer’s vesicle (KV; atypical pro-

tein kinase C [aPKC], green) at the 10-somite

stage in control and cep104 knockdown embryos.

(G) Dot plots of the length of cilia in KV in control,

cep104 splice MO knockdown, and cep104 splice

MO and CEP104 mRNA co-injected zebrafish

embryos (ANOVA with Tukey post hoc test,

*p < 0.05).

(H) 48 hpf cmlc2:GFP zebrafish treated with

cep104 splice MO show changes to heart looping

at 48 hpf, which is rescued by co-injection with

CEP104 mRNA.

(I) Percentage of embryos displaying heart

looping phenotypes following injection of cep104

splice MO and co-injection with CEP104 mRNA

(***p < 0.0001, *p = 0.0208, chi-square test of in-

dependence; control n = 186; cep104 splicing

MO n = 132; cep104 splicingMO+CEP104mRNA

n = 130).

(J and K) cep104 knockdown in 48 hpf islet-1:GFP

transgenic fish leads to cranial nerve defects,

rescued by co-injection with CEP104 mRNA. Co-

injection with CEP104 mRNA produces a partial

rescue of phenotypes (***p < 0.0001, **p = 0.0010,

chi-square test of independence; control n = 200;

cep104 splicing MO n = 80; cep104 splicing MO +

CEP104 mRNA n = 120).
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Analysis of truncation mutants identified the N-terminal 200

amino acid domain of CEP104 as being essential for interaction

with CSPP-L (Figures 2A and 2B). Conversely, CSPP-L-EGFP

specifically co-purified with endogenous CEP104 and CEP97,

CP110, and the earlier identified CSPP-L interaction partners

CEP290 andPCM1 (Figure 2C; Patzke et al., 2005, 2012; Shearer

et al., 2018). The co-purification of CSPP-L with CEP104,

CEP97, and CP110 was strictly dependent on the C-terminal

379 amino acid of CSPP-L. CSPP-L truncates failed to co-purify

CEP290 or PCM1, which may indicate the requirement of a

distinct tertiary fold of CSPP-L for stable interaction with these

centriolar satellite proteins. In line with subcellular localization

data, PCM1 co-purified only with CSPP-L-EGFP but not

EGFP-CEP104 (Figures 2A, 2C, S5A, and S5B). CSPP-L may

thus participate in distinct sub-complexes. Figures 2D and 2E

summarize the biochemical data and superimpose protein part-

ner interacting regions of CSPP-L and CEP104 on their func-

tional (Patzke et al., 2005, 2006, 2010, 2012; Jiang et al., 2012;

Hauge et al., 2007) and predicted domain architectures (Hilde-

brand et al., 2009; Meier and Söding, 2015). Bioinformatic anal-

ysis of CSPP-L did not identify regions of significant structural

homology to functionally annotated proteins. In contrast, the

N-terminal galactose-binding-like domain of CEP104 (amino

acids [aa] 1–156) is predicted to share close structural homology

to the Hh signaling pathway regulating IFT-B complex protein

IFT25 (Keady et al., 2012), and the central domain (aa439-658)

is homologous to a single ch-TOG domain of proteins involved

in MT plus end dynamics (Al-Jassar et al., 2017; Al-Bassam

and Chang, 2011; Akhmanova and Steinmetz, 2015).

We noticed earlier that the localization of CSPP-L to MTs is

spatiotemporally restricted to the cilia axoneme and mitotic

MTs and otherwise generally confined to centrosomes and cen-

triolar satellites (Patzke et al., 2010; Shearer et al., 2018). Hence,

the interaction of endogenous CSPP-L with MTs may depend on

post-translational modification and/or require a secondary fac-

tor. Overexpressed CSPP-L, however, decorates cytoplasmic

MTs (Patzke et al., 2006, 2010). Co-expression of mCherry-

CEP104 with GLAP3-CSPP-L or its truncated variants CSPP-

L(294–842)-EGFP or CSPP-L(842–1,221)-EGFP (described in

Patzke et al., 2006) in non-ciliated hTERT-RPE1 cells revealed

the recruitment of mCherry-CEP104 to cytoplasmic MTs. This

recruitment was dependent on the CEP104 interacting C-termi-

nal domain of CSPP-L (Figures 2F–2H, S3I, and S3J). CSPP-L

may thus support the localization of CEP104 to MTs in the cilium

to facilitate axoneme formation and/or stabilization. GLAP3-

CSPP-L andmCherry-CEP104 partially co-localized at the ciliary

tip in transient hTERT-RPE1 transfectants (Figure 2I).

Ciliary Localization of CSPP-L and CEP104
The IFM analyses described above supported anMT-associated

function of CSPP-L and CEP104 at the ciliary axoneme and/or

tip, but they were limited by the transient overexpression of

CSPP-L and CEP104 fusion proteins. To refine the ciliary locali-

zation at a higher resolution, we resolved the localization of

endogenous CSPP-L by IFM and electron microscopy on multi-

ciliated mouse trachea epithelia cells and of N-terminal mono-

meric NeonGreen fluorescent protein fusions of CSPP-L

(mNG-CSPP-L) and CEP104 (mNG-CEP104) by 3D-superreso-

lution immunofluorescence microscopy (3D-SIM) in transformed

hTERT-RPE1 cells (Figures 3 and 4). CSPP-L localizes predom-

inantly to the very end of axonemal MTs near the capping struc-

ture (Figures 3A and 3B) and to the membrane proximal end of

the transition fibers of motile cilia in mouse trachea cells (Fig-

ure 3A). The axoneme end localization is more proximal to the

cilia tip than that of the apical membrane-singlet MT linker pro-

tein Sentan (Figure 3C) (Kubo et al., 2008). CSPP-L staining

along outer and central axonemal MTs was occasionally

observed (Figure 3A). In addition, staining of electron-dense par-

ticles, tentative centriolar satellites, was noticed (Figure 3A).

Notably, MT end localization was not seen in the axonemes of

mouse sperm flagella (Figure S4A) or the cytoplasmic MTs of

hTERT-RPE1 cells (Figure S4B). mNG-CSPP-L closely resem-

bled the localization pattern of endogenous CSPP-L in hTERT-

RPE1 cells, including centriolar satellite localization (Figures

3D, 3E, and S4C; Patzke et al., 2010). mNG-CSPP-L is partially

co-localized with the central dot of g-tubulin (centriole lumen;

Lawo et al., 2012) of both centrioles. It extends from the mother

centriole through the TZ into the cilia lumen to peak in intensity at

the ARL13B encased tip (Figure S4D), distal to the antibody-

stained glutamylated MT axoneme. mNG-CEP104 localizes to

the cilia tip and the distal end of the daughter centriole (Figures

4 and S4E). The cilia tip localization with respect to ARL13B (Fig-

ures 4A and 4B) and glutamylated tubulin (Figures 4C and 4D) is

highly reminiscent of CSPP-L, and partial co-localization

of CSPP-L and mNG-CEP104 is evident (Figure 4C). mNG-

CEP104 partially co-localizes with CP110 at the distal end of

Figure 2. Interaction and MT-Associated Co-localization of CEP104 and CSPP-L
(A–C) Immunodetection of indicated endogenous centrosomal and/or ciliary proteins co-purified with full-length or truncated GFP-tagged CEP104 (A and B) and

CSPP-L variants (C). GFP-fusion proteins were expressed in Hek293T cells and purified using paramagnetic GFP-trap beads. The N-terminal CEP104-domain

(aa 1–200) confers interaction with the C-terminal CSPP-L (aa 842–1,221) domain. CSPP-L but not CEP104 co-purifies PCM1.

(D and E) Schematic drawing of CEP104 (D) and CSPP-L (E) proteins and tested truncation variants, including functional domains and allocated interaction

partners identified here and previously (Huage et al., 2007; Patzke et al., 2010; Jiang et al., 2012). Predicted coiled-coil domains (UniProt) are indicated as black

boxes. Bio-informatic analysis identifies structural homologies (blue boxes) to IFT25 (CEP104 aa 1–158 to hIFT25 aa 17–151: probability 99.9%; E value 1.1E�21,

p value 7.2E�27) and a single chTOG domain (CEP104 aa 415–637 to hCLASP aa 28–266: probability 99.7%; E value 2E�15, p value 1.3E�20).

(F) IFM of hTERT-RPE1 cells transiently expressingmCherry-CEP104 (red) and GLAP3-CSPP-L (green) and co-stained for a-tubulin (a-acetylated-tubulin, white).

At increasing expression levels, mCherry-CEP104 and GLAP3-CSPP-L decorate centrosome originating MTs (see also Figure S4).

(G and H) Live cell microcopy of hTERT-RPE1 cells co-transfected with mCherry-CEP104 and CSPP-L(294-842)-EGFP (G) or CSPP-L(842-1221)-EGFP (H),

respectively, showing dependence on the C-terminal domain of CSPP-L for the recruitment of mCherry-CEP104 along microtubules.

(I) IFM of hTERT-RPE1 cells transiently expressing mCherry-CEP104 (red) and GLAP3-CSPP-L (green) and co-stained for ARL13B and CEP164 to label the TZ

and the axoneme (a-ARL13B and a-CEP164, white). mCherry-CEP104 (red in cilia sketch) and GLAP3-CSPP-L (green in cilia sketch) co-localize at the tip of the

primary cilium and occasionally at the axoneme (arrow in ii).
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the daughter centriole (Figure 4E). Fixation conditions largely

inhibit centriolar staining of glutamylated tubulin.

We conclude that interaction data, subcellular localization,

and sequence analyses collectively support the notion that

centrosome and cilia tip proteins CEP104 and CSPP-L interact,

with a potential role in cilia axoneme MT regulation.

CSPP1 and CEP104 Are Dispensable for Early ARL13B
Recruitment but Critical for AxonemeLengthRegulation
Based on the above and earlier reports on the requirement of

CSPP-L and CEP104 for cilia formation (Patzke et al., 2010;

Jiang et al., 2012; Satish Tammana et al., 2013), we speculated

that CEP104 and CSPP-L cooperate in cilia axoneme formation.

We therefore targeted CSPP1 and CEP104 in hTERT-RPE1 cells

using CRISPR-Cas9 nickase (Ran et al., 2013). Guide RNAs

(gRNAs) were designed to target CSPP1 at the first common

exon of CSPP and CSPP-L splice isoforms (Figures S5A–S5C)

andCEP104within exon 2, just after the translational start codon

(Figures S5D–S5F). Individual clones devoid of the expression of

full-length CSPP-L (Figure 5A) or CEP104 (Figure 5B), respec-

tively, were identified and characterized.

The CSPP-L-deficient clone was determined to be a com-

pound heterozygote by allele-specific sequencing of the

gRNA-targeted region. Introduced insertions putatively encode

for C-terminally truncated CSPP-L proteins p.Arg267Lysfs*6

and p.Asp274Glufs*33 (Figure S5; Table S2). The expression

of these or other putatively truncated CSPP1 proteins was,

however, not detectable in total cell lysates using antibodies

targeting the N- or C-terminal region of CSPP-L (Figure 5A);

this clone is hereafter referred to as CSPP1�/� hTERT-RPE1.

Likewise, a compound heterozygous CEP104 mutant clone

was identified, predicted to encode for very short mutant

CEP104 proteins: p.Val10* and p.Gly13Alafs*24 (Figure S5;

Table S2), respectively. However, immunoblotting using a poly-

clonal antibody raised against aa 201–421 of CEP104 (Jiang

et al., 2012) detected two bands in a total cell lysate of this

clone—a faint band at approximately 100 kDa and a more

prominent band at 81 kDa, both displaying a strong reduction

in expression compared to CEP104 levels in the parental

hTERT-RPE1 wild-type (WT) cells (Figure 5B). Further sequence

analysis identified three alternative translational start regions 30

of the gRNA target region (Pedersen and Nielsen, 1997),

promoting expression of the N-terminal truncated CEP104

proteins of 102 (Met25[360AUG]), 99 (Met50[432AUG]), and

81 kDa (Met204[969AUG]), respectively. These alternative

open reading frames (ORFs) match the observed CEP104

bands. The dominantly expressed N-terminal truncated

81 kDa CEP104 protein did not co-precipitate with the CSPP-L

C-terminal 379 aa domain (Figure 5C). This compound hetero-

zygous and hypomorphic CEP104 clone is referred to as

CEP104mut. The generated CSPP1�/� mutant is highly remi-

niscent of reported homozygous and compound heterozygous

CSPP1 mutations in JBTS patients (Table S2; Figures S5A and

S5D). All three reported CEP104 JBTS-associated mutations

are gene disrupting and should abrogate functional interaction

with CSPP1 proteins (Table S2). Of note, the c.496C > T patient

allele is likely to promote the expression of the N-terminally

truncated 81 kDa CEP104 protein (Srour et al., 2015).

We next compared WT, CSPP1�/�, and CEP104mut cells in

cell-cycle progression assays, response to serum starvation,

and cilia formation capability (Figures 5D and S6). A total of

69% ± 5% of WT hTERT-RPE1 cells generated a cilium upon

serum withdrawal, while only 32% ± 8% of CSPP1�/� and

48% ± 9% of CEP104mut cells developed cilia (Figure 5D). No

significant differences in cell-cycle progression were evident be-

tween asynchronously growing mutant and WT hTERT-RPE1

cells, and all three cell lines arrested in G0/G1 phase in response

to 48 h of serum starvation (Figures S6A and S6B). Furthermore,

hTERT-RPE1mutants andWT cells showed an indistinguishable

IFM pattern of acetylated tubulin, a-tubulin, and EB3 (Figures

S4F and S4G). These results excluded cell-cycle progression

defects and gross alterations in cytoplasmic MT organization

as possible causes for defective ciliogenesis. Notably, �40%

of CSPP1�/� and CEP104mut cells that failed axoneme forma-

tion (glutamylated tubulin) depicted the loss of CP110 from the

mother centriole (Figure 5E; similar results obtained with

CEP97, data not shown) and �20% recruited ARL13B to the

pre-ciliary vesicle (Figure 5F), indicating that cilia formation

was impaired at an axoneme-forming permissive stage.

Axoneme length in CSPP1�/� (1.5 ± 0.05 mm) and CEP104mut

(1.9 ± 0.06 mm) cells was significantly reduced compared to

WT cells (2.9 ± 0.05 mm) (Figure 5G), suggesting a cilia-specific

defect in MT organization. Cilia length was rescued in CSPP1�/�

cells bymNG-CSPP-L (Figure S6E). In contrast to cep104 rescue

experiments in zebrafish, the expression of mNG-CEP104 in

CEP104mut cells did not rescue the cilia phenotype at statistical

significance. This is likely due to a dominant negative effect of the

N-terminally truncated CEP104 proteins expressed in these cells

(Figures 5B and S6F). The antagonizing effects of EF1a-promo-

tor-driven NeonGreen fusion proteins cannot be excluded as

both fusion proteins are overexpressed compared to endoge-

nous levels. Nonetheless, IFM analysis of mNG-CSPP-L ex-

pressing CEP104mut and mNG-CEP104 expressing CSPP1�/�

cells revealed ciliary localization for both proteins (Figures 5H,

5I, S6E, and S6F). Hence, intra-ciliary interaction of CEP104-

CSPP-L is required to achieve regular axoneme length.

Figure 3. Ciliary Localization of CSPP-L at Motile and Primary Cilia

(A) CSPP-L detection by post-embedding IEM of mouse tracheal epithelial cells. Panels depict close ups of (i) cilia tips, (ii and iii) basal bodies, (iv) cilia axonemes,

and (v) apically localized electron-dense particles.

(B and C) IFM of mouse tracheal epithelial cells showing axonemal MTs (glutamylated tubulin, red) and CSPP-L (B, green) or Sentan (C, green). Right panels show

magnifications of indicated regions.

(D and E) 3D-SIM IFM of hTERT-RPE1 cells expressing monomeric NeonGreen (mNG)-CSPP-L and co-stained for centrosomal marker g-tubulin (white) and cilia

membrane marker ARL13B (red). Scale bars in magnified areas, 500 nm.

mNG-CSPP-L decorates axonemal MTs throughout the transition zone and concentrates at the tip (D and E). Centriolar satellite localization is frequently found

and exemplified in (E) and Figure S4C.
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Figure 4. Localization of mNG-CEP104 and CSPP-L at Primary Cilia

(A–D) 3D-SIM IFM of hTERT-RPE1 cells expressing mNG-CEP104 (green) and co-stained for centrosomal marker g-tubulin (white) and cilia membrane marker

ARL13B (red). (A and B) Glutamylated tubulin (white) and CSPP-L (red) (C) or glutamylated tubulin (white) and CP110 (red) (D). Scale bars in magnified areas,

500 nm.mNG-CEP104 localizes to the capping complex of the daughter centriole (A, B, and D) and co-localizes with CSPP-L at the cilia tip (C). Low cilia tip signal

intensity of mNG-CEP104 compared to daughter centriole localization is observed in all of the cells. Axoneme staining of CSPP-L is fixation condition dependent

(Patzke et al., 2010; Hua and Ferland, 2017) and not resolved.
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Depletion of CEP104 in CSPP1�/� cells strongly diminished cilia

formation (Figure S6G), further supporting this hypothesis.

These data suggest that neither CEP104 nor CSPP1 are

strictly essential for the initial stages of cilia formation but that

their intra-ciliary interaction is critical for regular axoneme elon-

gation or maintenance.

CSPP1�/� and CEP104mut Cilia Are Defective in SMO
Translocation in Response to Hh Pathway Activation
The cilia phenotypes in CSPP1�/� and CEP104mut cells are in

agreement with reported cilia aberrations in CSPP1 and

CEP104mRNA targeting small interfering RNA (siRNA) transfec-

tants (Patzke et al., 2010; Jiang et al., 2012; Satish Tammana

et al., 2013). In contrast to CSPP1, a cilia phenotype in

CEP104 mutated JBTS patients has not yet been reported.

CSPP1-mutated JBTS patient fibroblasts are deficient in SHH-

induced GLI1 expression, as determined by bulk analysis (Tuz

et al., 2014; Shaheen et al., 2014). To discriminate whether the

reported SHH sensitivity defect could be attributed to reduced

cilia numbers or defective cilia function and whetherCEP104mut

cells share pathway impairment, we investigated the efficacy of

Smoothened (SMO) translocation to cilia in response to Hh

pathway activation by soluble SHH-ligand (ShhN) conditioned

medium or 100 nM Smoothened agonist (SAG) treatment (Fig-

ure 6). Cells were serum starved for 48 h to promote cilia forma-

tion and then stimulated for 24 h before fixation and assessment

of SMO and ARL13B by IFM. Semiquantitative assessment re-

vealed that CSPP1�/� and particularly CEP104mut cells had

significantly decreased SMO translocation to primary cilia in

response to ShhN stimulation compared to WT hTERT-RPE1

cells (Figure 6A). Similarly, the quantitative assessment of me-

dian ciliary fluorescence intensities of ARL13B and SMO in

SAG-treated cells revealed a strong dependence of ciliary

SMO accumulation on CEP104 (30% of WT SMO intensity) and

to a lesser extent on CSPP1 (70% of WT SMO intensity) integrity

(Figure 6B). In contrast, median ciliary ARL13B intensities were

indistinguishable between cell lines. Likewise, cilia membrane

localization of the ARL13B-dependent Hh pathway modulator

INPP5E (Figure 6C) (Humbert et al., 2012; Garcia-Gonzalo

et al., 2015; Chávez et al., 2015) and the ARL13B regulatory TZ

proteins CBY1 (Figure S6J) and AHI1 (Figure S6K) (Lee et al.,

2014) were not decreased in CSPP1�/� or CEP104mut cells.

Finally, the localization pattern of IFT88 indicated CEP104 and

CSPP1 independent ciliary entry and tip localization of the

IFT-B core complex (Figure S6L).

We conclude that the cilia tip protein CEP104 is a critical factor

for Hh signaling in hTERT-RPE1 cells. These data support the hy-

pothesis that defective ciliary Hh signaling causes the perturbed

heart and cranial nerve development observed in cep104 mor-

phant zebrafish embryos.

DISCUSSION

The disturbance of physical interaction networks between pro-

teins encoded by disease genes of a distinct ciliopathy is likely

to explain the observed genetic heterogeneity and account for

certain genetic overlap between phenotypically related ciliopa-

thies, such as JBTS, NPHP, MKS, or BBS (Sang et al., 2011; Na-

chury et al., 2007). In the case of JBTS, 35 disease loci have been

identified to date; almost all of the affected proteins are exclu-

sively connected to the TZ and the regulation of Hh signaling.

CEP104 is an exception to this understanding, by (1) being local-

ized to the daughter centriole and the ciliary tip, but not the

mother centriole or the TZ of the cilium and/or basal body entity

(Jiang et al., 2012; Satish Tammana et al., 2013), and (2) having

an undetermined role in Hh signaling or interaction with other

JBTS proteins. The identified interaction with CSPP-L (Figure 2)

and the cep104 zebrafish ciliopathy phenotypes (Figures 1 and

S7) reported here resolve this apparent discrepancy and, in

context with reported mutations in KIF7 (alias JBTS12) and

KIAA0556 (alias JBTS26), contribute evidence to the expansion

of the JBTS network to the ciliary tip compartment (Dafinger

et al., 2011; He et al., 2014; Sanders et al., 2015).

The combined interaction data and cilia analysis in

CEP104mut and CSPP1�/� cells identify a requirement for

CEP104/CSPP-L interplay to form Hh signaling-competent cilia

(Figure 7). Mutual independence for ciliary localization and the

severe ciliation deficiency phenotype in co-depleted cells sug-

gest that the intra-ciliary interaction of CSPP-L with CEP104 is

essential for attaining normal cilia stature. The inhibition of cilio-

genesis after CP110/CEP97 release and the formation of short-

ened, ARL13B-positive cilia in CSPP1�/� cells are in concor-

dance with reported phenotypes in CSPP1 JBTS patient

fibroblasts (Akizu et al., 2014; Shaheen et al., 2014; Tuz et al.,

2014; Figures 1 and 5) and imply that CSPP-L is not strictly

required for cilium formation until axoneme elongation.

Figure 5. Intra-ciliary Interaction of CEP104 and CSPP-L Is Critical for Axoneme Length
(A) CSPP1�/� hTERT-RPE1 cells are negative for the expression of CSPP-L full-length or truncated CSPP1 proteins, as determined by immunoblotting with

N-terminal and C-terminal domain-specific CSPP-L antibodies and compared to g-tubulin (loading control).

(B andC)CEP104mut hTERT-RPE1 cells express N-terminally truncatedCEP104 proteins at strongly decreased expression levels compared toWT hTERT-RPE1

cells by use of alternative start codons (B). The prominent truncated CEP104 protein of 81 kDa, lacking the N-terminal 203 aa does not co-purify with the

C-terminal CSPP-L domain expressed in hTERT-RPE1 transfectants (C).

(D) CSPP1�/� and CEP104mut hTERT-RPE1 cells form primary cilia at lower frequency (error bars depict SEM of 3 experiments; n = 150 cells; t test; *p < 0.05).

(E and F) A total of 40% of CSPP1�/� and 34% of CEP104mut hTERT-RPE1 cells without detectable glutamylated axoneme have licensed mother centrioles

(i.e., single CP110 signal) compared to 50% inWT hTERT-RPE1 cells (E). Independent of genotype,�20%of non-ciliated cells show ARL13B signal at themother

centriole, indicative of pre-ciliary vesicle formation (F). Error bars depict SEM of 4 experiments (n = 150 cells; t test; ***p < 0.005).

(G) Cilia inCSPP1�/� andCEP104mut hTERT-RPE1 cells have decreased axoneme length (center lines in boxplots show themedians; box limits indicate the 25th

and 75th percentiles as determined by R software; whiskers extend 1.5 times the interquartile range from the 25th and 75th percentiles; outliers are represented

by dots; crosses represent sample means; n = 262, 102, 158 sample points; t test; ***p < 0.005).

(H and I) 3D-SIM IFM of CEP104mut hTERT-RPE1 cells stably expressing mNG-CSPP-L (H) and CSPP1�/� hTERT-RPE1 cells stably expressing mNG-CEP104

(I). mNG-CSPP-L and mNG-CEP104 show no gross localization defects to primary cilia (ARL13B, red) or the centrosome (g-tubulin, white).
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CEP104 binds via its N-terminal domain to the C-terminal

domain of CSPP-L, which is dispensable for the localization of

CSPP-L to MTs but critical for the regulation of the effect of

CSPP-L on MT organization (Patzke et al., 2006, 2010). In anal-

ogy to CEP97-mediated CEP104 localization to cytoplasmic

MT plus ends (Jiang et al., 2012), CEP104 and CSPP-L may

mutually enhanceMT stabilization at the ciliary tip compartment.

CSPP-L-dependent CEP104 stabilization at the axoneme lattice

Figure 6. Deficient Ciliary SMO Accumulation in CEP104mut and CSPP1�/� hTERT-RPE1 Cells in Response to Hh Pathway Activation

(A) Assessment of ciliary SMO translocation in response to Hh signaling pathway stimulation by addition of ShhN conditioned medium. Cells were serum starved

for 48 h in 2 mL DMEM/F12 before replacement of 1 mL with ShhN conditioned or control DMEM containing 2% serum and further incubation for 24 h.CSPP1�/�

and CEP104mut hTERT-RPE1 show decreased SMO (a-SMO; red) accumulation to the primary cilium (a-ARL13B, green). Ciliary SMO levels were scored by

inspection and classified in absent, weak, or strong subgroups. Error bars in bar graph depict SEMs of 3 independent experiments, n = 150 per treatment and cell

line; t test; *p < 0.05 and ***p < 0.001).

(B) Quantitative assessment of median fluorescence intensities of ciliary ARL13B (a-ARL13B, green) and SMO (a-SMO, red) in serum-starved and SAG-stim-

ulated WT (n = 60), CSPP1�/� (n = 66), and CEP104mut (n = 52) hTERT-RPE1 cells (t test; **p < 0.01 and ***p < 0.001), and determination of SMO expression in

total cell lysates of SAG-treated cell lines by immunoblotting.

(C) Quantitative assessment of ciliary INPP5E by IFM in SAG-stimulated and non-stimulated serum-starved WT, CSPP1�/�, and CEP104mut hTERT-RPE1 cells

(a-INPP5E, green; a-SMO, red) (n > 30 in each treatment group; t test; *p < 0.05 and ***p % 0.001).

Center lines in boxplots show the medians; box limits indicate the 25th and 75th percentiles as determined by R software; whiskers extend 1.5 times the

interquartile range from the 25th and 75th percentiles; outliers are represented by dots. Scale bars, 1 mm.
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in the tip region could enhance CEP104-mediated tubulin addi-

tion at MT plus ends, as suggested by Al-Jassar et al. (2017)

and supported by the severe ciliation defect of CEP104 in

depleted CSPP1�/� cells. Speculatively, the CSPP-L/CEP104

complex hence opposes KIF7 and KIAA0556mediated axoneme

growth restriction at the ciliary tip (He et al., 2014; Sanders et al.,

2015). Future studies are warranted, including advanced in vitro

and live cell imaging analyses, to determine the detailed effect of

CSPP-L/CEP104 complexes on isolated MTs and to elucidate

their potential dynamic behavior during cilia formation and

maintenance.

The positive role of CEP104 in cilia formation and requirement

for ciliary SMOaccumulation in hTERT-RPE1 cells resembles the

requirement of cep104 in vivo, in which shortened cilia in

Kupffer’s vesicle of cep104 morphant and crispant zebrafish

embryos were observed. Ciliary morphology was regained by

co-administration of human CEP104 mRNA (Figures 1 and S2).

Likewise, the loss of cep104 manifested in the mal-development

of the heart and the cranial nerves, the latter being highly reminis-

cent of the defective development of the mid- and/or hindbrain

characteristic of JBTS. Accumulating evidence supports the hy-

pothesis that defective ciliary Hh signaling is the underlying

cause of the phenotype associated with JBTS (Hynes et al.,

2014; Roosing et al., 2015; Aguilar et al., 2012). Bulk analysis

ofCSPP1 JBTS patient fibroblasts showed reduced Hh signaling

pathway activity sensitivity and/or responsiveness (reduced Hh-

induced GLI1mRNA expression [Shaheen et al., 2014]). Cardiac

developmental defects in cep104 zebrafish morphants may be a

consequence of laterality defects. Lost Shh sensitivity may have

a contributing effect, since highly similar ventricle size and orien-

tation defects are seen in smo-deficient or cyclopamine-treated

(an Hh antagonist) embryos (Thomas et al., 2008). A role for cilia

in cardiac development is well established (Li et al., 2015).

Congenital heart defects are evident in JBTS and NPHP patients

(Koefoed et al., 2014; San Agustin et al., 2016), but they are not

reported for rare CEP104-mutated JBTS patients (Srour et al.,

2015). Comparable to our loss-of-function studies, these three

CEP104 patients carry either nonsense or splice-site mutations.

However, it is known that dependent on the JBTSmodel system,

Hh signaling may be increased, as shown in CEP290 patient fi-

broblasts (Shimada et al., 2017), or decreased, as in murine

models of Cep290 knockdown (Hynes et al., 2014). It cannot

be excluded that other CEP104 mutations, including gain-of-

function mutations, may cause embryonic lethality in humans,

butCEP104mutations have not been observed in MKS embryos

thus far.

Functional analysis of our hTERT-RPE1 cell lines deter-

mined that CSPP-L and, in particular, CEP104 mutant cilia

are Hh pathway compromised in a manner that is distinct

from the ciliary INPP5E regulating pathway found targeted in

JBTS (Humbert et al., 2012; Bielas et al., 2009; Jacoby

et al., 2009; Thomas et al., 2014; Cantagrel et al., 2008; Fer-

land et al., 2004; Slaats et al., 2016). Our analysis of ShhN

or SAG-induced SMO translocation to the cilia compartment

revealed a significantly stronger impairment in CEP104mut

than in CSPP1�/� cells (Figure 6), suggesting that CSPP-L

may potentiate the capability of CEP104 at the tip compart-

ment in regulating ciliary SMO turnover in response to Hh

pathway stimulation. This is different from PDE6D, ARL13B,

and INPP5E compromising JBTS-related mutants, which re-

cruit SMO (Humbert et al., 2012; Garcia-Gonzalo et al.,

2015; Chávez et al., 2015; Larkins et al., 2011). Of note, Tuz

et al. (2014) observed reduced ciliary ARL13B levels

in CSPP1 JBTS patient fibroblasts. This is not recapitulated

Figure 7. Graphical Summary of CEP104 and CSPP-L Interplay for Formation of Hh Signaling Pathway-Competent Primary Cilia
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in our quantitative analysis of ARL13B and INPP5E in hTERT-

RPE1 cells (Figure 6) and may thus be either cell type depen-

dent or mutation specific. 3D-SIM revealed that mNG-CSPP-L

extends from the central lumen of the mother centriole into the

cilia compartment (Figures 3D and 3E), a localization pattern

that is partially supported by fixation/antibody-dependent im-

munoelectron microscopy (immuno-EM) (Figure 3A) and IFM

(Patzke et al., 2010; Hua and Ferland, 2017). We and others

have shown previously that CSPP-L is required for the locali-

zation of the larger retinitis pigmentosa guanosine triphopha-

tase (GTPase) regulator-interacting protein 1-like (RPGRIP1-

LIKE) at the TZ (Patzke et al., 2010; Shaheen et al., 2014),

which is an Hh signaling pathway modulator in mouse embry-

onic fibroblasts (Vierkotten et al., 2007). A contribution of a TZ

defect to the reduced SMO translocation phenotype can thus

not be fully excluded in CSPP1�/� hTERT-RPE1 cells. In

contrast, CSPP-L is present at the cilia of CEP104mut

hTERT-RPE1 cells, which is unlikely to bear a TZ defect.

Inferring from the flagellar defects in the FAP256 mutants in

Chlamydomonas (Satish Tammana et al., 2013) and Tetrahy-

mena (Louka et al., 2018), structural aberrations at the tip of

the primary cilia of CEP104mut cells are likely to be expected.

However, KIF7�/� mouse embryonic fibroblasts (MEFs) do gain

ciliary SMO in response to Hh pathway stimulation (He et al.,

2014), suggesting that structural defects at the cilia tip may

not affect the ciliary accumulation of SMO per se. Peripheral

IFT-B sub-complex IFT25/IFT27 defective MEFs show a com-

plementary phenotype and accumulate SMO in cilia, even in

the absence of pathway stimulation, indicating SMO regulation

at the export level (Eguether et al., 2014; Keady et al., 2012).

Under the presumption of a similar balance existing in

hTERT-RPE1 cells, ciliary export of SMO may be favored in

Hh-unstimulated WT, CEP104mut, and likely also CSPP1�/�

hTERT-RPE1 cells. One may hypothesize that CEP104, beyond

its architectural function, could interfere via its IFT25-homolo-

gous N-terminal domain with IFT25/IFT27 at the cilia tip to

regulate ciliary residence of SMO in response to pathway acti-

vation (Keady et al., 2012; Eguether et al., 2014; Huet et al.,

2014; Bhogaraju et al., 2011; Milenkovic et al., 2015). In support

of this idea, we have detected an interaction between recombi-

nant CEP104 and IFT27 in preliminary experiments (Figure S7),

but the validation and functional analyses warrant a study in

their own right.

To conclude, we demonstrate in vitro and in vivo that ciliary

complex formation of CEP104 and CSPP-L is essential for Hh

signal-competent tip compartment and/or axoneme formation,

indicating abrogation of this process as the underlying molecular

defect in JBTS resulting from CEP104 mutations. The localiza-

tion pattern of CSPP-L defines an interesting link between the

centriolar satellite and the MT axoneme compartment. Further

investigations on the dynamic regulation of cilia tip and centriolar

satellite protein networks may thus provide a future avenue of

ciliopathy research.
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Lee, Y.L., Santé, J., Comerci, C.J., Cyge, B., Menezes, L.F., Li, F.Q., Germino,

G.G., Moerner, W.E., Takemaru, K., and Stearns, T. (2014). Cby1 promotes

Ahi1 recruitment to a ring-shaped domain at the centriole-cilium interface

and facilitates proper cilium formation and function. Mol. Biol. Cell 25, 2919–

2933.

Letteboer, S.J., and Roepman, R. (2008). Versatile screening for binary pro-

tein-protein interactions by yeast two-hybrid mating. Methods Mol. Biol.

484, 145–159.

Li, Y., Klena, N.T., Gabriel, G.C., Liu, X., Kim, A.J., Lemke, K., Chen, Y., Chat-

terjee, B., Devine, W., Damerla, R.R., et al. (2015). Global genetic analysis in

mice unveils central role for cilia in congenital heart disease. Nature 521,

520–524.

Louka, P., Vasudevan, K.K., Guha, M., Joachimiak, E., Wloga, D., Tomasi,

R.F., Baroud, C.N., Dupuis-Williams, P., Galati, D.F., Pearson, C.G., et al.

(2018). Proteins that control the geometry of microtubules at the ends of cilia.

J. Cell Biol. 217, 4298–4313.

Mahjoub, M.R. (2013). The importance of a single primary cilium. Organogen-

esis 9, 61–69.

May-Simera, H.L., and Kelley, M.W. (2012). Cilia, Wnt signaling, and the cyto-

skeleton. Cilia 1, 7.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit polyclonal anti-ARL13B Proteintech Cat#17711-1-AP; RRID: AB_2060867

Rabbit polyclonal anti-AHI1 Proteintech Cat#22045-1-AP; RRID: AB_11182927

Rabbit polyclonal anti-IFT88 Proteintech Cat#13967-1-AP; RRID: AB_2121979

Rabbit polyclonal anti-INPP5E Proteintech Cat#17797-1-AP; RRID: AB_2167120

Rabbit polyclonal anti-CEP104 Anna Akhmanova, University

of Utrecht, NL

N/A

Rabbit polyclonal anti-CEP97 Proteintech Cat#22050-1-AP; RRID: AB_11182378

Rabbit polyclonal anti-CP110 Proteintech Cat#12780-1-AP; RRID: AB_10638480

Rabbit polyclonal anti-CSPP1 Proteintech Cat#11931-1-AP; RRID: AB_2087897

Mouse monoclonal anti-Chibby Santa Cruz Biotechnology Cat#sc-101551; RRID: AB_1561972

Rabbit polyclonal anti-GLI2, H-300 Santa Cruz Biotechnology Cat#sc-28674; RRID: AB_2111908

Mouse monoclonal anti-SMO Santa Cruz Biotechnology Cat#sc-166685; RRID: AB_2239686

Rabbit polyclonal anti-CEP290 Abcam Cat#ab85728; RRID: AB_1859783

Rabbit polylonal anti-PCM1 Abcam Cat#ab72443; RRID: AB_1269694

Mouse monoclonal anti-Glutamylated tubulin (GT335) Adipogen Cat#AG-20B-0020; RRID: AB_2490210

Mouse monoclonal anti-g-Tubulin (GTU-88) Sigma-Aldrich Cat#T6557; RRID: AB_477584

Donkey polyclonal anti-mouse HRP Jackson Immunoresearch Cat#715-035-150; RRID: AB_2340770

Goat polyclonal anti-rabbit HRP Jackson Immunoresearch Cat#111-035-144; RRID: AB_2307391

Donkey polyclonal anti-mouse Cy3 Jackson Immunoresearch Cat#715-165-150; RRID: AB_2340813

Donkey polyclonal anti-rabbit AlexaFluor488 Jackson Immunoresearch Cat#711-545-152; RRID: AB_2313584

Donkey polyclonal anti-rabbit AlexaFluor647 Jackson Immunoresearch Cat#711-605-152; RRID: AB_2492288

GFP boost Atto-488 Chromotek Cat#gba488-100; RRID: AB_2631386

Mouse monoclonal IgG2a anti-CEP104 (G-11) Santa Cruz Biotechnology Cat#sc-514475; RRID: AB_2810936

Rabbit monoclonal IgG2a anti-GAPDH (14C10) Cell Signaling Technology Cat#2118; RRID: AB_561053

IRDye 680RD goat anti-mouse IgG (H+L) LI-COR Cat#926-68070; RRID: AB_10956588

IRDye 800CW goat anti-rabbit IgG (H+L) LI-COR Cat#926-32211; RRID: AB_621843

Mouse monoclonal anti-Acetylated tubulin (6-11B-1) Sigma-Aldrich Cat#T6793; RRID: AB_477585

Donkey polyclonal anti-mouse AlexaFluor594 Life Technologies Cat#R37115; RRID: AB_2556543

Rabbit polyclonal anti-aPKC Santa Cruz Biotechnology Cat#sc-208; RRID: AB_2168668

Goat polyclonal anti-rabbit AlexaFluor488 Life Technologies Cat#R37116; RRID: AB_2556544

Chemicals, Peptides, and Recombinant Proteins

Smoothen Agonist (SAG) Cayman Chemicals Cat#11914

Prolong Gold Life Technologies Cat#P36930

bisBenzimide H 33258 (Hoechst 33258) Sigma-Aldrich Cat#14530

Critical Commercial Assays

GFP-trap_MA Chromotek Cat#gtma-20

Experimental Models: Cell Lines

Human: hTERT-RPE1 ATCC Cat#CRL-4000; RRID: CVCL_4388

Human: hTERT-RPE1 CSPP1�/� This Paper N/A

Human: hTERT-RPE1 CEP104mut This Paper N/A

Human: hTERT-RPE1 WT mNeonGreen-CSPPL This Paper N/A

Human: hTERT-RPE1 WT mNeonGreen-CEP104 This Paper N/A

Human: hTERT-RPE1 CSPP1�/� mNeonGreen-CSPPL This Paper N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Human: hTERT-RPE1 CSPP1�/� mNeonGreen-CEP104 This Paper N/A

Human: hTERT-RPE1 CEP104mut mNeonGreen-CSPPL This Paper N/A

Human: hTERT-RPE1 CEP104mut mNeonGreen-CEP104 This Paper N/A

Human: HEK293T (also called Lenti-X 293T) Clonetech, Takara Bio Europe Cat#632180

Experimental Models: Organisms/Strains

Zebrafish: AB strain Zebrafish International Resource

Center (ZIRC)

Cat#ZL1; RRID: ZIRC_ZL1

Zebrafish: Transgenic islet-1:GFP strain (Tg(isle1:GFP)) Higashijima et al., 2000 https://www.jneurosci.org/content/

20/1/206.long

Zebrafish: Transgenic cmlc2:GFP strain (Tg(cmlc2:GFP)) Huang et al., 2003 https://doi.wiley.com/10.1002/

dvdy.10356

Oligonucleotides

Morpholino: Intron-Exon splice MO (cep104 splicing MO)

50-TGGACAAAACCTACACACAATAGAT-30
This paper, produced by

Gene Tools

N/A

Morpholino: translation blocking (cep104 ATG MO) 50-CA
CCGTTTGACAACTGTGGCATGTG-30

This paper, produced by

Gene Tools

N/A

Human CEP104 mRNA This paper N/A

Primer1 for CRISPR Zebrafish: cep104 sgRNAs 50-TTGG

CAAGTCAAATGTCTTCTTT-30
This paper N/A

Primer2 for CRISPR Zebrafish: cep104 sgRNAs 50-GCTG

ATGGTAGACTGCGAGT-30
This paper N/A

Primer1 for RT.PCR of cep104 splice products in Zebrafish

50-ATGCCAAAAAGCTGATGGTC-30
This paper N/A

Primer2 for RT.PCR of cep104 splice products in Zebrafish

50-ACCCAACAGCATCAACATGA-30
This paper N/A

Recombinant DNA

pmCherry-CEP104 Jiang et al., 2012 https://linkinghub.elsevier.com/

retrieve/pii/S096098221200872X

pEGFP-CEP104 and truncation constructs Jiang et al., 2012 https://linkinghub.elsevier.com/

retrieve/pii/S096098221200872X

pD1401-AP plasmid for CRISPR targeting of CSPP1 in

RPE1 cells with gRNAs: 50-AATCTGTGAAATCTTCTATC-30

and 50-AGGATCGTGTTTTTGATAGA-30

This paper, (see Figure S5)

Produced by DNA2.0

N/A

pD1401-AP plasmid for CRISPR targeting of CEP104 in

RPE1 cells with gRNAs: 50-AGCTCATCTGGACACGAAGA-30

and 50-GTGGGGCATTCTGCACGTTT-30

This paper, (see Figure S5)

Produced by DNA2.0

N/A

ShhN expression plasmid Bradley Yoder, University of

Alabama, USA

http://nature.com/articles/35079648

CSPP-L expression plasmid Patzke et al., 2010 http://www.molbiolcell.org/doi/

10.1091/mbc.E09-06-0503

CSPP-L truncates expression plasmid Patzke et al., 2010 http://www.molbiolcell.org/doi/

10.1091/mbc.E09-06-0503

ARL13B-mCherry plasmid Kristen J. Verhey, University

of Michigan, USA

N/A

IFT-27/IFT-25 expression constructs Esben Lorentzen, University

of Aarhus, DK

N/A

pGLAP3 Addgene Cat#19704; RRID: Addgene_19704

pENTR20-mNeonGreen-C1 Kay Oliver Schink, Oslo

University Hospital, NO

N/A

Lentiviral destination vector derived from pCDH-EF1a-MCS-

IRES-Puro (Cat#CD532A-2 from SystemBiosciences)

Kay Oliver Schink, Oslo

University Hospital, NO

https://www.biorxiv.org/content/

10.1101/180760v2 (preprint)

pMDLg/pRRE (Gag/Pol-plasmid for lentivirus packaging) Addgene Cat#12251; RRID: Addgene_12251

(Continued on next page)
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LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and request for reagents should be directed to and will be fulfilled by the Lead Contact, Sebastian Patzke

(sebastip@rr-research.no).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Zebrafish husbandry
All zebrafish procedures were performed under Home Office UK license regulations. We used the zebrafish golden strain, AB strain,

the transgenic islet1:GFP strain (Tg(islet1:GFP) which expresses GFP in cranial motor neurons under the control of islet1 promoter

(Higashijima et al., 2000) and the transgenic strain (Tg(cmlc2:GFP), expressing the GFP gene under the control of the cmlc2 promoter

(Huang et al., 2003).

METHOD DETAILS

Cell culture and genetic manipulation of hTERT-RPE1 cells
hTERT-RPE1 cells (ATCC #CRL-4000) were maintained in DMEM-F12 medium (Life Technologies, Carlsbad, CA, US) supplemented

with 10% Fetal Calf Serum (Life Technologies) and Penicillin/Streptomycin (Sigma-Aldrich, St.Louis, MO, US) in a humidified envi-

ronment at 37�C and 5% CO2. For ciliogenesis assays 7x104 cells/30 mm well were seeded on coverslips 24h prior to serum with-

drawal by two washes with 2 mL pre-warmed serum-free DMEM/F12, and further incubated for 48h. Hh-pathway stimulations were

performed on serum starved cells (48h) by addition of 100 nM SAG (Cayman chemical, Ann Arbor, MI, US) at 100 nM (f.c.) or replace-

ment of 1ml medium with ShhN conditioned DMEM (Life Technologies) including 2% Fetal Calf Serum derived from sterile filtered

culture supernatants of Hek293T (Clonetech #632180, Takara Bio Europe, Saint-Germain-en-Laye, FR) cells transfected with a

ShhN expression plasmid described earlier in (Zeng et al., 2001). Control cells were mock treated with DMSO or Hek293T culture

supernatant, respectively. For genetic targeting ofCSPP1 andCEP104 loci hTERT-RPE1 cells were transfected in at 70%confluence

in 10 cm culture dishes with custommade single vectors (DNA2.0, Newark, CA, US) expressing CAS9-D10A (Nickase), Paprika-RFP,

and two gene specific gRNA sequences (see Figures S2 and S3 for targeting sequence details). Single transfected cells were isolated

by flow cytometry assisted cell sorting on Paprika-RFP expression, individually expanded and 24monoclonal colonies characterized

for target gene and protein expression. Genomic target regions from selected clones were amplified by PCR on genomic DNA using

gene specific primers (see Figure S5). PCR products were sub-cloned into pGEM-T vector (Promega) and ten individual clones

analyzed by Sanger sequencing using SP6 and T7 directed primers, respectively. Flow cytometry assisted cell sorting and cell cycle

analysis was performed as described in (Dale Rein et al., 2015).

Third-generation lentivirus was generated using procedures and plasmids as previously described (Campeau et al., 2009). Briefly,

tagged fusions of transgenes were generated as Gateway ENTRY plasmids using standard molecular biology techniques. From

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

pRSV-Rev (Rev-plasmid for lentivirus packaging) Addgene Cat#12253; RRID: Addgene_12253

pMD2.G (VSV-G-plasmid for lentivirus envelope) Addgene Cat#12259; RRID: Addgene_12259

Software and Algorithms

Axiovision 4.8.2 Carl Zeiss N/A

softWoRx GE Healthcare N/A

Fiji/ImageJ Schindelin et al., 2012 http://www.nature.com/articles/

nmeth.2019

SigmaPlot v12.5 Systat Software, Inc

BoxplotR Spitzer et al., 2014 http://www.nature.com/articles/

nmeth.2811

eggNOG4.5 http://eggnogdb.embl.de/#/app/

home Huerta-Cepas et al., 2016

https://academic.oup.com/nar/

article/44/D1/D286/250/3059

NCBI https://www.ncbi.nlm.nih.gov/ N/A

JGI https://www.jgi.doe.gov/ N/A

Other

Cover glasses Hecht Assistent Cat#1014

35mm ibiTreat m-culture dishes Ibidi Cat#81156
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these vectors, lentiviral transfer vectors were generated by Gateway LR recombination into lentiviral destination vectors (Gateway-

enabled vectors derived from pCDH-EF1a-MCS-IRES-PURO (SystemBiosciences)). VSV-G pseudotyped lentiviral particles were

packaged using a third-generation packaging system (Addgene plasmids #12251, 12253, 12259). Cells were then transduced

with low virus titers (multiplicity of infection < 1) and stable expressing populations were generated by antibiotic selection. Detailed

cloning procedures are available from the authors.

Plasmids, antibodies and reagents
Plasmids for genetic targeting were acquired from DNA2.0 (Newark, CA, US)). pmCherry-CEP104, pEGFP-CEP104 and pEGFP-

CEP104-truncates were described earlier (Jiang et al., 2012). pDEST-GLAP3 was acquired from Addgene (Cambridge, MA, US;

(Torres et al., 2009)). Plasmid for expression of soluble Hedgehog ligand (ShhN; (Zeng et al., 2001)) was obtained fromB. K. Yoder

(Department of Cell Biology, University of Alabama, USA), the plasmid for expression of mCherry-ARL13B from K. J. Verhey (Univer-

sity of Michigan, USA), and plasmids for IFT25/IFT27 expression from Esben Lorentzen (University of Aarhus, Denmark). CSPP-L and

CSPP-L truncate expression plasmids were described earlier (Patzke et al., 2010). All plasmid transfections were performed using

Lipofectamine3000 (Life Technologies) according to the protocol from the manufacturer. Detailed information on antibodies are

provided in the STAR Methods. Directly Atto488-fluorophore conjugated probes for GFP detection and anti-GFP conjugated para-

magnetic beads for immunoprecipitations were from Chromotek (Chromotek GmbH, Munich, DE).

Immunoprecipitations and immunoblotting
Preparation of cell lysates, gel electrophoresis, blotting and immuno-detection was performed as described earlier (Sternemalm

et al., 2015). For immunoprecipitation cells were washed thrice in Phosphate buffered saline (PBS; Sigma-Aldrich) and then lysed

on ice in cold lysis buffer (50 mM HEPES, pH 7, 150 mM NaCl, 5 mM EDTA, pH 8, 0.1% NP-40, 10% glycerol) supplemented

with phosphatase inhibitor cocktails II and III (Sigma-Aldrich) and completeTM protease inhibitor (Roche Diagnostics, Basel,

Switzerland). Lysates were collected using a cell scraper, transferred to reaction tubes, left on ice for 20 min for solubilization and

then centrifuged at 20.000xg/4�C for 15 min. Clarified supernatants were transferred to new reaction tubes for immunoprecipitation

using GFP-trap paramagnetic beads (Chromotek GmbH) at 4�C for 2h on a spinning wheel. Beads were washed twice in 500 ml lysis

buffer and transferred to a new reaction tube for a third wash. Purified proteins were released frombeads and denatured in 40 ml SDS-

sample loading buffer and 5 min incubation at 95�C.

Immunofluorescence and live cell microscopy
Cells were grown on heat-sterilized cover glasses (No.1014; Glaswarenfabrik Karl Hecht GmbH&Co KG, Sondheim/Rhön, DE), fixed

for 15 min in 1% neutral buffered formalin solution at room-temperature prior to post-fixation in methanol (�20�C). Cells were re-hy-

drated for IFM staining by three consecutive washes in PBS and blocked and permeabilized for 30 min in PBS-AT (PBS containing

5% wt/vol Bovine serum albumin (BSA) and 0.1% vol/vol Triton X-100). Cells were stained with primary antibodies for 2h at room

temperature, washed thrice in PBS, and stained with secondary antibodies for 45 min. All antibody incubations were performed in

PBS-AT. Cells were washed thrice in PBS, counterstained for DNA (Hoechst 33258 in PBS, Sigma), washed briefly in distilled water,

dried andmounted on object glasses using Prolong Gold (Life Technologies). Fluorescence images were acquired using appropriate

optical filters on a multi-fluorescent bead calibrated AxioImager Z1 ApoTome microscope system (Carl Zeiss, Jena, DE) equipped

with a 100x or a 63x lens (both PlanApo N.A.1.4) and an AxioCam MRm camera. To display the entire cell volume, images are pre-

sented as maximal projections of z stacks using Axiovision 4.8.2 (Carl Zeiss).

3D-SIM imaging was performed using a Deltavision OMX V4 microscope (GE Healthcare, Little Chalfont, UK) equipped with three

water-cooled PCO.edge sCMOS cameras, 405 nm, 488 nm, 568 nm and 642 nm laserlines and a 60x 1.42NA Plan-Apochromat lense

(Olympus, Tokyo, JP). z stacks covering the whole cell, with sections spaced 0.125 mm apart, were recorded. For each z section, 15

raw images (three rotations with five phases each) were acquired and the final super-resolution images were reconstructed using

softWoRx software (GE Healthcare).

Images for quantitative IFM imagingwere acquired on amulti-fluorescence sub-micron beads calibrated CellObservermicroscope

system (Carl Zeiss) equipped with a 403 /1.3 PlanApo Phase 3 lens and an AxioCamMRm camera. Images were acquired with con-

stant exposure times at 10 random positions per coverslip and in seven optical sections at 0.5 mm distance, centered around focal

planes for cilia. Focal planes were identified by glutamylated tubulin or ARL13B labeling as cilia reference, respectively, using a

contrast based autofocus routine (AxioVision 4.8.2). Image analysis was performed in Fiji/ImageJ (Schindelin et al., 2012). Sum pro-

jections of individual channels were background corrected using a 5px rolling circle algorithm and cilia segmented in cilia reference

channels by signal intensity and morphological thresholds to create cilia masks. Fluorescence signal intensities under each mask

were measured in all channels and median signal intensities determined.

All statistical analysis was performed using t test analysis tool in SigmaPlot v12.5 (Systat, Inc., San Jose, CA,US) and boxplots

created in BoxplotR (Spitzer et al., 2014).

For live cell microscopy cells were grown in 35-mm ibiTreat m-culture dishes (Ibidi, Munich, DE) and imaged using a CellObserver

microscope system (Carl Zeiss) equipped with a 40 3 /1.3 PlanApo Phase 3 lens, a Hamamatsu ORCA-Flash4.0 v3 camera, a tem-

perature controlled XL-chamber, a temperature, humidity and CO2 controlled stage incubator, a motorized coded X,Y-stage, a

Definite Focus system and a HXP120 Metal-Halide illumination unit.
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Post-embedding immunogold electron microscopy
Small pieces (about 2mm2) ofmouse tracheawere fixed inMT-buffer (30mMHEPES, 5mMNa-EGTA, 15mMKCl, pH 7.0) containing

3.5% formaldehyde for 2–3 h at 4�C. After two brief washes with MT-buffer the tissue was dehydrated to 100% ethanol (30% and

50% ethanol on ice; then 70%, 95%, 100% ethanol at �20�C, 15 min each). Infiltration of the samples with LR Gold resin (London

Resin Company, Reading, GB) was performed at �20�C according to the following scheme: LR Gold/ethanol (1:3) for 2 h, LR Gold/

ethanol (3:1) for 4 h, LR Gold containing 0.4% benzil for 36 h (with several changes of the medium). Polymerization was performed

under fluorescent light for 48 h at �20�C. Ultrathin sections (60-80 nm) were cut with a diamond knife (type ultra 35�; Diatome,

Biel, CH) on a EM UC6 ultramicrotome (Leica Microsystems, Wetzlar, DE) and mounted on pioloform-coated, single-slot gilded cop-

per grids (Science Services, Munich, DE). For immunolabeling, the sectionswere blocked for 1-2 h at room temperature with blocking

buffer (2% BSA, 0.1% fish gelatin and 0.05% Tween 20 in PBS; pH 7.4) and incubated in anti-CSPPL antibody (polyclonal, rabbit,

diluted 1:200 or 1:1000 in blocking buffer) overnight at 4�C. Grids were washed 3-5 times with PBS containing 0.15%BSA-c (Aurion,

Wageningen, NL) for 10 min each and incubated for 1.5 h with 15-nm gold particles conjugated to goat anti-rabbit IgGs (British Bio-

cell, Cardiff, GB) diluted 1:30 in blocking buffer. Grids were washed 3-5 times with PBS containing 0.15% BSA-c for 10 min each,

fixed for 8 min in 1% glutaraldehyde in PBS and washed 3 times for 5 min each in distilled water. After immunolabeling, the sections

were stained with uranyl acetate and lead citrate (Reynolds, 1963) and viewed with a JEM-2100 transmission electron microscope

(JEOL, Tokyo, JP) operated at 80 kV. Micrographs were taken using a 4,080 3 4,080 pixels charge-coupled device camera

(UltraScan 4000, Gatan, Pleasanton, CA, US) and Gatan Digital Micrograph software (version 1.70.16). Image brightness and

contrast were adjusted using Adobe Photoshop 8.0.1.

Direct yeast two-hybrid interaction assay, sucrose density fractionation and size exclusion chromatography
The direct interaction between CSPP-L and other ciliary proteins was tested using a GAL4-based yeast two-hybrid system, with

yeast strain PJ69-4A and PJ69-4a, using general procedures for yeast mating described previously (Letteboer and Roepman,

2008). In brief, a construct encoding full-length CSPP-L, fused to either a DNA-binding domain (GAL4-BD), or to a transcription acti-

vating domain (GAL4-AD) were used to screen a gridded library of cDNA clones, expressing different ciliary and/or ciliopathy-asso-

ciated proteins, fused toGAL4-ADor GAL4-BD, respectively. The direct interaction between baits and preys induced the activation of

the reporter genes, resulting in the growth of yeast colonies on selective media (deficient of Leu, Trp, His, and Ade) and induction

of a-galactosidase and b-galactosidase colorimetric reactions. Positive clones were subsequently validated by co-transformation

of the cognate plasmids, and growth selection onmedia lacking His, Leu, and Trp, supplemented with 10 mM 3-AT. For density frac-

tionation 200ml total cell lysate was loaded onto a continuous 10%–60% sucrose gradient prepared by mixing 60 and 10% sucrose

solutions (5.5 mL of each) using a Biocomp Gradient Master (BioComp Instruments, Fredericton, CA) and centrifuged at 100.000xg

for 16 h at 4C in a SW-40Ti rotor (Beckman-Coulter, Pasadena, CA, US). Procedures for size exclusion chromotography have been

published previously (Schou et al., 2017).

Zebrafish genetic manipulation
All zebrafish procedures were performed under Home Office UK license regulations. Zygotes were collected from natural spawning

and placed in Petri dishes of E3 medium (Westerfield, 2000). Zebrafish embryos were collected and raised at 28.5 �C and staged in

somite stage and hpf according to standard criteria (Kimmel et al., 1995). Antisense morpholino oligonucleotides (MOs) were de-

signed (Gene Tools, Philomath, Oregon, US) to target zebrafish cep104 (XP_003199125.2) as follows: Intron-Exon splice MO

(cep104 splice MO): 50-TGGACAAAACCTACACACAATAGAT-30; translation blocking (cep104 ATG MO): 50-CACCGTTTGA

CAACTGTGGCATGTG-30. Stock MOs in RNase free water were diluted with 0.05% phenol red in Danieau buffer (Nasevicius and

Ekker, 2000) to produce the solution for injection. Escalating doses of each MO were tested for phenotypic effects. Embryos

were injected with 0.8 pmol/embryo of cep104 splicing MO or 0.8 pmol/embryo of cep104 ATG MO at 1- to 2-cell stage. For com-

bined knockdown experiments, 0.8 pmol/embryo of each MO was used. For rescue experiments, morpholino was co-injected with

250 pg/embryo of CEP104 mRNA.

Protein extraction and immunoblotting on zebrafish samples
Whole protein extracts were obtained from 48 hpf de-yolked zebrafish embryos by mechanical desegregation of the embryos into

Laemmli sample buffer (Laemmli, 1970). Samples were incubated at 98�C for 5 min and resolved by SDS-PAGE. Proteins were

transferred to a nitrocellulose membrane (Thermo Fisher). The membranes were incubated with the following antibodies: mouse

monoclonal IgG2a anti-CEP 104 (G-11), (sc-514475, SCBT), rabbit monoclonal IgG2a anti-GAPDH (14C10), (2118, Cell Signaling

Technology), IRDye� 680RD goat anti-mouse IgG (H + L), (926-68070, LI-COR, Lincoln, NE, US), IRDye� 800CW goat anti-rabbit

IgG (H + L), (926-3221, LI-COR). Protein signals were then detected using the ODYSSEY CLx (LI-COR) imaging system.

Kupffer’s vesicle imaging
Uninjected and cep104MO injected zebrafish embryos were fixed at the 10 somite stage, using 4% paraformaldehyde in PBS at 4�C
overnight. To permeabilise, embryos were washed in ddH20 then pre-chilled acetone (�20�C) for 7 min. Embryos were washed in

ddH2O and blocked in 5% BSA, with 1% DMSO and 0.1% Tween. For cilia staining, embryos were incubated in primary antibody

(mouse anti-acetylated tubulin antibody, 1:500, Sigma T6793) overnight at 4�C and detected using a donkey anti-mouse
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AlexaFluor594 conjugated secondary antibody (1:300, Life Technologies). For identification of KV epithelium, antibodies directed

toward aPKC were used (rabbit anti-aPKC (1:500, SCBT) detected with goat anti-rabbit Alexa Fluor 488 conjugated secondary

antibody (1:300, Life Technologies). Embryos were washed into PBS, mounted and imaged using an Axio Imager Z1 fluorescence

microscope (Zeiss).

Zebrafish husbandry and genetic manipulation
The cep104 sgRNA was designed using https://www.crisprscan.org/ to target the following region of cep104 gene:

50-GGTGGGCGAACGGTTGGGC-30. sgRNA and Cas9 protein (NEB) were solubilized with 300 mM KCl and diluted in 0.05% phenol

red in RNase free water at final concentration of respectively 300ng/ul and 4uM and were injected into 1-cell stage embryos. Zebra-

fish were anaesthetized with Tricaine solution and phenotyped at 48 hpf. Images were captured using a fluorescent stereomicro-

scope (Leica MZ16F). sgRNA was synthesized using a cloning-free, oligo-based method (Varshney et al., 2016). In vitro transcription

was carried out using MEGAshortscript T7 transcription kit (Thermo Fisher). sgRNA was then purified with mirVana Isolation Kit

(Thermo Fisher). To check the specificity and efficiency of genome editing, 11 embryos from a sample population of F0 animals

were genotyped by amplifying surrounding region of targeted cep104 sequence, using gene-specific primer pairs (50-TTGGCAAGT

CAAATGTCTTCTTT-30and 50-GCTGATGGTAGACTGCGAGT-30). Amplification product from each F0 crispant embryos was then

sequenced and compared to amplification product from uninjected embryos to screen for mutations.

Zebrafish RNA isolation and RT-PCR
Total RNA was isolated from single zebrafish embryos at 48 hpf. RNA was used for each experimental group in reverse transcription

(RT) reactions. Superscript VILO cDNA synthesis kit (Life Technologies) was used for RT. PCR using gene-specific primer pairs

(5-ATGCCAAAAAGCTGATGGTC-3 and 5-ACCCAACAGCATCAACATGA-3) was performed to identify splice products following

cep104 splice MO injection.

Pronephros imaging
For pronephros imaging, uninjected and cep104 MO or CRISPR/Cas9- injected embryos were fixed at 72 hpf with 4% paraformal-

dehyde in PBS at 4�C overnight. To permeabilise embryos they were washed in ddH20 then pre-chilled acetone (�20�C) for 7 min.

Embryos were washed in ddH2O, treated with collagenase A (Roche) at 1mg/ml in PBS-Tween 0.1% for 30’ at room temperature and

blocked in 5% horse serum in PBS-Tween 0.1% for 1 h at room temperature. For cilial staining, embryos were incubated in primary

antibody (mouse anti-acetylated tubulin antibody, 1:500, Sigma T6793) overnight at 4�C and detected using a donkey anti-mouse

AlexaFluor594 conjugated secondary antibody (1:400, Life Technologies). Embryos were washed into PBS and imaged using

confocal microscopy (A1R Confocal, Nikon).

Evolutionary and comparative structure analysis
Putative CEP104 and CSPP1 orthologs were identified using a combination of reciprocal best BLASTP and iterative BLASTP as sim-

ple BLAST searches. Protein sequences were used to query the non-redundant predicted proteomes of flagellate and non-flagellate

organisms, chosen to represent a wide evolutionary spread of eukaryotes. Searches were carried out at eggNOG4.5 (Huerta-Cepas

et al., 2016), NCBI (https://www.ncbi.nlm.nih.gov/) or JGI (https://www.jgi.doe.gov/) depending on the organism. Comparative struc-

ture analysis was carried out at HHPred (Hildebrand et al., 2009).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis were performed using SigmaPlotv12.5 (SysStat). Statistical details of experiments are stated in the legends of

figures displaying the respective data, including the statistical tests used, the number of replicates and number of investigated

cells/fish, measures of precision and definitions of significance.
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