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ARTICLE

Predicting bacterial infection outcomes using single
cell RNA-sequencing analysis of human immune
cells
Noa Bossel Ben-Moshe1,4, Shelly Hen-Avivi1,4, Natalia Levitin1, Dror Yehezkel1, Marije Oosting2,

Leo A.B. Joosten 2, Mihai G. Netea 2,3 & Roi Avraham1

Complex interactions between different host immune cell types can determine the outcome

of pathogen infections. Advances in single cell RNA-sequencing (scRNA-seq) allow probing

of these immune interactions, such as cell-type compositions, which are then interpreted by

deconvolution algorithms using bulk RNA-seq measurements. However, not all aspects of

immune surveillance are represented by current algorithms. Here, using scRNA-seq of human

peripheral blood cells infected with Salmonella, we develop a deconvolution algorithm for

inferring cell-type specific infection responses from bulk measurements. We apply our

dynamic deconvolution algorithm to a cohort of healthy individuals challenged ex vivo with

Salmonella, and to three cohorts of tuberculosis patients during different stages of disease.

We reveal cell-type specific immune responses associated not only with ex vivo infection

phenotype but also with clinical disease stage. We propose that our approach provides a

predictive power to identify risk for disease, and human infection outcomes.

https://doi.org/10.1038/s41467-019-11257-y OPEN

1 Department of Biological Regulation, Weizmann Institute of Science, 7610001 Rehovot, Israel. 2 Department of Internal Medicine and Radboud Center for
Infectious Diseases, Radboud University Medical Center, 6525 HP Nijmegen, the Netherlands. 3 Department for Genomics & Immunoregulation, Life and
Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany. 4These authors contributed equally: Noa Bossel Ben-Moshe, Shelly Hen-Avivi
Correspondence and requests for materials should be addressed to R.A. (email: roi.avraham@weizmann.ac.il)

NATURE COMMUNICATIONS |         (2019) 10:3266 | https://doi.org/10.1038/s41467-019-11257-y | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0001-6166-9830
http://orcid.org/0000-0001-6166-9830
http://orcid.org/0000-0001-6166-9830
http://orcid.org/0000-0001-6166-9830
http://orcid.org/0000-0001-6166-9830
http://orcid.org/0000-0003-2421-6052
http://orcid.org/0000-0003-2421-6052
http://orcid.org/0000-0003-2421-6052
http://orcid.org/0000-0003-2421-6052
http://orcid.org/0000-0003-2421-6052
mailto:roi.avraham@weizmann.ac.il
www.nature.com/naturecommunications
www.nature.com/naturecommunications


The host-pathogen interface involves, on the host side,
hierarchic responses and defense strategies of multiple
immune cell types. These different immune cells form a

complex network of communications that maintain an orche-
strated and dynamic immune response, aimed at eliminating
invading agents. To date, significant molecular knowledge was
gained by focusing on the interaction of pathogens with innate
immune cells, mostly macrophages1–5 or dendritic cells3,6,7. This
assumes that the key to infection outcome is provided by one cell
type of interest. Even within these seemingly homogenous
populations, emerging technologies that permit accurate profiling
of individual cells have revealed significant complexity of innate
immune cells8–10, and their interactions with bacterial patho-
gens11–13. Adding to this complexity of dynamic activation are
the diverse simultaneous facets of immune cells identity; a tax-
onomy of discrete cell types with continuous transitions of cell
activation states. It is exactly this complexity of an intact immune
system that is needed to mount an efficient immune response
against invading agents.

Recent advances in single-cell RNA-seq (scRNA-seq) allow
breakdown of complex tissues and host compartments into cell
types and their relevance in health and disease14. This approach
has revolutionized our ability to understand the immune system
in unprecedented level of details, e.g., in processes such as
hematopoiesis9,15,16, tumorigenesis17–19, the lymph node com-
partment20, and responses to microbial ligands8,21. This ever-
increasing wealth of data has spawned analytical methods, such as
computational deconvolution methodologies, that predict
detailed cell-type compositions from bulk gene expression
data17,22,23. However, these algorithms are based on a-priori
knowledge or specific datasets24,25, which are inherent to the
experimental systems. Despite this classification of immune cell
types, we currently lack a functional understanding of the
dynamic immune response across multiple cell types that allow
clearance of invading pathogens.

Peripheral blood mononuclear cells (PBMCs), which contain
lymphocytes, natural killer (NK) cells, monocytes, and dendritic
cells (DC), provide a window to the complexity of the human
immune system which can be assessed in clinical contexts, both in
health and in pathological cases26. Importantly, bloodborne and
other pathogens can reach the blood in cases of systemic infec-
tion27–29, and cells from the blood are known to migrate to the
site of infection30,31. Indeed, blood immune cells are used to
investigate the effect of different pathogens on the immune sys-
tem32–37. However, these studies are usually based on bulk
measurements of PBMCs that overlook the underlying com-
plexity of diverse cell types. How the immune system integrates
signals and orchestrates responses from different cell types and
how inter-individual variation in these cell types is translated to
differences in infection outcome are fundamental to our under-
standing of human infection biology.

In the current study, we develop a dynamic deconvolution
algorithm that captures the two aspects of immune surveillance
from bulk measurements: cell-type composition and the
dynamics of cell-type specific infection response. To expose the
infection-induced states of immune cells, we infect them ex vivo
with Salmonella enterica serovar Typhimurium (Salmonella). We
perform scRNA-seq and characterize gene signatures that cap-
tures infection-induced states for each cell type and sub-type. We
use this mapping to train our deconvolution algorithm, allowing
us to predict cell-type specific immune responses from bulk
RNA-seq measurements. To demonstrate the algorithm func-
tional utility, we recruit groups of healthy individuals, measure
their PBMCs response to ex vivo infection with Salmonella and
apply our dynamic deconvolution algorithm. We also apply our
algorithm to bulk RNA-seq data from cohorts of tuberculosis

(TB) patients during different stages of disease. Importantly, we
reveal cell-type specific immune responses associated not only
with ex vivo infection outcomes but also with clinical disease
stage. We offer that our approach provides a predictive power to
identify risk factors for human infectious disease.

Results
Immune response of human PBMCs to Salmonella infection.
To characterize the dynamics of the host–pathogen interface in a
physiological setting that encompass the complex interactions
between different immune cell types, we used a model of ex vivo
infection of PBMCs with Salmonella. We isolated PBMCs from a
blood sample of a healthy individual, and infected them ex vivo
with Salmonella. scRNA-seq was measured for the unexposed
(naïve) and exposed cells 4 h after infection, to obtain an unbiased
marker-free decomposition of the repertoire of immune cell types
and sub-types before and after infection (Fig. 1a, see Supple-
mentary Fig. 1 for experimental design). Although, most of the
exposed cells do not contain internalized bacteria, they still
respond to the infection. Using flow cytometry and RFP-
expressing Salmonella, we detected a total of 3% infected cells,
with ~90% of the monocytes containing intracellular bacteria
(Supplementary Fig. 2). Overall, 7000 cells were analyzed (3515
naïve and 3485 exposed cells). To map the repertoire of immune
cell types, we first clustered the cells using k-means clustering,
separately for the naïve and exposed cells (Supplementary
Fig. 3a–c), and then interpreted clusters identity using cluster-
specific genes and known marker genes expression levels38–45

(Supplementary Data 1 and Supplementary Fig. 3d). We mapped
cells to 7 main cell types: NK, NKT, CD8 T cells, CD4 T cells, B
cells, monocytes, and dendritic cells (Fig. 1b). Within each cell-
type cluster, we observed a clear separation between naïve and
exposed cells (gray vs. black nodes in Fig. 1b and Supplementary
Fig. 3a). Noteworthy, monocytes generated two separate groups
of naïve and exposed cells, which might be an indication of their
unique capacity to contain intracellular bacteria. NKT cells were
observed as a distinct cluster only after infection. These changes
in monocytes and NKT cells prompted us to experimentally
confirm their assigned gene signatures before and after infection.
We sorted each population (CD3+ CD56+ NKT and CD14+

monocytes) from naïve and exposed PBMCs and analyzed their
transcriptome using bulk RNA-seq. We confirmed that the bulk
RNA-seq expression of these sorted populations is highly corre-
lated with the average expression of each cell type in the single-
cell data (Supplementary Fig. 4). Further partitioning of the cells
into cell sub-types was accomplished using a graph based
approach of community detection Louvain on the KNN-graph
(see methods), done separately for the naïve and exposed samples.
Using this analysis we could further classify 31 cell sub-types in
the naïve sample and 29 in the exposed sample (see Supple-
mentary Data 2).

To characterize the infection dynamics of each cell type and
sub-type, we performed an analysis allowing us to trace between
the origin of each exposed sub-types in their matching naïve
sample. We first curated a global infection signature of 309 genes
that were significantly upregulated following Salmonella infection,
with varying degree of specificity to a certain cell type (Fig. 1c and
Supplementary Fig. 5). GO-term enrichment analysis revealed
that these 309 genes were indeed significantly enriched for
infection terms such as defense response to virus, type I
interferon signaling pathway, inflammatory response etc. (Sup-
plementary Data 3). We then removed these genes, eliminating
the separation between naïve and exposed cells for all cell types,
except for the monocytes which contained intracellular bacteria
(Fig. 1d and Supplementary Fig. 3e–g). We then overlaid the
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exposed cells on top of the centroid of the naïve cells, and
classified the exposed cells using KNN-classification, by the sub-
types of the naïve sample (Fig. 2a). This connectivity matrix
represents the entire repertoire of PBMC sub-types before and
after infection. The connection between the cells represents the
intrinsic fingerprints which are the inherent characteristic of the
cells regardless of the infection axes. Importantly, this con-
nectivity allows us to then infer the infection-induced state of
each sub-type, describing the dynamics of the immune cells
following infection. By this we separate the scRNA-seq data into
two layers, one being the cell-type intrinsic properties which are
shared between the naïve and exposed cells (Fig. 2b), and the
other a layer of dynamic immune response to infection, exclusive
to the exposed cells. For the intrinsic properties, we curated the
genes which significantly differentiate between various cell types
(Supplementary Fig. 6a), and between sub-types for each cell type
(Supplementary Fig. 7). This revealed a range of activation states
in the sub-types within each cell type, which exist in PBMCs at
steady-state, regardless of infection response (see activation
colorbar, Fig. 2b). For example, in B cells, we identified three
sub-types of naïve cells, one of memory cells, and another of
activated B cells46, all of which exist both in naïve and exposed
samples, regardless of their response to infection. For the NK
cells, their multidimensional projection into two-dimensions
preserved mainly the differences between the cytotoxic NK and

all other sub-types. Another interesting observation is that after
infection with Salmonella we observe only three sub-types of
monocytes out of the 8 naive sub-types, two of the three
resembling M1 polarized macrophages13. Loss of some of these
monocyte sub-types that are not observed in the exposed sample
might indicate a cell-type specific programmed cell death after
Salmonella infection47–49. Finally, we identified that NKT cells
originated as a distinct group from a specific sub-type of CD8
T cells, in agreement with the expression profile of the sorted
naïve NKT cells (Fig. 2a and Supplementary Fig. 4a). Overall, the
resulting gene signature matrices provide a unique immune cell-
type fingerprint which we now utilize to bioinformatically predict
similar breakdown of PBMCs immune responses from bulk
measurements.

scRNA-seq based deconvolution to model immune responses.
Using the knowledge we gained from the scRNA-seq data, we
constructed a fingerprint of PBMC types and infection-induced
cell states (Supplementary Figs. 6a and 5b). We now aimed to
deconvolute the same resolution from bulk measurements of
complex mixture of PBMCs. While current deconvolution
methodologies infer cell-type composition, here we intend to
additionally model infection induced-state for each cell type. To
achieve this goal, we developed a dynamic deconvolution
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Fig. 1 scRNA-seq analysis of human PBMCs before and after ex vivo Salmonella infection. a Overview of the scRNA-seq experiment: PBMCs were isolated
from a blood sample of a healthy individual and were infected ex vivo with Salmonella (exposed), or remained unexposed (naïve). Overall ~7000 cells were
sequenced using 10x genomics Chromium. b Visualization of the scRNA-seq data using forced layout on a two-dimensional space by k-nearest neighbor
(KNN)-graph (k= 20; naive cells (gray) and exposed cells (black)). K-means clustering of the cells revealed the seven main cell types: NK cells (red), CD8
T cells (orange), CD4 T cells (yellow), NKT cells (brown), B cells (green), monocytes (purple), and dendritic cells (DC; pink), as inferred using cluster-
specific genes and marker genes expression (see Supplementary Data 1 and Supplementary Fig. 3d). Colored contours represent cells which belong to the
same cell type in each sample (see also Supplementary Fig. 3a–c for complete KNN-graph with edges and clusters). c Expression levels of representative
genes from the infection signature (see methods and Supplementary Fig. 5). Top: general infection genes which are upregulated following Salmonella
infection in all exposed cells, and bottom: cell-type specific infection genes. Gene expression is shown using the same layout as in b, with the nodes colored
by the indicated gene expression in each cell (see colorbar). d KNN-graph (k= 20) of the scRNA-seq data after removal of the global infection signature
eliminated the separation between naïve and exposed cells for all cell types, except for the monocytes, which contain intracellular bacteria. Colors and
contours are the same as in b (see also Supplementary Fig. 3e–g)
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Fig. 2 Characterization of human PBMCs intrinsic sub-types before and after Salmonella infection. a Classification of exposed cells inferred from the cell
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exposed sample (y-axis) that were classified to each sub-type of the naive sample (x-axis) (see colorbar to the right corresponding to the matrix entries).
Cell sub-types identity was inferred from the differentially expressed genes that uniquely characterize each sub-type (Supplementary Fig. 7; color code of
sub-types from blue to red represents activation state, found already at steady-state, regardless of the infection response). b Graph-based clustering
revealed the repertoire of immune sub-types before and after infection (intrinsic fingerprints). The middle circle presents the contours of the cell types
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exposed cells relative to the contours and the differentially expressed genes which defines each sub-type)
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algorithm for bulk measurements of PBMCs following infection,
based on our scRNA-seq data (Fig. 1, Supplementary Figs. 5b and
6a). We first represented the single-cell data as a one-dimensional
vector which contains the types and frequencies of PBMCs. Then
we represented the infection-induced state of each cell type post-
infection (Fig. 3a). Using deconvolution we could predict the
vector of relative abundance (Kj) and the infection-induced state
(Sj) of each cell type for any bulk measurements, transforming it
into the cell-type resolution of single-cell data. This further allows
us to assess the contribution of different complex interactions
between cell types to infection outcome, without the need to
perform scRNA-seq. To enable deconvolution we applied a spe-
cificity filter (see methods) for gene signatures which are
expressed exclusively from one cell type, and hence enabled us to
recover the cell-type resolution from bulk measurements. We first
curated both ‘intrinsic marker genes’ (Fig. 3b), which define
uniquely cell types, irrespective of infection; and ‘infection-
induced marker genes’ (Fig. 3c), which define the response of a
specific cell type to infection (see pipeline in Supplementary
Fig. 8a and the method section). For the cell-type specific
infection-induced genes, we identified unique signatures only for
monocytes and NKT cells, as other infection-induced genes were
shared between several cell types (Supplementary Fig. 5b). Next
we recovered estimators for cell-type composition (Kj) and
infection-induced states (Sj) from ‘intrinsic marker genes’ and
‘infection-induced marker genes’, respectively. By averaging the
set of estimators calculated from each gene alone, we obtain a
robust estimation of the immune cell-type composition and
infection-induced state within a complex cell mixture of PBMCs
(see methods, and Eqs. 3 and 4). Finally, we verified that our
marker genes are expressed consistently across all cells belonging to
a singular type (Supplementary Fig. 6b) and validated the robust-
ness to all design choices used in our pipeline described above
(Supplementary Fig. 8). Using a simulation on synthetic compo-
sitions from single-cell data, we modified each design choice (e.g.
FDR level, fold-change threshold and specificity filter)50,51 and
verified that these iterations did not changed the algorithm per-
formance (Supplementary Fig. 8d and Supplementary Data 4–6).
Next, algorithm reproducibility was evaluated by applying it on
public PBMCs single-cell data38. By averaging single-cell data,
bulk-like samples with heterogeneous cellular composition were
generated (Supplementary Fig. 9a). The inferred compositions by
our algorithm were accurate with high r-squared values (R2 > 0.95
for all cell types, Supplementary Fig. 9b), supporting its robustness
in an independent experiment. To experimentally validate the
algorithm performance, we isolated PBMCs from four individuals
and simultaneously performed FACS and bulk RNA-seq. High
concordance between the cell-type compositions as measured by
FACS and our deconvolution was confirmed (Fig. 3d and Sup-
plementary Fig. 2b). As infection-induced cell states cannot be
validated via FACS, specificity and reproducibility was experi-
mentally obtained by sorting naïve and exposed monocytes and
NKT cells. Indeed the NKT infection-induced signature was
expressed specifically from NKT cells after infection, while the
monocytes infection-induced signature was exclusive to the sorted
exposed monocytes (Fig. 3e and Supplementary Fig. 2c). Last, we
verified the reproducibility of the inferred NKT and monocytes
infection-induced signatures using an independent scRNA-seq
experiment, in a similar setting (Supplementary Fig. 9c). Impor-
tantly, using a simulation on this data we generated bulk-like
samples with constant cell-type composition and different
infection-induced state of the cells, and evaluated the accuracy of
the algorithm to infer the infection-induced state of the cells,
regardless of their absolute number. The inferred infection-induced
states were accurate with high r-squared values (Supplementary
Fig. 9d). These validations of the robustness, accuracy, and

reproducibility of the algorithm, prompted us to apply it to char-
acterize experimentally the association between immune cell types
dynamics and infection outcome.

Dynamic deconvolution of infection among healthy individuals.
To gain biological insights into the dynamics of human infection,
we recruited a cohort of four individuals bearing the wild-type
TLR10 allele (WT) and four individuals bearing a polymorphism
in the TLR1/6/10 locus (TLR10 N241H (rs11096957), henceforth
termed TLR10). TLR10 polymorphism is associated with altered
cytokine production, such as IL-1β and TNF-α when stimulated
with bacterial ligands as the Gram-positive Toll-like receptor
(TLR)-2 ligands (e.g., Pam3CSK4)52,53. TLR10 has been described
as the only member of the family to have an inhibitory effect on
inflammation, but its ligand specificity and function in different
cell types remains unknown. We hypothesized that the altered
immune response to bacterial ligands will manifest in differences
of distinct immune cell types, which may shed light on TLR10
function during bacterial infections. We infected ex vivo PBMCs
from our group of individuals with Salmonella. Bulk RNA-seq was
analyzed from each individual’s PBMCs before (naïve; t= 0), and
4 and 8 h post-infection (Fig. 4a). Gene-centric analysis identified
1834 genes that were significantly differentially expressed following
Salmonella infection (1% FDR), but revealed no significant dif-
ferences between WT and TLR10 individuals at any time point
(Supplementary Fig. 10a–d). To assess whether there are differ-
ences between cell-type compositions or infection-induced states
between WT and TLR10 individuals, we applied our algorithm.
Interestingly, while we could not detect any significant single gene
changes between them, our algorithm found that the infection
induced-state of NKT cells was significantly higher in WT vs.
TLR10 individuals 8 h post-infection (p= 0.03, two sample t-test;
Fig. 4b). Importantly, we were able to detect changes in NKT cell
dynamics, although their frequency in human PBMC is very low
(~1%)54. Of note, we found that NKT cells are the only cells which
produce IFNγ 4-h post-infection based on our scRNA-seq data
(Fig. 4c). In light of this result, we specifically analyzed IFNγ
expression, and found no significant difference between WT vs.
TLR10 individuals following Salmonella infection (p= 0.53 and p
= 0.21 at 4 and 8 h post-infection, two sample t-test; Supple-
mentary Fig. 10e). This exemplifies the advantage of cell-centric
perspective over gene-centric analysis and the robustness of our
defined infection-induced states.

IFNγ is a major cytokine in host defense against intracellular
infection through macrophage activation55,56. According to our
deconvolution algorithm, we revealed that while significant
reduction in monocytes following infection was detected (p <
0.005, paired t-test; Fig. 4b), as observed also in the scRNA-seq
data (Fig. 1b and Fig. 2a), there was a significant corresponding
elevation in their infection-induced cell state (p < 0.005; Fig. 4b).
The advantage of our algorithm is that it allows to model
independently the cell proportion and infection-induced state
within the same cell type. We hypothesized that there should be a
significant difference in monocytes activation in WT vs. TLR10
individuals due to differences in NKT infection-induced state. To
infer variation in monocyte infection-induced states, we
performed Gene Set Enrichment Analysis (GSEA) of the
‘monocytes infection-induced marker genes’ in genes that are
expressed higher in WT individuals relative to TLR10 individuals.
Indeed, this analysis revealed a bimodal distribution of these
genes: significant enrichment of one set in genes which were
expressed higher in the WT relative to TLR10, while the other set
was expressed lower (8 h post-infection, p < 0.0001; Fig. 4d). We
propose that this partition implies two different monocyte
subsets, one of which we suggest is activated by IFNγ mainly in
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WT individuals. To test this, we examined the expression levels of
genes from the ‘monocytes infection-induced marker genes’
which were significantly enriched in the genes that are higher in
the WT individuals (Fig. 4d). Indeed, this group of genes showed
different expression pattern in the monocyte sub-types, with the
highest expression in non-classical monocytes sub-type (Fig. 4e).

Thus, using our dynamic deconvolution algorithm we propose
higher infection-induced state of NKT cells in WT compared to
TLR10 individuals. We then wanted to experimentally support
cell–cell signaling between NKT cells, IFNγ secretion, and
activation following infection of a monocyte subset in WT
individuals as suggested by the dynamic deconvolution, and link
it to overall infection outcome between WT and TLR10
individuals.

Cell–cell signaling affect intracellular bacterial survival. To
further indicate the role of NKT-monocyte signaling through
IFNγ in infection control, we used anti-IFNγ neutralizing anti-
bodies to block IFNγ, and measured its effect on intracellular
bacterial survival within PBMCs. By blocking IFNγ in WT indi-
vidual, an increase in bacterial load was observed by Colony
Forming Units (CFU) assay (p= 0.0005, Friedman’s test; Fig. 5a).
To directly validate signaling between NKT cells and monocytes
through IFNγ, we isolated monocytes and NKT cells from
PBMCs and infected either monocytes alone or co-culture of
monocytes with NKT cells. We found that co-culture of mono-
cytes with NKT cells provided better control of intracellular
bacteria relative to monocytes alone (p= 0.01, unpaired
Mann–Whitney U test; Fig. 5b). Furthermore, we detected higher
secretion of IFNγ from co-culture of monocytes with the
NKT cells relative to monocytes alone (p < 0.001, unpaired
Mann–Whitney U test; Fig. 5c). These results suggest that NKT-
monocyte signaling, which is more evident in WT compared to
TLR10 individuals, also provides better control of bacterial
infection in WT individuals.

To further validate the link between higher NKT infection-
induced state, IFNγ and infection control, we infected PBMCs
from these eight individuals with Salmonella (four WT and four
TLR10 individuals) and measured intracellular bacterial load by
CFU. In line with our observation of lower NKT infection-
induced state in TLR10 individuals, they had significantly higher
bacterial load 8-h after infection relative to WT individuals (p=
0.03, unpaired Mann–Whitney U test; Fig. 5d). We further
investigated PBMCs from a WT individual and a TLR10
individual using imaging flow cytometry (ImageStream). Image-
Stream analysis independently indicated that TLR10 individual
had higher percentage of infected cells relative to WT

(Supplementary Fig. 11). Thus, we propose a functional link
between the observed NKT infection-induced state and IFNγ
secretion to differences in intracellular bacterial control between
healthy individuals. We then sought to test if application of
dynamic deconvolution to data obtained from a TB patient
cohort could functionally predict infection outcomes in a clinical
setting of human disease.

Deconvolution of TB patients predicts disease progression. We
examined dynamic deconvolution using three cohorts of TB
patient32,57, which includes bulk RNA-seq data of whole-blood
(WB) cells from active TB patients, individuals with latent
infection (LTBI) and control individuals. As our algorithm was
trained on scRNA-seq of PBMCs, and WB also contains granu-
locytes, we first validated the specificity of our cell-type signatures
in WB. We extracted WB cells and PBMCs from four individuals
and simultaneously performed FACS and bulk RNA-seq analyses.
The composition of T, B, and NK cells estimated by our algo-
rithm on WB showed high concordance with the FACS results
(Fig. 6a and Supplementary Fig. 2d). The only deviation was of
monocytes estimation by the algorithm, which were correlated to
monocytes and granulocytes together, instead of monocytes only.
Thus, we confirmed the estimation of cell-type composition from
WB by our algorithm, and excluded the monocyte cell-type
attribute from the analysis of WB. To validate the infection-
induced state of the cells, which cannot be directly estimated by
FACS, we infected PBMCs and WB samples, performed bulk
RNA-seq and analyzed by deconvolution the infection-induced
states. The NKT and monocytes infection-induced states were
highly reproducible between matched WB and PBMCs samples
for all individuals, confirming the accuracy of the algorithm in
estimation of infection-induced states from WB samples (Fig. 6b).
To further validate that the monocytes infection-induced state
from WB is specific to monocytes (and does not capture also
granulocytes), we used a public dataset of isolated monocytes and
neutrophils from healthy control and active TB patients58. The
monocytes infection-induced signature were predominantly
expressed from isolated monocytes (Supplementary Data 7).
Importantly, their expression was negligible in neutrophils (the
major cell type that is present in WB and absent from PBMCs59).
This indicates that the signature is indeed specific to monocyte
infection-induced state in the context of WB cells (Supplementary
Data 7).

Confirming the utility of deconvolution in WB samples, we
applied the algorithm on the TB datasets. Further validating the
accuracy of our algorithm, we found significant changes in the
cellular composition of the blood of active TB patients relative to

Fig. 3 scRNA-seq based dynamic deconvolution to infer cell-type composition and infection-induced states. a Illustration of the dynamic deconvolution
approach: transformation of the scRNA-seq data into two properties that can be inferred from bulk measurements - immune cell-type composition and
infection-induced cell state. Cell-type composition is represented as a one-dimensional vector, where kj is the number of cells from a specific cell type j. The
infection-induced cell state (Sj) is represented as the induction of cell-type specific genes following infection. Using our deconvolution algorithm (equations
at the bottom, see methods) we infer robust estimators for the relative abundance (Kj) and infection-induced state (Sj) of each cell type across individuals
from bulk RNA-seq measurements, as illustrated on the right. b and c Reduction of the scRNA-seq data into two sets of genes which represent intrinsic
cell-type properties (b) and cell-type specific infection-induced states (c). Cells are ordered by their cell type (color-coded at the bottom) and cell origin
(white for naïve and black for exposed cells); see colorbar for expression levels. d Validation of our deconvolution algorithm using FACS experiment.
Comparison between the percentages of each cell type as measured by FACS (x-axis) to the relative abundance by our deconvolution (y-axis). There is a
high concordance between the deconvolution prediction and the cellular composition as determined by FACS. Each dot is the mean of 3–4 replicates for the
FACS and bulk RNA-seq. Presented also are the standard error (SEM) for the replicates. e Validation of the infection-induced signatures in sorted
populations. Presented are the expression levels of the intrinsic cell types (from b) and infection-induced marker genes (from c) in bulk measurements of
sorted naïve and exposed NKT cells and monocytes. The NKT infection-induced state is upregulated following infection solely in the exposed NKT cells
(left). Similarly, the monocytes cell-type signature is expressed exclusively in naïve and exposed monocytes, and the monocytes infection-induced
signature is upregulated following infection exclusively in the exposed monocytes (right). Each sample is the mean of 2–4 technical replicates; cell-type
signatures are color-coded (n denotes the number of genes in each signature)
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LTBI and controls (Supplementary Fig. 12a), as was previously
reported for cell-type compositions using other deconvolution
algorithms32. Importantly, the infection-induced states of the
cells, which is a unique feature of our dynamic deconvolution,
were significantly different in the blood of active TB patients
relative to LTBI and controls, with less NKT cells activation and
higher monocyte activation following infection (Supplementary
Fig. 12a, b). Among the LTBI individuals, few developed active
TB during prospective observations (progressors32). Strikingly,
the monocytes infection-induced state differentiated between the
LTBI who remained healthy and those who developed active TB
(p= 0.016, two sample t-test; Fig. 6c). Importantly, this difference
was evident before any symptoms of active disease (at baseline)

and was not detected by changes in cell-type composition, only in
the infection-induced state of the cells. This suggest a predictive
power for the monocytes infection-induced signature to identify
LTBI individuals with higher risk to develop active TB. To further
corroborate our findings, we extracted a subset of our monocytes
infection-induced signature which is expressed only by mono-
cytes and not neutrophils (Supplementary Data 8) and validated
that this specific sub-signature is also significantly higher in LTBI
progressors compared to LTBI (p= 0.027, two sample t-test).
GSEA of the ‘monocytes infection-induced marker genes’ in the
genes expressed higher in the progressors relative to LTBI
individuals revealed that unlike in Salmonella infection (Fig. 4d,
e), the entire signature was significantly enriched (Fig. 6d). Next,
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we explored the dynamics of TB progression, using a dataset of
the progressors individuals that were followed at several
timepoints from LTBI at baseline until diagnosis with active
TB32. Interestingly, the monocytes infection-induced state was
significantly higher in the sample preceding diagnosis of active
TB in most individuals (p= 0.038, paired t-test; Fig. 6e). Thus,
our deconvolution algorithm provide a predictive power for TB
progression by the infection-induced state of the cells, a unique
feature that allows us to model infection dynamics with clinical
disease.

Discussion
Bacterial infectious diseases remains a leading cause of mortality
globally, with the rate of occurrence of new drug-resistant bac-
teria significantly outpacing the developmental rate of novel
antibiotics. Despite decades of research, we still have limited
insights into the host factors that determine infection outcome
and the well documented variation between individuals in
infection severity60. Advances in scRNA-seq can significantly
promote our understanding of molecular details that underlie an
efficient immune response able to eliminate the pathogen,
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compared to instances where the immune system fails. In the
current study, we applied scRNA-seq to characterize two major
aspects of immune surveillance against invading pathogen: the
immune cell composition and their responses to infection.
However, integration of this knowledge to human infection
requires scalability to large cohorts. For this, we developed a
dynamic deconvolution algorithm that aims to model, using bulk

RNA-seq, the changes in the immune cell types (‘intrinsic marker
genes’) and the induced cell states (‘infection-induced marker
genes’). Using the deconvolution algorithm, we revealed that
TLR10 polymorphism is associated with attenuated infection-
induced state of NKT cells and cell–cell signaling mediated by
IFNγ following infection, which in turn influences infection
phenotype. Finally, to gain insight into clinical infection
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outcomes, we applied our algorithm to bulk RNA-seq data from
cohorts of TB patients during different stages of disease.
Remarkably, our algorithm uncovered differences not only
between active TB patients and healthy individuals but could also
predict latent individuals that remained healthy to those who
progressed to active disease.

The increasing wealth of scRNA-seq data has spawned several
deconvolution algorithms allowing the breakdown of a complex
bulk measurement to its cell-type constituents17,22. However,
these algorithms allow estimation only of the cell-type composi-
tion, highlighting a blind spot to crucial aspect of the immune
surveillance: the infection-induced cell states. To allow dynamic
deconvolution, we followed human PBMCs after infection with
the enteric pathogen Salmonella, a causative agent of enteric
human diseases, and characterized a cell-type specific immune
response for each cell type in our data. Indeed, bacterial infection
is known to induce the activation of multiple cell types and
complex cell–cell interactions. Paracrine signaling of IFNγ, IL-22,
IL-17 and more, mediated by multiple cell types, such as T cells
and NK cells61, are important to mount an efficient immune
response through activation of antimicrobial processes of cells
such as macrophages, and to play a critical role in the control of
bacterial pathogens.

PBMCs composition is stable within an individual along time,
but between humans, PBMCs composition can vary sig-
nificantly26. This variation might have important implications to
the differences in infection outcome between individuals60. Thus,
we set out to test whether variation in immune cell types and
states can account for human variation in infection outcome. For
this, we obtained PBMCs from a group of individuals bearing
either the WT allele or a polymorphism in TLR10 gene that
modulates the cytokine response. TLR10 is a part of TLR1/6/10
locus, which was shown to have the strongest association with
alteration in cytokines production in response to various
ligands53, however the mechanism for this alteration is still
unknown. While standard gene-centric analysis revealed no sig-
nificant changes between the WT and TLR10 individuals, our
dynamic deconvolution algorithm deciphered that NKT
infection-induced state is significantly higher in WT vs. TLR10
individuals. Moreover, we identified a cell–cell signaling circuitry
involving IFNγ secretion by NKT cells that activates a specific
monocyte subset in WT vs. TLR10 individuals (Figs. 4d, e and 5).
This variation in the infection-induced cell states was translated
to differences in infection phenotype between WT and TLR10
individuals (Fig. 5d). Although the differences in NKT infection-
induced states between WT and TLR10 individuals should be
further validated in a larger cohort of individuals, it is tempting to

speculate that TLR10 is involved in the process of NKT activation
through lipid antigens presented by CD1d in antigen-presenting
cells62. Notably, the differences between the two groups were
associated only with the infection-induced cell states and not with
the cell-type composition, which exemplifies not only the
advantage of our approach over standard gene-centric analysis
but also over other deconvolution algorithms that are not based
on dynamic data.

We then applied our algorithm to clinical human disease data
sets. Recent efforts are aimed at curating gene signatures from
blood immune cells as biomarkers for active TB32–34, bacterial
meningitis35 or acute respiratory infections36. In the case of TB,
the vast majority of individuals that have been infected with the
causative pathogen, M. tuberculosis, remain clinically asympto-
matic, a state termed as latent TB infection (LTBI). It is therefore
considered that effective TB prevention will require diagnosis and
early treatment of LTBI that can become active disease. However,
none of the current curated gene signatures has provided the
resolution of our approach. Having validated the accuracy of our
algorithm on WB samples, we applied our deconvolution on bulk
RNA-seq datasets that were obtained from longitudinal sampling
of TB patients. Strikingly, monocyte infection-induced state dif-
ferentiated between latent individuals who remained healthy to
those who developed active TB (progressors) already at baseline,
before any symptoms of active disease were evident (Fig. 6c).
Thus, while our algorithm was trained on dynamic data of PBMC
infection with Salmonella, the cell types and infection-induced
states represents also stereotypic immune activation upon per-
turbation, relevant also to clinical disease with other pathogens.
This suggest a predictive power for the monocytes infection-
induced signature as a classifier of latent individuals with higher
risk to develop active TB. Importantly, using longitudinal data of
TB progressors, which allowed modeling of disease progression
(Fig. 6e), we detected a decrease in monocyte infection-induced
state at the time of active disease diagnosis relative to the pre-
ceding sample (Fig. 6e). This finding might implicate our
infection-induced signatures to cell-type specific responses that
occur during early disease stages.

Our findings emphasize the limitation of current deconvolu-
tion algorithms that are focused mainly on inferring cell-type
composition at steady-state. We envision that in order to
understand infection, our dynamic deconvolution approach can
be adopted to other experimental models. It is reasonable to
assume that the infection dynamics has characteristics which are
global, as the monocyte infection-induced state in the case of
Salmonella and TB, and characteristics which are pathogen-spe-
cific, as the NKT infection-induced state in the case of Salmonella

Fig. 6 Dynamic deconvolution of the monocytes infection-induced state captures TB progression. a Algorithm performance evaluation on WB samples.
Comparison between the percentages of each cell type measured by FACS (x-axis) to the relative abundance as inferred by our deconvolution algorithm
(y-axis) for four individuals. There is a high concordance between the deconvolution prediction and the FACS for all cell type, except for the monocytes.
Presented is the mean of 3–4 replicates and SEM. R-squared values are indicated. b Comparison of NKT and monocytes infection-induced states as inferred
by our algorithm from matched PBMCs (x-axis) and WB samples (y-axis) from four individuals. Presented is the mean of four replicates and SEM. There is
a high concordance between the infection-induced states as measured from matched PBMCs and WB samples. c Box-plot of the monocytes infection-
induced state (in arbitrary units- au) of control individuals (blue), LTBI individuals who remained healthy (light gray), LTBI individuals who developed active
TB (progressors; dark gray) and active TB patients (red) uncover significant difference between LTBI who remained healthy vs. progressors, before signs of
active disease. The box represents the median and 25–75th percentile, whiskers encompass interquartile range. *p-value < 0.05, two sample t-test. d GSEA
of the monocytes infection-induced genes in the genes that are expressed higher in progressors relative to LTBI individuals reveal significant enrichment of
the entire signature, p-value < 0.0001 (GSEA test). Red to blue bar represents fold change between mean expression of each gene in the progressors
relative to LTBI individuals, see methods for more information. e Dynamics of the monocytes infection-induced state during TB progression. Deconvolution
of the monocytes infection-induced states of nine progressors at several timepoints from baseline (dark gray, as in c) until diagnosis of active disease (red)
reveals maximal monocytes infection-induced state at the sample preceding the diagnosis of active TB. Box-plots of active TB (red) and LTBI who remained
healthy (light gray, shown 25–75th percentile of the samples) are as in c, for comparison to the progressors levels. The time before active TB was diagnosis
is indicated at the x-axis
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infection outcome. We propose that further scRNA-seq experi-
ments with additional pathogens and at additional time-points
are needed in order to fully uncover the global and pathogen-
specific cell-type immune responses. These can be further used to
train dynamic deconvolution to model more refined resolution to
clinical disease in different infectious agents.

The ability to associate different infection-induced states and
infection outcome has a tremendous potential in preventing and
curing infectious disease. Our approach allows identification of
latent individuals with high risk to develop active TB disease, and
can suggest policies directed at treatment of LTBI, for effective TB
prevention. Taken together, our dynamic deconvolution algo-
rithm, functional phenotypic assays and clinical data provide a
robust approach to analyze complex interactions between
immune cell types and help to uncover important inductive sig-
naling cues during early stages of bacterial infection. We believe
that this approach is fundamental to our understanding of
host–pathogen interactions, and propose advanced treatment
options for better control of bacterial infection.

Methods
Isolation and preparation of PBMCs. After obtaining informed consent, venous
blood was drawn from the cubital vein of volunteers into 10 ml EDTA Monoject
tubes (Medtronic, Dublin). The PBMCs fraction was extracted by density cen-
trifugation of EDTA blood diluted 1:1 in pyrogen-free saline over Ficoll-Paque
(Pharmacia Biotech, Uppsala). The PBMCs were washed twice in PBS and sus-
pended in RPMI 1640 medium supplemented with gentamicin (10 mg/mL), L-
glutamine (10 mM), and pyruvate (10 mM). The procedure was approved by the
scientific ethic committee at the Radboud University Medical Center
(NL42561.091.12) and the Weizmann Institutional Review board (25–1). The cells
were counted and frozen until used. A day before each experiment, the cells where
defrosted, washed with PBS, and suspended in medium (RPMI 1640 with L-Glu-
tamine supplemented with 10% heat inactivated fetal bovine serum and 1 mM
sodium pyruvate) and plated on untreated plates. A day after, the cells were col-
lected from the dish. To avoid cell lost, the dish was washed with medium and the
remaining cells were added to the collected cells. The cells were then manually
counted with trypan blue and normalized so the same amount of cells was used for
each individual (1–5×105 cells per replicate, depends on the amount of live cells in
the least concentrated sample).

Isolation of whole blood cells and PBMCs from fresh blood. After obtaining
informed consent, venous blood was drawn from the cubital vein of healthy
volunteers, then whole blood (WB) cells and PBMCs were isolated immediately as
follows: 5 ml of filtered 6% dextran (T-500) in PBS was mixed with 3.5 ml of citrate
buffer (25 g Na Citrate, 8 g Citric acid in 500 ml PBS, filtered). Then 8.5 ml of the
mixed dextran+ citrate buffer were added to 30 ml of fresh blood with gentle
mixing, and left standing for 30 min in RT. After the incubation, the upper phase
(plasma and WB) was transferred to a new tube, and divided for WB or PBMCs
isolation. For WB, left overs of red blood cells were lysed by Red Blood Cell (RBC)
lysis buffer (Sigma, 11 814 389 001) according to the manufacturer’s manual. For
PBMCs isolation from the same blood samples, the plasma+WBC fraction was
further fractionated as described in the method section of isolation and preparation
of PBMCs without using antibiotics. The isolated WB and PBMCs were counted
with Trypan blue, and 5×105 cells were used per well in a 96-well dish.

Monocytes and NKT isolation. After PBMCs isolation, monocytes were enriched
as follows: 3 ml of 50–70×106 PBMCs/ml were layered over 10 ml hyperosmotic
percoll solution [48.5 ml percoll (Sigma, P1644–100ML), 41.5 ml sterile DDW, and
10 ml 1.6 M NaCl solution] before centrifugation at 580×g for 15 min at RT. The
interface was gently collected, washed by cold PBS and resuspended in medium
(RPMI 1640 with L-Glutamine supplemented with 10% heat inactivated fetal
bovine serum and 1mM sodium pyruvate). For NKT enrichment, CD3+ CD56+

NKT Cell Isolation Kit (Miltenyi Biotec, 130-093-064) was used according to the
manufacturer’s manual.

Ex vivo infection with Salmonella. Salmonella strains used in this study were
derived from the wild-type strain SL1344 containing GFP (pFPV25.1; Addgene) or
RFP63. Cultures of Salmonella were grown in Luria-Bertani (LB) medium at 37 °C
for 16 h and used for PBMCs infection at MOI 25 for the exposed cells, and PBS
was added to the naive samples. After 30 min of internalization, the cells were
washed and suspended with media containing 50 μg/ml gentamicin to eliminate
Salmonella that were not internalized. The cells were incubated for the time
indicated in each experiment at 37 °C in 5% CO2 in non-treated cell culture plates.
For the scRNA-seq in Supplementary Fig. 9c, d, the infection was done as appears
above however with MOI 5.

Flow cytometry and ImageStream. At the indicated time point after infection, the
cells were collected from the plates. The dish was washed with medium and the
remaining cells were added to the collected cells. The cells were washed with PBS
and suspended with FACS buffer (20% FBS and 1 mm EDTA in PBS), then stained
with APC/Cy7 anti-human CD14 antibodies (301820) (Supplementary Fig. 2) or
APC/Cy7 anti-human CD14 antibodies (301820), PE/Cy7 anti-human CD19
(302216), APC anti-human CD56 (BD341027), PE anti-human CD3 (300408;
Fig. 3e and 6a) for 30 min in 4 °C under dark conditions. After washings the cells
were resuspended in FACS buffer, live/dead staining SYTOX blue (S34857) was
added and the cells were analyzed FACSAria™ III flow cytometer (BD Biosciences)
and Diva software. For all antibodies 1 μl of antibody per 100 μl volume of cells was
used, except for APC anti-human CD56 (BD341027) which 5 μl of antibody per
100 μl volume of cells were used. SYTOX blue (S34857) was added according to the
manufacturer’s recommended quantity. Monocytes were sorted (Fig. 3d, Supple-
mentary Fig. 4) according to FSC/SSC localization, NKTs were sorted (Fig. 3d,
Supplementary Fig. 4) according to CD3+ CD56+64 positive cells. For imaging flow
cytometry (ImageStreamX mark II imaging flow-cytometer; Amnis Corp), samples
were analyzed by IDEAS 6.2 software. RFP-positive cells were considered infected
and RFP-negative uninfected.

RNA extraction and library preparation for scRNA-seq. Four hours after
infection, the cells were washed with PBS, counted with trypan blue, suspended
with 0.04% BSA in PBS and directly used for single-cell sequencing by the
Chromium Single Cell 3′ Reagent version 2 kit and Chromium Controller (10X
Genomics, CA, USA). Library quality and concentration were assessed according to
the manufacturer’s instructions. For the scRNA-seq in Supplementary Fig. 9c, d
after the wash with PBS the cells were resuspended in 120 μl of 5 mM EDTA and
incubated 5 min in RT to detach cells that might have attached the dish. The EDTA
was then washed and the protocol was continued as appears above.

scRNA-seq data preprocessing. The Cell Ranger Single-Cell Software Suite
(https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/
latest/what-is-cell-ranger) was used to perform sample demultiplexing, alignment
to the genome (GRCh38), barcode assignment for each cell, gene counting by
unique molecular identifier (UMI) counts (a random sequence which is essential
for correction for individual molecules), and merging of the naïve and exposed
samples using cellranger aggr which aggregates multiple GEM well. Overall we
sequenced 7000 cells; 3515 cells from the naïve sample, with ~80,500 mean reads
per cell, ~1800 median UMI count per cell and ~800 median genes per cells. For
the exposed sample we sequenced 3485 cells with ~76,000 mean reads per cell,
~1800 median UMI count per cell, and ~830 median genes per cells.

scRNA-seq data normalization and gene filtration. Only genes with at least one
UMI count detected in at least one cell were used. Data were normalized to a library
size factor. Factors were calculated by dividing total UMI counts in each cell to the
median of the total UMI counts across all cells. Data were transformed to
log10 scale (log10(UMI count+ 1)). We filtered out cell cycle and ribosomal genes,
and selected the top 5000 most variable genes for further analysis. Variable genes
were selected based on fitting of the data to a simple noise model based on the genes
mean expression and dispersion (coefficient of variance)65. We selected the top 5000
genes that were distant from the fit line (i.e. most variable over the noise model).

scRNA-seq data analysis. Principal component analysis (PCA) was performed on
the top 5000 most variable genes, and the first 20 PCs were used for downstream
analysis for k-means clustering and construction of k-nearest neighbor (KNN)-
graph, based on Euclidian distance in PC space. The data was first analyzed for each
samples alone. For the naïve sample we obtained 10 clusters using k-means clus-
tering and the elbow method (Supplementary Fig. 3b), and nine clusters for the
exposed sample (Supplementary Fig. 3c). Clusters identity was inferred using cluster-
specific genes; we calculated the expression difference of each gene between the
mean expression in the cluster and the median of the rest of the clusters38. Genes
were ranked based on their expression difference, and we labeled each cluster to a
cell type based on the top 100 cluster-specific genes (Supplementary Data 1). We
also verified the expression of known marker genes, e.g.: NK (NKG7 and GNLY),
NKT (CD3D and NKG7), CD8 T cells (CD3D and CD8A), CD4 T cells (CD3D,
LDHB and IL7R), B cells (MS4A1, CD79A and CD79B), monocytes (LYZ and CD14
and/or CD16), and DC (LYZ and CCR7) (see Supplementary Fig. 3d)39,41–45,66.
Further partition of each cell type into cell sub-types was done using Louvain
community detection67 on the KNN-graph of each sample (with k= 20 or 30
depending on the number of cells obtained in each cell type). The Louvain com-
munity detection algorithm identify communities of densely inter connected cells in
a way that maximizes modularity. We used the Jaccard similarity to build the KNN-
graph, i.e., gave weight for each edge between two cells based on the number of their
mutual neighbors, in order to strength connections between cells from the same
community. We used an implementation of Louvain method for community
detection (http://netwiki.amath.unc.edu/GenLouvain), which optimize modularity-
like quality function by iterating the Louvain algorithm until convergence. Overall,
we obtained 31 cell sub-types in the naïve cells and 29 in the exposed cells.
Visualization of the data was done using force-layout of the KNN-graph.
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Doublets detection in scRNA-seq data. Doublets detection was performed fol-
lowing clustering since the variability in UMI counts between cells arises also from
different cell types, and not merely due to doublets. When examining the UMI
counts between clusters, there was one cluster in the B cells with higher number of
UMIs than all other B cells sub-types. Furthermore, this cluster expressed T cells
marker genes (such as CCL5, TRAC, and CD3D) in addition to the B cells markers.
Therefore we decided to excluded this cluster from further analysis, since we
suspected that these cells are B:T doublets (22 cells from the naïve cells and 21 from
the exposed cells). We further corroborated this conclusion by performing doublets
simulation: we artificially generated doublets from our cells and repeated the
analysis. Our cluster for suspected B:T doublets was indeed located at the same area
as the B:T simulated doublets. Moreover, none of the other clusters were located at
the area of simulated doublets. With that being said, we cannot exclude existence of
doublets from the same cell type.

Infection signature identification in scRNA-seq data. To identify the genes that
are upregulated following infection across the various cell types, we identified all
significantly upregulated genes in each cell type post-infection, with 1% FDR and a
minimum log-ratio of 0.2 between naïve and exposed cells. Overall we identify 309
genes (union of all upregulated genes from each cell type), some of these were
unique to specific cell type, and some were shared among several cell types
(Supplementary Fig. 5).

KNN-classification. We classified the exposed cells into the naïve cell sub-types
using KNN-classification in order to identify the origin of each cell sub-type in the
exposed cells. The classification was done after the removal of the infection sig-
nature, using the knnclassify function in matlab.

scRNA-seq differentially expressed genes thresholds. We identified 238 genes
which are significantly differentially expressed between the various cell types with
1% FDR and a minimal fold change of 1.5-fold. For the cell sub-types, since the
differences between the sub-types is less pronounced than the separation between
the cell types, we used a more conservative FDR threshold and lower fold-change
threshold: 0.001%FDR with a minimum fold change of 1.4-fold. These analyses
were done for the intrinsic cell types and sub-types and therefore were performed
on the data after removal of the infection signature, for the naïve and exposed cells
together.

Expression matrix normalization. Preceding visualization of the data in expres-
sion matrix genes were centered and normalized to a mean of 0 and a standard
deviation of 1.

Cell types and sub-types contours in scRNA-seq analysis. To draw the
boundaries of a group of cells (e.g. from the same cell type as in Fig.1b or cell sub-
type as in Fig. 2b), we used the boundary function in matlab. Before calculating the
boundaries, we excluded outliers with more than three standard deviations from
the median.

Intrinsic cell type maker genes identification in scRNA-seq. We curated gene
lists which are significant and specific for each cell type (see Supplementary
Fig. 8a). To control for significance, we selected genes that are significantly dif-
ferentially expressed between the various cell types (1% FDR and a minimum fold
change of 1.5-fold; Supplementary Fig. 6a). To control for unique expression in a
specific cell type we applied a specificity filter (see details below).

Cell-type specific infection-induced maker genes (scRNA-seq). We applied the
specificity filter (see below) on the global infection signature (see infection sig-
nature identification in scRNA-seq data section and Supplementary Fig. 5b) to
curate gene lists which are specific to infection in a certain cell type.

Specificity filter for marker genes identification. One of the basic features of our
deconvolution signatures is their specificity to one cell type. In order to define a
gene as a cell-type specific marker gene it should fulfill two thresholds: (1) the
average expression of the gene from all cells in the specific cell type is >0.5
(log2 scale), and <0.5 in all other non-relevant cell types (termed exp. threshold);
and (2) the sum of the gene expression across each cell types (that is not the specific
one) is lower than third of the population (termed specificity threshold). This
ensure that not only the average expression of the gene is lowly expressed from all
non-relevant cell types, but it is also expressed only from a low fraction of the
population.

Statistical analysis. To identify genes that are significantly differentially expressed
between cell types or sub-types we performed ANOVA. FDR levels and minimum
fold-change thresholds are indicated in each section.

Dynamic deconvolution algorithm. We developed a deconvolution algorithm to
infer cell-type composition and the dynamics of infection-induced cell state from
bulk RNA-seq measurement of a mixture of immune cells (PBMCs) before and
after infection. Our main assumption is that the expression of a gene in the bulk is
the sum of its expression from each cell in the sample (Eq. 1)

geneX bulkð Þ ¼
X

i2cells
geneX sc data;ið Þ ð1Þ

where geneX(bulk) is the expression of a gene x in the bulk, geneX(sc data; i) is the
expression of a gene x from cell i in the single-cell (sc) data.

We can reduce this equation for marker genes that expressed specifically from
one cell type j (Eq. 2).

geneX bulkð Þ ¼ K�
j geneX sc data;jð Þ ð2Þ

where j is a specific cell type (e.g. NK, B cells etc.), Kj is the number of cells from
cell type j in the single-cell data, and geneX(sc data; j) is the mean expression of gene
x in the single-cell data, which expressed exclusively from cell type j.

As the major factor for successful deconvolution is accurate gene signatures22, we
curated gene lists from our single-cell data which expressed specifically from one cell
type and describe the cell-type relative abundance and infection-induced cell state
(Fig. 3 and Supplementary Fig. 8a). Using combination of the expression levels of
these marker genes from the bulk and the scRNA-seq data, we deconvoluted an
estimator for the relative abundance (K) and infection-induced state (S) of each cell
type in the bulk RNA-seq measurements (Eqs. 3 and 4).

From Eq. 2 we can extract Kj for a specific marker gene:

Kj ¼
geneX bulkð Þ

geneX sc data;jð Þ
ð3Þ

where j is a specific cell type and gene X is an intrinsic marker gene for cell type j.
We calculate the Kj estimator for each intrinsic marker gene, and by averaging

all estimators of a specific cell type j we get a robust estimation of the relative
abundance of cell type j ( bKj)

Similarly, we can calculate Sj by each infection-induced marker gene:

Sj ¼
geneY bulkð Þ

geneY sc data;jð Þ
ð4Þ

where j is a specific cell type and gene Y is an infection-induced marker gene for
cell type j.

We calculate the Sj estimator for each infection-induced gene, and by averaging
all estimators of a specific cell type j we get a robust estimation of the infection-
induced state of cell type j (bSj).

Using these cell-type estimators we can compare between the relative
abundance or dynamic of infection-induced state of each cell type from different
individuals as measured from a mixture of cells.

Robustness analysis of the dynamic deconvolution algorithm. We validated
that the performance of our algorithm are not dependent on the design choices
used in the scRNA-seq analysis. Supplementary Figure 8a details the entire pipeline
of the scRNA-seq analysis and all design choices used to generate the deconvo-
lution signatures; we modified each design choice (D.C.) and evaluated its effect on
the algorithm’s signatures and performance:

(1) D.C. (1) – clustering: to validate the robustness and consistency of the
clustering we sub-sampled randomly 1500 cells out of the 3500 naïve cells 10
times, applied similar clustering method and compared the resulting clusters
(see Supplementary Fig. 8b for representative sub-sampling of the data vs.
the original clustering of the entire data).

(2) D.C. (2) – FDR level and fold-change threshold to define the global infection
signature: we modified the FDR level to range between 0.1 and 10%, and the
fold-change threshold to range between 0.15–0.3 log ratio (see Supplemen-
tary Data 4 for the original thresholds and implications of the modified
thresholds).

(3) D.C. (3) – FDR level and fold-change threshold to define the genes which are
significantly differentially expressed between the various cell types: we
modified the FDR level to range between 0.01 and 10%, and the fold-change
threshold to range between 1.2- and 1.7-fold (see Supplementary Data 5 for
the original thresholds and implications of the modified thresholds).

(4) D.C. (4) – exp. threshold and specificity threshold for the specificity filter: we
modified the – exp. threshold to range between 0.3 and 0.6, and the
specificity threshold to range between 0.1 and 0.5 (see the method section
specificity filter for marker genes identification for explanation about these
thresholds, and Supplementary Data 6 for implications of the modified
thresholds).

We evaluated the implications of the modified design choices on the algorithm
performance using simulation on our scRNA-seq data: we generated bulk-like
expression data from our single-cell data by averaging the expression data of each
gene across all cells (simulated bulk expression). We generated five such synthetics
mixes of cells to get bulk-like samples with different compositions (for each
composition we randomly selected 1000 cells out of the data; mix1-mix5 in
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Supplementary Fig. 8c). We than applied our deconvolution algorithm with the
original signatures, and the modified signatures from the modification of each
design choice, to evaluate its performance (Supplementary Figure 8d).

To evaluate the reproducibility of our deconvolution algorithm in an
independent sample, we performed a simulation on public scRNA-seq data of
PBMCs38. We generated five synthetic mixes of bulk-like samples with different
compositions from this data (see the section above for more information), and
applied our deconvolution algorithm to assess its robustness in an independent
individual (Supplementary Fig. 9a, b).

To evaluate the reproducibility of the infection-induced states inferred by our
deconvolution algorithm in an independent individual, we performed additional
scRNA-seq experiment. PBMCs were isolated from an independent individual,
ex vivo infected with Salmonella and sequenced using the 10X Chromium (see
details in the method sections above: Isolation and preparation of PBMCs, ex vivo
infection with Salmonella, and RNA extraction and library preparation for scRNA-
seq). We sequenced 5986 cells with ~42,000 mean read per cell, ~2800 median
UMI count per cell, and ~900 median genes per cell. Using a simulation on this
data we generated 20 synthetic mixes of bulk-like samples with constant cell-type
composition and different infection-induced state of the cells. To generate the
constant cell-type composition we randomly selected for each synthetic mix 2000
cells with constant number of NKT cells (50 cells), constant number of monocytes
(500 cells), and the rest of the cells were selected randomly from all other cell types.
By preserving the number of NKT cells and monocytes in all mixes, we ensured
that the differences are due to the different infection-induced state of the cells, and
not derived from different number of cells. For each bulk-like sample we calculated
the infection-induced state of the sample based on the single-cell data, and applied
our deconvolution algorithm to assess its accuracy in an independent individual
(Supplementary Fig. 9d). The infection-induced state of the sample in the single-
cell data were calculated by averaging the expression levels of the NKT infection-
induced genes in the NKT cells and the monocytes infection-induced genes in the
monocytes.

Limitations and caveats of the algorithm. The algorithm infer the relative
abundance of each immune cell type and its infection-induced state, and not the
absolute composition, and therefore can be only used to compare between different
samples. The algorithm was trained based on the dynamic infection response of
PBMCs to a single pathogen - Salmonella, which limits the utility of the algorithm
when applied to other pathogens or tissue samples. Thus, further validations for the
cell-type specific signatures (similar to the validations done for WB in Fig. 6a, b
and Supplementary Data 7 and 8), or scRNA-seq data of infected cells with the
relevant pathogen is recommended.

RNA extraction and library preparation for bulk RNA-seq. At the indicated time
points after infection the cells were washed with PBS, then suspended with RLT
buffer (from RNeasy Mini Kit, Qiagen)+ 1% β-mercaptoethanol and kept in −80 °
C until further extraction. RNA was then extracted with RNeasy Mini Kit (Qiagen).
RNA-seq libraries were prepared according to Cel-seq libraries protocol68 with a
minor modification: the starting material was purified bulk RNA. The libraries run
on Illumina Nextseq instrument with a total coverage of ~600M reads and a mean
of ~7.5 M reads per library for WT and TLR10 libraries; ~1.3 M reads and a mean
of ~270 K reads per library for the sorted monocytes; ~13 M reads and a mean of
~1.6 M reads per library for the sorted NKTs; ~6.5 M reads and a mean of ~210 K
reads per library for the PBMCs libraries for deconvolution algorithm validation;
and ~6.2 M reads and a mean of ~200 K reads per library for the WB cells libraries
for deconvolution algorithm validation.

Bulk RNA-seq data preprocessing and normalization. The cel-seq pipeline
(https://github.com/yanailab/CEL-Seq-pipeline) was used for sample demultiplex-
ing, alignment to the genome (GRCh38), and gene counting. Data were normalized
to a library size factor. Factors were calculated by dividing the total number of
reads from each sample to the median of the total number of reads across all
samples.

WT and TLR10 RNA-seq data analysis. Data were transformed to log2 scale, and
minimal expression threshold was set to 2. The three replicates of each sample were
averaged, except for three samples we excluded due to low coverage (<100 K exonic
reads), and therefore for three samples (TLR10#1 t= 4 h, TLR10#2 t= 0, and
WT#3 t= 0), only two replicates were averaged. Preceding Principal Component
Analysis (PCA) we selected all expressed genes (minimal threshold of 4.5 and
standard deviation ≥0.2), and genes were centered and normalized to a mean of 0
and a standard deviation of 1. Differential expression before and after infection was
calculated using paired t-test, and between WT and TLR10 individuals by two
sample t-test.

Sorted monocytes and NKT cells RNA-seq analysis. Data were transformed to
log2 scale, and a minimal expression threshold was set to 4. The replicates of each
sorted population were averaged, and the correlation to the scRNA-seq data were
calculated (the correlation was calculated to the mean expression of each cell type
in the single-cell data). The deconvolution algorithm was applied on each sample

alone, and the mean of all replicates was calculated for each condition (2–4
replicates for each condition).

Analysis of PBMCs and matched WB cells RNA-seq. Data were transformed to
log2 scale, and a minimal expression threshold was set to 2. To validate the
infection-induced state signatures, the deconvolution algorithm was applied on
each sample alone, and the mean of all replicates was calculated for each condition
(3–4 replicates for each condition).

Sorting Points Into Neighborhood (SPIN). Unsupervised method for sorting
multidimensional data69. Iterative algorithm to create optimal ordering such that
the distances between the objects are smallest close the diagonal. This allows
identification of group of genes that display similar expression profiles over a range
of samples.

GO-terms and KEGG pathway enrichment. GO-terms and KEGG pathways
enrichment analysis was performed using DAVID70,71, correcting for multiple
testing by FDR.

Gene Set Enrichment Analysis. We ranked the genes based on their fold-change
between the two tested conditions. For the WT vs. TLR10, for each time point post-
infection (4 and 8 h), we calculated the mean expression of each gene in the WT
individuals and the TLR10 individuals, and calculated the fold change between
them. We then ordered the genes by their fold-change. GSEA was performed for
the enrichment of the ‘monocytes infection-induced marker genes’ in the ranked
list (GSEA algorithm, URL:http://www.broadinstitute.org/gsea/). p-values for the
enrichment scores were calculated based on the null distribution of enrichment
scores obtained by 10,000 random permutations.

Cohorts of TB patients. We applied our algorithm on three publicly available
RNA-seq datasets of TB patients: Berry London GSE107991, Berry South Africa
GSE107992 and Leicester GSE10799432,57. These cohorts contain whole-blood
RNA-seq data of active TB patients, LTBI and control individuals. Leicester dataset
contains also longitudinal data on 9 LTBI individuals who developed active disease
during the study. Raw data was downloaded and normalized to a library size factor.
Data was transformed to log2 scale, and genes below expression threshold (mean
expression <4) were filtered out from further analysis. For GSEA see the
section above

Monocytes infection-induced signature in WB samples. The monocytes
infection-induced signature was curated from scRNA-seq data of PBMCs. To
validate its specificity in WB cells we used a public dataset of sorted monocytes,
sorted neutrophils (the major cell type that is present in WB cells and absent from
PBMCs), isolated PBMCs and WB cells from active TB patients and healthy
control individuals (GSE4283258). Normalized data was downloaded and analyzed
for the expression of the monocytes infection-induced signature.

Colony-forming units (CFU). PBMCs were infected as mentioned above with
Salmonella-GFP (ampicillin resistant) at MOI 25. Eight hours after infection, the
cells were washed with PBS, suspended with 0.1% triton X-100 and pipetted vig-
orously to lyse the cells, and incubated in room temperature for 10 min. The
bacteria were grown on LB+ ampicillin 100 mg/L plates in serial dilutions, grown
over night in 37 °C and counted with Scan® 500 automatic colony counter. The
experiments were done with at least three replicates.

Anti-IFNγ experiments. PBMCs from a WT individual were incubated with 1.63
μg/ml anti-hIFN-g antibodies (MAB285) or with isotype control (MAB003) for 2 h.
The cells were then infected with Salmonella-GFP as appear above at MOI 25. After
30 min of internalization the cells were washed and suspended with medium
containing antibiotic and 1.63 μg/ml anti-hIFN-g antibodies or isotype control and
incubated for 8 h until used for CFU measurement.

IFNγ measurement. IFNγ levels were detected by HEK-Blue™ IFN-γ Cells (Invi-
vogen, hkb-ifng) according to the manufacturer’s manual. In short, HEK-Blue™
IFN-γ cells were generated by stable transfection of HEK293 cells with the human
STAT1 gene and a SEAP reporter gene under the control of an ISG54 promoter
fused to four interferon-gamma-activated sites (GAS). HEK-Blue™ IFN-γ are
specific for IFN-γ stimulation, and upon stimulation activate the JAK-STAT
pathway and subsequently the expression of the reporter gene. SEAP is secreted in
the supernatant and is detectable when using QUANTI-Blue™ (SEAP detection
medium, rep-qb1).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.
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Data availability
All RNA-seq data (scRNA-seq and bulk RNA-seq measurements) have been deposited in
NCBI’s Gene Expression Omnibus (GEO) under the super-series accession number
GSE122084. Public TB datasets used in this study can be found in GEO under the
accession numbers: Berry London GSE107991, Berry South Africa GSE107992 and
Leicester GSE107994.

Code availability
The code for our deconvolution algorithm is available at: https://github.com/noabossel/
Dynamic-deconvolution-algorithm.
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