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Abstract

Longitudinal imaging biomarkers are invaluable for understanding the course of neu-

rodegeneration, promising the ability to track disease progression and to detect disease

earlier than cross-sectional biomarkers. To properly realize their potential, biomarker tra-

jectory models must be robust to both under-sampling and measurement errors and

should be able to integrate multi-modal information to improve trajectory inference and

prediction. Here we present a parametric Bayesian multi-task learning based approach to

modeling univariate trajectories across subjects that addresses these criteria. Our

approach learns multiple subjects' trajectories within a single model that allows for differ-

ent types of information sharing, that is, coupling, across subjects. It optimizes a combina-

tion of uncoupled, fully coupled and kernel coupled models. Kernel-based coupling allows

linking subjects' trajectories based on one or more biomarker measures. We demonstrate

this using Alzheimer's Disease Neuroimaging Initiative (ADNI) data, where we model lon-

gitudinal trajectories of MRI-derived cortical volumes in neurodegeneration, with coupling

based on APOE genotype, cerebrospinal fluid (CSF) and amyloid PET-based biomarkers.

In addition to detecting established disease effects, we detect disease related changes

within the insula that have not received much attention within the literature. Due to its

sensitivity in detecting disease effects, its competitive predictive performance and its abil-

ity to learn the optimal parameter covariance from data rather than choosing a specific

set of random and fixed effects a priori, we propose that our model can be used in place

of or in addition to linear mixed effects models when modeling biomarker trajectories. A

software implementation of the method is publicly available.

K E YWORD S

Alzheimer's disease, Bayesian analysis, biomarkers, longitudinal analysis, machine learning,

multimodal analysis, structural MRI

1 | INTRODUCTION

Despite their value in characterizing the course of neurodegeneration

(Freeborough & Fox, 1997; Smith, De Stefano, Jenkinson, &
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Matthews, 2001), repeated measures over time (i.e., longitudinal data)

in neuroimaging are often limited to a baseline measurement and a

few follow-up time-points per subject. This is primarily due to the

costs and complexities of collecting such data. Consequently, within-

subject trajectory models of regions of interest (ROIs) or clinical measures

that are based on such limited data may not be robust to measurement

errors from image acquisition or post-processing. Such noise may lead

to poor inferences of true underlying trajectory parameters and poor

predictions of future values, diminishing the value of trajectory based

biomarkers (Curran, Obeidat, & Losardo, 2010). An additional problem

is a limit to the flexibility of the models that can be estimated: with

two time-points one can only estimate a linear model, with three only

a quadratic, and so on.

There has been growing interest in methods that efficiently use lon-

gitudinal neuroimaging data; e.g., Telzer et al., (Telzer et al., 2018) provide

an overview related to fMRI analysis. By far themost popular approaches

are based on mixed effect modeling, which combines fixed effects, that

is, pooling subjects' data to create an average trajectory for all subjects,

with random effects, that is, individualizing models about the average

trajectory. The mixed effects modeling approach is well suited to both

balanced (fixed number of samples, fixed time interval between samples)

and unbalanced (varying samples or time intervals) longitudinal designs,

allowing for separate analysis of between and within subject variability

(Fitzmaurice, Laird, & Ware, 2011; Laird & Ware, 1982). Bernal-Rusiel

et al. (2013) and Guillaume, Hua, Thompson, Waldorp, and Nichols

(2014) provide overviews of linear mixed effects (LME) models within

neuroimaging and apply them to Alzheimer's disease (AD).

Features from longitudinal measurements remove inter-individual

differences and thus make for better descriptions of disease progres-

sion. Recent models of disease progression have integrated both cross-

sectional and longitudinal information to estimate discrete or continuous

disease stages for individuals (Donohue et al., 2014; Fonteijn et al.,

2012; Jedynak et al., 2012; Lorenzi et al., 2017; Schiratti, Allassonnière,

Colliot, & Durrleman, 2017; Young et al., 2014). They have been

inspired by, and seek to quantify the hypothetical models of disease

progression proposed by neurodegenerative disease researchers

(Buckner et al., 2005; Jack et al., 2010). Oxtoby and Alexander ( 2017)

provide an overview of the methods within this emerging field. While

the purpose of disease progression modeling is to estimate disease stage

and find group-level (typically monotonic) trajectories for each bio-

marker, this procedure can be thought of as a form of coupling of bio-

marker trajectories across subjects. However, most of these models are

not explicitly setup to couple subjects' trajectories within each bio-

marker (e.g., a brain structural ROI) based on other biomarkers' informa-

tion (e.g., genetic risk or brain amyloid deposition). As such these models

may not fully capitalize on valuable multi-modal information that may

improve trajectory estimates within each biomarker.

Multi-kernel learning (MKL) presents an approach to combining

multiple biomarker similarity measures. It has been previously applied

to neuroimage-based pattern recognition and machine learning to dis-

criminate disease (Hinrichs, Singh, Xu, & Johnson, 2011; Zhang, Wang,

Zhou, Yuan, & Shen, 2011). Young et al. (2013) applied a Bayesian

MKL approach to AD discrimination, which avoided the need for

costly cross-validation when tuning the kernel weightings. In addition

to a more efficient means of tuning such hyperparameters, Bayesian

modeling also provides a principled approach to incorporating prior

information, comparing models, making probabilistic predictions, and

inferring distributions over parameters (Gelman et al., 2013). It has

been applied in many contexts within neuroimaging (Woolrich, 2012)

and more specifically in both parametric and nonparametric trajectory

models (Lorenzi, Ziegler, Alexander, & Ourselin, 2015; Ziegler, Penny,

Ridgway, Ourselin, & Friston, 2015).

In this article, we develop an approach that realizes the benefits of

MKL within a Bayesian trajectory model rather than a disease classifi-

cation model. To do so we use multi-task learning, which aims to learn

multiple related tasks simultaneously, sharing information across

tasks. Bayesian MTL was previously applied in neuroimaging within

the context of multi-subject fMRI analysis (Marquand, Brammer,

Williams, & Doyle, 2014; Marquand, Brammer, et al. 2014) based on

the method proposed by Bonilla et al. (2008). Bayesian MTL has also

been applied to imaging genetics via a hierarchical Bayesian model

that encourages both individual and group sparsity (Greenlaw, Szefer,

Graham, Lesperance, & Nathoo, 2017; Nathoo, Greenlaw, &

Lesperance, 2016). Here we set the learning of each subject's bio-

marker trajectory as a task and apply MTL to share information across

subjects. We develop a parametric extension of Marquand et al.'s

approach, a joint Bayesian linear regression that allows for full cou-

pling across all subjects along with coupling based on biomarker simi-

larity, so that subjects with similar measures in one biomarker may

have more similar trajectories in another. Furthermore, we use MKL

to couple trajectories within a biomarker based on an optimal balance

of multiple other biomarkers' information. We compare our approach,

which learns the optimal parameter covariance from data to standard

LME modeling, where the parameter covariance structure depends on

the a priori choice of random and fixed effects.

This article (a) contributes a parametric model that learns a separate

trajectory for each subject while allowing for information-sharing across

subjects and the integration of multi-modal information during model

training, resulting in better predictions, and inferences; (b) performs sim-

ulations to validate the model and understand its properties; (c) applies

the model to clinical neuroimaging data, modeling cortical region of inter-

est (ROI) trajectories in neurodegeneration using various biomarkers for

coupling and (d) interprets and discusses the results.

2 | METHODOLOGY

2.1 | Model: Parametric Bayesian MTL

We present a univariate model of the temporal trajectory of a scalar

variable (e.g., values of an ROI or a clinical measure) across multiple

subjects. We set the learning of each subject's trajectory as a task and

use MTL to share information across subjects to better learn all sub-

jects' trajectories as a single, coupled model. Empirical Bayes allows us

to automatically tune the degree and type of coupling across subjects

using hyperparameters that control the overall covariance structure of

the parameters being learned.
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We start by specifying a single, large model for all n subjects' tra-

jectories, stacking the longitudinal observations of all subjects into the

vector y= y01 � � � y0n
� �0

, where yi is an mi×1 vector of observations for

the ith subject. In total, there are m=
Pn

i = 1mi observations across

subjects, so that y is a m×1 vector. To model these trajectories, we

can fit polynomial functions of time (e.g., age) using the following

model structure:

y=Xw+ ε=

X1

. .
.

Xn

2
664

3
775

w1

..

.

wn

2
664

3
775+ ε ð1Þ

where the overall design matrix X is block diagonal for a chosen poly-

nomial model of order p, with zeros in the off-diagonal entries. Defin-

ing d = p + 1, we have block Xi as the mi × d design matrix for subject

i having mi observations at times ti1,…, timi
:

Xi =

1 ti1 tpi1
1 ti2 tpi2

..

. ..
. . .

. ..
.

1 timi
� � � tpimi

2
666664

3
777775 ð2Þ

and w is an nd × 1 vector of parameters across subjects. If we

assume additive Gaussian noise ε~N(0, β−1Im) we can solve the

general linear model (GLM) formed by Equation (1) via ordinary

least squares (OLS) regression, finding a set of parameters w1, … ,

wn that describe the subjects' temporal trajectories. Each wi is a

d × 1 vector containing the trajectory parameters for subject i. In

the case of linear models wi is 2 × 1 and contains an intercept

and a slope term.

OLS regression is a simple and widely used means of model-

ing trajectories models for each subject. However, it assumes an

independent model for each subject, thereby ignoring the similar-

ity in other subjects' trajectories that may greatly improve both

prediction and parameter inference. Using a Bayesian approach,

we propose to overcome this problem by placing a prior proba-

bility distribution over these parameters. The form of the prior

we propose is:

p wð Þ=N 0,Σprior

� � ð3Þ

Σprior = α1Ind +
Xd
i =1

Σci|{z}
inter−subject

� Mii|{z}
intra−subject

ð4Þ

Σci = αi1In + αi21n +
Xk
j = 1

αi j + 2ð ÞKj ð5Þ

where Mii is defined below and Σprior is of size nd × nd. The first term in

Equation (4), with weight α1, allows for a diagonal (i.e., independent)

covariance structure in the parameters1 and ensures the matrix is positive

definite. The second term is a sum of d Kronecker products. When fitting

linear models (i.e., polynomial models of degree one, as we will do

throughout this article), there are two such products: one for the 0th order

parameters (i.e., intercepts), the other for the first order parameters

(i.e., slopes or rates of change). In each case, we take the Kronecker prod-

uct of an inter-subject (coupling) matrix and an intra-subject matrix to form

part of the overall covariance matrix. Each Σci is an n × n matrix parame-

trized to allow for fully independent parameters (αi1In term, where In is an

n-dimensional identity matrix), fully coupled parameters (αi21n term, where

1n is an n-dimensional matrix of ones) and coupling based on the set of k

biomarker based kernels (the Kj’s, each an n-dimensional positive definite

matrix). The form of these biomarker kernels is detailed later in this paper.

As a result, each Σci contains at least k + 2 hyperparameters2 and overall

there are at least d(k + 2) covariance-related hyperparameters. It is impor-

tant to bear in mind the distinction between the hyperparameters (the α's)

used to control coupling among subjects and the parameters of individuals'

trajectory models (thewi’s stacked withinw).

The intra-subject matrix Mii describes how the trajectory parame-

ters within each subject's model are related to each other. We have

chosen each Mii to be a d × d indicator matrix equal to one on the ith

diagonal element and zero elsewhere, so that there is no information

sharing between different parameter types (e.g., between intercepts

and slopes) within and across subjects. This prior structure allows us

to learn the inter-subject coupling separately for each parameter type,

giving the model a great deal of flexibility.

Note that simpler parametrizations of the covariance matrix are

possible. For instance, choosing Σprior = Σc � Id with Id the d × d iden-

tity matrix and Σc = α1In + α21n is closest to the form used in Mar-

quand et al. Using instead Σc = α1In + α21n +
Pk

j = 1α j + 2ð ÞKj implements

MKL. Both variations use fewer hyperparameters than our proposed

parametrization. However, these simpler models tie the coupling of

parameters types (e.g., intercepts and slopes) together and as such

may be more prone to inducing spurious coupling in one set of param-

eters while capturing true coupling in another (e.g., spuriously cou-

pling intercepts along with slopes). This may, in turn, lead to the

increased false positive group differences in subjects' parameters.

This prior structure differs from that used in hierarchical Bayesian

modeling, where individuals' first level parameter prior means are

specified as linear combinations of second level parameters that may

include covariates and grouping variables that also have prior distribu-

tions. In contrast, we assume a zero-mean prior on individuals' param-

eters and incorporate covariates via kernels within each Σci. Kernels

allow for nonlinear similarity measures between covariates, adding

modeling flexibility not present in linear hierarchical models. Hierar-

chical models, in contrast, offer a well-developed framework for

modeling fixed and random effects. The two approaches are not

mutually exclusive: it is possible to combine them, though for the sake

of simplicity we leave this as a topic for future work.

1In practice, we include an additional diagonal term εInd, with ε set to 10−6 throughout, that

aids numerical stability when inverting Σprior.
2There may be more hyperparameters if the kernels themselves contain tuneable parameters.
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Finally, we choose the likelihood term, that is, the data observa-

tion model, to resemble the GLM from Equation (1), setting

p yð jX,wÞ=N yð jXw,β−1ImÞ ð6Þ

with X andw defined as before. We allow the model to learn the (inverse)

measurement noise level β within the likelihood as an additional hyper-

parameter. With the prior and likelihood thus specified, we can use Bayes'

rule to update our beliefs on the parameter distribution given some

observed data (i.e., find the posterior distribution). In this case as we have

a Gaussian prior and a Gaussian likelihood the posterior is also Gaussian

and has the following closed-form solution (Bishop, 2007):

p wjX,y,α,βð Þ=N wj �w,Σpostð Þ ð7Þ

Σpost = Σ αð Þprior −1 + βXTX
� �−1

ð8Þ

�w= βΣpostX
Ty ð9Þ

where we have collected the covariance prior's hyperparameters into

the vector α and have made the dependence of the prior covariance

on these parameters explicit using the notation Σ(α)prior.
To estimate optimal values for α and β, we take the empirical Bayesian

approach described in Huertas et al. (2017) and Marquand, Brammer,

et al. (2014a) finding the α and β that maximize the marginal likelihood of

the observed data under our assumed model structure. With the prior as

in Equations (3)–(5) and the likelihood as in Equation (6) the log marginal

likelihood becomes:

log p yjα,βð Þ= −
m
2
log 2πð Þ+ m

2
log βð Þ− 1

2
log Σ αð Þprior

��� ���− 1
2
log Aj j

−
1
2
mTΣ αð Þ−1priorm−

β
2

y−Xmð ÞT y−Xmð Þ

where A=Σ αð Þ−1prior + βX
TX and m= βA−1XTy. We used minimize, a con-

jugate gradients optimizer available within the gpml toolbox

(Rasmussen & Nickisch, 2010), which uses partial derivatives of the

marginal likelihood with respect to each of the hyperparameters. We

optimized these variables in the log domain to ensure positivity (see

Appendix for further details).

In this article we predict the biomarker value at each subject's

mean baseline and final follow-up ages, taking the probabilistic

approach of integrating over all possible posterior model parameters.

With the Gaussian posterior as in Equations (7)–(9) and the Gaussian

likelihood p(y*| X*,w) = N (y* |X*w, β−1Im) of observing predictions y*

given input X*, the predictive distribution that results from integration

has a closed form solution (Rasmussen, 2006):

p y*jX*,Xð Þ=N X* �w,β−1I+X*A
−1XT

*

� �
ð10Þ

where A=Σ αð Þ−1prior + βX
TX and X* is an n× nd design matrix with a

row encoding either the mean baseline age or final sample age in this

case (or 2n×nd to predict both at once). In general, we can predict an

arbitrary number of time-points per subject by modifying X*

accordingly.

For all models, we standardize (i.e., z-score) the training data

across all subjects (the longitudinal observations y and each noncon-

stant column of the design matrix X) as well as the out-of-sample test-

ing data (X*, using the means and standard deviations from X) during

model building and prediction. This ensures that all trajectories are

modeled on a similar scale, which aids numerical stability when opti-

mizing the hyperparameters. We rescale both the predictions and the

estimated parameters back to their original dimensions for subsequent

analysis (e.g., estimating annualized rates of change and group differ-

ences in parameters). With higher order models, the columns of X

may be highly correlated, leading to unstable variance estimates. In

such cases, one may orthogonalize the columns prior to fitting the

model.

We use the log Bayes factor, a ratio of the logarithm of model evi-

dences (i.e., marginal likelihoods) to compare biomarker-information

based coupling to random-information based coupling. Log Bayes fac-

tors are a principled way of comparing Bayesian models, under the

assumption that each model has the same prior probability (Penny,

2012; Penny, Stephan, Mechelli, & Friston, 2004).

2.2 | Software: Model and figures

A MATLAB implementation of our method is available at https://github.

com/LeonAksman/bayes-mtl-traj. The brain images in Figures 4–6, S8,

S9, and S11 were produced via a command-line image render and snap-

shot tool, available at https://github.com/LeonAksman/vtkSnap.

2.3 | Simulations: Data generation

We created a simulation of subjects' trajectories that allowed us to com-

pare several versions of our proposed model along with a baseline model.

We simulated two scenarios: (a) linear trajectories with intercept variation:

group differences in intercept with fixed slope and (ii) linear trajectories

with slope variation: group differences in slope with fixed intercept. In both

cases, we simulated 200 subjects' trajectories at each simulation run. To

simulate intercept variation, for a given subject i we randomly selected an

intercept wi0 from the set {−10, −8, −6, −4, −2} and a fixed slope of

wi1 = − 1, and then randomly selected an initial measurement time ti1

between 0 and 10. We then generated three simulated samples with fixed

time intervals: y(ti1)= wi0 + wi1ti1 + εi1 = wi0 − ti1 + εi1, y(ti2 = ti1 + 0.05)

= wi0 − ti1 − 0.05 + εi2 and y(ti3 = ti1 + 0.10) = wi0 − ti1 − 0.10 + εi3,

where εi1, εi2, εi3 are three independent measurement errors, each drawn

from N(0, σm). We simulated four different levels of measurement noise,

σm = 1, 2, 4, 8. For each noise level, wemade 30 simulation runs and evalu-

ated nine different models (described below) on each run.We used the first

two samples of each subject (ti1, ti2 for subject i) to train each model and

the third sample (ti3 for subject i) to evaluate out-of-sample prediction

accuracy. The top row of Figure 1 provides an example of one simulation

run for 200 subjects at each noise level.

AKSMAN ET AL. 3985

https://github.com/LeonAksman/bayes-mtl-traj
https://github.com/LeonAksman/bayes-mtl-traj
https://github.com/LeonAksman/vtkSnap


To simulate slope variation, for a given subject i we randomly

selected a slope wi1 from the set {−1.0, −1.5, −2.0, −2.5, −3.0} and a

fixed intercept of wi1 = 0. We randomly selected ti1 as before and

generated y(ti1), y(ti2 = ti1 + 0.05), and y(ti3 = ti1 + 0.10) with measure-

ment errors εi1, εi2, εi3 drawn from N(0, σm). We used the same four

measurement noise levels and again made 30 simulation runs,

TABLE 1 Models fit at each simulation run

Model Purpose Kernel Covariance prior # Cov. Hyper's

random Allow both slope and intercept

coupling via random biomarker

K(r)SE α1I2n +
P2

i = 1 αi1In + αi21n + αi3K rð ÞSE
� ��Mii

9

linear both Allow both slope and intercept

coupling via true biomarker

K(b)linear α1I2n +
P2

i = 1 αi1In + αi21n + αi3K bð Þlinear
� ��Mii

7

Gaussian both Allow both slope and intercept

coupling via true biomarker

K(b)SE α1I2n +
P2

i = 1 αi1In + αi21n + αi3K bð ÞSE
� ��Mii

9

linear int Allow intercept coupling via true biomarker K(b)linear α1I2n + α11In + α121n + α13K bð Þlinear
� ��M11

+ α21In + α221nð Þ�M22

6

Gaussian int Allow intercept coupling via

true biomarker

K(b)SE α1I2n + α11In + α121n + α13K bð ÞSE
� ��M11

+ α21In + α221nð Þ�M22

7

linear slope Allow slope coupling via

true biomarker

K(b)linear α1I2n + α11In + α121nð Þ�M11

+ α21In + α221n + α23K bð Þlinear
� ��M22

6

Gaussian slope Allow slope coupling via

true biomarker

K(b)SE α1I2n + α11In + α121nð Þ�M11

+ α21In + α221n + α23K bð ÞSE
� ��M22

7

plain No biomarker based coupling None α1I2n + α11In + α121nð Þ�M11

+ α21In + α221nð Þ�M22

5

OLS No coupling None α1I2n, α1 ! ∞ 0

Note. Last column contains number of hyperparameters in given covariance prior.

F IGURE 1 Top row: One run of the simulation of 200 subjects' longitudinal samples with group differences in intercept at four different
measurement noise (σm) levels. Bottom row: The same with group differences in slope. Each subject has three samples, with trajectory parameters
chosen from among five gradations of intercept (top row) or slope (bottom row), indicated by different colors [Color figure can be viewed at
wileyonlinelibrary.com]
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generating 200 simulated subjects' trajectories for each noise level.

We evaluated the same nine models using the first two samples of

each subject for training and the third for prediction. The bottom row of

Figure 1 provides an example of one simulation run at each noise level.

2.4 | Simulations: Model building

We investigated how different variations of the model, with and

without biomarker-kernel-based coupling (i.e., via the Kj matrices

described above), performed under the two parameter variation sce-

narios and the four measurement noise levels. We created a 200 × 1

biomarker vector b as a noisy measure of the group difference in the

parameters, so that the ith element of b was bi = wi0 + εi under inter-

cept variation and bi = wi1 + εi under slope variation, with εi drawn

from N(0, 1) in both cases.3 Using this biomarker, we compared

two commonly used similarity matrices: (a) a rank-one approximation

K(b)linear = bbT (the outer product of b with itself); and (b) a squared

exponential (SE) kernel (also referred to as a Gaussian radial basis

function kernel) K(b)SE, with kij = exp(−σSEkbi − bjk2) in the ith row and

jth column, where we make the dependence of these matrices on the

input explicit. The term σSE > 0 is a parameter that gives the kernel

additional scaling flexibility. It is also possible to encode categorical

(i.e., group) membership via a binary similarity matrices rather than an

SE kernel, with one indicating two subjects belong to the same class

and zero otherwise.

When using SE kernels, we treated the σSE term as a covariance

prior hyperparameter (in addition to the α's in Equations [4] and [5]).

We formed six different models using these two kernels: “linear both”

and “Gaussian both” had covariance prior structure as in Equa-

tions (4) and (5), parameterizing full independence, full coupling and

kernel-based coupling in both the intercept and slope parameters. The

“linear int” and “Gaussian int” models restricted kernel-based coupling

to the intercepts: referring to Equations (4) and (5) and assuming one

coupling kernel K1, this means we allow a K1 term in Σc1 but not in

Σc2. The “linear slope” and “Gaussian slope,” in contrast, restricted

kernel-based coupling to the slopes, allowing a K1 term in Σc2 but not

in Σc1. These latter four models allowed us to test the effect of “ora-

cle-like” (i.e., with perfect a priori) knowledge of simulation scenario:

e.g., whether the two “int” models outperform other models in the

variable intercept, fixed slope scenario. In such cases, biomarker-

based coupling of slopes in the intercepts variation case (or vice versa)

is extraneous and may lead to spurious inference of group differences

if a model is allowed to infer coupling where none exists.

We compared biomarker coupled models to several simpler

coupled models. The simplest of these was the “OLS” model, an

uncoupled model which asymptotically corresponds to a Bayesian

model with a parameter covariance prior of α1I2n with α1 tending to

infinity (i.e., a high prior uncertainty on all parameters for all subjects).

The second model, “plain,” trades off fully independent and fully

coupled covariance priors, without any kernel-based coupling. It is

very similar to an LME model with random intercepts and random

slopes. To understand the role of kernel-based coupling, we compared

biomarker-kernel coupled models to random-information-kernel

coupled models. We formed a 200 × 1 vector r with each element

drawn from N(0, 1), so that each subject was assigned a random num-

ber, and formed another SE kernel K(r)SE based on it. We used this to

create “random,” parametrized exactly as “Gaussian both.” See Table 1

for further model details.

We compared our approach to standard LME modeling using the

LME implementation available in Freesurfer (Bernal-Rusiel et al.,

2013; Bernal-Rusiel, Reuter, Greve, Fischl, & Sabuncu, 2013).4 Specifi-

cally, we built two LME models, with fixed effects of baseline age and

baseline biomarker value and either random intercepts (termed “LME:

rI”) or random intercepts and slopes (“LME: rI, rS”).

We also compared our empirical Bayesian approach, which produces

point estimates of hyperparameter priors (i.e., an estimate of prior

means with zero variance) to a fully Bayesian approach, in which we

place priors on the hyperparameters and estimate their posterior distri-

bution. In this way, the fully Bayesian approach accounts for the hyper-

parameter uncertainty, which may improve parameter and prediction

coverage by improving the estimation of their uncertainties. We com-

pared the empirical Bayesian version of “plain,” with five covariance

hyperparameters (the α
0
s) and one inverse observation noise parameter

(β) to a fully Bayesian model with the same covariance structure. We

placed broad, uninformative half-normal priors on the α’s, by setting

each α~normal(0,100) with constraint α > 0, and an inverse Gamma dis-

tribution on β−1, setting β−1~InvGamma(1, 1). We used Markov chain

Monte Carlo (MCMC) to estimate the full model as it was no longer ana-

lytically tractable to derive all the necessary posterior distributions. We

implemented the full model in Stan (Carpenter et al., 2017) using Hamil-

tonian Monte Carlo. Due to the significantly longer running times of the

full model, (see Results) we ran the same two simulation scenarios for

50 instead of 200 subjects, with all other settings as before. We used

the default parameters for MCMC sampling: four chains, with 1,000

warm-up iterations and 1,000 sampling iterations per chain, so that the

posterior distributions had 4,000 sampling iterations in total. We

checked the convergence of the chains' posterior distributions using the

R metric provided. We checked the quality of the chain by looking at

the means, Markov chain standard errors (MCSE) and effective sample

sizes of the hyperparameters.

Finally, we performed additional simulations to test our assumption

of independent measurement noise, parameterized by β in Equation (6),

choosing five representative models in all cases: “Gaussian both” and

“plain” MTL models plus the two LME models and “OLS.” In the first set

of simulations, we varied the amount of within-subject noise correlation

by instead allowing a block diagonal noise structure. For each subject's

measurements, we used a noise covariance with σ2m =4 on the diagonal

and all off-diagonal terms set to ρσ2m, so that we recover uncorrelated

noise when ρ=0 and perfectly correlated noise (i.e., the same for all

observations over time) when ρ=1. We simulated with three levels of

ρ (0, 0.5, 0.75). In the second set of simulations used three levels of
3We do not vary the biomarker noise here as we found that, in general, it did not have a

strong effect on the models, particularly as compared to the measurement noise. 4https://surfer.nmr.mgh.harvard.edu/fswiki/LinearMixedEffectsModels.

AKSMAN ET AL. 3987

https://surfer.nmr.mgh.harvard.edu/fswiki/LinearMixedEffectsModels


noise skewness: zero (Gaussian, as before), 0.6 (slightly skewed), and

0.9 (highly skewed), with σ2m =4 in all cases.

2.5 | Simulations: Model evaluation

Parametric Bayesian modeling provides probabilistic predictions (via

Equation [10]) and parameter distributions (via Equations (7)–(9)).

We can thus compare the performance of models in terms of both

their accuracy of predicting ground truth trajectories and how well

they estimate model parameters. The latter objective is potentially

important when there are group differences in trajectories, for

example, when a disease group has a steeper rate of gray matter

volume decline in a ROI compared to a healthy control group. In

such a case, using linear models we should be able to detect a dif-

ference in the slope parameters across the groups and, assuming the

decline starts from the same level, no corresponding difference in

intercepts.

For each model, we evaluated the mean absolute error (MAE) of

predicting subjects' held-out samples and quantified the accuracy of the

inferred trajectory parameters (intercepts and slopes) via coverage prob-

ability and MAE measures. We defined the coverage probability as the

fraction of times the true value of a parameter (intercept or slope) falls

within two standard deviations of its estimated value, that is, within the

posterior credible interval of the parameter. As this is a 95% credible

interval a coverage probability of 0.95 is an ideal outcome. For the

Bayesian MTL models, we can easily calculate these quantities using the

posterior means and variances (Equations (7)–(9)). For the LME mod-

els, direct estimates of the posterior parameter variance were not avail-

able: we therefore estimated them by adding the fixed effect and

random effect variance estimates of the intercept and slope when

appropriate.

In practice, the coverage probability may not be sufficient for

understanding how accurately a model estimates a parameter as a

model may simply estimate a high enough variance so that the true

value is always covered. For this reason, we also computed the error

(MAE) between the estimated parameters (intercept, slope) and their

known true values.

2.6 | ADNI application: Dataset

Data used in the preparation of this article were obtained from the

Alzheimer's disease neuroimaging initiative (ADNI) database (adni.

loni.usc.edu). The ADNI was launched in 2003 as a public–private

partnership, led by Principal Investigator Michael W. Weiner,

MD. The primary goal of ADNI has been to test whether serial

magnetic resonance imaging (MRI), positron emission tomography

(PET), other biological markers, and clinical and neuropsychological

assessment can be combined to measure the progression of mild

cognitive impairment (MCI) and early Alzheimer's disease (AD). For

up-to-date information, see www.adni-info.org.

We used ADNI subjects with at least one [18F]-Florbetapir PET scan,

which images brain amyloid accumulation, using the earliest available

image as the baseline time-point. We chose a subset of 437 subjects:

104 cognitively normal (CN), 243 MCI, 90 probable Alzheimer's disease

(AD). Each had at least three MRIs at or after the chosen baseline, with a

total of 1,545 images across all subjects. There were 257 subjects with

three MRIs, 138 subjects with four MRIs, 31 subjects with five MRIs,

10 subjects with six MRIs and one subject with sevenMRIs.

We processed the PET scans to derive standardized uptake value

ratio (SUVR) values in cortical gray matter as measures of cortical

amyloid deposition at baseline, defined here as the first Florbetapir

scan available. Details of PET image processing can be found in Scelsi

et al. (2018). Briefly, tracer uptakes in the cortical ROI were standard-

ized to the uptake in a composite reference region following recom-

mendations from (Landau et al., 2015). We also used amyloid-β, total

tau and phosphorylated tau (pTau) from CSF measured at or before

baseline as measures of severity of amyloid and tau pathology. Lastly,

we retrieved subjects' apolipoprotein E (APOE) genetic information,

particularly the number of ε2 and ε4 alleles (Harold et al., 2009; Liu,

Kanekiyo, Xu, & Bu, 2013).

We parcellated the T1-weighted images using geodesic informa-

tion flows (GIF; Cardoso et al., 2015), creating 20 cortical sub-lobe

volumes from each image (see Figure S7 for the list of ROIs). We then

normalized each of these ROIs using each subject's total intracranial

volume (TIV). Normalized ROIs were subsequently used for longitudi-

nal trajectory modeling and out-of-sample prediction. We withheld

the final follow-up ROI from each model to test the out-of-sample

prediction accuracy of our models.

2.7 | ADNI application: Model building

We built eight different types of models, detailed in Table 2, for each

of the 20 regions for a total of 160 models.

We used first order (linear) polynomial models for all regions: previ-

ous work has shown this is a reasonable assumption for modeling corti-

cal trajectories (Ziegler et al., 2015). Based on our simulations (see

Results), we chose the “Gaussian both” type of model when using bio-

marker coupling, allowing both intercept and slope coupling, assuming

no prior knowledge of the type of coupling that exists in the data. We

formed four different kernels (K1, K2, K3, K4) based on true biomarkers

along with a fifth kernel based on a random biomarker-based kernel

(K5 = K(r)SE, r a vector of random values) as in the simulations. Kernels

Ki = K(bi)SE, i = 1, 2, 3 were formed using: (a) b1, a vector of SUVR values

across subjects derived from amyloid PET, (b) b2 = log(tau/Aβ), a vector

encoding the relationship between CSF tau, which increases in subjects

with AD, and CSF amyloid-β, which decreases in those with AD

(Sunderland et al., 2003), log transformed to improve normality, and

(c) b3, a vector encoding CSF pTau (Hampel et al., 2010).

To encode the APOE genetic similarity between subjects we used

the weighted identity by state (weighted-IBS) kernel function as in

Kwee et al., (Kwee, Liu, Lin, Ghosh, & Epstein, 2008):

kIBS, ij =
wε2IBSij,ε2 +wε4IBSij,ε4

wε2 +wε4
ð12Þ
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where the IBSij, ε2, IBSij, ε4 terms (each taking values 0, 1, or 2) refer to

the number of ε2 and ε4 alleles shared by subjects i and j. The inverse

minor allele frequency (1/MAF) weights wε2, wε4 serve to up-weight

rarer SNPs. The range of this function is between zero and two. To

better compare to the other SE kernels, we created an exponentiated

version of this kernel function:

kexpIBS,ij = exp −σ 2−kIBS, ij
� �� � ð13Þ

that includes a scaling hyperparameter σ and has a range between

zero and one. We formed the K4 kernel matrix using this kernel

function.

We also compared our approach to (Freesurfer-based) LME

models. We built three LME models with fixed effects of age and

baseline amyloid load (measured via PET SUVR, as in the “PET amy-

loid” MTL model) and either random intercepts (termed “Rand Int”),

random intercepts and slopes (“Rand Int/Slp”) or random intercepts,

random slopes, and random amyloid (“Rand Int/Slp/Amyloid”).

3 | RESULTS

3.1 | Simulations: Results

Figure 2 depicts boxplots of the predictionMAEs across simulation runs.

Models using SE kernel-based coupling (“Gaussian” type models) gener-

ally performed better than their linear kernel counterparts (“linear” type

models). The advantage of the SE kernel in some cases may be attribut-

able to the ability to tune the kernel width (the σSE term) as an additional

hyperparameter,which adds scale flexibility. “Gaussian both”was consis-

tently among those with lowest MAE. We expected the oracle-like

models (“int” type in top row, “slope” type in bottom, markedwith aster-

isks in the figures) to outperform the other models, however, overall,

they perform similarly to the othermodels inmost cases. Importantly, all

MTLbasedmodels (including “plain”) outperform “OLS”bya largemargin,

roughly halving the error. Figure S1 depicts histograms of parameter

estimates for both “plain” and “OLS” for a representative simulation run,

showing that the Bayesianmodel shrinks both the slopes and intercepts

to their respective groupmean, decreasing the variance of the estimates

considerably. The shrinkage also results in a small increase in bias,

evidenced by the larger distance between the parameter means of

“plain” (dashed red line) to the true parameter means (dashed black line)

compared to “OLS” (dashed blue line), with an overall large decrease in

the mean squared errors of the parameter estimates (“plain”: 8.8 for

intercepts, 0.4 for slopes; “OLS”193.0 for intercepts, 8.1 for slopes).

The two LME models also performed well, with similar MAEs to the

“Gaussian” models. Figure S2 depicts the corresponding prediction cov-

erage probabilities, showing that both the MTL and LME models' pre-

dictions cover the true target value at close to the ideal rate of 0.95,

again outperforming “OLS” by a large margin, especially at higher noise

levels. We also observe that the simpler MTL models (“linear” models,

along with “plain”) have both high coverage in Figure S2 and relatively

high MAE in Figure 2, meaning that, compared to the other MTL and

LME models, they make relatively inaccurate predictions but estimate

high enough measurement uncertainty to cover the true target value.

Figure 3 depicts the corresponding parameter coverage probabili-

ties and estimation errors. In the fixed slope, varying intercepts sce-

nario (top row), coverage of the true fixed slope parameter was high

for all models (at or near 100%, exceeding the nominal level of 95%)

while intercept coverage varied greatly across models and noise

levels. The LME models generally did not cover the true intercept

values as frequently as the MTL models, particularly the random inter-

cepts model (“LME: rI”). The random intercepts, random slopes model

(“LME: rI, rS”) performed better at higher noise levels, but was gener-

ally outperformed by the MTL models. One possible explanation is

that the MTL models explicitly model parameter uncertainty as part of

their Bayesian formulation, while we have had to estimate the LME

models' overall parameter uncertainty by combining the associated

TABLE 2 Models fit for ADNI data

Model Purpose Kernel(s) Covariance prior # Cov. Hyper's

multiple Allow coupling via all four

true biomarkers

K1, K2, K3, K4 α1I2n +
P2

i = 1 αi1In + αi21n +
P4

j = 1 αi 2 + jð ÞKj

� �
�Mii

21

PET amyloid Allow coupling via SUVR similarity K1 = K(b1)SE α1I2n +
P2

i = 1 αi1In + αi21n + αi3K1ð Þ�Mii
9

CSF tau/aBeta Allow coupling via tau/

aBeta similarity

K2 = K(b2)SE α1I2n +
P2

i = 1 αi1In + αi21n + αi3K2ð Þ�Mii
9

CSF pTau Allow coupling via pTau similarity K3 = K(b3)SE α1I2n +
P2

i = 1 αi1In + αi21n + αi3K3ð Þ�Mii
9

APOE Allow coupling via APOE ε2,
ε4 allele similarity

K4 = KexpIBS α1I2n +
P2

i = 1 αi1In + αi21n + αi3K4ð Þ�Mii
9

random Allow coupling via

random biomarker

K5 = K(r)SE α1I2n +
P2

i = 1 αi1In + αi21n + αi3K5ð Þ�Mii
9

plain No biomarker based

coupling

None α1I2n + (α11In + α121n) � M11 + (α21In + α221n) � M22 5

OLS No coupling None α1I2n, α1 ! ∞ 0

Note. Last column contains number of hyperparameters in given covariance prior.
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fixed and random effect uncertainties. In addition, the LME models

also have higher parameter estimation errors (the intercept and slope

log MAE figures in the top row), which measures the quality of param-

eter mean estimates rather than variances. Overall in this scenario the

“Gaussian” models outperformed all others in terms of parameter cov-

erage and estimation error while the “linear” models and “plain” were

comparable to the LME models in terms of parameter estimation

error.

In the second scenario, fixed intercept and varying slopes

(Figure 3, bottom row), the “Gaussian” models performed well in both

parameter coverage and parameter estimation error; in this case, the

two LME models also performed competitively. “LME: rI, rS” had con-

sistently highest intercept and slope coverage and lowest parameter

estimation errors at low measurement noise levels, reflecting the fact

that the random slopes assumption is appropriate in this scenario.

However, this model's parameter estimation error, particularly the

slope MAE, increases sharply with higher measurement noise levels

while the “Gaussian” models are relatively unaffected.

The two simulation scenarios suggest that the “Gaussian” style

MTL models are a good choice for both prediction and parameter

inference and compare favorably with standard LME models in many

cases. Among these, “Gaussian both” is appealing, as it makes no a

priori assumptions on the type of coupling that exists within the data.

Therefore, we used this type of model throughout our experiments

with the Alzheimer's study data.

Figure S3, part A shows the empirical Bayesian implementation

of “plain” (“EB plain”) has very similar predictive performance to the

full Bayesian implementation (“MCMC plain”) in terms of prediction

error. Both have high coverage of the true target values though the

full Bayesian model is consistently closer to the optimal coverage of

0.95 while the empirical Bayesian model is prone to underestimating

the predictive uncertainty. Figure S3, part B depicts the parameter

estimation metrics: the full Bayesian model has much higher cover-

age of the intercept in both scenarios; both models have similarly

high coverage of the slope. The full Bayesian model has lower error

in estimating the true values of both intercepts and slopes in both

scenarios. We briefly compared the computation times of the two

F IGURE 4 Top: True and estimated annualized rates of change across cortex for four representative MTL models bottom: MAEs of
estimates. MAE, mean absolute error [Color figure can be viewed at wileyonlinelibrary.com]
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models on a single run of the intercept varying scenario with 20, 50,

and 100 subjects: the empirical Bayesian model took 0.13, 0.38, and

0.50 seconds, respectively, while the full Bayesian model was con-

siderably slower: 51,398 and 4,356 seconds, respectively. Table S1

gives the convergence diagnostics for the posterior estimates of the

hyperparameters of “MCMC plain” for one run of the intercept vary-

ing scenario. The estimates appear to have converged: all R values

were at their ideal values of one, the number of effective samples

(Neff) was high in all cases and the MCSE's were small compared to

the estimated posterior means, so that the 95% confidence intervals

on the means did not cross zero.

Figure S4 depicts results from the simulations that varied noise

correlation while Figure S5 depicts those with varied skewness. In

Figure S4, part A, we observe that the prediction related metrics are

similar between “Gaussian both” and the two LME models in both

simulations scenarios and that all models' prediction errors fall as

noise correlation increases. Figure S4, part B shows corresponding

parameter estimation metrics for both scenarios: “Gaussian both”

outperforms the LME models on intercept coverage and parameter

error in the intercept varying scenario (top row) but “LME: rI, rS” has

near optimal coverage in the slope varying scenario (bottom row),

where the random slopes assumption is appropriate. However,

these two models are similar in terms of slope coverage and both

intercept and slope estimation errors. Figure S5, part A depicts the

three different levels of measurement error skewness that we used

in the second set of simulations. In this case, we observe that vary-

ing skewness does not substantially affect any of the models' pre-

diction or parameter estimation metrics. Again, in general “Gaussian

both” and the two LME models have similar prediction coverages

and errors (part B), while “Gaussian both” outperforms the LME

models in parameter estimation in the intercepts varying scenario

(part C, top) and has similarly good performance in the slopes vary-

ing scenario (part C, bottom).

3.2 | ADNI application: Results

The likelihood term in Equation (6) assumes that observations are nor-

mally distributed about their mean (i.e., the residuals are normal) and

uncorrelated over time within each subject. We tested the impact of

these assumptions on ADNI modeling by comparing the histograms of

residuals for two models in Figure S6: “CSF tau/aBeta,” which was rep-

resentative of the biomarker-coupled MTL models, and “OLS,” the

uncoupled reference model. Across all regions, the residuals of “CSF

tau/aBeta” are much closer to being normally distributed that those of

“OLS.” We also tested for heteroscedasticity, calculating the correla-

tion of residuals to baseline age across subjects and found no signifi-

cant correlation in both models for any region.

Figure 4 (top part) depicts the true and estimated annualized rates

of change across the 20 cortical ROIs for four representative models

(“OLS,” “plain,” “random,” “multiple”). Note that there is no information

exchange between ROIs; in its presented form our method is univari-

ate, coupling across subjects within each ROI and modeling ROIs sep-

arately. We computed the true annualized rate of change by dividing

the percentage change from baseline to final (held-out) follow-up by

the number of elapsed years. We note that this true annualized rate is

essentially a two-point OLS estimate and is therefore more a silver

than a gold standard. We see most of the cortex degenerating by

0.33% (middle cingulate) to 1.3% (posterior insula) annually, with the

lateral regions generally degenerating faster than the medial regions

We computed the models' estimated annualized rates using their pre-

dictions of the held-out sample instead of the true held-out value.

Figure 4 (bottom) depicts the associated MAEs of these predictions,

with the three MTL models (“plain,” “random,” “multiple”) having lower

MAEs than the “OLS” model across most ROIs. The two kernel

coupled models (“random” and “multiple”) have further decreased

MAEs compared to “plain,” though there is no further discernible dif-

ference in MAE between the two.

F IGURE 5 Log Bayes factors across cortex, comparing each biomarker-coupled MTL model to “random” [Color figure can be viewed at
wileyonlinelibrary.com]
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Figure S7 provides a quantitative comparison of prediction error

across all OLS plus MTL models. We performed t-tests on the differ-

ence in absolute error between models to understand the effect of

various modeling choices, showing: (a) all MTL model errors are signif-

icantly lower than those of “OLS” across all ROIs bar the lateral tem-

poral region (where only "plain" and "random" have higher error than

“OLS”); (b) there is further improvement due to kernel coupling,

evidenced by significantly lower absolute errors in at least one model

relative to “plain” in 13 out of 20 ROIs; (c) as in simulations, there is a

small difference in error between random-information-based and

biomarker-based kernel coupling, with some biomarker-based models

having significantly lower error than “random” (within 10 ROIs: ante-

rior insula, DLPFC, lateral occipital, lateral parietal, lateral temporal,

medial parietal, medial temporal, posterior cingulate, supratemporal,

and temporal pole regions). Statistical tests were Bonferroni corrected

for 320 (eight models × 20 ROIs × 2 parameter types) comparisons.

Furthermore, Figure S8 depicts the MAEs of predicting annualized

rate of change for three LME models (described in Methods) built

using the same information as in “PET amyloid.” All models had very

similar MAEs across ROIs in this case.

Figure 5 depicts log Bayes factors across cortical regions for the

comparison of the five biomarker-coupled MTL models to “random,”

showing “CSF tau/aBeta,” “PET amyloid” and “multiple” have the largest

and most widespread improvements in model evidence. We also see

that “multiple” is most similar to “PET amyloid,” the best individual bio-

marker coupled model in terms of model evidence, providing some

assurance that combining kernels works as expected.

Figure 6 depicts the significance of diagnostic group differences (CN,

MCI, or AD) in subjects' estimated parameters across OLS, LME, and MTL

assessed via one-way analysis of variance (ANOVAs) and Bonferroni

corrected for 480 (12 model comparisons × 20 ROIs × 2 parameter

types) comparisons. The three models with highest model evidence are

depicted in Figure 6 (“CSF tau/aBeta,” “PET amyloid,” “multiple”); Figure S9

depicts all MTL models, with Bonferroni correction for 320 comparisons.

In both figures, cross-sectional differences in predicted volumes at mean

baseline age across subjects (73.5 years) are depicted instead of inter-

cepts. Intercepts represent group differences at age zero (i.e., at birth)

while we have measured and modeled cortical degeneration in older

adults. The three MTL models in Figure 6 agree that there are significant

cross-sectional disease-related differences in volumes across the cortex,

with sparing of the sensorimotor and cingulate regions (Figure 6, top

row). The three LME models, in contrast, detect a less widespread and

less significant pattern of cross-sectional differences than the MTL

models while "OLS" detects even fewer cross-sectional differences.

Longitudinally, the bottom row of Figure 6 shows both “Rand Int”

and “Rand Int/Slp” have almost no significant slope differences in any

region, while “Rand Int/Slp/Amyloid” detects some significant differ-

ences within parts of the temporal lobe, insula and parietal regions,

F IGURE 6 Top: Significance of (cross-sectional) diagnostic group differences in predicted volume at mean baseline age (73.5 years) for OLS,
LME, and selected MTL models bottom: same for (longitudinal) group differences in estimated slopes [Color figure can be viewed at
wileyonlinelibrary.com]
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but does not detect the expected slope difference within the medial

temporal lobe. The three MTL models, including “PET amyloid,” which

represents the fairest comparison to the LME models, have significant

differences across the temporal lobe (including the medial temporal

lobe), insula, orbitofrontal region and, in the case of “multiple,” the lat-

eral parietal region. Overall the MTL models infer a more plausible

pattern of both cross-sectional and longitudinal disease effects than

standard LME models.

It is reassuring that similar types of biological coupling (amyloid load

measured via CSF and PET in “CSF tau/aBeta” and “PET amyloid” respec-

tively) result in similar patterns of longitudinal differences. The longitudi-

nal differences in the lateral parietal region detected by “multiple” may

be due to its incorporation of all biomarker coupling priors: “APOE” and

“CSF ptau” also show some differences within that region (Figure S9,

bottom row). In contrast to these biomarker-coupled models, “random”

does not detect any significant slope differences while “OLS” detects

few cross-sectional differences; neither model is plausible given other

studies of AD-related atrophy (Frisoni, Fox, Jack, Scheltens, & Thomp-

son, 2010; Risacher et al., 2010; Ziegler et al., 2015).

Interestingly, “plain” only detects longitudinal differences within the

medial temporal and temporal pole, suggesting that while this model can

reliably detect strong true effects (see simulations), it may not be as sen-

sitive as models with additional prior information. Further to this,

Figure S10 depicts data for two regions: the medial temporal region,

where most models agree that there are both cross-sectional and longi-

tudinal differences, and the lateral temporal region, where “plain”

detects no longitudinal differences, though they are clearly evident in

the figure. We further observe that “APOE” detects a similar though

weaker pattern of longitudinal differences compared to the other bio-

marker coupled models, suggesting that coupling based on similarity of

genetic AD risk, conferred at birth, is less informative than coupling

based on levels of amyloid accumulated decades later in older adults.

We also tested for cortical differences in subjects with differing num-

bers of APOE ε4 alleles (either 0, 1, or 2), analyzing each diagnostic group

separately. Figure S11 depicts group differences in number of alleles for

“APOE,” “PET amyloid,” and “multiple.” “OLS,” “plain,” and “random”

showed no differences in neither baseline volumes nor slopes (data not

shown) while “CSF ptau” and “CSF tau/aBeta” (not shown) had spatial pat-

terns resembling that of “PET amyloid,” which shows allele-related differ-

ences in temporo-parieto-frontal, insular and anterior cingulate regions

within the MCI group. There is a more widespread pattern of slope dif-

ferences in “APOE” and “multiple” which is consistent with Ziegler et al.

(2015), who found slope differences within temporo-parieto-frontal cor-

tical gray matter in stable MCI subjects. However, these models also find

slope differences within the insula and anterior cingulate in MCI subjects

that were not reported in that study.

4 | DISCUSSION

We have presented a multi-task learning based approach to modeling

individuals' longitudinal biomarker trajectories, setting the learning of

each trajectory as a “task” and using flexible covariance priors to

couple tasks (i.e., subjects) during model training. Thanks to its para-

metric Bayesian formulation, our approach makes probabilistic predic-

tions, infers distributions over parameters and allows for the

comparison of competing models via model evidence. Using empirical

Bayes (rather than time-consuming cross-validation), we showed how

we can combine (a) fully decoupled models (i.e., individual-specific tra-

jectory models; OLS-like); (b) fully coupled models (i.e., a common tra-

jectory across subjects; LME-like); and (c) models coupled via one or

more biomarker-based similarity matrices (i.e., kernels). In this way,

our approach uses multi-kernel learning and capitalizes on different

aspects of biology measured by different biomarkers, within a multi-

task learning framework.

We performed simulations of trajectories having group wise varia-

tions in intercept and slope, showing that even the simplest version of

our proposed model (“plain,” mixing decoupled and fully coupled

models) dramatically outperforms decoupled models (“OLS”) in terms

of predictive accuracy. We achieved further reductions in prediction

error by adding kernel-based coupling using both random information

and biomarkers (in various configurations, with and without oracle-like

knowledge of simulation scenario). Interestingly, random-information-

based kernels performed almost as well as the biomarker-based ker-

nels (Figure 2), though the biomarker-based models (“Gaussian both”

and the oracle-like models of each scenario) had better inference of

true group differences (Figure 3). As such, biomarker-based models

are the better choice for accurately making predictions and inferring

parameters. We further conclude that “Gaussian both,” which allows

biomarker-based coupling in all parameter types (e.g., intercepts and

slopes) is a better choice than “linear both” in terms of predictive per-

formance and parameter inference. We emphasize the importance of

parameter inference for both scientific (e.g., model interpretation) and

translational purposes (e.g., trajectory parameter-based biomarkers

such as ROI rates of change).

In this article, we used empirical Bayes to estimate the coupling

and noise hyperparameters, leading to a point estimate of the prior

values of these variables. However, the full Bayesian approach may

better account for both parameter and predictive uncertainty by plac-

ing priors on hyperparameters and estimating their posterior distribu-

tions. In our simulations, the two approaches had similar prediction

errors and coverages. The models differed more in their parameter

estimates: full Bayes had better parameter coverage and lower param-

eter error in some cases. On the other hand, empirical Bayes' gradient

descent based hyperparameter optimization runs significantly faster

and scales better with the number of tasks than full Bayes' MCMC

sampling, thus providing a critical advantage of EB over full Bayes in

real world applications. It is important to note though that in cases

where the necessary posteriors can be derived, Gibbs sampling can

significantly reduce this computational burden, making full Bayes

more appealing (see for example, Huertas et al., 2017).

We tested the assumption of independent measurement noise,

parameterized by β in Equation (6), with additional simulations. In gen-

eral, prediction and parameter estimation errors were similar to or

lower than LME models across varying noise correlations (Figure S4).

However, some degradation of parameter coverage was evident,
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particularly at the highest noise correlation level, suggesting that a

more general parameterization of the measurement error covariance

(e.g., a block diagonal form allowing within-subject correlation) may be

necessary in some situations. We also explored the effect of non-

Gaussian distributed measurement error, finding that in general both

the MTL and LME models were robust to error skewness in terms of

both predictions and parameter estimates (Figure S5).

We applied the model to longitudinal data from the ADNI study,

modeling trajectories of cortical ROIs across CN, MCI, and AD sub-

jects using kernels formed from amyloid PET, CSF, and genetic

(APOE) information. We showed degeneration throughout the cortex,

with lateral regions degenerating faster than medial regions (Figure 4).

We showed significantly decreased prediction errors due to coupling

(“plain” vs. “OLS”) and further decreases when adding kernel-based

coupling, with a small difference between the random-information

versus biomarker coupled models in some ROIs (Figures 4 and S7).

Our model offers improved interpretability and more concrete biologi-

cal explanations of trajectory differences across diagnostic groups com-

pared to the baseline models. Here, we were mainly interested in

understanding how cortical degeneration varies across diagnostic groups,

which required that we carefully interpret the patterns of group differ-

ences (Figures 6 and S9). Single biomarker models based on either “PET

amyloid” or “CSF tau/aBeta” had cross-sectional and longitudinal group dif-

ferences that were consistent with the literature and had the most evi-

dence in their favor (Figure 5). Importantly, this analysis showed the

benefit in coupling cortical trajectories based on baseline measures of

amyloid deposition measured via PET or amyloid-to-tau ratio via CSF,

which is consistent with the prevailing disease progression model of AD in

which amyloid deposition precedes change in brain structure (Jack et al.,

2010). Coupling based on genetic risk for AD as realized by the APOE

genotype was inferior to using baseline amyloid-based biomarkers. This

agrees with the literature in that APOE genotype is the genetic risk and

amyloid biomarker levels represent the realization of that risk. Further-

more, we showed that combining multiple kernels is effective in the sense

that “multiple,” the multi-modal model, was as good as the best individual

model in terms of model evidence and parameter inference. Thus, our

approach removes the requirement to pre-select any specific biomarker.

All coupled models had significant diagnostic group differences

across the cortex at mean baseline age, agreeing with the pattern of

later-stage neurofibrillary changes due to AD that have been shown

to be detectable via MRI (Braak & Braak, 1991; Whitwell et al., 2008),

along with many of the AD discrimination studies that have used

cross-sectional structural MRI based features (Arbabshirani, Plis,

Sui, & Calhoun, 2016). In particular, the pattern of cross-sectional dif-

ferences we find aligns with Karas et al., (Karas et al., 2003), which

reported AD-related differences within the temporal lobe and insula,

with sparing of the sensorimotor cortex. We also found no significant

differences within the motor and sensory ROIs, supporting the idea

that sensorimotor function is relatively spared in AD, unless the dis-

ease is very advanced (Ferreri et al., 2016; Suvà et al., 1999). Among

the models with high model evidence in their favor, namely “CSF

tau/aBeta,” “PET amyloid,” and “multiple,” there were significant longi-

tudinal (i.e., slope) differences within the temporal lobe, orbitofrontal

region, insula and lateral parietal region. These findings are similar to

the patterns of group differences in 1 year atrophy depicted in

Risacher et al. (2010), although the authors did not focus on their

apparent findings within the insula. Insel et al. (2015) identified

changes within the insula and temporal regions occurring prior to the

clinical threshold for amyloid-β positivity, and interestingly, we detect

longitudinal differences in these regions with models that couple

based on similarity of protein measures.

In addition to clinical diagnosis, we also investigated the effect of

APOE ε4, the major genetic risk factor for late-onset AD, analyzing

differences in subjects grouped by number of ε4 alleles (Figure S11).

We found no cross-sectional volume differences at mean baseline age

within each group and few significant longitudinal differences within

the CN and AD groups. The CN finding is consistent with the litera-

ture: Filippini et al. (2009) found no volumetric differences within the

brain between young, healthy ε4 carriers and matched non-carriers

using cross-sectional information while Raz et al. (2010) found no dif-

ferences due to ε4 within healthy middle-aged and older adults using

longitudinal data. Our findings indicate similar homogeneity within AD

subjects. Within the MCI group we found a temporo-parietal–frontal

pattern of slope differences that aligned with previous literature

(Ziegler et al., 2015) along with additional slope differences with the

insula and anterior cingulate. We note that the findings within this

group may be due to both the larger sample size and greater hetero-

geneity of the MCI group compared to the CN and AD groups.

We also compared our novel MTL approach to a widely available

LME implementation, showing that MTL makes very similar prediction

errors on the held-out ADNI follow-ups (Figure S8). However, MTL

detected more widespread cross-sectional group differences than the

three LME models we considered and, importantly, more significant

longitudinal differences within the temporal lobe (Figure 6). As such

the MTL based parameters appear to be more plausible than the LME

based parameters. Additionally, our method automatically finds the

covariance structure that best explains the training data (within the

limit of the chosen parameterization), removing modeling decisions

such as whether a variable is or is not a random effect.

The approach we have presented has several limitations, however.

Firstly, computing the log marginal likelihood at each optimization

step involves the inversion of the prior covariance matrix (see Appen-

dix), which scales cubically with the number of subjects in the worst

case. This precludes coupling beyond hundreds of subjects and

restricts us to univariate modeling. A multivariate approach would

exacerbate the problem, scaling cubically with the product of subjects

by variables. Reduced rank approaches or inducing point methods

may speed up computation, as would a diagonal approximation of the

matrix inversions, sacrificing accuracy for speed. Alternatively, one

could use GPUs; Tensorflow has highly optimized linear algebra rou-

tines for matrix operations that can deliver an order of magnitude

speed improvements (Abadi et al., 2016). Secondly, beyond computa-

tional considerations, our model may not capture long term, nonlinear

trends that are only evident across subjects (see for example, Donohue

et al., 2014). To properly model these may require adding a fixed

effects component to accommodate higher-order polynomial functions
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describing group-level trajectories. Alternatively, one may switch to

modeling trajectories of study time, which may introduce significant

intercept differences.

There are multiple directions for future work. As mentioned in the

introduction, the method we present is not a disease progression

model and as such it does not estimate a disease stage for each sub-

ject. It does, however, provide plausible estimates of trajectory param-

eters, which may serve as valuable inputs to a staging model. Future

work will investigate the staging of subjects based on these parame-

ters within an EBM (Young et al., 2014), providing insight into the role

of brain structural changes during the progression from normal cogni-

tion to Alzheimer's disease (Jack et al., 2010). We can also extend our

understanding of the relationship between genetics and cortical atro-

phy beyond APOE to all single nucleotide polymorphisms (SNPs) using

multivariate methods such as partial least squares (PLS; Lorenzi et al.,

2018) or canonical correlation analysis (Szefer, Lu, Nathoo, Beg, &

Graham, 2017). Finally, we can generalize the approach to simulta-

neously model multiple variables across subjects (i.e., multi-output

learning), where interesting modeling possibilities (coupling parame-

ters across variables within and between subjects) and computational

challenges abound. It is important to note that benefits of such an

approach depend on whether there are strong multivariate relation-

ships that can be modeled through either correlated parameters or

errors. For example, Marinescu et al., (2019) show that there are

widespread patterns in neurodegenerative disease progression that

can be modeled via spatial coupling, while earlier studies showed only

a modest benefit of this type of coupling relative to the computational

effort involved (Marquand, Brammer, et al., 2014a; Marquand,

Brammer, et al., 2014; Zhang & Shen, 2012).
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APPENDIX

We wish to find the hyperparameters that maximize the model's mar-

ginal likelihood. For computational and analytic reasons, it is easier to

minimize the negative (natural) log marginal likelihood, setting this as

the optimizer's objective. We need the partial derivatives with respect

to each hyperparameter, constraining each to be strictly positive. For

the noise term β this is a natural constraint; for the coupling weights α
we follow the rule that a positive sum of valid kernels is also a valid

kernel. To impose these constraints within an unconstrained optimizer

we transform the variables, optimizing log(β) and log(α), which will be

strictly positive when exponentiated. To derive the necessary partial

derivatives with respect to the transformed variables we make use of

the chain rule:
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and the ∂Σ(α)prior/∂αi depends on the αi in question. We can easily change

the parameterization of Σ(α)prior without breaking these equations, pro-

vided it remains invertible and differentiable with respect to its parameters.

For the form used in Equations (3)–(5), we need ∂Σ(α)prior/∂α1 = Ind,

∂Σ(α)prior/∂αi1 = In � Mii, ∂Σ(α)prior/∂αi2 = 1n � Mii and ∂Σ(α)prior/∂αi(j + 2)

= Kj � Mii for thematrix weighting hyperparameters, where i = 1, … , d and

j = 1, … , k. Some kernels may also have internal hyperparameters (also

included in α); one such example is the σSE parameter of the SE kernel. In

this case, we need ∂Σ(α)prior/∂σSE = − αi(j + 2)(D � Kj) � Mii where

Kj = exp(−σSED) and� is the element-wise product.
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