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SUMMARY 

The simulation programs allow to describe real systems. One of the most important fields is 

computational fluid dynamics (CFD) that it studies the behaviour of fluids at rest or in motion. 

In this work, it is developed of the CFD code through the Mathematica® program to simulate 

a fixed bed adsorption column. 

The mathematical model that is used was described by Chatzopoulos and Varma. This 

model contains two adsorbate mass balances, one for the liquid phase and the other for the 

solid phase. Each balance contains two contour conditions. The concentration in each phase is 

related to the equilibrium equation, in this case, the Langmuir isotherm is used. 

The model describes the variation of solute concentration in the column and inside the 

particle as a function of position and time. 

The numerical results obtained through simulation were very similar to the experimental 

results, with a maximum error < 4%. With this check, concentration profiles were simulated in 

the column and in the particle. 

Keywords: Adsorption, Langmuir isotherm, mathematical model, simulation, computational fluid 

dynamics (CFD). 
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RESUMEM 

Los programas de simulación permiten describir sistemas reales. Uno de los campos más 

importantes es la dinámica de fluidos computacional (CFD) que estudia el comportamiento de 

los fluidos en reposo o en movimiento. 

En este trabajo, se desarrolla el código CFD a través del programa Mathematica® para 

simular una columna de adsorción de lecho fijo. 

El modelo matemático que se utiliza fue descrito por Chatzopoulos y Varma. Este modelo 

contiene dos balances de material de adsorbato, uno para la fase líquida y el otro para la fase 

sólida. Cada balance contiene dos condiciones de contorno. La concentración en cada fase se 

relaciona a través de la ecuación de equilibrio, en este caso, se utiliza la isoterma de Langmuir. 

El modelo describe la variación de concentración de soluto en la columna y dentro de la 

partícula en función de la posición y el tiempo. 

Los resultados numéricos obtenidos a través de la simulación fueron muy parecidos a los 

resultados experimentales, con un error máximo < 4%. Con esta verificación, se simularon 

perfiles de concentración en la columna y en la partícula. 

Palabras clave: Adsorción, Isoterma de Langmuir, modelo matemático, simulación, dinámica 

de fluidos computacional (CFD). 
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1. INTRODUCTION 

The adsorption is a surface phenomenon, the molecules or atoms from another phase are 

attached to surface of the adsorbent. These molecules or atoms are called adsorbates. 

Depending on the type of the bond between the adsorbent and the adsorbate, adsorption may 

be physical or chemical. 

The physical adsorption o physisorption is based in a van der Waals interaction between the 

adsorbent and the adsorbate. In this process there is not exchange of electrons, but there are 

intermolecular attractions where the energy is favourable. The characteristics are: 

• The van der Waals forces are relatively weak. The adsorption enthalpy values are 

comparable with the condensation enthalpy values.  

• The adsorbate retains its identity, since the enthalpy change is small. In other words, 

insufficient to lead to bond breaking. 

• The process is reversible. 

The chemical adsorption o chemisorption involves an exchange of electrons between 

adsorbates and adsorbent surface, in that way the molecules or atoms stick to the surface by 

forming a strong chemical bond (generally covalent bond). 

• The bond is consequently much stronger, it has a small distance and it is more stable 

at high temperatures than the physical adsorption. 

• The enthalpy values are high on the region of 200 kJ/mol. 

• The process may be irreversible. 

 1ST ADSORBENT 

Adsorbents are solid particles which have an adsorption large surface area. Almost all 

adsorbents contain pores to increase this surface. 
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A very important property is the structure of the pore (number of pores, shape and size), 

since it determines the adsorption capacity and even the dynamic adsorption rate. Next, at table 

1 it is shown with the classification de pores according to IUPAC. 

 

Table 1 Classification of pores according to IUPAC. 

Type Pore diameter d (nm) 

Macropores d > 50 

Mesopores 2 ≤ d ≤ 50 

Micropores d < 2 

1.1.1.  2nd Adsorbent materials 

There are a lot of adsorbent materials, but the most used in industry are: activated carbon, 

silica gel, and alumina. These materials provide large surface areas per unit weight. The column 

of adsorption that is studied has granular activated carbon (GAC) as an adsorbent. 

1.1.1.1. 3rd Activated carbon 

Activated carbon can be formed from the following materials: carbonaceous material, peat 

and wood (it is very common the coconut shell). This adsorbent has a high degree of 

microporosity, the pore volume ranges are between 0.7-1,8 cm3/g and the total surface area of 

activated carbon per unit weight ranges are between 300 and 1500 m2/g. 

There are different types of activated carbon and they are classified based on their size, 

preparational methods and industrial applications. 
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Table 2. Types activated carbon. 

 Form Size Surface 
areas 

Main applications 

Powdered 
activated 

carbon (PAC) 

Crushed <0.297 mm 
(according to the 
American Water 

Works) 
< 0.177  mm 
(according to 

ASTM 
D5158.PAC) 

- Biological treatment. 

Granular 
activated 

carbon (GAC) 

Granular Mesh sizes 
For liquid-phase    

8 x 20, 20 x 40, or 
8 x 30 

For vapor-phase    
4 x 6, 4 x8, or 

 4 x 10 
 

Ranges 
 0,7-1,8 
cm3/g 

The removal of toxic 
organic compounds 

from industrial 
wastewater and 

groundwater. 
 

Bituminous 
GAC 

Granular 
(a more fully 
developed 

pore 
distribution) 

Mesh sizes 
For liquid-phase    

8 x 20, 20 x 40, or 
8 x 30 

For vapor-phase    
4 x 6, 4 x8, or 

 4 x 10 
 

Approx. 
 900 m2/g 

Water treatment. 
Treatment of low 
concentrations of 

low molecular 
weight organic 

compounds in water. 

Lignite GAC Granular Mesh sizes 
For liquid-phase    

8 x 20, 20 x 40, or 
8 x 30 

For vapor-phase    
4 x 6, 4 x8, or  

4 x 10 
 

650 m2/g Decolorizing. 

Coconut-shell-
based GACs 

Granular Mesh sizes 
For liquid-phase    

8 x 20, 20 x 40, or 
8 x 30 

For vapor-phase    
4 x 6, 4 x8, or  

4 x 10 
 

Over  
1000 m2/g 

Vapor and liquid 
phase applications. 
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Optimal working conditions using activated carbon. 

✓ Large molecules. 

✓ Nonpolar molecules. 

✓ Nonsoluble or slightly soluble molecules. 

✓ The degree of adsorption can change according to the pH and solution to be treated. 

✓ An increase of temperature promotes an increase the rate of diffusion through the 

liquid but may reduce the degree of adsorption since the adsorption process is 

exothermic. 

 1ST EQUILIBRIUM 

The equilibrium between the liquid and solid phases in an adsorption system is represented 

through the equilibrium isotherm. This isotherm is characterized by a system and a temperature. 

The most important isotherm types are Langmuir isotherm, Freundlich isotherm and Dubinin-

Raduskevish (DR). 

1.2.1.  2nd Langmuir isotherm 

For the development of the mathematical model is used the Langmuir isotherm. The 

Langmuir isotherm is physically plausible and is based on three assumptions that are the 

following: 

• The adsorption can only has a monolayer coverage. 

• All sites are equivalent, individuals and the surface are uniform. 

• There is not interaction between adsorbates. 
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 1ST MASS TRANSFER STAGES 

In the adsorption process there are four mass transfer stages, as shown in Figure 1. 

 

Figure 1. Mass transfer stages in the adsorbed particle. 

 

For one hand, the external mass transferred to the adsorbate. 

• Mass transfer from the fluid sine: Mass transfer between the surrounding fluid and 

fluid-film. This stage has a small resistance to mass transfer compared to the others. 

• Mass transfer from the film: The film is a fluid layer surrounding the adsorbent particle 

and opposes a resistance to let matter passes between fluid-film and adsorption 

surface. The transfer is affected by the hydrodynamic conditions of the fluid. 

On the other hand, the internal mass transferred to the adsorbate. 

The adsorbate diffusion in an adsorbed particle includes diffusion in the pores and diffusion 

in external surface. 

• Solid diffusion is also called microporous diffusion. This adsorption surface has pores 

that are so small that the adsorbate does not escape of the bond force between it and 

the external surface of the adsorbent particle (Perry R.H., 1999.). 

1 Mass transfer from the fluid sine. 
2 Mass transfer from the film. 
3 Adsorbate diffusion. 
4 Reaction kinetic. 
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• Pore diffusion is also called macropore diffusion. This is the diffusion of adsorbate in 

fluid-filled pores. The adsorbate escapes from force field of the adsorbent surface due 

that the pores are big enough (Perry R.H., 1999.). 

Finally, the kinetic reaction. 

• The kinetic reaction is not usually a determinant stage of the process and occurs 

between adsorbent and adsorbate. Adsorption occurs through the exchange of 

electrons or intermolecular attractions. 
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2. OBJECTIVES 

The main objective of this work is to build a computer program using Mathematica® 

program to simulate an adsorption column and see what happens inside the column and the 

adsorbent particles. 

Other objectives: 

✓ Know the adsorption process. 

✓ Study and development of equations that define the adsorption model. 

✓ Acquisition of knowledge of the Mathematica® program. 

✓ Validate the results using experimental data. 
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3. DEVELOPMENT: MATHEMATICAL MODEL 

The dynamic of adsorption process is based in a model developed by Chatzopoulos and 

Varma (Chatzopoulos, D., Arvind Varna, 1994.). They carried out a process of toluene 

adsorption and desorption in the aqueous phase using F-300 activated carbon as the 

adsorbent. 

The study that is presented is based in an individual adsorption of three compounds that are 

benzene, toluene and o-xylene (BTX) in aqueous phase using coconut shell activated carbon as 

the adsorbent. The numeric methodology is based on two adsorbate mass balances in liquid 

and solid phase. These balances are developed and then discretized using the Integration Over 

Control Volume method with the CDS formulation. 

The numerical simulation describes the variation in the adsorbate concentration in the 

column and surface the adsorbent (includes the pore and the external surface of the particle) as 

a function of time and position. 

The mathematical model that is used is the of homogeneous particle and it is considered 

two resistances to mass transfer 

• External-film resistance. 

• Surface diffusion resistance in the adsorbent particle. 

The diffusion coefficient (Ds) is not considered to be constant as it depends on the solute 

solid-phase concentration. The diffusion coefficient increases exponentially with adsorbent 

surface coverage of the adsorbent surface. The equation 1 describes this increase. 

Ds(q)= D0 [e
k(

q
qsat

)
]      ( 1) 

Where D0 is the surface diffusion coefficient when the adsorbate mass fraction in solid 

phase (q) is equal to zero (q = 0) [cm2/s], k is the experimental parameter of eq.1 [-] and qsat is 

the adsorbate saturation mass fraction in solid phase [mg/g]. 
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 1ST ADSORBATE MASS BALANCE FOR THE SOLID PHASE 

Mass balance for one chemical specie in one differential volume (See eq. 2) contains four 

terms: term of non-stationary regime, convective term, dispersion term and generation term.  

For the study of the adsorbent particle, three conditions are supposed that are the following: 

• Isothermal process. 

• Adsorbent particle whit spherical geometrical. 

• Fast adsorption kinetic. 

 
∂ρ

s
q

∂t
+ ∇.[ρ

s
 q v⃗]=∇.ρ

s
 Ds ∇q + R     ( 2) 

 

Where q is the adsorbate mass fraction [mg/g], Ds is the surface diffusion coefficient [cm2/s], 

ρs is the apparent particle density [g/cm3] and R is the generation term of the species 

[mg/(s·m3)]. 

Adsorbate mass balance for the solid phase contains the non-stationary term and the 

diffusion term (see Eq. 3). So, the equation 3 allows the study of the variation in the solute 

concentration in function of the radial position of the particle and the time. 

 
∂ρ

s
q

∂t
=∇.ρ

s
 Ds∇q    (3) 

 

Equation 1 was incorporated in mas balance (see eq. 3) to take account the variation of the 

diffusion coefficient at the surface (Ds). 

∂q

∂t
=∇.D0 [e

k(
q

qsat
)
] ∇q     (4) 

 

Finally, the definition of convergence and divergence in the field of orthogonal spherical 

coordinates applies. Considering that the adsorbate concentration only depends on the radial 

position (r), the terms related to theta and phi do not contribute. The final balance is described 

by Eq. 5. 

∂q

∂t
= 

D0

r2

∂

∂r
{r2e[k(q qsat

⁄ )]
∂q

∂r
}    (5) 
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In q is done a change of variable to work with units of concentration [mg/cm3]. This leads to 

the following relation: 

q [
mg of adsorbate

g of adsorbent
]→Cp [

mg of adsorbate

cm3
] 

 

The Langmuir isotherm relates the concentrations (See eq. 6) and the variation of q with 

respect to Cp (See eq. 6.1). 

q=
q

sat
 bL Cp

1+bL Cp

    (6) 

 
∂q 

∂Cp

=
bL q

sat

(1+bL Cp)
2

       (6.1) 

 

Equations 6 and 6.1 was incorporated in mass balance (see eq. 5) gives: 

 

bL q
sat

(1+bL Cp)
2

∂Cp

∂t
= 

D0

r2

∂

∂r

{
  
 

  
 

r2e[
 
 
 
 

k

(

 
 

bL qsat Cp

1+bL Cp

qsat

)

 
 

]
 
 
 
 

 
bL q

sat

(1+bL Cp)
2

∂Cp

∂r

}
  
 

  
 

     (7) 

3.1.1.  2nd Initial and boundary conditions 

For the study of momentum, heat or mass, there are 3 types of boundary conditions. 

Type 1: The value of the dependent variable is known on the boundary. The dependent 

variable in this case is the adsorbate concentration. 

Type 2: The flow that penetrates through the boundary is known. In this case the flow is of 

mass. 

Type 3: The transfer coefficient is known. The coefficient in this case is of external mass 

transfer. 

Equation 7 has to be solved with following initial and boundary conditions. The conditions 

that are shown are for the adsorption and desorption processes. 
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3.1.1.1. 3rd Initial condition 

At time zero, at all radius of the particle (r) and at all axial length of the bed (z), the 

adsorbate concentration remains at a fixed value. 

t = 0,    0 ≤ r ≤ R,    0 ≤ z ≤ L   

For adsorption: The concentration is equal to zero. 

Cp= 0       (7.1) 

For desorption: The concentration is equal to adsorbate initial concentration in liquid-phase. 

Cp= Cp,in      (7.2) 

3.1.1.2. 3rd Boundary conditions 

Type 2: All the time, at all axial length of the bed (z), there is not diffusion at r = 0. 

t > 0,    0 ≤ z ≤ L,    r = 0  
∂Cp

∂r
|
r=0

=0     (7.3) 

 

 Type 3: All the time and at all axial length of the bed (z), the external mass transfer 

coefficient (kf) is known. The following equality applies for r = R. 

The flux density at the particle surface  =  The flux density at the fluid film 

 1ST ADSORBATE MASS BALANCE FOR THE LIQUID PHASE 

Initially, mass balance for one chemical specie in one differential volume (See Eq. 2) is 

studied to describe the variation of the adsorbate concentration in the axial position (z) and the 

time (t). The balance is given by eq. 8. 

ℇL

∂C

∂t
+ ℇLvS

∂C

∂z
= ℇLDeff

∂
2
C

∂z2
- (1 - ℇL)

∂q ρ
s

∂t
      (8) 

Where C is the solute liquid-phase concentration [mg/cm3], Deff is the dispersion coefficient 

[cm/s], vs is the superficial liquid velocity in bed [cm/s], εL is the bed void fraction [-] and (1- εL) is 

the bed fraction [-]. 

In the absence of axial dispersion of the adsorbate in the bed, the dispersion term is 

removed of equation 8. This is possible when the relationship between the bed length and the 

particle diameter is greater than 20. 
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ℇL

∂C

∂t
+ ℇL vS

∂C

∂z
= - (1 - ℇL)

∂q ρ
s

∂t
      (9) 

 

Generation term can be related through the adsorbate flow (See eq.10), where the driving 

force is the difference between the adsorbate concentration in liquid-phase and the equilibrium 

concentration in the solid-liquid interface. This relation is applied in equation 9 (See eq. 11). 

∂q ρ
s

∂t
=a kf(C - Cs)     (10) 

Where Cs is the equilibrium concentration in the solid-liquid interface [mg/cm3] and a is the 

specific area [m2/m3]. 

 

ℇL

∂C

∂t
+

vS

ℇL

∂C

∂z
= - (1 - ℇL)

3

R
 k

f

(C - Cs)   (11) 

3.2.1.   2nd Initial and boundary conditions 

Equation 11 has to be solved with the following initial and boundary conditions. The 

conditions that are shown are for the adsorption and desorption processes. 

3.2.1.1. 3rd Initial condition 

 At time zero, at all radius of the particle (r) and at all axial length of the bed (z), the 

adsorbate concentration remains at a fixed value. 

t = 0,    0 ≤ r ≤ R,    0 ≤ z ≤ L   
 

For adsorption: The concentration is equal to zero. 

Cp = 0       (11.1) 

For desorption: The concentration is equal to adsorbate initial concentration in liquid phase. 

C = Cin      (11.2) 
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3.2.1.2. 3rd Boundary conditions 

Type 1: At all the time and at all radius of the particle (r), the adsorbate concentration is 

equal to adsorbate initial concentration in liquid-phase, at z = 0. 

t > 0,    z = 0,    0 ≤ r ≤ R  

C = Cin      (11.3) 

 

Type 2: At all the time and at all axial length of the bed (z), there is not adsorbate diffusion 

at z = L. 

t > 0,    z = L,     0 ≤ r ≤ R  

 
∂C

∂z
|
z=L

= 0       (11.4)
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4. DIMENSIONLESS MATHEMATICAL MODEL  

The mathematical model is presented with its initials and boundary conditions using the 

following dimensionless quantities: 

 

A=
vs R

2

L D0
,   B=

3 R (1-ε) kf

 ε D0
,    L=

R kf Cref

ρs D0 qref

,    p=
qref

qsat

,    ra=bL Cref,   w=
C

Cref
,  wp=

Cp

Cref
,    wp,MM=

Cp,MM

Cref
,   

 Z=
z

L
,    ρ=

r

R
,    τ=

D0 t

R
2  

 

Where w is the dimensionless concentration in liquid-phase, wp and wp,MM are the 

dimensionless concentrations in solid-phase, Z and ρ are the dimensionless lengths, τ is the 

dimensionless time and A, B, L and ra are the dimensionless groups. 

 

Dimensionless adsorbate mass balance for the solid-phase 

ra

(1+ra wp)
2

 
∂wp

∂τ
 = 

1

ρ2
 

∂

∂ρ
{ρ2 e

[k(
ra wp

1 + ra wp
)] ra

(1 + ra wp)
2

 
∂wp

∂ρ
}      (12) 

 

Dimensionless initial condition 

τ = 0,    0 ≤ ρ ≤1,    0 ≤ Z ≤1 

For adsorption: 

wp = 0;     (12.1) 

For desorption: 

wp = wp,in;      (12.2) 

 

Dimensionless boundary conditions 

Type 2:   τ > 0,    0 ≤ Z ≤ 1,    ρ = 0 

 
∂wp

∂ρ
|
ρ=0

=0       (12.3) 
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Type 3:   τ > 0,    0 ≤ Z ≤ 1,    ρ = 1 

 

AE(

ra
p

 wp,MM

1 + ra wp,MM

-

ra
p

 wp,MM-1

1 + ra wp,MM-1

) = L ∆τ (wi - wp,MM)      (12.4) 

Where AE is the dimensionless matter flow entering from the right (The value is shown in 

the discretization section). 

 

Dimensionless adsorbate mass balance for the liquid phase 

∂w

∂τ
+ A

∂w

∂Z
= - B (w - wp,s)     (13) 

 

Dimensionless initial and boundary conditions 

Dimensionless initial condition 

τ = 0,    0 ≤ Z ≤1,    0 ≤ ρ ≤1  

 

For adsorption: 

w = 0      (13.1) 

For desorption: 

w = win     (13.2) 

 

Dimensionless boundary conditions 

Type 1:   τ > 0,    0 ≤ ρ ≤ 1,    Z = 0  

w = 1      (13.3) 
 

Type 2:   τ > 0,    0 ≤ ρ ≤ 1,    Z = 0  

 
∂w

∂Z
|
Z=0

= 0      (13.4) 
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5. DISCRETIZATION  

The behaviour of fluids (in motion or in rest) is studied through fluid mechanics. One of the 

most important fields in this science is the computational fluid dynamics (CFD). 

CFD allows to simulate, analyse and solve problems that involve fluid flows. This is possible 

through numerical analysis (contains the equations that describe fluid motion, interaction of fluid 

with solid and the boundary conditions) and the computer programming to solve and analyse 

the results. 

In this study the development of the CFD code is done through the Mathematica® program 

to simulate an adsorption column. 

 1ST MESHING 

Two different meshes are created. One for the column and other for the particle in each 

node (point) of the column. These are two-dimensional (time-space) structured meshes to store 

the discrete points that are used. The nomenclature that is used in each mesh is the next: 

Mesh in the column 

 

 

 

 

 

                               

 Where 1 is the first node, N is the last, P or i is the node to study, W or i-1 is the west node 

respect to P, E or i+1 is the east node respect P and ∆Z is a dimensionless length increment. 

∆Z 
 

∆Z 
 

1                      W                  P                   E                      N w                      e 

1                           i-1                       i                       i+1                          N 

Flow 
Figure 2. Mesh in the column 
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Mesh in the particle 

For each node of i, all the values of j are studied. 

 

 

 

 

 

 

Where i is each node of the column, 1 is the first node referred to the particle, M is the last, 

P or j is the node to study, W or j-1 is the west node respect to P, E or j+1 is the east node 

respect to P and ∆ρ is a dimensionless length increase. 

 1ST DISCRETIZED EQUATIONS 

The discretization is done by the Integration Over Control Volume method (IOCV). The data 

are stored in the centre of the control volumes. The method of calculation that is used is the 

Explicit. This method works with small increments of time to do that the solutions do not depend 

on the increment value. The new node at each phase depends on three previous values (See 

figure 4) that are: 

Liquid phase: wni depends on woi, woi+1 y woi-1. 

Solid phase: wpni depends on wpoi, j, wpoI, j+1 y wpoI, j-1. 

 

 

 

 

 

∆ρ 
 

∆ρ 
 

Flow 

1                           W                      P                        E                           M w                        e 

i, 1                       i, j-1                    i, j                    i, j+1                        M 

Figure 3. Mash in the particle 
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Figure 4. Calculation of P from the previous nodes. 

 

The development of differential equations with their corresponding boundary conditions can 

be seen in Appendix 1. Equations that are obtained are shown below. 

 

Discretized adsorbate mass balance for the liquid phase (See eq. 13). 

eq[i]≔ (Sp + AW) wi[τ] == AW wi-1[τ] + Su     (14) 

Where: 

Sp = 1 +∆τ B ,  AW = A 
∆τ

∆Z
 ,  Su = ∆τ B wp i,MM[τ] + wi[τ-∆τ] 

 

Boundary conditions 

Type 1: In node 1 (entry of the column) the dimensionless concentration is 1, at all the time. 

w1[τ] = 1    τ > 0     (14.1) 
 
 

Type 2: The condition of flow density (Ds = 0) affects the node NN and N-1(end of the 

column). 

eq[NN]= wNN[τ] == wNN-1[τ]       (14.2) 
AE = 0 

eq[NN-1] = (Sp + AW) wNN-1[τ] == AWwNN-2[τ] + Su     (14.3) 

 

 

 

                   W                      P                       E             w                         e 

w                        e                    i-1                    i                    i+1           

n, new 

o, old 
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Discretized adsorbate mass balance for the solid phase (See eq. 12). 

eq[i,j]:= (Sp + AW + AE) wp i,j[τ] == AW wp i,j-1[τ] + AE wp i,j+1[τ] + Su      (15) 

Where: 

Sp = ∆ρ,  AW = AE = 
∆τ 

∆ρ
e
[k(

ra wp i,j[τ-∆τ]

1 + ra wp i,j[τ-∆τ]
)]
 ,  Su = wp i,j[τ-∆τ] 

 

Boundary conditions 

Type 2: Flow density equal to zero affects the node 1 and 2 (center of the particle). 

eq[i, 1]≔ wp i,1[τ] == wp i,2[τ]      (15.1) 

AW = 0 
eq[i, 2]:= (Sp + AE) wp i,2[τ] == AE wp i,3[τ] + Su      (15.2) 

 

Type 3: The fact that the external mass transfer coefficient is known is the condition that 

affects the node MM and MM-1 (surface of the particle). 

eq[i, MM]:= wp,MM[τ] ==

AE 
ra
p

 wp i,MM-1[τ]

1 + ra wp i,MM-1[τ-∆τ]
+

L ∆τ
∆ρ

 w i[τ-∆τ]

AE 
ra
p

1 + ra wp i,MM[τ-∆τ]
+

L ∆τ
∆ρ

         (15.3) 

 

eq[i, MM-1]≔

(

 
 

Sp + AWMM-1 +
1

ra

p L ∆τ (1 + ra wp i,MM[τ-∆τ])
+

1
AEMM-1

)

 
 

 

wp i,MM-1[τ] == AWMM-1 wp i,MM-2[τ] +
1

ra

p L ∆τ (1 + ra wp i,MM[τ-∆τ])
+

1
AEMM-1

wi[τ-∆τ] + Su   (15.4) 
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6. RESULTS 

From the mathematical model that is proposed, we proceed to validate the numerical 

methodology that has been developed. For this, the results obtained from the numerical 

simulation for each component through the Mathematica® program are compared with the 

experimental results made by Adriana Luz and others (Dervanoski Luz, A. et al., 2013.). 

The input parameters for simulation of each component (benzene, toluene, o-xylene) are 

given in Table 3 and the code in the Mathematica is shown in appendix 2. 

 

Table 3. Parameters used to simulation (Dervanoski Luz, A. et al., 2013.). 

Parameters Units Benzene Toluene O-xylene 

B cm3/mg 49 49,7 40,5 

Cin mg/cm3 0,15 0,15 0,15 

Do cm2/s 8,12·10-09 7,17·10-08 2,40·10-08 

Dc cm 1,2 1,2 1,2 

dp cm 0,085 0,085 0,085 

*k adm. 3,2 3 3,4 

kf cm/s 6,31·10-03 6,31·10-03 6,31·10-03 

L cm 10 10 10 

Q cm3/s 0,67 0,67 0,67 

qsat mg/g 124,77 150,42 165,07 

vs cm/s 1,44 0,59 0,59 

εL adim. 0,41 0,41 0,41 

ρs g/cm3 0,49 0,49 0,49 

*The values of k are the are best adjusted to the experimental results, since the article does not 

give that data. 
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The number of nodes used for each meshes are given table 4. 

 

Table 4. The number of nodes for each mesh 

Number of nodes Benzene Toluene O-xylene 

In the time 128 128 128 

In the axial direction 28 30 30 

In the radial position 58 21 28 

 

Figures 5, 6, and 7 show the experimental and simulated (new and old) dimensionless 

breakthrough curves for benzene, toluene and o-xylene, respectively. The data of 

dimensionless concentrations that are shown are taken at the exit of the column. 

 

Figure 5. Experimental and simulated dimensionless breakthrough curves for benzene. 
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Figure 6. Experimental and simulated dimensionless breakthrough curves for toluene.  

 
Figure 7. Experimental and simulated dimensionless breakthrough curves for o-xylene.  

 

 Comparing the dimensionless breakthrough curves in each graph (See figure 5, 6, and 7) it 

can be observed that the results obtained from the new simulation shows a better agreement 

with experimental values. Table 5 shows the maximum errors obtained between the numerical 

result (new and old) and the experimental one. 
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Table 5. Maximum errors between the numerical result (new and old) and the experimental. 

Components New maximum error Old maximum error 

Benzene 1,68% 10,05% 

Toluene 3,78% 10,49% 

O-xylene 0,78% 1,84% 

 

The results are adjusted with a small error to the experimental results and the new 

maximum error < old maximum error. With this it is verified that the development of the 

numerical methodology and the development of the program have been made out correctly. 

Two dimensionless concentration profiles are studied, for different times. 

• The dimensionless adsorbate concentration profile in liquid phase is studied along the 

bed and for each compound. These profiles may be observed in figures 8, 9 and 10. 

• The dimensionless adsorbate concentration profile in solid phase is studied along the 

radius and for each compound. The concentration values are obtained at the end of 

the bed. These profiles may be observed in figures 11, 12 and 13. 

 

 

Figure 8. Dimensionless concentration profiles in liquid-phase, along the bed for the benzene. 
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Figure 9. Dimensionless concentration profiles in liquid-phase, along the bed for the toluene. 

 
 

 

Figure 10. Dimensionless concentration profiles in liquid-phase, along the bed for the o-xylene. 
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Figure 11. Dimensionless concentration profiles in solid-phase, along the particle radius for the 
benzene. 
 

 
Figure 12. Dimensionless concentration profiles in solid-phase, along the particle radius for the 
toluene. 

0.00 0.01 0.02 0.03 0.04 0.05
Radial position cm0.0

0.2

0.4

0.6

0.8

1.0

q qsat

0.00 0.01 0.02 0.03 0.04 0.05
Radial position cm0.0

0.2

0.4

0.6

0.8

1.0

q qsat



Development of the CFD code through the Mathematica® program to simulate and adsorption column 27 

 

 

 

Figure 13. Dimensionless concentration profiles in solid-phase, along the particle radius for the 
o-xylene. 

 

 In the figures 8, 9 and 10 it can be observed that as the adsorption time increase the 

concentration in liquid-phase also increases until arrive to the initial concentration in the whole 

column. 

 For the three compounds in an adsorption time of 14.5 h the bed doesn’t get completely 

saturated.  

In the figures 11, 12 and 13 the profiles have an exponential tendency (mainly in small 

adsorption times), this tendency is related to the variation of the diffusion coefficient (See eq. 1). 

It is also observed that concentration of the adsorbate increases with time, but the increases 

decreases when the particle is practically saturated. 
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N. CONCLUSIONS 

Comparing the experimental results of benzene, toluene and o-xylene we can conclude that 

the numerical results obtained from simulation program are consistent, because the profiles of 

adsorbate concentration show a good agreement with experimental values and the maximum 

error obtained is less than 4%. 

This leads us to say that through a simulation program we can predict the behaviour of a 

real system. 

Finally, the time used for the simulation is not greater because an explicit method is used 

(implies small time increments) and the power of the processor is not enough to calculate a 

mesh with more nodes of time (the resolution time is very slow). If the time was greater, it could 

be seen that the concentration at the exit of the column would be equal to the initial 

concentration and that all the particles would be completely saturated. 

 



Development of the CFD code through the Mathematica® program to simulate and adsorption column 30 

 

PROPOSALS 

As the work was being carried out, the following proposals emerged.  

✓ Realization of the experimental part, since some erroneous data was found (due 

to the units or some data that are incorrect copied of another article). 

✓ To use a better processor to study a greater adsorption time using small intervals 

of time (increasing the numbers of nodes).  

✓ Simulate a desorption column. 
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SYMBOLS 

a: adsorbent specific area [cm2/cm3] 

A: dimensionless group, A=
vs R

2

L D0
  [-] 

AE: dimensionless mass flow entering from the right [-] 

AW: dimensionless mass flow entering from the left [-] 

B: dimensionless group, B=
3 R (1-ε) kf

 ε D0
  [-] 

C: adsorbate liquid phase concentration [mg/cm3] 

Cref = Cin: adsorbate initial concentration in liquid phase [mg/cm3]. 

Cp: adsorbate concentration in solid phase [mg/cm3] 

Cs: equilibrium concentration in the solid-liquid interface [mg/cm3] 

dp: particle diameter [cm] 

Deff: dispersion coefficient [cm2/s] 

D0: surface diffusion coefficient at Cp = 0 or q = 0 [cm2/s] 

Ds: surface diffusion coefficient [cm2/s] 

k: dimensionless parameter in eq.1 [-] 

kf: external mass transfer coefficient [cm/s] 

L: dimensionless group, L=
R kf Cref

ρs D0 qref

   [-] 

Lo: bed length [cm] 

q: adsorbate mass fraction in solid phase [mg/g] 

qref: adsorbate mass fraction in equilibrium with Cref [mg/g] 

qsat: adsorbate saturation mass fraction in solid phase [mg/g] 

Q: flowrate [cm3/s] 

p: dimensionless group, p=
qref

qsat

  [-] 

r: radial position inside the adsorbent particle [cm] 
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ra: dimensionless group, ra=bL Cref [-] 

R: adsorbent particle radius [cm] 

t: time [s] 

v: superficial liquid velocity in bed [cm/s] 

w: dimensionless concentration in liquid phase [-] 

wp: dimensionless concentration in solid phase [-] 

wp, MM: dimensionless equilibrium concentration in the solid-liquid interface [-] 

z: axial position in bed [cm] 

Z: dimensionless axial position in bed [-] 

 

Greek letters 

εL: bed void fraction [-] 

(1-εL): bed fraction [-] 

ρ: dimensionless radial position inside the adsorbent particle [-] 

ρs: apparent particle density [g/cm3] 

τ: dimensionless time [-] 

 

Letters for mesh 

P: Node to study 

W: west node respect to P 

E: east node respect to P 

i: node of the column 

j: node of the particle 
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APPENDIX 1: THE DEVELOPMENT OF DIFFERENTIAL 

EQUATIONS WITH THEIR BOUNDARY CONDITIONS 
Discretization of the dimensionless adsorbate mass balance in the liquid-phase. 
 

∂w

∂τ
+ A

∂w

∂Z
= -B (w-wp,MM)   

 
∂w

∂τ
= - A

∂w

∂Z
 -B (w-wp,MM)   

 

∫ ∫
∂w

∂τ
 dτ dZ = ∆Z (wP 

n - wP
o) =

τ

τ-∆τ

 
e

w

∆Z wi
n - ∆Z wi

o 

 

∫ ∫ A 
∂w

∂Z
 dZ dτ =∆τ [( A w

n)
e
- (A wn)w]  = ∆τ [A (

wi+1
n  + wi

n

2
)  - A (

wi
n+ wi-1

n

2
)]    =

e

w

τ

τ-∆τ

 

 

∆τ [A (
wi+1 

n - wi-1
n

2
)] = ∆τ [A (

2 ∆w

2
)] = ∆τ A ∆w = ∆τ A (wi

n - wi-1
n ) 

 
 

∫ ∫ B (w-wp,MM) dZ dτ = ∆τ ∆Z 
e

w

τ

τ-∆τ

B (wi
n - wp,MM

n ) 

 
 

∆Z wi
n - ∆Z wi

o = - ∆τ A (wi
n - wi-1

n ) - ∆τ ∆Z B (wi
n - wp,MM

n ) 

 
∆Z wi

n+∆τ ∆Z B wi
n+∆τ A wi

n = ∆τ A wi-1
n  + ∆τ ∆Z B wp,MM

n  + ∆Z wi
o 

 
(∆Z +∆τ ∆Z B+∆τ A) wi

n = ∆τ A wi-1
n +∆τ ∆Z B wp,MM

n +∆Z wi
o 

 

(1 +∆τ B+
∆τ

∆Z
 A)  wi

n = 
∆τ

∆Z
 A wi-1

n +∆τ B wp,MM
n +wi

o 

 

(Sp + AW) wi
n = AW wi-1

n
 + Su 

 
eq[i]≔ (Sp + AW) wi[τ] == AW wi-1[τ] + Su 
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Where: 

Sp = 1 + ∆τ B ,  AW = A 
∆τ

∆Z
 ,  Su = ∆τ B wp,MM

n  + wi
o 

Boundary conditions 
 

Type 1: 
wi[τ] = 1     τ > 0 

 
Type 2: 

eq[NN] = wNN[τ] = wNN-1[τ] 
AE = 0 
 

eq[NN-1] = (Sp + AE) wNN-1[τ] = AW wNN-2[τ] + Su 

 
 
Discretization of the dimensionless adsorbate mass balance for the solid phase. 
 

ra

(1+ra wp)
2

 
∂wp

∂τ
 = 

1

ρ2
 

∂

∂ρ
{ρ2 e

[k(
ra wp

1 + ra wp
)] ra

(1 + ra wp)
2

 
∂wp

∂ρ
} 

 

∫ ∫
ra

(1 + ra wp i,j)
2

 
∂wp i,j

∂τ
 dτ dρ = ∆ρ 

ra

(1 + ra wp i,j
o )

2
 (wp i,j

n  - wp i,j
o )

τ

τ-∆τ

e

w

 

 

∫ ∫ =
w

e

τ

τ-∆τ

1

ρ2
 

∂

∂ρ
{ρ2 e

[k (
ra wp i,j

o

1 + ra wp i,j
o )] ra

(1 + ra wp i,j)
2

 
∂wp i,j

∂ρ
} dρ dτ = 

 

∆τ e
[k (

ra wp i,j
o

1 + ra wp,i
o )] ra

(1 + ra wp i,j
o )

2
[( 

∂wp i,j

∂ρ
)

w

- ( 
∂wp i,j

∂ρ
)

e

] = 

 

∆τ e
[k (

ra wp i,j
o

1 + ra wp i,j
o )] ra

(1 + ra wp i,j
o )

2
[( 

∆wp i,j

∆ρ
)

w

- ( 
∆wp i,j

∆ρ
)

e

] = 

 

∆τ e
[k (

ra wp i,j
o

1 + ra wp i,j
o )] ra

(1 + ra wp i,j
o )

2
( 
(wp i,j-1 

n - wp i,j
n )

∆ρ
- 
(wp i,j

n  - wp i,j+1
n )

∆ρ
)  = 

 

∆τ 

∆ρ
e
[k(

ra wp i,j
o

1 + ra wp i,j
o )] ra

(1+ ra wp i,j
o )

2
(wp i,j-1

n  - wp i,j
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∆τ 

∆ρ
e
[k(

ra wp i,j
o
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o )] ra

(1+ra wp i,j
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2
 (-wp i,j

n +wp i,j+1
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∆ρ 
ra

(1 + ra wp i,j
o )

2
 (wp,i

n  - wp,i
o )=

∆τ 

∆ρ
e
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(Sp + AW + AE) wp i,j
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n  + AE wp i,j+1
n  + Su 

 
 

eq[i, j]≔ (Sp + AW + AE) wp,i[τ] == AW wp,i-1[τ] + AE wp,i+1[τ] + Su 

 
 
Where: 

Sp = ∆ρ,  AW = AE = 
∆τ 

∆ρ
 e
[k(

ra wp i,j
o

1 + ra wp i,j
o )]

,  Su = ∆ρ wp i,j
o  
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Boundary conditions 
Type 2: 

eq[i,1]≔ wp i,1[τ] = wp i,2[τ] 

AW2 = 0 
eq[i,2]≔ (Sp + AE) wp i,2[τ] = AE wp i,3[τ] + Su 

 
Type 3:  

AE(-

ra
p

 wp i,MM
n  

1 + ra wp i,MM
o  + 

ra
p

 wp i,MM-1
n

1 + ra wp i,MM-1
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1 + ra wp i,MM
o L ∆τ + AEMM-1 

ra
p

 wp i,MM-1
n

1 + ra wp i,MM-1
o L ∆τ

AEMM-1

ra
p

 

1 + ra wp i,MM
o + L ∆τ

= 
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-
wi

o

1 + ra wp i,MM
o + 

wp i,MM-1
n

1 + ra wp i,MM-1
o

1

AEMM-1 
ra
p

 L ∆τ
(AEMM-1

ra
p

 

1 + ra wp i,MM
o + L ∆τ)

=

-
wi

o

1 + ra wp i,MM
o + 

wp i,MM-1
n

1 + ra wp i,MM-1
o

1

L ∆τ (1 + ra wp i,MM
o )

+
1

AEMM-1 
ra
p

= 

 

-
wi

o

1+ra wp i,MM
o

1

L ∆τ (1+ra wp i,MM
o )

+
1

AEMM-1 
ra
p

+

wp i,MM-1
n

1+ra wp i,MM-1
o

1

L ∆τ (1+ra wp i,MM
o )

+
1

AEMM-1 
ra
p

 

- AEMM-1

ra
p

 wp i,MM
n  

1 + ra wp i,MM
o  + AEMM-1 

ra
p

 wp i,MM-1
n

1 + ra wp i,MM-1
o = 

 

-
wi

o

1+ra wp i,MM
o

1

L ∆τ (1 + ra wp i,MM
o )

+
1

AEMM-1 
ra
p

+

wp i,MM-1
n

1 + ra wp i,MM-1
o

1

L ∆τ (1 + ra wp i,MM
o )

+
1

AEMM-1 
ra
p

 

 
 

- AEMM-1

ra
p

 wp i,MM
n  

1 + ra wp i,MM
o =

-
wi

o

1 + ra wp i,MM
o

1

L ∆τ (1 + ra wp i,MM
o )

+
1

AEMM-1 
ra
p

 

 

AEMM-1

ra

p
 wp i,MM

n =
wi

o

1

L ∆τ (1 + ra wp i,MM
o )

+
1

AEMM-1 
ra
p

 

 

AEMM-1 wp i,MM
n =

wi
o

ra
p

 (
1

L ∆τ (1 + ra wp i,MM
o )

+
1

AEMM-1 
ra
p

)

=
wi

o

ra

p L ∆τ (1 + ra wp i,MM
o )

+
1

AEMM-1

 

 

AEMM-1 

ra
p

 wp i,MM-1
n

1 + ra wp i,MM-1
o =

wp i,MM-1
n

1 + ra wp i,MM-1
o

1

L ∆τ (1 + ra wp i,MM
o )

+
1

AEMM-1 
ra
p
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AEMM-1 
ra

p
 wp i,MM-1

n  =
wp i,MM-1

n

1

L ∆τ (1 + ra wp i,MM
o )

+
1

AEMM-1 
ra
p

 

 

AEMM-1 wp i,MM-1
n  =

wp i,MM-1
n

ra
p

 (
1

L ∆τ (1 + ra wp i,MM
o )

+
1

AEMM-1 
ra
p

)

=
wp i,MM-1

n

ra

p L ∆τ (1 + ra wp i,MM
o )

+
1

AEMM-1

 

 
 

(Sp + AWMM-1 + AEMM-1) wp i,MM-1
n  = AWMM-1 wp i,MM-2

n  + AEMM-1 wp i,MM
n  + Su 

 
 

(

 
 

Sp + AWMM-1 +
1

ra

p L ∆τ (1 + ra wp i,MM
o )

+
1

AEMM-1
)

 
 

 wp i,MM-1
n  = AWMM-1 wp i,MM-2

n  + 

1

ra

p L ∆τ (1 + ra wp i,MM
o )

+
1

AEMM-1

wi
o + Su 

 
 

eq[i,MM-1]≔

(

 
 

Sp + AWMM-1 +
1

ra

p L ∆τ (1 + ra wp i,MM[τ-∆τ])
+

1
AEMM-1

)

 
 

 wp i,MM-1[τ] == 

AWMM-1 wp i,MM-2[τ] + 
1

ra

p L ∆τ (1 + ra wp i,MM[τ-∆τ])
+

1
AEMM-1

wi[τ-∆τ] + Su 
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APPENDIX 2: CODE IN THE MATHEMATICA® 

PROGRAM 

Code in the Mathematica® program for the benzene. 

Data 

Meshing 
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Initial and boundary conditions 

 

 

 

 

Discretization 
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Solution 

  



Development of the CFD code through the Mathematica® program to simulate and adsorption column 48 

 

Code in the Mathematica® program for the toluene. 

Data 

 

Meshing 

 

 

 

 



Development of the CFD code through the Mathematica® program to simulate and adsorption column 49 

 

Initial and boundary conditions 

 

 

 

 

Discretization 

 



Development of the CFD code through the Mathematica® program to simulate and adsorption column 50 

 

Solution 

 

Code in the Mathematica® program for the o-xylene. 

Data 
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Meshing 

 

Initial and boundary conditions 
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Discretization 
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Solution 

 

 



 


