
A Flexible Architecture for Context-Aware Physical Hypermedia *

Cecilia Challiol
1
, Andrés Fortier

1,2
, Silvia Gordillo

1,3
, Gustavo Rossi

1,4

1
LIFIA. Facultad de Informática. Universidad Nacional de La Plata, Argentina.

2
DSIC. Universidad Politécnica de Valencia, Valencia, España.

3
Also at CICPBA,

4
Also at CONICET

{ceciliac, andres, gordillo, gustavo}@lifia.info.unlp.edu.ar

Abstract

In this paper we present the rationale and the main

components for a modular and extensible architecture

for building and deploying physical hypermedia

software. We show that this kind of software systems

poses strong requirements on supporting software

(such as Web browsers) because they involve complex

context-aware navigation semantics. By using some

simple archetypical examples we also show how to

provide context-aware assistance to the mobile user, as

he explores the physical world.

1. Introduction and Background

A physical hypermedia application (PH from now

on) is a kind of mobile, ubiquitous application in which

the user navigates through digital and physical objects

(e.g. with a Web browser) using the well-known

hypermedia paradigm. Many authors have already

formalized the ideas behind PH as a way to integrate

the Web and the world [8], to provide assistance to the

traveler [9], or to implement augmented reality

applications [10]. PH supposes a basic location sensing

mechanism that allows a user to perceive digital

information corresponding to real world objects while

he stands in front of them. These objects can also

“offer” navigation links either in the traditional way, or

pointing to other physical objects. The user can

therefore navigate virtually (as in the Web) or

physically by “walking” the corresponding link [9]. In

traditional hypermedia applications, clicking a link

implies opening the target page; meanwhile, clicking

on a physical link only shows the desire of the user to

navigate from one physical object to another.

As a simplified example suppose a PH for a tourist

in a city, in our case, La Plata. When he stands in front

 * This paper has been partially supported by the

SeCyT under the project PICT 13623

of a place that is a node in the PH (e.g. a monument,

church, etc), he receives information about the place

together with digital and physical links. If he chooses a

physical link, he will receive orientation to traverse the

physical space to the target. During his travel he will

pass by other physical nodes and surely other physical

objects (traffic lights, ATMs, etc). A challenging

problem (see Figure 1) is how to provide the user some

help in his task, for example by making these objects

active assistants (e.g. behaving as a travel guide).

Fig. 1. Assisting the user in his journey.

We have been working in different aspects of PH

development such as design issues [4], server-side

support [2] and assistance services [11]. In this paper

we present an open architecture for supporting different

kinds of context-aware behaviors in PH applications

(particularly those which involve assisting the user).

Our contribution is twofold: in the field of PH, we

show how to provide dynamic assistance to the PH user

and, from a more general perspective, we present a set

of software abstractions which are useful in the most

general field of context-aware applications.

The rest of the paper is organized as follows: In

Section 2, we survey the requirements posed by PH

software; in Section 3 we describe our architecture.

Section 4 discusses some related work and in Section 5

we conclude and present some further work.

2. Requirements for a PH Architecture

In this section we summarize the driving forces

which have shaped our architecture. Our main aim was

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/227563696?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

to provide support for powerful, context-aware Web-

like browsing, allowing new context types and context-

aware behaviors to be seamlessly added to a running

system. For the sake of comprehension we separately

explain the most important requirements.

2.1. Context-Aware Browsing

In Figure 2 we show the interface of a PH

application while the user is standing in front of the

Cathedral in the archetypical tourist application. The

first difference with “conventional” Web software is

that some hypermedia nodes (e.g. the Cathedral) open

as the result of a change in the user context (in this case

his location). The Web page exhibits information,

services, digital and physical links. While the semantics

of digital navigation should be preserved, physical

links generate a new kind of requirement: how to guide

the user to reach the link’s target. This implies defining

the response of the link itself and which assistance

services should be provided.

Fig. 2. Interface of a PH application using a web browser.

2.2. Software Engineering Requirements

PH applications are a particular kind of ubiquitous

software and as a consequence their evolution pattern

differs from traditional software. Besides functionality

arising from new user’s requirements, PH software

might evolve according to technological progress. For

example, by adding new kind of sensors, the city can

incorporate new on-line services, like querying which

roads are closed. This kind of evolution implies a

challenge to the supporting architecture: we need to be

able to accommodate not only new sensing devices, but

also different services and contextual features. We next

describe the most important design choices we took to

support the previously described behaviors and to make

evolution seamless.

3. The architecture in a nutshell

Context is decomposed in a set of features, as shown

in Figure 3. These context features affect certain

application objects, those that must be aware of context

changes (as explained in Section 3.1).

Besides, instead of conceiving context and sensors

as two tightly coupled type of software artifacts, we

consider sensing as a cross cutting concern. We have

shown elsewhere [5] that we can manage the evolution

in sensing devices without polluting the context model.

For the sake of simplicity, we will assume from now on

that IR or Bluetooth beacons are used to tag physical

objects. As the same context feature can be used to

perform different kind of context-dependent behaviors

(e.g. the Location feature can be used to provide

location-based services or to support physical

navigation), we built different combinations of

environments and handlers that perform custom

adaptation based on those relevant features.

Fig. 3. An architecture for handling context-dependent

behavior.

The Web browser is a key component of our

architecture. In conventional applications, when a link

is clicked an http request is issued and the response is

shown to the user. In PH applications this behavior

must be slightly modified: first some hypermedia nodes

are opened, not because the browser issued an http

request, but because the user moved in front of a node;

additionally, traversing a physical link is not an atomic

operation, since different situations may arise while the

user is walking to his target. To cope with these

requirements, our browser is considered as a view (in

the MVC sense) of a context feature that keeps track of

the user’s navigation (named Navigation feature). This

feature holds the current url and the user’s navigation

history. Each time this feature changes (e.g. as the

result of a change of the user’s context), the browser

receives a notification. When this happens the browser

will issue an http request and display the appropriate

information as described in detail in Section 3.2 and

3.3. By considering the Navigation feature as a part of

the context model, we can perform different kinds of

customization based on the user’s navigational

behavior and history.

3.1. Representing Context-Aware Objects

An aware object is an application object (e.g. the

user, a monument) that needs to be aware of its context

and therefore becomes an Observer [3] of one or more

context features. A context feature is a part of the

application context (including the user context) that is

relevant to be modeled because it will be used to

perform some kind of customization. Context features

can range from low-level abstractions of data gathered

by sensors (e.g. the temperature in a room) to the

output of complex machine-learning algorithms (e.g. to

infer the user’s situation according to his location and

the time of the day). In our mobile tourist guide

application, we could define the user as an aware

object viewing context features such as location, visited

points of interest and preferences.

When an aware object is interested in having a

specific kind of adaptation, it has to be registered to the

desired environment, which in turn becomes an

Observer [3] of the aware object. For example, if a user

is visiting a new city, he will be interested in registering

to the PH environment in order to receive context-

aware assistance during his trip. To provide different

kinds of context-dependent behaviors, we use handlers

that are attached to the adaptation environments.

Handlers are responsible of performing the concrete

customization as a response to a context change.

When a context feature changes (e.g. a new beacon

signal has been sensed), it notifies all interested parties.

The aware object that observes the feature will receive

this notification and it will notify all environments that

it is registered to of that context change. The

environments will then select those handlers that are

interested in this context change and give them the

chance to perform their specific adaptation behavior.

As an example, consider assigning services to

physical objects to be delivered to the user’s device

when he is in front of one of those objects. To support

this behavior, the user is modeled as an aware object

(containing a context feature that keeps track of his

location) and registered to a PH environment which

includes a ServicesHandler. When the user stands in

front of a physical object the ServicesHandler is

notified so that old services are removed and new ones

added. Suppose that now the application evolves and

we want to add time-dependent constraints to the

available services. Instead of rewriting the code in the

ServicesHandler class, we add a new handler that

applies a filter over the full set of services that are

available. Finally, we could also want to sort the

services in descending order, taking into an account the

most used ones. To do so, we create a new context

feature that keeps track of the frequency in which the

services are used and a handler to perform the sorting

of services. By encapsulating this behavior in small

grained objects, the application can be modified with

small or null impact. In Figure 4 we present a

simplified class diagram of these aspects of our

architecture.

Fig. 4. A simplified view of the architecture’s core classes.

In the following sections, we will show how an

aware object (e.g., the user) can be enhanced in an

incremental fashion to accommodate new requirements

and support PH behavior like the one described in the

introduction.

3.2 Supporting Location-Aware Behaviors

In the PH architecture we consider the user’s

location as the physical object he is standing in front

of. In this way, locations are semantically rich and take

an active role instead of being just data like in

geometric models; transformation issues such as

mapping data gathered by sensors into objects are

outside of the scope of this paper, but can be read in

[5]. In case the user is not in front of a physical object,

his location is represented as a special object

(anywhere) that acts as a null object [12].

The first relevant behavior in a PH application is to

display information about the physical object the user

is facing. To provide this kind of location-aware

behavior, we define a handler (called Location-

Navigation
1
) that is triggered each time the Location

feature changes, and that as a response, updates the

Navigation feature with the url corresponding to the

object’s information. As described before, since our

modified Web browser depends on the Navigation

context feature, when this feature changes (e.g. a new

url is indicated) the browser will trigger an http request

to this new url and will show the response in the mobile

device. As a response of the http request, the user

perceives a PH node similar to the one in Figure 2.

This situation is depicted in an instance diagram in

Figure 5, while Figure 6 shows the message flow

started by a change in the location feature.

Fig. 5. An aware object with location and navigation features.

1
 We use a naming convention for handlers with the form

<ObservedFeature>-<FeatureToChange>

Fig. 6. An interaction diagram showing a location change.

3.3 Dealing with Physical Navigation

The main difference between digital and physical

links is the kind of response the user receives when

acting on them. When the user clicks on a digital link

he navigates to another digital node just like in

standard hypermedia. On the other hand, when the user

selects a physical link, a map showing the path to the

target object will appear. As the user walks, he

incrementally completes his navigation, which is

considered finished when he arrives to the destination.

To provide navigation assistance, we need to take

into an account the activity the user is performing, in

terms of the PH application. For this reason we added a

new context feature called Activity. The activities we

are actually considering are standing in front of a point

of interest, walking in or outside the path. It should be

noticed that the framework is open-ended regarding

activities, but for the sake of comprehension we only

discuss the previously mentioned one. At this point, the

user aware object will be configured with the Location,

Navigation and Activity features.

The Activity feature will be updated every time the

Location feature changes. Activities are modeled as

first class objects (as a variant of the State pattern [3]),

and the new activity is determined by analyzing the

new location according to the intended user’s path. To

provide this behavior we define a handler (called

Location-Activity) that is triggered each time the

Location feature changes and that re-evaluates the

activity according to the new location.

The activity must also be re-evaluated when the user

clicks on a physical link, since this determines his

intention to perform a physical navigation. In this case

the user’s activity is set to walking in the path, and the

activity itself records the itinerary from his current

position to his destination. In order to implement this

behavior we define a new handler called Navigation-

Activity, which is triggered each time the Navigation

feature is updated with a physical link. As a result, the

new activity is set and a map is showed in the browser.

By introducing activities, we can improve the

system’s response by returning different urls according

to the current user activity. To accomplish this, the url

of the Navigation feature is set: inFrontOf.ssp
2
 (if the

2
 ssp stands for Smalltalk Server Pages. Smalltalk counterpart of JSP

user is in front of an object), or inFrontOfTarget.ssp (if

the user has reached his target), or passedBy.ssp (if the

user has passed by a point of interest).

At this point the user aware object is configured

with three features (Location, Navigation and Activity)

and three handlers (Location-Navigation, Location-

Activity and Navigation-Activity).

3.4 Providing Smart Navigation Assistance

We aim to provide navigation assistance to the user

during his travel. To achieve this, physical objects in

the user itinerary should play different roles.

Depending on the role a physical object is playing, the

information and services shown to the user will vary

because roles change the current physical object

behavior. We implemented roles by wrapping physical

objects with a role object (as a Decorator [3]).

We have already identified four major roles to be

used in PH. When the user is traversing a link, and he

is in the path, physical objects in his itinerary play the

role of information guides, indicating him that he is not

lost, and providing extra information. Meanwhile, if the

user gets lost and passes by a physical object, it must

take the role of a helper guide, warning the user that he

is out of the scheduled path, and providing him with

services to return to his previous trail or to recalculate a

new path. The other two roles we implemented are: the

query guide role which is used to search points of

interest, and the alert guide which notifies the user

about an urgent event (e.g. a fire taking place near his

location). These roles don’t depend on the user activity.

To provide different assistance behaviors according

to roles, a new handler named Location-Role has been

defined. This handler is triggered each time the user

location changes. When the location changes, the

Location-Role handler passes the control to an instance

of the RoleBuilder class (which acts as a Facade [3]),

to decide the role that must be assigned to the physical

object the user is in front of. Since the activity is

modeled as an object, the RoleBuilder delegates this

decision by performing a double-dispatch between the

user and his current activity. As a result the intended

role is created and used to wrap the user’s location.

4. Related Work

The term PH has been coined in [6]. In [8] the

authors present an object-oriented framework (HyCon)

whose goal is to extend the Hypermedia paradigm with

the manipulation of real world objects. This framework

has been used to create context-aware hypermedia

systems and supports the classical mechanisms of

Hypermedia. The metaphor of “walking” a link has

been presented in [9], where the authors augment

Hypertext with physical relationships present in the real

world. Finally, in [13] the authors define the set of

roles that physical objects may play and take those

roles to the Web to support the navigation of

handicapped users. Our research has been certainly

inspired by these seminal research projects; we further

characterize real-world objects according to the role

they can play to assist the user’s travel.

While we agree with the motivation and

requirements presented in [7] (transparent monitoring

of context, decoupled communication, scalability etc),

our architecture goes a step further that context sensing

abstraction, and not only provides a context model but

also a set of abstractions to configure the context-

dependent behaviour. From an architectural point of

view, our work has been inspired in [1]: the sum of our

micro-architectural decisions (such as using decorators

or dependencies) also generates a flexible architecture.

Our approach emphasizes a clear separation of

concerns, decoupling the context model, the sensing

mechanisms and the context-dependent behavior in

different layers. Thanks to this decoupling changes in

these three main concerns don’t impact on the others.

5. Concluding Remarks and Future Work

In this paper we have presented a scalable

architecture to build context-aware physical

hypermedia applications. The main flexibility in our

design is given by the notion of context features and by

configuring the system response to context changes by

means of context event handlers. We consider that the

most important strength of our approach is that it

supports incremental development and can be easily

modified to accommodate unforeseen requirements.

The prototype to test our architecture has been

implemented in VisualWorks Smalltalk, which runs on

different platforms an operating systems. We are

currently researching in how other hypermedia

metaphors can be applied to a PH application (e.g. the

semantics of the back button) in order to provide a

behavior that is consistent with the user’s intuition. We

are also planning to enhance the role assignment logic

to accommodate other context features, such as time or

user preferences.

6. References

[1] K. Beck, and R. E. Johnson, “Patterns Generate

Architectures”, In Proceedings of the ECOOP'94, Springer-

Verlag Berlin, 1994, pp. 139-149.

[2] C. Challiol, G. Rossi, S.E. Gordillo, and V. De

Cristófolo, “Designing and Implementing Physical

Hypermedia” Applications, In Proceedings of the ICCSA (4),

Springer-Verlag Berlin Heidelberg, 2006, pp. 148-157.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design

Patterns: Elements of Reusable Software, Addison-Wesley,

1994.

[4] S. Gordillo, G. Rossi, and D. Schwabe, “Separation of

Structural Concerns in Physical Hypermedia Models”, In

Proceedings of the CAiSE 2005, Springer-Verlag Berlin

Heidelberg, 2005, pp. 446-459.

[5] J. Grigera, A. Fortier, G. Rossi, and S. Gordillo, “A

Modular Architecture for Context Sensing”, To be presented

in PCAC-07, Niagara Falls, Canada, May 21-23, 2007.

[6] K. Gronbaek, J. Kristensen, and M. Eriksen, “Physical

Hypermedia: Organizing Collections of Mixed Physical and

Digital Material”, In Proceedings of the Hypertext 2003,

ACM Press, 2003, pp. 10-19.

[7] G. Hackmann, C. Julien, J. Payton, and G-C. Roman,

“Supporting Generalized Context Interactions", In

Proceedings of the SEM 2004, Springer-Verlag, 2005, pp.

91-106.

[8] F. Hansen, N. Bouvin, B. Christensen, K. Gronbaek, T.

Pedersen, and J. Gagach, “Integrating the Web and the

World: Contextual Trails on the Move”, In Proceedings of

the Hypertext 2004, ACM Press, 2004, pp. 98-107.

[9] S. Harper, C. Goble, and S. Pettitt, “proximity: Walking

the Link”, Journal of Digital Information (JODI), British

Computer Society and Oxford University Press, 2004,

Volume 5.

[10] L. Romero, and N. Correia, “HyperReal: A Hypermedia

model for Mixed Reality”, In Proceedings of the Hypertext

2003, ACM Press, 2003, pp. 2-9.

[11] G. Rossi, S. Gordillo, C. Challiol, and A. Fortier,

“Context-Aware Services for Physical Hypermedia

Applications”, In Proceedings of the CAMS 2006, Springer-

Verlag Berlin Heidelberg, 2006, pp. 1914-1923.

[12] B. Woolf, “Null object”, In Pattern languages of

program design 3, Addison-Wesley, 1997, pp. 5–18.

[13] Y. Yesilada, R. Stevens, and C. Goble, “A foundation

for tool based mobility support for visually impaired web

users”, In Proceedings of the WWW '03, ACM Press, 2003,

pp. 422–430.

