
Benchmark based on application signature to
analyze and predict their behavior.

Felipe Tirado^1,2, Alvaro Wong2, Dolores Rexachs2, and Emilio Luque2

1 Universidad Católica del Maule,
Departamento de Computación e Industrias

Talca, Chili.
2 Universidad Autónoma de Barcelona,

Computer Architecture and Operating System Department,
Barcelona, Spain.

ftiradoSucm.cl, alvaro.wong@uab.es, dolores.rexachs@uab.es,
emilio.luqueSuab.es

Abstract. Currently, there are benchmark sets that measure the per
formance of HPC systems under specific computing and communication
properties. These benchmarks represent the kernels of applications that
measure specific hardware components. If the user’s application is not
represented by any benchmark, it is not possible to obtain an equiva
lent performance metric. In this work, we propose a benchmark based
on the signature of an MPI application obtained by the PAS2P method.
PAS2P creates the application signature in order to predict the execution
time, which we believe will be very adjusted in relation to the execution
time of the full application. The signature has two performance qual
ities: the bounded time to execute it (a benchmark property) and the
quality of prediction. Therefore, we propose to extend the signature by
giving the benchmark capacities such as the efficiency of the application
over the HPC system. The performance metrics will be performed by the
benchmark proposed. The experimentation validates our proposal with
an average error of prediction close to 7%.

Keywords: High Performance Computing, MPI Application, Perfor
mance Prediction, Performance metrics.

1 Introduction

High Performance Computing (HPC) systems combine powerful hardware and
software, present in clouds or clusters, used by scientists as an indispensable tool
in many areas of research. The performance evaluation of these systems requires
that the benchmarks subject the entire system to great stress and that they are
representative of the type of workload that is executed on the machines.

In HPC, these benchmarks have followed two different approaches: The first
approach consists of a set of applications and kernels, such as NAS Parallel
Benchmark (NPB) [2], which aim to represent the totality of the measures of

The final authenticated version is available online at http://doi.org/10.1007/978-3-030-27713-0

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/227563357?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:alvaro.wong@uab.es
mailto:dolores.rexachs@uab.es
emilio.luqueSuab.es
http://doi.org/10.1007/978-3-030-27713-0

2 F. Tirado et al.

performance through a set of relevant workloads. The second approach consists of
a single application susceptible to the properties of the system that it considers
most relevant for the typical workloads, such as the well-known High Perfor
mance Linpack (HPL) [4], which is used to classify the systems in the Top500
list [10].

When using a benchmark, it will be executed in such a way as to maximize
performance, thus hiding the influence of certain properties and emphasizing the
influence of other properties. For example, running HPL on very large problems
makes the influence of the interconnection network negligible, causing this action
to go unreported. This has the result of making it difficult to obtain an idea of
application performance for different problem sizes.

Each application has data, memory structures and different arithmetic calcu
lations, since each one tries to solve a different problem. This is reflected in the
amount of memory that is needed to load the data and the type of instructions
that the CPUs will compute and the memory access pattern. That is why systems
exhibit different performance indices according to the applications that execute
them, making it difficult to reflect, relate or select the appropriate benchmark
that reflects the type of operation or the amount of data to be computed which
is similar to that of the application.

PAS2P (Parallel Application Signature for Performance Prediction) [12] is a
tool that allows us to analyze the dynamic behavior of the application, charac
terizing it in a set of phases that represent the performance of the application.
With the phases, PAS2P constructs the application signature, which is defined
by the set of phases which represent the application behavior at the performance
level. To evaluate a system, the signature executes the phases to measure their
execution times, which are multiplied by their weights, in order to obtain the
total execution run time of the application.

We propose using the signature in order to create the benchmark that rep
resents the application behavior, keeping the same memory, compute and com
munication requirements, as well the memory access pattern, reproducing the
specific calculation and workload properties that the application has. The sig
nature will allow us to obtain the performance behavior of each phase, where
we can apply performance metrics such as the efficiency and the application
execution time, obtaining results in a bounded time with high accuracy.

The performance evaluation proposal is presented in Fig. 1. Here we can
observe that one of the problems is selecting the benchmark that has similar
behavior to the parallel application in order to evaluate the suitable HPC sys
tem. On the other hand, our performance evaluation proposal is extracting the
benchmark which represents the application performance that will be executed
in order to evaluate the target machines.

In the following Section, the related works are presented. In Section III, we
provide general information on PAS2P methodology and Section IV presents the
benchmark model based on PAS2P. Section V provides the experimental results
and Section VI presents the conclusions and future work.

Benchmark based on application signatures. 3

User’
Parallel Applications

L~

..

Set of Benchmarks

Benchmark
Selection

Traditional Performance Evaluation

\ similar naraware
requirements

than application

onerous time

Ji C
.2
I

Q.

cc
Q
CL

Fig. 1: Performance Evaluation using benchmarks and Proposal Performance Evalua
tion.

Is

2 Related Work

In recent times, the supercomputing community has paid significant attention to
three benchmarks: The HPL mentioned above, the High Performance Conjugate
Gradient (HPCG) [6] and the High Performance Geometric Multigrid (HPGMG)
[1]. Although HPL offers direct solutions with a computational complexity of
O(N3), the two alternatives benchmarks, HPCG and HPGMG, offer iterative
solutions with a linear complexity of computational calculation O(N).

According to the benchmarking present in the literature, HPL and HPCG act
as performance metrics and data access patterns commonly found in scientific
applications, while HPGMG aims to reproduce the requirements of a specific
workload class, without being clearly linked to any calculation or memory pat
tern, providing a balance of machine capabilities in relation to the scientific
application of interest.

All the most commonly used benchmarks in HPC, in particular HPL, HPCG
and HPGMG, significantly define a notion of the size of the problem, which
they use as parameters to be established. But this is not enough to characterize
performance, since benchmarks generally reflect the behavior of a limited set of
applications, at best.

There are numerous benchmarks that represent a variety of domains. On
the one hand, there is the suite of applications highlighted by the Mantevo
mini-applications [5] and the Parallel NAS Benchmarks [2]. On the other hand,
there is another approach consisting of a single application susceptible to the
system properties that it considers most relevant for the workloads, such as
HPL [4], HPCG [6]. These benchmarks are written in C / C ++ or Fortran and
parallelized with MPI message passing.

4 F. Tirado et al.

Mantevo [5] presents miniapps of various kinds of scientific applications.
These applications are based on the property that the performance is usually
concentrated in a small subset of lines of code. This property is exploited by
the miniapps, encapsulating only the most important computational operations,
achieving a code smaller than the original, capturing the performance behavior
of the application.

NAS Parallel Benchmarks (NPB) [2] are small application suites designed to
help in the evaluation of the performance of parallel supercomputers developed
by NASA. The benchmarks are based on Computational Fluid Dynamics (CFD)
applications. The selection of the workload of the applications is given by five
predefined classes (A, B, C, D or F). The application suite is composed of eight
problems classified into five cores that mimic five numerical methods used in
CFD and three simulated applications that represent a series of data calculations
in complete CFD codes, which require a greater amount of resources than the
cores.

HPL [4] consists of a single application composed of a single kernel. This
became a point of reference in the 90s to measure the rate of execution in float
ing point and thus enabling the classification of supercomputers, originating the
TOP500 project. HPL solved a complex system of linear equations with a com
plexity of O(n3). One of the main limitations of this benchmark is that it does
not consider the transfer of memory or the cost in communications, which today
are fundamental properties of scientific message passing applications.

On the other hand, in 2014 the benchmark HPCG [6] was developed, taking
into account the limitations ofHPL. It obtains a better representation of the
behavior of scientific applications, making multiplications of matrix vectors in
order to strongly link the benchmark with hardware memory. In addition, it uses
a simple pattern and small communication messages, which make the commu
nication time depend mainly on the latency of the interconnection network [8].

3 PAS2P Overview.

Parallel scientific applications are typically composed of a set of phases that
are repeated throughout the application. These phases are written in the ap
plication code using specific communicational and computational patterns. As
shown in Fig. 2, PAS2P [12] identifies the application phases in a transparent
and automatic way, and it generates the Application Signature, which contains
the application phases (the phases which have an impact on the application’s
performance) and their repetition rates (weights). The Signature execution al
lows us to analyze and predict the application performance in an efficient way
on target machines, covering approximately 95 per cent of the total application
code in 1 per cent of the application execution time.

On the base machine, the PAS2P tool instruments each process of the ap
plication, creating a trace file. This trace, composed of hardware counters, is
obtained between each MPI call. The instrumentation is performed by the MPI
wrapper of the PAS2P dynamic library and the integration with the PAPI [11]

Benchmark based on application signatures. 5

Parale! application

Signaiuie.
Execution

appt cation
necutinn time

Predicted
application

execution tin

Preti cted
’Execution

Time

Fig. 2: PAS2P Overview.

2iqn.it ure

Predicted • Predicted
application application

execution tene execution time

library for the hardware counters. Finally, PAS2P defines as an event an MPI
call associated with the computational data between one MPI Call and the next
one.

Once the PAS2P tool intruments the application, it analyzes the data col
lected in order to create a machine-independent application model. To do this,
it is necessary to create a logical global clock for all processes to maintain the
precedence between the events. When all the events have been ordered, The
PAS2P tool creates the logical trace, where the events are inserted so as to later
analyze the logical trace to extract the application phases.

To construct the signature, PAS2P instruments the application (binary); to
do this, PAS2P re-runs the application using a phase table to instrument and
detect where the phases occur. To predict the execution time (PET) of the
application on a target machine, the equation shown in Fig. 2 is used. When
the signature multiplies the execution time of each phase (PhaseETi) by its
weight (Wi defined as the number of phase repetitions), the signature obtains
the application execution time.

The information provided by the Performance Prediction allows us to obtain
a prediction of performance measures, such as application execution time and
performance metrics as computational time and the efficiency of each application
phase.

4 Benchmark based on the application signature.

To measure the performance of an HPC system, researchers have often used a
set of application kernels as benchmarks [3, 4, 6, 7], a suite of benchmarks and
mini-applications [2,5]. However, it is not always possible to characterize the
performance using only benchmarks [9], due to each application having differ
ent computing and communication behavior to solve a distinct problem. This is

2iqn.it

6 F. Tirado et al.

Fig. 3: Analysis and modelling the information given by the signature to obtain per
formance metrics.

reflected in the instructions that the CPUs will execute and the communication
and memory access pattern present in the application. That is why we proposed
to use the signature as a benchmark. The signature uses the application code to
predict whether the performance will be the same as the application. In other
words, this means same compute, same communication messages and same mem
ory access pattern. As we have said before, a very important characteristic of the
benchmarks is the bounded time in which they execute, a characteristic which
we have transferred to the signature. With this advantage, we guarantee that
the quality of the performance results are in a bounded time.

In order to provide this capacity to the application signature, we need to
analyze how we can apply the performance metrics in each phase. Each phase
represents parallel code between two MPI communications and each phase scales
independently from the others. This process is called application characterization
(AC), as is shown in Fig. 3.

The execution of the signature allows us to extract information about the
behavior of each relevant phase from the application. This information is stored
in one trace file per process, as shown in Table 1, called the Signature Physical
Trace (TSPX). The TSPX groups the information of the application in phases
with its respective degree of repeatability (weight), as well as providing informa
tion from the source or destination of each message, the type of MPI primitive,
the computational time between each MPI communication, the number of in
structions, cycles and cache MISSES (LI or L2).

By using TSPX, it will be possible to model the behavior of the phases,
which provide information on the application processes such as computational
time, number of instructions, number of cycles and cache misses, along with the

Benchmark based on application signatures. 7

Table 1: Information of the phases (process 1) for application N-Body with 360,000
particles.

Source Type of
MPI primitive Destination Computational

Time
Number of

Instructions Cycles
Cache
Misses

(L2)
PHASE 0 WEIGHT 289

1 MPIJrecv 0 3725272115 3923734167 5911572490 1107574
1 MPI.WaitAll 0 70532 62343 85415 7582
1 MPIJSend 2 17165 412 1271 30

PHASE 1 WEIGHT 10
1 MPIJrecv 0 3643785450 3923734084 5778196900 1117380
1 MPI.WaitAll 0 176601 1766014 222832 3021
1 MPIJSend 2 17687 412 1533 25

Processes Pha 1 Pha 2 Pha 3

Pi 4.564704 4.753993 2.30216

P2 4.681574 4.843167 2.352629

P3 4.815845 4.988005 2.506059

P4 6.308725 4.845168 0.675086

P15 6.198137 5.413365 0.003244

P: Processes
Pha: Phase

STP: Sequential
time prediction

CTP: Computational
time prediction

_________ J

Fig. 4: Signature information: Computational Time of each phase per process.

weight of each phase H'„,. With this information, we obtain the computational
time prediction (CTP) of the executed phases, which we use to calculate the
sequential time prediction (STP), as shown in Fig. 4. This stage is called the
Computational Time Prediction Model (CTPM).

To predict sequential time (STP) on a parallel computer, we use the Eq. 1,
for which we perform the sum of the computation time of each process of the
phase (pcC p) and multiply it by its weight, Wi in all phases i, obtaining an
approximation to the sequential execution time of the application. On the other
hand, if we add the average computational time of each process, x^, and multiply

Table 2: Information obtained by executing the application signature.

CG Class D, 128 Processes

Phase ID
Compute

Time
(sec)

Average
Compute time

(sec)
Weight

Total compute
Time prediction

(sec)

Representative
Compute Time
Prediction (sec)

0 0.47 0.004 5024 2361.28 20.09
1 11.15 0.087 5023 56006.45 437.00
2 10.68 0.083 200 2136.00 16.60
3 1.63 0.013 199 324,37 2.58

8 F. Tirado et al.

it by its weight, W.t, in each of the phases, we obtain an approximation of the
computational time of the executed application, Eq. 2, where m is the number
of phases.

m Px

STP = E'E (1)
i=0 p=0

m

CTP = ^x;*Wt (2)
t=o

We exemplify the calculation of STP and CTP, which we show in Table. 3. It
shows two phases created by the signature when executing the LU application
class D with 600 iterations in 128 processes. Each phase contains the compute
time of each process expressed in seconds, as well as its weight Wt, the sum of
computational time phase.t, the compute average and the standard
deviation of computational time a. The STP value is obtained by the sum of the
multiplication of the total computational time by the weight up for each phase.
The CTP value is obtained by multiplying the compute average by the weight
in each phase and then the sum of each one of the values.

In Table 2 we show the information obtained by the execution of the CG
signature with 128 processes and workload class D with 200 iterations. In the
same Table, we show the ID phase, the total computational time (all processes),
the average computational time value and the weight of each phase. In the same
way, we show the prediction of the total computational time, as well as the
prediction of the representative computational time in each phase.

Table 3: Exemplification of LU application computational times with 128 processes.

Processes Phase 0 Phase 1
P0 0.69393 1.09571
P1 0.71858 1.14146

P2 0.73267 1.14258

P3 0.72727 1.13940

P127 0.72588 0.91355

Weight (W) 599 598
Pm

phasei
p=0

105.904 130.353
1 Pm
y (y phase; * W;i = 141388.350.se g. = STP
i=0 p=0

Xphasef 0.837 1.018
1

* W, = H04.597.seg = CTP
1=0

O 0,048 0,053

141388.350.se

Benchmark based on application signatures. 9

The last stage, CTPM, will allow us to numerically obtain the performance
measures of the application that the user executes. STP, as previously mentioned,
is obtained if we sum all the phases from the prediction of the total computing
time. The value of STP for the CG application represented by the phases shown
in Table 2 is 60828.1 seconds. Likewise, when summing the prediction of the
computational time representative of all phases, we obtain CTP. The CTP value
for the CG application shown in Table 2 is 476.27 seconds. These two times
will allow us to obtain performance measures such as speedup and efficiency.
These measures are specific to the executed parallel application and reflect its
computing and communications behavior, allowing it to have a performance
index associated with the executed application.

5 Experimental results

Throughout this section, we will show the results of the measures obtained us
ing the benchmark based on the application signature. In order to validate the
prediction results, we compare the obtained performance time with the real ex
ecution time of the application.

In order to validate the experimental results, a set of scientific messages
passing applications has been selected. Suites with different communication and
compute patterns such as NAS parallel benchmarks, Mantevo and the Nbody
application have been tested along with the application to be able to analyze
their efficiency and execution time in comparison and therefore select the one
that run better and validates the results. The four experimental applications are
described in the Table 4.

Table 4: Application description.

Application Description
MiniMD [5]. It is an application of the Mantevo suite on molecular

dynamics (MD), it uses the spatial decomposition MD,
where the processors of a cluster have subsets of the sim
ulation problem.

LU (Lower-Upper Gauss-
Seidel solver) [2].

It is an application of the NAS suite, dealing with fluid
dynamics. It solves flows in a cubic domain.

CG (Conjugate Gradient)
[2]-

It is an application of the NAS suite that uses the inverse
power method to find an estimate of the largest eigen
value of a symmetric sparse matrix using the conjugate
gradient method as a subroutine to solve the systems of
linear equations.

N-Body. It is an application that simulates the interaction of a dy
namic system of particles under the influence of different
physical forces, such as gravity.

10 F. Tirado et al.

Table 5: Cluster characteristics.

Cluster Characteristics
DELL AMD Opteron1“ 6200 1.60GHz, 8 nodes (512 cores),

256 GB RAM per node (2048 GB total memory),
Interconnection Infiniband QDR.

Table 6: Benchmark time results compared to the whole application.

Procs. Application Benchmark Error

Execution
Time
(sec)

Computational
Time
(sec)

Predicted
Execute

Time, (PET)
(sec)

Predicted
Computational
Time, (PCT)

(sec)

BET
(%)

BCT
(%)

Application: miniMD
16 1687.11 1607.21 1509.69 1426.66 -11.75 -12.66
32 839.53 810.15 751.11 726.43 -11.77 -11.52
64 532.14 489.01 463.05 423.59 -14.92 -15.44
128 279.74 245.69 251.44 245.69 -11.25 -12.16

Application: CG
16 6825.80 6601.83 6840.98 6601.83 0.22 -0.50
32 2360.95 2257.26 2359.94 2243.03 -0.04 -0.63
64 1407.04 1222.85 1379.23 1216.74 -2.01 -0.50
128 757.07 483.41 738.57 475.438 -2.50 -1.67

Application: LU
16 11735.83 11101.71 12037.17 11075.91 2.50 -0.23
32 5464.36 5195.83 5447.42 5175.61 -0.31 -0.39
64 2647.85 2382.46 2750.72 2361.66 3.74 -0.88
128 1315.88 1110.75 1380.00 1110.75 4.65 -0.55

Application: N-Body
16 1849.01 1844.83 1675.35 1700.25 -10.37 -8.50
32 927.34 821.15 864.69 860.48 -7.25 -7.05
64 469.50 463.41 446.79 446.87 -5.08 -3.70
128 397.22 386.76 410.92 364.42 3.33 -6.13

For the execution environment, a DELL machine whose characteristics are
described in Table 5 was used. For the experimentation set, four different execu
tions were performed for each application in accordance to the number of pro
cesses to be executed: 16, 32, 64 and 128 processes. N-Body was executed with a
workload of 360000 particles, partitioned into the number of defined processes.
For the MiniMD application of the Mantevo suite, we arranged a workload of 192
x 192 x 192 with 500 iterations. The CG and LU application of the NAS suite
was executed with a Class D workload with 200 and 600 iterations respectively.

The table 6 shows the results we obtained from the executions. We used 1:1
mapping (one process per core) having a maximum of 128 cores per applica
tion. Therefore, if each node of the Dell cluster has 64 cores, when we run the
application with 128 cores we are actually using two nodes. The average percent
age error in the execution time of the benchmarks was 4.70 %. The maximum
value was 14.92 %, which is below the whole application value, obtained by the

Benchmark based on application signatures. 11

miniMD application executed with 64 processes. On the other hand, the aver
age percentage of error in computing time was 5.15 %, and a maximum value of
15.44 % according to the value of the whole application, obtained by the miniMD
application with 64 processes. The MiniMD application obtained these results
because of its distinct behaviors for different groups of processes, making the
PAS2P method have a low representativeness of the application.

The table 6 shows the scalability of the applications. It can be appreciated
that the CG and LU applications have a superlinear behavior when they are
executed with 16 and 32 processes. This is due to the mapping we used, which
favors the use of the second level cache memory. In Fig. 7, we can observe
the sublinear behavior of the applications when changing the mapping of the
processes.

Our proposal allows us to obtain a prediction of the sequential time of par
allel message passing applications, as seen in Fig. 4, thus, allowing us to obtain
performance measures that are commonly used such as speedup and efficiency.
Fig. 5 and Fig. 6 show the prediction of both metrics with the mapping previ
ously used to avoid the superlinearity of the results, with an average percentage
error of 6.1% for speedup and 7.6% for efficiency. As seen in both figures, the
results show a similar behavior to that of the real application.

Running the signature instead of the full application has two important ben
efits. For instance, the prediction of the execution time and the computing time.
It also provides extensive information concerning each phase of the application
to model its behavior allowing, for example, the prediction of the sequential
time of the application. The sequential execution time is often impossible to
achieve, due to the amount of memory that a sequential process needs to be
executed and the time involved in its execution. Fig. 8 shows the bounded time
in which the signature was executed versus the execution time of the entire CG
application. As seen, the signature executed up to 80 times faster compared to
the application, thus obtaining measurements that will allow us to evaluate the
performance of the application with a low error rate.

Fig. 5: Benchmark efficiency and whole ap
plication efficiency.

Fig. 6: Benchmark speedup and whole ap
plication speedup.

12 F. Tirado et al.

Processes

Fig. 7: Prediction of execution time with
processes mapping.

Processes

Fig. 8: Speed gain of benchmark on the CG
application.

6 Conclusion and Future Work

We validated the proposed benchmark based on the application signature as
follows. We gave the signature the same functionality a benchmark has in order to
evaluate a system. To achieve this goal, we begin by analyzing the computational
behavior on each phase to predict the sequential time that the application would
have. In this way, we calculate and predict computational time, speedup and
efficiency using the proposed benchmark. The performance measures obtained
allowed us to detect inefficiencies without executing the application completely,
since the information was obtained directly from the benchmark, thus achieving
a bounded execution time with a low margin of error.

Benchmarks that are based on application signatures obtain performance
measures of a specific MPI application on a specific machine, without having
to depend on a suite of applications or a specific application that characterizes
the overall performance. In other words, what we are proposing is a benchmark
adapted to the MPI application that the user wants to execute.

Currently, the signature is built using checkpoint libraries. If the user or
system administrator wants to evaluate performance in a different system, it
is necessary to transport the signature to the new location. One of the disad
vantages of using the checkpoint mechanism is the size it achieves. The more
processes the application has, the larger the size of the checkpoints we have to
save. For future work, we are analyzing how to detach the checkpoint from the
signature. Being portable is another important characteristic of benchmarks, we
are working on the creation of compute models that include the characterization
of memory access pattern as it is an important factor in the performance impact
on the execution time.

Acknowledgments

This research has been supported by the Agencia Estatal de Investigación (AEI),
Spain and the Fondo Europeo de Desarrollo Regional (FEDER) UE, under con

Benchmark based on application signatures. 13

tract TIN2017-84875-P and partially funded by a research collaboration agree
ment with the Fundación Escuelas Universitarias Gimbernat (EUG).

References

1. Mark Adams, Jed Brown, John Shalf, Brian Van Straalen, Erich Strohmaier, and
Sam Williams. Hpgmg 1.0: A benchmark for ranking high performance computing
systems. Technical report, Lawrence Berkeley National Lab.(LBNL), Berkeley, CA
(United States), 2014.

2. D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, R. A. Fatoohi,
P. O. Frederickson, T. A. Lasinski, H. D. Simon, V. Venkatakrishnan, and S. K.
Weeratunga. The nas parallel benchmarks. Technical report, The International
Journal of Supercomputer Applications, 1991.

3. Peter N Brown, Robert D Falgout, and Jim E Jones. Semicoarsening multigrid on
distributed memory machines. SIAM Journal on Scientific Computing, 21(5):1823-
1834, 2000.

4. Jack J Dongarra, Piotr Luszczek, and Antoine Petitet. The linpack benchmark:
past, present and future. Concurrency and Computation: practice and experience,
15(9):803-820, 2003.

5. Michael A Heroux, Douglas W Doerfler, Paul S Crozier, James M Willenbring,
H Carter Edwards, Alan Williams, Mahesh Rajan, Eric R Keiter, Heidi K Thorn-
quist, and Robert W Numrich. Improving performance via mini-applications. San
dia National Laboratories, Tech. Rep. SAND2009-5574, 3, 2009.

6. Michael A Heroux and Jack Dongarra. Toward a new metric for ranking high
performance computing systems. Sandia National Lab. Report, SAND2013-4744,
2013.

7. Adolfy Hoisie, Olaf Lubeck, and Harvey Wasserman. Performance and scalability
analysis of teraflop-scale parallel architectures using multidimensional wavefront
applications. The International Journal of High Performance Computing Applica
tions, 14(4):330-346, 2000.

8. Vladimir Marjanovic, José Gracia, and Cohn W Glass. Performance modeling
of the hpcg benchmark. In International Workshop on Performance Modeling,
Benchmarking and Simulation of High Performance Computer Systems, pages 172-
192. Springer, 2014.

9. J McCalpin and CA Oakland. An industry perspective on performance character
ization: Applications vs benchmarks. Proc. Third Ann. IEEE Workshop Workload
Characterization, keynote address, Sept, 2000.

10. Hans Meuer, Erich Strohmaier, Jack Dongarra, Horst Simon, and Martin Meuer.
Top 500 list, 2012.

11. Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra. Collecting perfor
mance data with papi-c. In Tools for High Performance Computing 2009, pages
157-173. Springer, 2010.

12. Alvaro Wong, Dolores Rexachs, and Emilio Luque. Parallel application signature
for performance analysis and prediction. IEEE Transactions on Parallel and Dis
tributed Systems, 26(7):2009-2019, 2015.

