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ABSTRACT 

 

Seasonal epidemics caused by influenza A viruses (IAV) result in an estimated 

290,000- 650,000 deaths worldwide each year (17). While antivirals targeted to influenza 

exist, resistance to these drugs is increasing and regular vaccination remains the most 

effective way to prevent infection (26, 73, 99). However due to the persistence of antigenic 

drift and shift, influenza vaccines must be updated each season and antigenic mismatches 

can reduce efficacy (24, 118).  

Immunity to influenza either from vaccination or infection is principally mediated by 

antibodies generated to one of its major surface proteins, Hemagglutinin (HA). HA is a 

homotrimer, each monomer HA0 is composed of a globular head and stem (100, 111). 

Proteases present in the host cleave native HA0 into two subunits, HA1 and HA2. Residues 

in HA1 form the receptor binding pocket within the head and facilitate interaction with the 

host cell. The stem is encoded by both HA1 and HA2 and contains the fusion peptide 

required for cytosolic release (10, 112). Most antibodies isolated from patients following 

infection or vaccination are targeted to the receptor binding domain of the HA head. These 

antibodies are efficient neutralizers but highly strain specific, recognizing only antigenically 

similar strains of the same IAV group and consequently lose relevance rapidly as viruses 

undergo drift (68, 141). However, patients immunized with heterosubtypic HA can also 

develop antibodies that target the HA stem domain. These antibodies are often effective 

against multiple HA subtypes, reflecting strong structural constraints imposed on the HA 

stem epitope, and are referred to as “broadly neutralizing”. It is because of this strong 

conservation that there has been an interest in characterizing HA stem antibodies in the 

development of a universal flu vaccine (22, 115, 123). Since their discovery in 1991, dozens 
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of broadly neutralizing stem antibodies have been isolated in humans and even more have 

been derived using targeted technologies, including hybridoma cell generation (69). 

We used two immunization protocols that each featured successive injection of 

influenza with antigenically distinct HA components, H1 then H3, followed by hybridoma 

cell development to generate candidate monoclonal antibodies (mAbs) targeted to the IAV 

surface glycoproteins. We screened antibody containing hybridoma supernatant for activity 

against influenza proteins using ELISA, Neuraminidase Inhibition (NI), and Hemagglutinin 

Inhibition (HAI) assays. Those antibodies which showed appreciable activity against the 

immunizing viruses from hybridoma generation were purified for further study. Of 114 

antibodies, mAb 1G3 (IgG1) was found by Western blotting to successfully bind the HA 

protein of H1, H1pdm, and H3 influenza A viruses as well as influenza B viruses of both 

major lineages (Yamagata and Victoria). Significantly, mAb 1G3 was able to successfully 

neutralize both influenza A and B viruses in vitro as shown by plaque assay and indirect 

immunofluorescence of infected cells. 1G3 was also shown to be effective against H1, H3, 

and an influenza B virus in ovo, delaying onset of positive viral titer and preventing viral 

expansion overall. 

Although we believe mAb 1G3 to have a conformational epitope, linear epitope 

mapping revealed that 1G3 likely binds in the stalk domain near to the fusion peptide and 

across the C terminus of HA1 and N terminus of HA2. We found this locus to be strongly 

conserved among heterosubtypic influenza strains, including influenza B. Importantly, only 

one other antibody known as CR9114 has been identified that can neutralize both influenza 

A and B viruses in vivo (32). CR9114’s epitope appears to have significant overlap with the 

proposed epitope of our mAb 1G3, although they are not identical.  Where CR9114 
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displayed no activity against B viruses in vitro, 1G3 is the only antibody to date that inhibits 

both A and B viruses in cells. This previously unseen neutralization profile may suggest the 

possible presence of an additional inhibition mechanism or mechanisms active in cell 

culture. While CR9114 prevents the fusogenic conformational change of HA within the host 

endosome and incites Antibody Dependent Cellular Cytotoxicity (ADCC) in vivo, we have 

demonstrated through Western blotting and neuraminidase inhibition that our mAb 1G3 

likely also prevents extracellular HA cleavage and interferes with virion budding (11, 29, 

122).  

Therefore, mAb 1G3 is a unique and previously uncharacterized antibody that is 

broadly neutralizing against Group 1 and Group 2 influenza A as well as both lineages of 

influenza B. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



INTRODUCTION 

 

The Centers for Disease Control (CDC) estimates that seasonal influenza epidemics 

in the United States have been responsible for between 10 and 35 million cases of illness, 

between 200,000 and 750,000 hospitalizations, and 12,000 to 60,000 deaths annually since 

2010 (Figure 1). The total economic burden of each epidemic is projected to be about 87.1 

billion dollars annually (17, 41). The 2017-2018 flu season was characterized as “severe” in 

the United States across all age groups. At its peak, 7.5% of all outpatient visits were as a 

result of influenza or influenza like illness, the highest levels seen since the 2009 swine flu 

pandemic. Morbidity was above the national baseline for 19 weeks, making the 2017 flu 

season one of the longest in recent years. 183 pediatric deaths from influenza were reported 

to the CDC, the highest number for a seasonal epidemic since pediatric influenza motility 

became a reportable condition in 2004 (17). While flu can be underestimated by the general 

population, it is clearly a substantial public health concern. 

Commonly known as the flu, influenza is a respiratory illness caused by influenza 

viruses. Symptoms are non-specific and generally have a rapid onset which may include: 

fever, cough, muscle aches, headaches, and malaise (17). Influenza infection can also 

present with vomiting and gastrointestinal distress in young children and more rarely in 

adults and seniors. Commonly spread in droplets, influenza virus is easily communicable 

through coughing, sneezing, talking, and to a lesser extent, following contact with 

contaminated fomites. Most people are contagious in the first 72 - 96 hours of illness and 

may be able to transmit the virus up to 24 hours before symptoms begin. 

Immunocompromised people as well as children may continue to shed virus and spread 

disease for well over a week after symptom resolution (53).   
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Healthy adults can generally recover from an influenza infection with help from over 

the counter treatment. However, some populations are at risk for serious complications. 

Immunocompromised persons including the elderly and transplant recipients are especially 

susceptible to severe disease and even death (17). The most common causes of death related 

to influenza infection are secondary bacterial pneumonia and primary viral pneumonia, both 

of which induce lung damage and pathology via the generation of immune infiltrates, free 

radicals, and excess mucus (53). Influenza can also be particularly dangerous for pregnant 

women and fetuses. The risk of stillbirth among vaccinated mothers is 51% lower than their 

unvaccinated counterparts. Although the exact mechanisms remain unknown, it is believed 

that fever and placental inflammation associated with influenza infection is correlated with 

an increased risk of miscarriage and various birth defects including low birth weight and 

even personality disorders like schizophrenia (46). It is recommended that all women who 

become pregnant during the regular flu season receive the influenza vaccine, regardless of 

their current trimester or gestational status (131). Another possible complication seen in 

some populations is hemorrhaging from mucus membranes as a result of immune mediated 

destruction of infected epithelial cells (3).  

A subset of influenza strains possess a mutation which allows for growth outside of 

the respiratory tract - causing a very high mortality rate of upwards of 80% (3). Known as 

Highly Pathogenic Avian Influenza (HPAI), these viruses can be transmitted to multiple 

critical organs, including the brain via the olfactory mucosa and then olfactory nerves where 

the virus activates local glial cells (99). The resulting cytokine storm as well as TNF-

induced mitochondrial mediated apoptosis causes extensive cellular damage and ultimately a 

disruption of the blood brain barrier followed by rapid death (75). Fortunately, these viruses 
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are not easily communicable between people and are therefore not incorporated into the 

seasonal vaccine. 

In addition to seasonal epidemics, some influenza viruses can cause pandemics when 

introduced to a novel human population. The H1N1 “Spanish Flu” of 1918 is estimated to 

have killed between 50 and 100 million people worldwide – about 5% of the global 

population at the time (89, 117). Other pandemic influenza events include “Asian” flu in 

1957, the “Hong Kong” flu in 1968, and most recently the “Swine” flu pandemic of 2009. 

The CDC estimates that there were almost 60 million cases of the “swine” flu in the United 

States in 2009 alone (120). 

Influenza Virus Structure 

Influenza viruses are a group of respiratory pathogens belonging to the family 

Orthomyxoviridae that are further divided into four genera: Influenzavirus A, B, C and the 

most recently described D (33). Influenza viruses are characterized as having a single 

stranded, negative sense RNA genome which is uniquely segmented. Influenza A and B 

each contain eight viral segments while influenza C and D only contain seven. These 

segments in turn encode viral proteins; with types A and B each producing at least 11 in vivo 

as a result of alternative splicing and open reading frames (ORFs) (96, 100). Each RNA 

segment is coated with nucleoprotein (NP) to form what is known as the viral 

Ribonucleotide Nucleoprotein (vRNP) complex. vRNP complexes are assembled and 

housed in many repeated matrix (M1) proteins. This viral core surrounded by a host derived 

lipid bilayer acquired during budding from an infected cell (100). The virion surface features 

two glycoproteins and one integral membrane protein, M2. All known naturally occurring 

immunity is in response to the primary surface antigens, Hemagglutinin (HA) and 
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Neuraminidase (NA) (132). Also present within an infectious virion are polymerase basic 

proteins 1 and 2 (PB1 and PB2), which taken together with polymerase acidic protein (PA) 

form the viral RNA dependent RNA polymerase (20). Additionally synthesized are 

nonstructural protein 1 (NS1) which is critical for viral immune evasion, as well as nuclear 

export protein/nonstructural protein 2 (NS2 or NEP). Virions are known to display a variety 

of shapes, with the most well-known and abundant in vivo being roughly spherical (Figure 

2) (42).  

Influenza Virus Life Cycle 

The influenza virus life cycle can be divided into the following stages: binding and 

entry into the host cell, transport of genetic information into the nucleus, transcription of 

viral proteins, export and translation, and finally assembly and budding at the host 

membrane (Figure 3) (53).  

Entry is facilitated by the binding of HA to sialic acid receptors on the host cell. 

Different HA subtypes have varying affinity for each of the two major types of sialic acid 

linkages found in nature. Neu5Ac α(2,3)-Gal is generally found within the gastrointestinal 

tract of aquatic birds and deep in the human respiratory tract. Neu5Ac α(2,6)-Gal is found 

throughout the length of the human respiratory system but is primarily concentrated in the 

upper limits (84). Both types of sialic acid linkages are readily available in swine species 

(94). Avian IAV strains generally have higher affinity for 2,3 linkages and circulating 

human viruses for 2,6 linkages (43, 105). Following HA binding of either sialic acid 

isoform, the virion enters the host cell in an endosome via receptor mediated endocytosis 

(109). The low pH in the endosome provides the necessary acidic environment for both a 

conformational change in HA and the activation of the M2 ion channel. HA subunits HA1 
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and HA2 disassociate at an acidic pH. This exposes the fusion peptide on HA2 that mediates 

the fusion of the viral and host endosomal membranes, allowing viral contents to empty into 

the cytoplasm (133). Opening of M2 ion channels causes further acidification within the 

viral core, necessary for the release of vRNP complexes from the M1 matrix (42). 

Because the influenza virus genome is composed of negative sense RNA, it must 

first be converted to the positive sense before transcription can proceed. The virus carries 

with it a viral RNA dependent RNA polymerase (vRNP) which initiates replication (6).  

This polymerase is composed of 4 proteins: NP (Nucleoprotein), PA (Polymerase Acidic), 

PB1 (Polymerase Basic 1), and PB2 (Polymerase Basic 2). None of these proteins have been 

found to have proofreading ability, therefore the influenza polymerase is considered error 

prone (139). Unlike other RNA viruses, influenza virus replicates within the host nucleus. 

All protein components of the vRNP contain Nuclear Localization Signals (NLSs). These 

viral proteins can use their NLSs as well as co-opt host nuclear import machinery to gain 

passage along microtubules and eventually through nuclear pores (14). It is unknown 

whether NLSs must be present on each individual protein or if some components of the 

vRNP contribute to nuclear import more than others (11). 

The PA component of the polymerase has endonuclease activity and participates in a 

process called “cap snatching”, whereby the 5’ prime methylated caps of mature cellular 

mRNAs are cleaved and used by the cellular RNA polymerase to prime viral transcription 

(20). Cap snatching may also serve to protect viral mRNAs from being recognized by innate 

host immunity, especially Toll Like Receptors (TLRs) and the RIG-1 system (133, 142).  

Several segments of the IAV genome encode for multiple proteins products due to 

alternative splicing and ORFs. Segment 8 encodes both M1 (Matrix 1) and M2 (Matrix 2) 
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proteins while segment 7 is known to encode NS1 (Non-structural protein 1) and NEP 

(Nuclear Export Protein) (6). As M2 and NEP are the secondary splice products, they are 

generally found in much lower abundance than their counterparts M1 and NS1, respectively 

(134). An important function of NS1 is to bind to components of the host spliceosome, 

especially U6 small nuclear RNAs, and relocate them to the nucleus in order to sequester 

splicing capabilities to local viral mRNAs (79). In addition to the 11 canonical IAV proteins, 

other products have been recently described. In 2001 PB-F2 was identified as the result of 

an ORF in the PB1 gene segment and appears to be implicated in in vivo infections, 

especially in modulating host immunity and the apoptotic response (79, 100). PB1-N40, also 

known as N40, is a third protein product from the PB1 gene. Recombinant viruses that lack 

N40 display slower growth kinetics in vitro, but the exact mechanism and function or 

functions of N40 are unknown (20, 79). The most recently discovered influenza protein has 

been named PA-X, as it is a protein product from the PA gene segment. Infection studies of 

viruses lacking PA-X have shown that it functions heavily in mediating the viral shut off of 

host protein synthesis through cellular mRNA decay and is therefore a major virulence 

determinant. Experiments are ongoing (50, 70)  

Export of negatively sensed viral mRNAs from the nucleus through pores occurs 

through the interaction of viral NP with host CRM1 dependent pathways. There also appears 

to be a role for the M1 protein in the process, as viruses without M1 are deficient in protein 

synthesis, although the mechanism remains to be elucidated (14, 18). Live imaging studies 

have shown that NP proteins localize to the apical side of infected nuclei, implying an as of 

yet unidentified mechanism of polarized exit from the host nucleus (68).  
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Once translated by the host ribosomes, all viral components must assemble in the 

cytosol and bud from the host cell’s plasma membrane. Influenza viruses use the host cell 

membrane for the formation of the envelope and also as an aggregation point for proteins 

needed for the progeny virions (98, 101). Two models have been proposed regarding 

packaging of viral genomic segments into progeny virions. One model predicts that 

segments are randomly packaged, and complete virions are the result of random probability. 

Evidence cited by proponents of this model includes the well documented existence of 

incomplete virions in cellular and in vivo infections (6). Noninfectious particles lacking a 

complete complement of viral genes can and do form, but only virions with HA, NA, and 

M2 can successfully bud from the host membrane (69). The other model is known as the 

specific packaging model and hypothesizes there is an intrinsic system to encourage the 

correct assembly of all necessary eight genomic segments and incomplete virions are as a 

result of a failure of this system. This model is comparatively newer, but is thus far 

supported by the discovery of packaging signals on the 5’ and 3’ ends of some viral 

segments that appears to interact directly with lipid rafts (126). 

Of critical importance during budding is the cleavage of sialic acid residues on the 

infected host cell mediated by the Neuraminidase (NA) enzyme. Without productive NA, 

progeny virions crowd at the cellular surface as a result of interaction between its HA and 

intact sialic acid on the host surface. Trapped virions cannot move between cells and 

therefore cannot propagate further infection (87).  

Hemagglutinin (HA) and Neuraminidase (NA)  

Because of their roles in the viral lifecycle and in mediating immunity, HA and NA are 

the two most well studied influenza proteins and are used to classify different subtypes 



8 

 

influenza A viruses. To date, there are 18 subtypes of HA and 11 of NA, although not all of 

these are able to readily infect humans (104).  

Functional HA is a homotrimer with each monomer (HA0) composed of a globular head 

and stalk anchored into the membrane at its C terminus (Figure 4). Synthesized as a single 

polypeptide chain, HA0 undergoes significant post translational modification, including 

glycosylation, palmitoylation, and eventually cleavage into its active subunits (42, 115, 

132). HA is phylogenetically divided into 2 groups based on structural aspects of the stalk, 

with H1 stalk structure defining group 1 and H3 defining group 2. The globular head is the 

most variable domain of HA while the stem and membrane proximal domains feature a 

conservation of sequence among IAVs ranging from 75-99% between HA groups 1 and 2. 

HA from influenza B viruses has <75% sequence identity with any HA from IAV, although 

the structure is highly conserved (42, 49).  

Trypsin-like proteases present in the host cleave native HA0 into its subunits HA1 

and HA2 at a single invariant arginine residue present on all HA subtypes except HA14 

(109, 112). The N terminus of the newly formed HA2 relocates to the trimer interior, 

however the subunits stay associated via disulphide bonds at amino acids 52 and 277 despite 

cleavage (15, 107). During entry, HA1 binds to sialic acid on the surface of the host cell and 

triggers endocytosis (22). The low pH of the resulting endosome causes a conformational 

change in HA0 that exposes the fusion peptide present chiefly on HA2 (Figure 5). HA2 

mediates a close association and eventual fusion between the viral membrane and that of the 

late host endosome, allowing for the genetic content of the virion to enter the cytoplasm and 

then the nucleus where replication can proceed (42, 117). Without cleavage of HA0 by 

cellular proteases prior to endocytosis, the fusion peptide remains unavailable and the fusion 
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of the viral and endocytic membranes cannot occur. In humans, this limits most influenza 

viruses to the respiratory tract where the necessary trypsin-like proteases are produced; 

including TMPRSS-2, Human Airway Trypsin 1, and possibly others which are still being 

identified (11, 32).  

The HA proteins of HPAI H5 and H7 viruses have additional basic residues at their 

cleavage sites upstream of the invariant arginine (123). This allows for a larger number of 

enzymes present in the avian and human host to cleave and activate the HA, including 

ubiquitous proteases present in the liver, kidneys, and brain. This may explain why H5 and 

H7 viruses have been demonstrated to grow in cell culture without supplemental trypsin as 

well as outside of the human airway epithelium in vivo, causing severe and disseminated 

disease (99). HPAI viruses have a mortality rate of roughly 60-80% in humans and between 

90-100% in birds (3). 

HA has two well described functions in the influenza viral life cycle. The head 

serves to bind sialic acid on host cell membranes and facilitates viral entry. The stem and 

fusion peptide associate the viral and host endosomal membranes to allow for uncoating. 

Both roles are necessary; if HA1, HA2, or the HA0 monomer are compromised, infection 

cannot proceed and either the virus will not enter the cell or the virus will be restricted to the 

endosomal compartment (105, 117). Notably, there is also some data supporting an 

additional HA function during packaging of progeny viruses, namely that the highly 

conserved HA0 cytoplasmic tail directly impacts the ability of vRNPs to interact with lipid 

rafts during virion assembly (132). The degree to which HA contributes to packaging is 

unknown.  
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Historically, influenza research has focused on HA because of its antigenic and 

immunologic dominance in both natural and experimental infections. Recently however, NA 

has gained attention both as a protein and as an antigen because of the advent of NA targeted 

influenza inhibitors. NA is an exosialidase that cleaves α-ketosidic linkages between a sugar 

and an adjacent N-acetyl-neuramic (sialic) acid. There are four main steps that comprise the 

catalytic pathway of NA, beginning with binding followed by the donation of protons from 

the solvent and the formation of a cation transition state intermediate. The final steps are the 

formation and release of N-acetyl-neuramic acid (47). There are 11 NA subtypes among 

influenza A viruses, those which can infect humans are divided into two groups based on 

sequence phylogeny. The first group consists of N1, N4, N5, and N8 while the second group 

includes N2, N3, N6, and N9 (2, 129). 

Functional NA on a virion surface is a homotetramer of “boat propeller” or 

“mushroom” shape. Each monomer is composed of 470 amino acid residues and has 4 

domains: the cytoplasmic tail which anchors the protein at its C terminus, the 

transmembrane domain, the enzymatically active head, and a thin stem (2) (Figure 6). 

While NA from influenza A and B viruses only have roughly a 30% sequence homology, 

their 3D structures are identical (103, 135).  

The head is the most well studied NA domain. as it contains both the active site and 

the calcium binding site which is indispensable as it stabilizes the conformation of the entire 

tetramer. Residues which comprise the active site (Arg 118, Asp 151, Arg 152, Arg 224, Glu 

276, Arg 292, Arg 371, Tyr 406) are highly conserved and found in all subtypes of influenza 

A and B (104). The NA head also features major glycosylation sites which have been shown 

to impact virus stability, enzymatic activity, as well as tissue targeting. Interestingly, a lack 
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of glycosylation at Asn 146 has been demonstrated to be one of the major determinants of 

the unique tropism of A/WSN/1933 (H1N1), a well-documented uniquely neuropathic 

influenza (99). The characteristic fourfold symmetry of the NA tetramer is maintained by an 

inward facing carbohydrate side chain on each monomer as well as bound metal ions. It has 

been suggested that calcium binding may have physiological import in addition to structural 

relevance in the context of a natural infection as a component of positive modulation of viral 

activity within a host cell (47). 

Data supports two main functions for NA during the influenza virus life cycle. The 

most well studied role is in the final stages of budding as NA cleaves sialic acid found on 

the virion to prevent aggregation of progeny at the host cell membrane (2). This was first 

described by George Hirst in 1942 when he found that red blood cells were not susceptible 

to re-hemagglutination by influenza virus following pretreatment with the same virus (54). 

This was later solidified by a series of papers published by Peter Palese’s group in the 

1970’s showing that virions with defective NA collect at the surface of infected cells (87).  

A second less well explored role for NA is to allow penetration to the respiratory 

epithelium by cleaving sialic acid from local mucins thus minimizing binding to irrelevant 

receptors (47). Additional functions have also been suggested but remain poorly understood. 

Some data suggests that NA may play a role in the synergistic relationship between 

influenza virus and Streptococcus pneumoniae, as NA can serve to increase bacterial 

adherence in the respiratory epithelium and may underlie the high incidence of secondary 

bacterial pneumonia refractory to influenza infection in some patient populations (90). 

Purified NA has also been shown to elicit a pro inflammatory cytokine response from 
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alveolar macrophages, especially TGF-β, that may contribute to lung damage and overall 

pathogenesis of influenza (53).  

One of the most interesting things about influenza viruses is the presence of two 

surface proteins which both recognize terminal neuraminic acid residues, but have 

contradictory functions. Studies done in viruses that lack NA or HA activity or done with 

artificial viruses obtained by reverse genetics show that these proteins act in concert, and 

their ratios to one another are tightly regulated at the virion surface (129). Moreover, 

phylogenetic analyses have demonstrated that these two proteins not only function together 

but have evolved and continue to evolve in an interdependent manner (105). HA and NA 

must function in a delicate balance to prevent the HA studding the surface of newly made 

progeny from attaching to the surface of their parental host cell instead of moving away to 

infect neighboring host cells. It is NA that affords freedom from the cell and the propagation 

of infection by HA (43, 68).  

Genetic Drift and Shift 

All influenza viruses undergo continued change in response to host immunity, a 

process of mutation known as antigenic drift (49). These minor changes that occur over time 

because of point mutations in HA or NA are driven by positive selection of random 

mutations enabling virus to subvert host antibodies; likely as a direct result of the error 

prone viral RNA polymerase. Seasonal epidemics are generally due to drift away from the 

previous season’s circulating virus (118). This process has also been documented in NA as a 

result of anti-influenza antivirals that specifically target NA (133, 142). 

While both influenza A and B viruses can undergo antigenic drift, only influenza A 

viruses can participate in antigenic shift (49, 118). Where drift is described as a slow change 
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over time, shift is when a novel HA or NA is introduced into a human population from an 

animal reservoir and can result in a new, pandemic virus (Figure 7). Antigenic shift is 

usually caused by of a reassortment of genes, where the shuffling of independent gene 

segments from at least two different virus occurs as a result of infection in the same host cell 

(80). The three most recent human influenza pandemics were each caused by reassortment 

within influenza A viruses. The “Asian Influenza” in 1957 and the “Hong Kong Influenza” 

in 1968 were caused by reassortment events between human and avian viruses (9, 126). The 

2009 “Swine Flu” pandemic strain was a triple reassortant of human, avian, and swine 

influenza viruses (120). Swine are an important animal host for influenza and are often 

referred to as a “perfect mixing vessel” because they express both types of glycosidic 

linkages found in aquatic birds and the human upper respiratory tract. This availability of 

both 2,3 and 2,6 glycosidic linkages encourages recombination between avian and human 

viruses (94, 120). The ability to undergo both drift and shift is an incredible evolutionary 

advantage for influenza virus which underlies the necessity behind a consistently updating 

seasonal vaccine as well as highlights the challenges of developing universally applicable 

control strategies.  

Vaccination Strategy and Antivirals 

The first drugs developed to control influenza infections were M2 ion channel 

inhibitors (5). The M2 ion channel is a proton pump active following endocytosis of the 

virion into the host cell. Without a properly functioning M2 channel, the genome is not be 

able to uncoat from the M1 matrix and the replication cycle is arrested (5, 114). Amantadine 

was developed in the late 1960’s as prophylaxis in response to the 1968 Hong Kong Flu 

pandemic followed quickly by Rimantadine. Mechanistically, both appear to bind the inward 
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facing lipid pocket and block proton translocation although there is some degree of debate 

about a second drug interaction site (91). The official CDC guidelines now suggest a total 

moratorium on the use of M2 ion channel inhibitors as widespread resistance developed 

while resistant viruses have maintained identical infectious and pathogenic properties. A 

survey from 2009 showed 100% of wild type H3N2 viruses as well as 100% of non 

pandemic H1N1 viruses were resistant (114, 124). 

Drugs that targeted the viral NA were also first discovered in the 1960s. The first 

anti-NA drug was a transition state analogue known as DANA. While effective in vitro, 

DANA failed to perform well in vivo as it could not readily cross cellular membranes and 

was very quickly metabolized (40). Following the successful crystallization of N2, it was 

theorized that the addition of a 4-guanidino group would improve binding to the catalytic 

site and led to the creation of Zanamivir (Relenza
TM

). The same crystal structure was used 

by competing scientists to design Oseltamivir (Tamiflu
TM

) with the promise of easier of 

synthesis and greater bioavailability, as well as the option of oral administration (129). Wild 

type influenza viruses with resistance to both types of available NA inhibitors have been 

isolated, but unlike what has been observed with M2 inhibitors, resistance is often associated 

with a decrease in viral fitness (52, 138). However in 2008, an H1N1 virus with a 

substitution in NA at position 275 and a compensating mutation in HA was found to be 

resistant to inhibitors while maintaining infectivity. This clade of virus was quickly replaced 

in the population by the 2009 “Swine Flu” H1N1 virus (H1N1pdm09), but this emergence 

remains one of many troubling facts that undermines confidence in our current reliance on 

NA inhibitors in clinical settings (120).  
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In addition to the ever-looming threat of resistance mutations, NA inhibitors have 

their own set of clinical limitations. Because NA functions at the end of the viral life cycle, 

patients must begin their course of NA inhibitors very early in symptomatic onset. Its 

recommended that patients begin Oseltamivir or Zanamivir within 48 hours of falling ill, 

which presents a challenge as many patients do not seek medical intervention so early in 

clinical disease course (47, 91). Additionally, several large-scale retrospective studies have 

called into question whether NA inhibitors work at all in most clinical settings, with the 

general consensus being that drug intervention results in only a one day reduction in illness. 

In fact, some medical professionals report having serious doubts about the efficacy of NA 

inhibitors and often only prescribe them to patients who make a request (39, 59). This 

coupled with widely reported side effects that include gastrointestinal distress make NA 

inhibitors far from an ideal treatment for influenza infection.  

The newest drug developed for influenza infection is S-033188 or Baloxavir 

marboxil, marketed as Xofluxa
TM

. Developed by Shionogi Co in Japan and recently 

acquired by Roche, Baloxavir is a small molecular inhibitor of the cap dependent 

endonuclease (51). This endonuclease is found on the N terminal domain of the PA subunit 

of the influenza RNA dependent RNA polymerase and mediates a process known as “cap 

snatching” (27). Translation of mRNA in human cells requires that transcripts are capped at 

the 5’ end. The viral endonuclease cleaves caps from host mRNA allowing them to serve as 

primers for viral mRNA. Mutations in the endonuclease domain of PA are rare and often 

result in a decrease in viral fitness, making this location an ideal target for inhibitor therapy 

(27, 139). Studies have shown that a single dose of Baloxavir was superior to both placebo 

and Oseltamivir in relieving influenza symptoms and decreasing viral titers. Unlike 
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Oseltamivir, Baloxavir showed efficacy up to five days post symptomatic onset and has a 

more favorable safety profile as Oseltamivir often presents with gastrointestinal distress (51, 

92). Already approved in Japan, Baloxavir was given a “Priority Review” status by the 

Federal Drug Agency and approved in October of 2018. It became available to American 

patients and prescribers before the end of 2018 and costs roughly $150 USD without health 

insurance, the same as a course of Tamiflu
TM

 despite being a single dose pill (51).  

While drugs for mild infection are very limited, there is no drug currently licensed 

for those who are hospitalized with influenza, although NA inhibitors have been used off 

label for this purpose to mixed success (129). Therefore, regular seasonal vaccination 

remains the best option to both prevent illness and combat potential pandemics (Table 1). 

While the intranasal live attenuated vaccine (LAIV) has been recently re-added to the CDC 

recommendations, the current standard of care for all people between 6 months and 65 years 

of age is the quadrivalent inactivated vaccine (QIV). Other formulations are available, 

including a high dose vaccine designed for those over 65 years old who may be generally 

weak responders to vaccination (17).  

The QIV is composed of two inactivated influenza A strains and two inactivated 

influenza B strains. Each of the four strain components are determined to be biologically 

relevant for the coming flu season by the CDC pursuant to global recommendations from the 

World Health Organization (131). While the flu season may start in the fall, strain 

recommendations are generally made for the Northern Hemisphere vaccine in February. 

This allows manufacturers time to prepare reagents and viral components, which must be 

specific to the viruses in that year’s vaccine, for some 160 million doses. Pharmaceutical 

companies typically start manufacturing vaccine ahead of official recommendation 
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announcements in order to have the vaccine ready for distribution as soon as possible; 

although this puts them at significant financial risk if recommendations change. Vaccine 

strain selection is a multi-factorial process that requires input from scientists and influenza 

experts from around the world in addition to epidemiological algorithms that predict the 

upcoming season based on data from the opposite hemisphere as well as epidemics from the 

previous year (17, 131). Despite the incredible amount of effort and data analysis that goes 

into vaccine strain selection, there is the opportunity for error when chasing an ever-moving 

target. Vaccine mismatches can happen that would leave even healthy, vaccinated, 

individuals vulnerable to infection (24). It also possible that any one or a combination of the 

circulating viruses chosen will make significant antigenically relevant changes between 

strain selection in February and vaccine delivery to points of care in the early fall (120).  

Despite many obstacles, vaccine efficacy is generally between 30 and 70% (16, 48, 

118).  The quadrivalent inactivated vaccine for the 2017-2018 season had an overall efficacy 

of 40% against all four strains, meaning a vaccinated individual was 40% less likely to seek 

medical care for flu. H3N2 viruses generally dominated the season, and strain specific 

efficacy of the vaccine against the H3N2 virus was 25%. There were 184 pediatric deaths; 

between 80 and 90% of deceased children were unvaccinated (17). While the 2018-2019 

season is ongoing, interim estimates from the CDC show a H1N1pdm dominant season with 

a slightly higher vaccine efficacy of nearly 50%. As of February 2019 seasonal influenza 

may have caused as many of 17.8 million cases of illness and 19,000 deaths in the United 

States (17). Even when vaccine efficacy is low or in seasons with a considerable mismatch, 

studies have shown that vaccination still reduces the need for hospitalization (81, 86, 119).  
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In the 1960’s, Dr. Edward Kilbourne invented a technique of exploiting viral 

antigenic shift in a controlled laboratory setting to introduce desired characteristics for 

vaccine production into wild type viruses (62). This process, known as classical 

reassortment, was first used in vaccine production in 1971 and is still used by our laboratory 

and others in the United States and around the world.  Using classical reassortment, 

candidate vaccine viruses are selected to express the circulating HA and NA proteins of 

those viruses recommended by the CDC but contain the internal genes of a high growing 

donor virus, A/Puerto Rico/8/1934 (PR8). The resulting reassortant viruses are designated 

high yield reassortants (HYRs), as the inclusion of PR8 internal genes often results in an 

upregulation of viral growth when injected into embryonated chicken eggs (63). An increase 

in protein/antigen output is highly desirable to manufacturers as it makes producing the 

vaccine less costly and more efficient. 

Because of influenza virus’ segmented genome, co-infection of a single egg with two 

viruses results in a possible 256 distinct viral progeny. Selection of candidate reassortment 

viruses from the viral population present within an egg is accomplished by applying 

polyclonal antibodies to PR8 HA and NA. This inhibits the growth of those viruses 

expressing PR8 donor glycoproteins on the surface and encourages expansion of the wild 

type HA and NA bearing viruses. Candidate HYR seed viruses are then cloned by limiting 

dilution and fully characterized in sequence and antigenicity in house and by government 

regulatory agencies before being sent to manufacturers for large scale production in eggs. 

The process of generating seed viruses is a rate limiting step in vaccine production and can 

vary in time depending on properties of the wild type target, taking on average about four 

weeks (41, 96). 
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HA Antibodies and Hybridoma Technology  

One of the newest approaches to combating influenza is the use of antibodies (Abs). 

It has long been known that there is therapeutic benefit to treating serious influenza 

infections with convalescent plasma, especially in cases of HPAI infection (22). The vast 

majority of antibodies isolated from people either after a naturally occurring infection or 

vaccination are targeted to the immunodominant HA. Of these, the highest percentage are 

targeted to the variable loops surrounding the receptor binding site within the HA head 

domain.  These antibodies function to neutralize virus by preventing viral entry via 

inhibition of interactions with sialic acid (11). These antibodies are effective but highly 

strain specific, recognizing only antigenically similar strains of the same group and therefore 

lose relevance rapidly over time as viruses undergo shift and drift (40, 115).  

Rarely, a patient may develop an antibody that instead of targeting the HA head 

targets the membrane proximal or HA stem domain. These antibodies are often broadly 

neutralizing and able to inhibit many viruses even across IAV group. The unique cross 

reactivity of stem antibodies reflects the strong structural constraints imposed on the HA 

stem epitope as a result of the necessity of its function (121). The stem itself is composed of 

the N and C terminal domains of HA1 (1-52, and 277-345 H3 numbering) as well as the 

entirety of the N terminal region of HA2 (109). The accepted demarcation between the HA 

stalk and head is a disulfide bond between two cysteine residues at amino acids 55 and 277 

(69). Because of its conservation, there has been a growing interest in characterizing HA 

stem antibodies as the basis of a universal vaccine – a vaccine that may one day be able to 

prevent infection by all influenza A and B subtypes. Since their discovery in 1991, well over 

a dozen stem antibodies have been isolated in humans in response to heterosubtypic HA 
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vaccination and more have been derived using targeted technology, including hybridomas 

and single B cell isolation (65, 80).  

Most patient derived HA stem antibodies thus far characterized share common 

features that may elucidate possible in vitro and in vivo protection mechanisms. While their 

exact epitopes differ, generally it lies around or across the HA1/HA2 cleavage site, meaning 

mAb binding depends on residues found on both HA1 and HA2 subunits (24, 80). Unlike 

HA head antibodies which inhibit receptor binding, these antibodies target influenza in a 

multitude of ways both intracellularly and extracellularly and can work at many steps in the 

viral life cycle. Stem antibodies have been shown to be able to be internalized as a complex 

with viral particles during receptor mediated endocytosis, and therefore act between entry 

and exit in the viral life cycle within the host cell (11). Here, binding to the stalk of an 

incoming HA may inhibit pH induced conformational changes that would normally expose 

the HA fusion domain, preventing viral and endosomal membrane fusion (115, 133). 

Another proposed mechanism involves averting the extracellular cleavage of HA0 into HA1 

and HA2 by local cellular trypsin-like proteases via site occlusion. This is supported by data 

suggesting that some stem targeting antibodies with footprints overlapping the protease 

recognition site are not capable of neutralizing HPAI viruses. These viruses have a 

multibasic site mutation and are cleaved intracellularly instead of extracellularly unlike most 

other influenza viruses and are therefore precluded from antibody recognition if internalized 

unbound (42). While HA stem antibodies do not directly bind NA, they have also been 

shown to inhibit NA activity in vitro through steric hindrance because of the close physical 

proximity of HA and NA on the virion membrane (68). In vivo protection is likely 

modulated by these mechanisms in addition to others, including ADCC as well as activity 
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through FCγ receptors on immune cells (28). It is likely a combination of these means and 

others yet undiscovered coupled with the unique conservation of the HA stem that make 

stem antibodies so effective at limiting influenza replication in vitro and in vivo and a very 

attractive target for vaccine design and therapeutics.  

HA stem directed antibodies have been found in human plasma in response to 

vaccination with more than one HA subtype, but there has also been a concentrated effort to 

design antibodies targeted to the HA stem. While polyclonal antibodies represent the entire 

B cell repertoire to an antigen, a monoclonal antibody (mAb) is the result of a single B cell 

producing one antibody to a specific epitope of that antigen. MAbs are therefore more 

specific and consistent in a translational context and can be easily modified to be appropriate 

for administration to humans (106). MAbs can be created using a variety of techniques, 

including hybridoma technology (Figure 8). Using this method, splenic B cells from a 

mouse immunized against the desired target antigen are fused with myeloma cells to 

produce hybridoma cells. Hybridoma cells produce antibody like the parental B cell as well 

as have the ability to divide indefinitely like the parental myeloma cell (56). Successfully 

fused cells are selected using specialty HAT media which contains hypoxanthine, 

aminopterin, and thymidine. This blocks the de novo nucleic acid synthesis pathway and 

forces cells to rely on salvage synthesis for DNA and RNA. Unfused splenic cells die 

quickly due to their short life span and limited doubling capacity. Unfused myeloma cells 

lack hypoxanthine guanine phosphoribosyl transferase (HGPRT) and are unable to 

participate in salvage synthesis and therefore also die. The only cells capable of survival in 

these conditions are successfully fused hybridoma cells. These cells are selected, screened 

by the method of investigator choice, and finally cloned by limiting dilution so identical 
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mAbs can be continuously and reliably be produced in cell culture (45).  

Through the screening of hybridoma cell lines developed in response to 

heterosubtypic influenza vaccination of mice, we believe we have generated a novel 

monoclonal antibody 1G3 (IgG1) targeted to the stem of the influenza HA that may provide 

insight into shared influenza epitopes and eventually new vaccination and treatment 

modalities.  
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Figure 1: CDC estimates for number of cases, hospitalizations, and deaths as a result of 

seasonal influenza infection each year in the United States. Precise calculations are made 

difficult as many patients will not seek care for mild illness. (17) 
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Figure 2: Influenza viral structure (on right), shown with spherical morphology. Eight 

segmented genome segments are shown on the interior of the virion according to descending 

size. Major surface glycoprotein Neuraminidase (NA) is in red, Hemagglutinin (HA) is 

shown in blue, while the M2 ion channel embedded within the viral envelope is depicted in 

green. An individual viral ribonucleoprotein (vRNP) complex is visible to the left of the 

virion. The viral RNA dependent RNA polymerase is composed of PA, PB1, and PB2.  (24) 
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Figure 3: Influenza A virus life cycle shown with steps labeled from left to right across the 

infected host lung epithelial cell. This include binding, receptor mediated endocytosis of the 

virus, fusion of the viral and host endosomal membrane and uncoating of the genome from 

the viral core. This is followed by replication and transcription in the host cell nucleus, 

translation and assembly in the cytoplasm, and release as the host cell surface. Image 

created with BioRender© 
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Figure 4: A) A complete influenza A HA monomer, known as HA0, with subunits HA1 in red 

and HA2 in green. The globular head and stem domains are technically distinguished by a 

disulphide bond noted at C52 and C277. B) A native HA homotrimer as it would sit in the 

membrane of the virus or a host cell with the head facing externally. The basic subunits and 

domains of HA protein include HA1 and HA2. The HA head is primarily encoded by HA1, 

while the stalk is composed of the N and C terminal ends of HAI as well as the majority of 

HA2.  HA phylogenetic tree demonstrating the separation of HA into two groups based on 

stalk sequence. The HA subtypes circled in red circulate as seasonal pandemics while those 

in green are associated with Highly Pathogenic Avian Influenza (HPAI). (115) 
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Figure 5: Ribbon diagram of engaged trimeric influenza A HA. Proteolytic activation by 

trypsin-like proteases occurs extracellularly for seasonal viruses at the cleavage loop 

(yellow) yielding distinct HA subunits HA1 (blue) and HA2 (red). HA1 and HA2 stay 

associated via disulphide bonds throughout binding and endocytosis until low pH present in 

the host endosome facilitates rearrangement to expose the fusion peptide. The fusion peptide 

is then free to embed itself in the host endosomal membrane and facilitate the merging of the 

host and viral membrane. (42) 
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Figure 6: Left) The phylogenetic tree of all known neuraminidase (NA) subtypes within 

influenza A and B viruses. Green denotes influenza A Group 1 with is typified by the N1 

protein common in seasonal as well as some HPAI viruses. The yellow lines represent 

influenza A Group 2, this includes N2 which is also common in seasonally circulating 

viruses. Shown in blue are the NA proteins from influenza B viruses, which share about half 

of their sequence with those from influenza A viruses. Right) Top down ribbon diagram of 

influenza A N1 based on X-ray crystallography. Its characteristic “boat propeller“ 

formation  is highly conserved between influenza A and B viruses despite considerable 

sequence variation.(99) 
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Figure 7: Top) Antigenic drift in both influenza A and B viruses is caused by small 

mutational changes introduced by the error prone viral polymerase. These changes may 

select for viruses which drift away from neutralizing epitopes and prevent immune 

recognition - resulting in regular seasonal epidemics. Bottom) Antigenic shift is the 

introduction of novel proteins into a naïve population. Shift of influenza A viruses can result 

in pandemic strains. Shift is illustrated here as a triple reassortment in a swine intermediate 

host resulting in an HA protein not previously seen in humans - as was the case in the 2009 

“Swine Flu”.  Influenzas B and C are not known to participate in shift as they have no 

substantial animal reservoir. (94) 
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Table 1: Currently licensed flu vaccines in the United States for the 2017-2018 influenza 

season. The general standard of care is the intradermal quadrivalent inactivated vaccine 

which is recommended for all people between 6 months and 65 years of age, including 

pregnant women and the immunocompromised. The recombinant vaccine, FluBlok™, was 

approved in 2013 and does not use an egg-based manufacturing scheme. Previously, the live 

attenuated vaccine marketed as FluMist™ was not recommended due to poor efficacy data 

but is now available to some patients. Also offered are high dose formulations for patients 

over 65 years of age.  (17) 
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Figure 8: Hybridoma cells are generated via the fusion of splenic B cells isolated from an 

immunized mouse and myeloma cells to form stable antibody producing cell lines using 

specialized fusion and selection media. Hybridomas can divide indefinitely and serve as a 

renewable source of standardized and specific monoclonal antibodies. (56, 71, 88)  Image 

created with BioRender© 
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SPECIFIC AIMS 

 

Aim 1. Develop and purify anti-Flu Monoclonal Antibodies (mAbs)  

1. Generate candidate mAbs via hybridoma technology following mouse immunization 

1.1. Immunization Protocol Alpha: Immunization with A/Puerto Rico/8/1934 

(H1N1) and NYMC X-162 (H3N1, A/Wisconsin/67/2003 HA donor) HA and 

NA protein preparations 

1.2. Immunization Protocol Beta: Co-immunization of A/Puerto Rico/8/1934 

(H1N1) and NYMC X-162 (H3N1) HA and NA protein preparations with 

anti-HA head mAb 2A6 (IgG1) 

2. Identify potential candidate mAbs  

2.1. Neuraminidase Inhibition (NI) assay against A/Puerto Rico/8/1934 (H1N1) 

and NYMC X-162 (H3N1) using both hybridoma supernatant and purified 

antibody candidates 

2.2. Hemagglutinin Inhibition (HAI) assay against A/Puerto Rico/8/1934 (H1N1) 

and NYMC X-162 (H3N1) using purified antibody candidates 

3. Isotype and purify candidate mAbs  

 

Aim 2. Characterize binding profile and epitope of candidate mAbs  

1. Investigate binding profile of candidate mAbs  

1.1. Western blotting against infected allantoic fluid and purified viruses; 

including immunizing viruses A/Puerto Rico/8/1934 (PR8, H1N1) and 

NYMC X-162 (H3N1) in addition to heterosubtypic viruses (H1N1, H1N1 

pandemic, H3N2 viruses, influenza B viruses) 
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2. Map the epitope(s) of each candidate mAb using  

2.1. In silico sequence alignment of bound viruses from Aim 2.1.1 

2.2. Epitope mapping via overlapping peptide array 

Aim 3. Evaluate candidate mAbs efficacy in vitro and in ovo  

1. Demonstrate quantitative in vitro inhibition of viral activity by candidate mAbs via 

Plaque Reduction and Neutralization Tests (PRNT) 

1.1. Testing plaque number and size reduction capability of antibody candidates 

as hybridoma supernatants against immunizing viruses A/Puerto Rico/8/1934 

(PR8, H1N1) and NYMC X-162 (H3N1) in addition to heterosubtypic 

viruses (H1N1, H1N1 pandemic, H3N2 viruses, and influenza B viruses) 

2. Demonstrate qualitative in vitro inhibition of viral activity by candidate mAbs via 

fluorescent microscopy of infected cells  

2.1. Fixed fluorescent staining of A/Puerto Rico/8/1934 (PR8, H1N1) HA 

following infection then treatment with candidate mAbs or isotype control 

3. Compare viral growth curves in ovo of immunizing viruses A/Puerto Rico/8/1934 

(PR8, H1N1) and NYMC X-162 (H3N1) in addition to an influenza B virus 

following co-incubation of virus and candidate mAbs 
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MATERIALS AND METHODS 

 

Mouse Immunizations  

Eight six month old female BALB/C mice (POCONO FARMS) were immunized for 

hybridoma preparation. On Day 0 mice were bled were for a pre-immunization baseline and 

then injected intraperitoneally with 25 μg purified A/Puerto Rico/8/1934 (H1N1) 

hemagglutinin and neuraminidase antigen in Freund’s adjuvant. This was repeated on Day 

14. On Day 28 mice were injected with 25 μg purified NYMC X-162 (H3N1, 

A/Wisconsin/67/2014 HA parent) hemagglutinin and neuraminidase antigen in Freund’s 

adjuvant. On Day 40, mice were bled and sera tested for response to A/Puerto Rico/9/1934 

antigen by ELISA. On Day 45 mice were given a final 25 μg A/Puerto Rico/8/1934 

hemagglutinin and neuraminidase antigen boost intravenously before being sacrificed on 

Day 47 or 48.  

 

Hybridoma Preparation 

Following sacrifice, murine spleens are harvested and splenic cells are suspended in serum 

free hybridoma media (THERMO FISHER) and counted. X63 murine myeloma cells 

(ATCC) are added directly at a ratio of 1:2 and centrifuged together. 1.5 mL polyethylene 

glycol (PEG) for every 3x108 mixed cells is very slowly added before centrifuging the 

solution again at 1000 rpm for 5 minutes. Hypoxanthine-aminopterin-thymidine (HAT) 

media (THERMO FISHER) is added and the fused cell suspension is divided into flasks 

prepared with warmed HAT media. Flasks are gently swirled to ensure an even cellular 

distribution and then cells and 2mL media are aliquoted into 24 well plates to be incubated 

at 5% CO2 and 37 0C. After 10-14 days wells with visible color change from acidic cellular 

replication by-products are tested for antibody production by ELISA. ELISA positive wells 
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are sub-cloned into 96 well plates for primary screening and then transferred to flasks for 

continuing culture.  

 

Antibody Isotyping  

Antibody isotyping is done via Murine Antibody Isotyping Kit (PIERCE). Candidate 

hybridoma cell culture supernatant is diluted with the sample diluent to a final concentration 

of 1:1000 and vortexed. 150 μl of the diluted sample is added to the testing cassette and 

incubated at room temperature for 10 minutes. A successful typing is characterized by a red 

band at the control mark and a dark band at one of the isotypes markered on the cassette. 

 

IgG Antibody Purification 

The cell culture supernatant of candidate hybridomas is centrifuged at 6000g for 5 minutes 

to remove any cellular debris. The G protein column is equilibrated with 75 ml PBS and the 

supernatant is diluted two fold with PBS to a final volume of 600 mL and directly applied to 

the column followed by 100 mL PBS to wash the column. Bound monoclonal antibody is 

eluted from the column with 75 mL 0.1 M glycine (pH 2.7) and approximately 2 mL per 

fraction is collected in 5 mL tubes with 40 μl 1 M Tris-HCl (pH 9.0). Absorbance at 280 nm 

is measured for each fraction, and all fractions with an absorbance more than 0.5 are pooled 

into a clean 15 ml conical tube. The pH of the purified mAb is determined by pH paper and 

adjusted to 7.0 by neutralizing buffer. Antibody solutions are then run by Western blot in 

reducing and non reducing conditions and stained with Coomassie blue to assure purity. 

 

Antibody Concentration Measurement 

The concentration of purified monoclonal antibodies is determined by Bradford assay (BIO-

RAD). Five linear-range dilutions of the bovine gamma immunoglobulin standard and 
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purified antibody are prepared. 800 μl of each standard and sample solution is incubated 

with 200 μl dye reagent concentrate at room temperature for 5 minutes. Absorbance is then 

measured at 595 nm. The concentration of purified antibody is calculated from the standard 

curve. All protein solutions are assayed in duplicate.  

Virus Amplification  

Viruses are amplified in 11 day old embryonated Specific Pathogen Free (SPF) chicken 

eggs. A virus dilution of 10-5 is prepared in phosphate buffered saline (PBS) with 25 μg/ml 

gentamicin (SIGMA). 0.1 mL of the viral dilution is injected into each egg. After incubation 

at 35 0C for 48 hours, the eggs are placed at -20 0C for 1 hour and then 4 0C for at least 2 

hours. Then allantoic fluid containing virus is harvested from the eggs. The titer is 

determined by hemagglutination assay and plaque forming units per mL (PFU/mL) is 

determined by plaque assay.  

 

Neuraminidase Assay 

50 μl of hybridoma cellular supernatant is first added to a glass 16 X 125 mm tube 

(FISHER). 50 μl virus diluted to desired concentration in PBS supplemented with 2mM 

calcium.  PBS with calcium without virus is used as a negative control. Following 30 mins 

incubation at room temperature, 100 μL of fetuin diluted in 0.4M phosphate buffer (pH 5.9) 

is added to each tube. Tubes are vortexed and incubated in a 37 0C water bath for 16-18 

hours. 0.1 mL periodate is then added to each tube. Following a 20 minute incubation at 

room temperature, 1 mL arsenite is added. Tubes are agitated by hand until the solution 

turns from dark brown to clear or opaque. 2.5 mL of thiobarbituric acid is added and tubes 

are vortexed. Tubes are then placed in a boiling water bath for 15 mins. The mixture is 

allowed to reach room temperature before 4 mL acid butanol is added. Tubes are briefly 
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vortexed and then centrifuged for 2 mins at 1000 RPM. The optical density read at 549 

nanometers by spectrophotometer.  

 

Hemagglutination Assay 

50 μl phosphate buffered saline (PBS) is added to each well of a V bottomed 96-well 

microtiter plate. 50 μl of purified virus or virus suspended in allantoic fluid is added into the 

first well of each row. A 2-fold serial dilution (1:2, 1:4, 1:8, etc.) is made by carrying 50 μl 

of solution from well to well across the plate. 50 μl PBS and virus left in each well are 

incubated with 50 μl 0.5% chicken red blood cells at room temperature for 30 minutes after 

30 seconds of agitation. The virus titer is read as the lowest dilution ratio of virus without 

visible hemagglutination.   

 

Western Blotting 

0.1 μg viral protein or 10 μL of infected allantoic fluid is loaded into NuPAGE Novex 4-

12% Bis-Tris precast gel and separated using the XCell SureLock Mini-Cell electrophoresis 

system (INVITROGEN). The proteins are transferred onto polyvinylidene difluoride 

(PVDF) membrane and probed with antibody containing hybridoma cellular supernatant 

overnight at 4 0C. Near infrared fluorescent anti-mouse IgG secondary antibody (LICOR) 

diluted in blocking buffer (LICOR) is then incubated with the membrane for 1 hour at room 

temperature. Blots are washed four times before scanning using an Odyssey membrane 

scanner (LICOR).   

 

Cell Culture 

Madin-Darby canine kidney (MDCK) cells were purchased from American Type Culture 

Collection (ATCC). Cells are grown in Eagle’s Minimum Essential Medium (EMEM, 
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GIBCO) supplemented with 10% fetal bovine serum (FBS, GIBCO), 10 units/mL penicillin 

(SIGMA), and 10 μg/mL streptomycin (SIGMA) at 5% CO2 and 37 0C. FBS is denatured at 

560C for 30 minutes prior to use. For subculture, cells are grown to 80% confluency before 

detached from culture flask using trypsin-EDTA (SIGMA).  

 

In vitro Plaque Reduction Neutralization Test 

MDCK cells are seeded in 6-well plates (CORNING) at a density of 0.5-1x105 cells per well 

in 4 ml of growth medium. When approximately 80-90% confluency is achieved after 48 

hours, the growth medium is removed and wells are washed with 2 ml PBS supplemented 

with 0.2% bovine serum albumin (BSA, SIGMA). Each well is then inoculated with 0.2 mL 

virus diluted to desired PFU. After incubation at 5% CO2 and 37 0C for 30 minutes the virus 

inoculum is removed. Each well is then covered with an agar overlay composed of Minimal 

Essential Medium (MEM, ATCC), 2 μg/mL trypsin (WORTHINGTON), and 0.01% 

Diethylaminoethyl (DEAE) dextran supplemented with hybridoma cell culture supernatant 

or purified monoclonal antibody. 72 hours post infection the overlay is removed and plaques 

are visualized by staining with 0.1% crystal violet in 20% ethanol for 15 minutes at room 

temperature. 

Indirect Immunofluorescence  

MDCK cells are seeded into 6 or 8 well chamber slides (NUNC). Cells are incubated at at 

5% CO2 and 37 0C and reach 80 to 90% confluency at 12-18 hours. Each well is then 

inoculated with 0.2 mL A/Puerto Rico/8/1934 (H1N1) diluted to desired PFU in PBS 

supplemented with 0.2% bovine serum albumin (SIGMA). Following 30 mins at 37 0C, the 

viral inoculum is removed and replaced with growth media or growth media supplemented 

with purified monoclonal antibody. The chamber slides are incubated at 5% CO2 and 37 0C 
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for 48 hours. The cellular monolayer is fixed with 3.7% paraformaldehyde for 30 mins at 4 

0C and then rinsed with PBS. Cells are incubated with 5% bovine serum albumin (SIGMA) 

in PBS for 1 hour at room temperature. Primary antibody is diluted in 1% bovine serum 

albumin (SIGMA) and incubated with the cells overnight at 4 0C. Next, the cells are washed 

with PBS and incubated with the anti-mouse IgG Alexa Fluor 488 secondary antibody 

(JACKSON LAB) for 1 hour at room temperature. Following a final wash, the cells are 

incubated with 4’6,-diamidino-2-phenylindole (DAPI, THERMO FISHER) for 5 mins and 

mounted with coverslip.  

 

In ovo Inhibition Test 

11 day embryonated Specific Pathogen Free chicken eggs (CHARLES RIVER) are first 

“windowed” by removing a 1 cm square portion of the shell. Virus is diluted to 10-8 in PBS 

supplemented with 25 μg/mL gentamicin (SIGMA) and then incubated with purified 

monoclonal antibodies for 30 mins at 37 0C. 0.1 ml of the virus-antibody solution is injected 

into each windowed egg and the window is sealed UV sterilized parafilm sealed to the intact 

shell with melted paraffin wax. The parafilm is removed and 150 μl of allantoic fluid 

collected every 12 hours before resealing the window. Eggs are incubated for a total of 72 

hours at 37 0C for influenza A viruses, or 96 hours at 33 0C for influenza B viruses. The viral 

titer of allantoic fluid is determined by hemagglutination assay. 
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EXPERIMENTAL RESULTS 

 

Aim 1. Develop and purify anti-Flu Monoclonal Antibodies (mAbs)  

During the completion of his dissertation in our laboratory, Dr. Yu He began 

experiments with the intention of generating monoclonal antibodies (mAbs) targeting the 

hemagglutinin (HA) and neuraminidase (NA) proteins of A/Puerto Rico/8/1943 (PR8) for 

use during the generation of candidate vaccine viruses. MAb secreting hybridomas were 

produced from the harvested spleens of animals enrolled in an immunization protocol 

referred to as Alpha (Figure 9). Briefly, eight female BALB/C mice were immunized 

intraperitoneally with PR8 H1N1 HA and NA protein preparation followed by 

heterosubtypic NYMC X-162 H3N1 preparation. NYMC X-162 is a high yield reassortant 

(HYR) virus which has the HA gene from A/Wisconsin/67/2005 (H3N2) but the NA and 

remaining internal genes of PR8. Antigen was prepared for injection by amplification in 

specific pathogen free embryonated chicken eggs. HA and NA proteins were co-purified 

using high speed centrifugation and sucrose gradient. Following inoculation, mouse sera was 

then collected and screened via ELISA against PR8 HA and NA on Day 40 post injection.  

Animals with positive ELISA results were given a final PR8 HA+NA protein boost 

intravenously on Day 45 and then sacrificed. Isolated spleen cells were fused with myeloma 

cells to form stable antibody producing hybridoma cells which were then cloned and 

screened (Figure 8). 

From Immunization Protocol Alpha, we were able to establish 114 hybridoma cell 

lines targeted to influenza surface glycoproteins HA or NA. The antibody containing 

(conditioned) supernatant of these cells was then screened for reactivity against HA or NA 

by Western blot using recombinant PR8 HI HA (rHA). Initially, we were interested in an 
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antibody to the PR8 NA as Dr Yu He had previously characterized several HA antibodies. 

Of 114 hybridoma supernatants tested, 25 appeared to be targeted to NA as they showed a 

positive HANA ELISA but a negative Western blot against rHA.   

All 25 of these antibodies were tested, but only seven showed the ability to inhibit 

NA activity in a Neuraminidase Inhibition (NI) assay (Figure 12). The NI assay allows us to 

determine if an antibody (present in sera, in hybridoma supernatant, or as purified protein) 

has the ability to inhibit the viral NA by measuring the enzymatic activity of NA in the 

presence of antibody vs that of an uninhibited control. This is accomplished via colorimetric 

assay which measures available N-acetyl neuraminic acid following incubation of antibody 

(or control buffer), live virus, and NA substrate in the form supplemented of bovine fetuin 

(93). Following overnight incubation, free N-acetyl neuraminic acid is measured by the 

addition of arsenite and 2-Thiobarbituric Acid. The resulting hot pink color is then extracted 

into the organic phase through the addition of Warrenoff reagent (acid butanol). Absorption 

at 549 nanometers is determined using a fetuin blank to equilibrate the spectrophotometer. 

NA enzymatic activity is shown normalized to an uninhibited virus control and experiments 

were performed in duplicate. Supernatant from 2H9 secreting hybridoma cells, one of the 

anti-HA antibodies developed by Dr Yu He, was used as a conditioned supernatant control. 

It is likely the cellular supernatant contains sialic acid beyond the fetuin used in the assay, 

thus explaining why supernatant containing mAb 2H9 shows NA activity above 100% when 

normalized to the viral control. Supernatant containing mAb 2G5 (IgM) was the most 

successful inhibitor of PR8 NA enzymatic activity followed by all three IgG candidates: 

1G3, 2A7, and 1G9 (Figure 12).  

 Following primary screening via NI assay of hybridoma supernatants, the seven 
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mAb candidates from Immunization Protocol Alpha with NI activity were isotyped and 

purified for further study (Table 2). MAb candidates were typed using a commercially 

available isotyping cassette. IgG mAbs were then purified by Protein G column 

chromatography. Concentrations were determined by Bradford assay and calculated from 

the standard curve. Antibodies 1G3 and 1G9 originate from the same immunized mouse, 

although the parent splenic B cell of each lineage is unique. 2A7 shares mouse origin and 

parent cell with 1G9, although they are distinct clones from that line. It’s possible that 1G9 

and 2A7 have the same epitope, but very unlikely 1G3 and 1G9 do. 

IgG purification necessitates elution in a low pH solution that can compromise the 

integrity and efficacy of an antibody. Therefore establishing NI activity following 

purification is not only valuable in determining concentration dependence, but also in 

establishing continued functional relevance. 2H9 is a PR8 specific anti-HA mAb developed 

by Dr Yu He that binds the HA globular head and was selected as an antibody control. As 

before, NA enzymatic activity is shown normalized to an uninhibited virus control and all 

experiments were performed in duplicate. Where 2G5 (IgM) appeared the most successful in 

supernatant, its NA inhibition was ablated following purification. It's unknown if this 

reflects nonspecific inhibitors present in the cellular media or perhaps a loss of function 

during the purification process. However all three of the IgG mAb containing conditioned 

hybridoma supernatants which showed NA inhibition, 1G3, 2A7, and 1G9, continued to 

inhibit PR8 NA once purified (Figure 13). Of these, 1G3 was the most efficient, followed 

by mAbs 2A7 and 1G9. These data are indicative of the ability to interfere with the 

enzymatic activity of NA. This can be attributed to one of two possible mechanisms, the first 

being direct binding to NA. However, it has also been shown that some HA targeted 
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antibodies can indirectly inhibit NA via steric hindrance (68).  We observed this 

phenomenon experimentally with mAb 2H9. Despite its confirmed globular head/HA1 

epitope, 2H9 was still was able to reduce PR8 NA activity by nearly 20% (Figure 13).  

NA inhibition assays were then repeated in the presence of Triton X-100. The design 

of this experiment was most recently outlined by Yewdell’s group (68) in an attempt to 

distinguish true NA targeted antibodies vs HA antibodies which may also be able to inhibit 

NA enzymatic activity.  By solubilizing viral membranes, they aimed to spatially separate 

HA and NA thus removing the contribution of steric hindrance. Their lab was able to use 

this technique to show that the addition of Triton X-100 significantly lowers or completely 

eliminates the ability of known HA antibodies to inhibit NA function measured by NI assay. 

A/Puerto Rico/8/1934 (PR8, H1N1) suspended in infected allantoic fluid and 0.5% Triton 

X-100 were co-incubated for 10 mins before the completion of the NI assay as described 

previously. We performed this experiment with cloned hybridoma supernatant containing 

antibodies 1G9 and 1G3 as well as with a 2H9 antibody control. Triton X-100 has been 

shown to stabilize NA (13), and as expected it’s addition did increase NA activity in the PR8 

control to above 100% relative activity of insolubilized virus. However, we found that the 

addition of detergent eliminated NA inhibition by 1G3 and 1G9 previously seen. Triton 

treatment also removed 2H9 mediated NA inhibition. (Figure 14).  According to the 

hypothesis set forth by Yewdell et al, these data imply that 1G3 and 1G9 inhibit NA 

indirectly. 

The most well studied and common neutralizing antibodies to influenza A are those 

like 2H9 and 2A6 which target the globular HA head. These antibodies prevent virus from 

binding and entering the host cell during infection as well as prevent the HA mediated 
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agglutination of red blood cells (102). In contrast, antibodies which target NA or the HA 

stem have been shown to lack the ability to inhibit hemagglutination (69, 125). MAb 1G3 

showed the most significant NI as a purified antibody (~50% reduction in NA activity in the 

absence of detergent) and was next tested for its ability to inhibit the activity of the viral HA 

head through a Hemagglutinin Inhibition (HAI) assay. Briefly, columns 1, 2, and 3 of a 96 

well microtiter plate are loaded with antibody. Virus suspended in infected allantoic fluid at 

an experimentally determined HA titer of 1:16 is then added to columns 2-12. Virus is not 

added to column 1 to assess any possible nonspecific hemagglutination. Column 2 contains 

virus with no antibody as a positive control for virus mediated agglutination. Starting in 

column 3, purified antibody is serially diluted across the plate and an equal volume of 0.5% 

chicken red blood cells is added to each well. While some viruses require the use of 

alternative blood sources, like guinea pig or turkey, both PR8 and NYMC X-162 readily 

agglutinate chicken red blood cells. Agglutination is seen as an opaque well while the 

absence of agglutination is visualized by the pooling of red blood cells at the bottom of the 

well, forming a “button” (64). 

HAI assays were performed with purified 1G3 and 1G9 against both immunizing 

viruses which carry different HA proteins; PR8 (H1N1) and NYMC X-162 (H3N1, 

A/Wisconsin/67/2005 HA parent) (Figure 15). Experiments were performed twice, each in 

duplicate. HA mediated agglutination of red blood cells was clearly seen in all columns 3-

12, despite the presence of purified mAb 1G3 or 1G9 at concentrations as high has 1 mg/mL 

in column 3. These data show that mAbs 1G3 and 1G9 cannot inhibit the agglutination of 

red blood cells of either the H1 or H3 proteins and therefore likely does not bind to the 

globular HA head.  
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A second panel of hybridoma cell lines from an alternative immunization protocol were 

also developed, referred to as Immunization Protocol Beta. HA is immunodominant in 

natural and laboratory infections as well as following vaccination (80). Immunization 

Protocol Beta (Figure 10) differs from Alpha in that HA+NA preparations were co-injected 

with a mAb specific for PR8 HA, 2A6. 2A6 has been mapped by Dr Yu He to bind the HA 

globular head of PR8. This protocol was designed with the intention of encouraging an 

immune response to the PR8 NA, as HA would be theoretically occluded from immune 

recognition due to the presence of bound 2A6. During Immunization Protocol Beta, sera on 

Day 40 was collected for ELISA and for NA specificity testing via an NA inhibition assay. 

Sera from all seven animals enrolled in Immunization Protocol Beta showed the ability to 

inhibit PR8 NA (Figure 11). Fusions of splenic B cells from those animals with the most 

significant ELISAs to generate hybridomas for further screening are currently ongoing.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



46 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9: Immunization Protocol Alpha. N=8 female BALB/C mice (3 months old at D.0) 

were immunized intraperitoneally first with A/Puerto Rico/8/1934 (PR8, H1N1) HA + NA 

protein on days 0 and 14 followed by NYMC X-162 (H3N1, A/Wisconsin/67/2005 parent) 

HA + NA protein preparation on day 28. Sera from immunized animals were screened by 

ELISA against PR8 HA+NA on Day 40 and hybridoma fusions performed post intravenous 

antigen boost and sacrifice on D.45. Image created with BioRender© 
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Figure 10: Immunization Protocol Beta. N=7 female BALB/C mice (3 months old at D.0) 

intraperitoneally immunized with A/Puerto Rico/8/1934(PR8, H1N1) and NYMC X-162 

(H3N1, A/Wisconsin/67/2005 parent) HA+NA purified protein preparation co-injected with 

PR8 HA head specific mAb 2A6 developed by Dr. Yu He. Sera were screened by ELISA on 

Day 40 and hybridoma fusions performed post intravenous antigen boost and sacrifice on 

D.45. Image created with BioRender© 
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Figure 11: Relative neuraminidase Activity of sera collected from animals enrolled in 

Immunization Protocol Beta (n=7). Sera from immunized animals was tested for the ability 

to inhibit NA activity using a Neuraminidase Inhibition (NI) assay against both immunizing 

viruses, A/Puerto Rico/8/1934(PR8, H1N1) and NYMC X-162 (H3N1, 

A/Wisconsin/67/2005). NA Activity is shown relative to uninhibited viral controls. Sera from 

each animal showed the ability to significantly inhibit the activity of NA of both PR8 

(orange) and NYMC X-162 (red). Experiments performed in duplicate.  
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Figure 12: Relative neuraminidase activity following incubation of A/Puerto 

Rico/8/1934(PR8, H1N1) with seven antibody candidates developed from Immunization 

Protocol Alpha as conditioned hybridoma supernatant. Data shown are relative to viral PR8 

control and PR8 specific anti HA mAb 2H9 supernatant control. Supernatant from each of 

seven hybridoma fusions negative for rHA binding by Western blot showed the ability to 

inhibit the NA of PR8 by an average of 20%. Cellular supernatant likely contains additional 

NA substrate above the supplemented fetuin, therefore the HA targeted 2H9 showed NA 

activity above the viral control. Experiments performed in duplicate. * = p<0.05, ** = 

p<0.01, *** = p<0.001 
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Candidate 
mAb 

Isotype 

2E9 IgM 

3E9 IgM 

1G3 IgG1 

2A7 IgG1 

1G9 IgG1 

2G5 IgM 

1D8 IgM 

 

Table 2: Candidate monoclonal antibodies identified following Immunization Protocol 

Alpha then subsequently purified. Antibodies shown failed to bind recombinant PR8 HA on 

Western Blot but reacted with PR8 HA+NA protein by ELISA. Of seven antibody candidates, 

four were of the IgM subclass while the remaining three were IgG1. 1G3, 2A7, and 1G9 are 

from the same parental mouse. However 1G3 and 1G9 were derived from different parental 

splenic B cells. 
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Figure 13: Relative neuraminidase activity following incubation of virus and purified 

antibody at a concentration of 1µg/mL, shown compared to viral PR8 (A/Puerto 

Rico/8/1934, H1N1) control and anti-HA head mAb 2H9 antibody control. MAbs 1G3, 2A7, 

and 1G9 (IgG1) each resulted in roughly a 50% reduction in NA enzymatic function. HA 

targeted mAb 2H9 (IgG1) showed a reduction of almost 20% despite being targeted to the 

HA head, likely due to steric hindrance. Experiments performed in duplicate. * = p<0.05, 

** = p<0.01, *** = p<0.001 
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Figure 14: Neuraminidase (NA) activity following incubation of virus and antibody 

containing hybridoma supernatant shown relative to PR8 (A/Puerto Rico/8/1934, H1N1) 

viral control. Virus suspended in allantoic fluid was pretreated with 0.5% Triton X-100 

prior to assay to solubilize virion membranes. Triton has been shown to stabilize NA, 

therefore an increase in NA activity was expected with the uninhibited PR8 virus control 

treated with Triton. Antibodies 1G3 and 1G9 showed a reduction of roughly 40%, which 

was completely reversed upon detergent treatment. 2A6 is an HA head targeted antibody 

control, which again showed some inhibition of PR8 NA that was similarly ablated 

following triton treatment. Experiments performed in quadruplicate. : * = p<0.05, ** = 

p<0.01, *** = p<0.001 
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Figure 15: Representative hemagglutination inhibition (HI) assay plate following 

incubation of virus and purified 1G3 antibody with chicken red blood cells. Antibody 

candidate 1G3 was tested at a high starting concentration of 1 mg/mL (column 3) and 

serially diluted to column 12. Column 1 contains no virus as a negative control to assess 

nonspecific agglutination. Column 2 contains no antibody as a positive control of 

agglutination activity by the virus. Both immunizing viruses were tested, A/Puerto 

Rico/8/1934 (PR8, H1N1, top rows) and NYMC X-162 (A/Wisconsin/67/2005 HA parent, 

H3N1, bottom rows). Agglutination of the red blood cells by both viruses was seen in all 

rows of columns 2-12, demonstrating that mAb 1G3 lacks the ability to inhibit either the H1 

or H3 HA head. 
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Aim 2. Characterize binding profile and epitope of candidate mAbs 

  Candidate mAb 1G3 is an IgG1 antibody that displayed an interesting activity profile 

in our primary screen. 1G3 showed NA inhibition in an NI assay (Figures 12, 13) which is 

indicative of an antibody that can block NA enzymatic function. However, 1G3 lacked NA 

inhibition activity following virus pre-treatment with detergent (Figure 14) and additionally 

lacked the ability to inhibit HA head mediated agglutination (Figure 15). These data 

together suggest an epitope outside of NA and away from the HA head, possibly on the HA 

stem. In order to confirm mAb 1G3’s viral target, Western blots were performed.  

First, commercially available recombinant A/Puerto Rico/8/1934 HA H1 (PR8, 

H1N1) (rHA) as well as both immunizing viruses NYMC X-162 (H3N1, 

A/Wisconsin/67/2005 HA parent), and native PR8 (H1N1) as infected allantoic fluid were 

run on a 4-12% gradient Bis Tris gel in non-reducing conditions (Figure 16). MAb 1G3 

containing conditioned hybridoma supernatant was used as the primary probing antibody at 

a dilution of 1:128,000. An infrared goat anti-mouse secondary was incubated with the 

membranes and all blots were visualized using an Odyssey Scanner.  Candidate mAb 1G3 

showed the ability to bind both NYMC X-162 and native PR8. Bands were seen at roughly 

70, 125 and 260 kDA for PR8 and 85, 100, and 130 kDA for NYMC X-162. When repeated 

in reducing conditions, a faint band could also be seen around 25 kDa for both immunizing 

viruses in addition to a larger, significant band between 55 and 75 kDa (Figure 17). In both 

reducing and non-reducing conditions, 1G3 was not able to bind to the recombinant PR8 HA 

H1 subunit despite displaying excellent affinity for native PR8 in allantoic fluid. 

MAb 2A6 containing hybridoma supernatant was used as the primary probing 

antibody as a blotting control. 2A6 is a PR8 specific anti-HA head antibody previously 
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identified by Dr Yu He. 2A6 showed excellent affinity for native PR8 in non-reducing 

conditions, with a band visible at roughly 70 kDa (Figure 16). 2A6 produced no bands in 

reducing conditions (Figure 17). 

The band pattern on the 1G3 probed blot was consistent with what was seen when 

probing with anti-HA mAb 2A6 – both produced a major signal at roughly 70 kDA for PR8. 

2A6 has been mapped to bind HA1, the larger component of the HA0 monomer. We 

therefore hypothesized that 1G3 also bound HA, not NA, consistent with what we observed 

in the primary screen. HA in infected allantoic fluid exists as cleaved HA1 and HA2 

subunits, the uncleaved HA0 monomer, and the functional HA trimeric unit. We conjectured 

that the bands seen on 1G3 probed non-reducing blot corresponded to HA1, HA0 monomer, 

the HA trimer, as well as heavy oligomeric forms at the top of each well.  

In reducing conditions, mAb 1G3 produced a significant band at roughly 55 kDa for 

PR8 (H1N1) and very near to 70 kDa for NYMC X-162 (H3N1), as well as a faint second 

band at 25 kDa for each (Figure 17). For PR8 (H1N1), these two bands match known 

molecular weights for glycosylated HA1 and HA2, the two peptide components of the 

cleaved monomer that in reducing conditions are resolved into two bands (117). However, 

the slightly larger molecular weight for the dominant band observed for NYMC X-162 

(H3N1) could be as a result of increased glycosylation on H3 or because mAb 1G3 is 

binding uncleaved HA0 present in the fluid. It is important to note that the size of HA seen 

on Western blots varies greatly between virus subtypes as a result of major differences in 

glycosylation patterns (63, 132).   

The non-reducing and reducing blots taken together with comparison to the 2A6 

control bands make an NA target for mAb 1G3 unlikely. The influenza NA monomer has a 
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smaller molecular weight of roughly 60 kDa in non-reducing conditions but can form higher 

molecular weight oligomers. However, NA is a single polypeptide lacking distinct subunits 

and does not separate into separate bands in reducing conditions (104). 

Molecular weights and banding patterns corresponding to HA were initially 

surprising, as PR8 (H1N1) and NYMC X-162 (H3N1) share an NA protein but differ in 

their HA components. NYMC X-162 is a 7:1 reassortant virus, meaning it has all PR8 genes 

except the HA which is derived from A/Wisconsin/67/2005 (H3N2). The HA head is 

extraordinarily immunodominant in natural and laboratory infections and these head 

antibodies are characterized by strict strain specificity (82). However, these blots would 

appear to suggest that 1G3 was binding both H1 (group 1 IAV) and H3 (group 2 IAV). We 

next performed a series of several Western blots to confirm the unique heterosubtypic 

binding character of mAb 1G3. MAb 1G3 was first tested against the NYMC X-162 wild 

type HA parent, A/Wisconsin/67/2005. We also tested the ability of 1G3 to bind 

A/California/07/2009, which is a pandemic H1N1 virus still circulating in people and the 

causative virus of the 2009 “Swine Flu” (73). MAb 1G3 successfully bound each of these 

viruses at a molecular weight corresponding with HA, despite the fact they each carry a 

different HA protein (Figure 18). The banding pattern observed was similar as in the 

previous reducing blot, however neither A/California/07/2009 (H1N1pdm) nor 

A/Wisconsin/67/2005 (H3N2) appeared to show the second lower weight molecular band.  

Candidate mAb 1G3 thus far has shown the ability to recognize various putative HA 

targets, including wild type H1, H1 pandemic, and H3 viruses in addition to an H3 

reassortant virus, which represent members of both Groups 1 and 2 influenza A viruses. 

Because HA is known to drift significantly over time, we were interested to determine if this 
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broadly binding character was limited temporally to relatively recently emerged viruses or if 

1G3 was capable of binding H1 and H3 viruses from decades past.   

We used mAb 1G3 to probe two additional H1N1 viruses of non-pandemic lineage, 

A/Hong Kong/50/2014 and A/New Caledonia/20/1999. We also tested two additional H3N2 

viruses, A/South Dakota/06/2009 and A/Moscow/10/1999. Viruses were chosen to be 

representative of circulating wild type viruses from both H1 and H3 subtypes (Groups 1 and 

2 respectively) over the last two decades. This is in addition to previously tested immunizing 

virus PR8, which was isolated in 1934. We also elected to include two influenza B viruses, 

B/Massachusetts/02/2012 (Yamagata) and B/Brisbane/60/2008 (Victoria). These are both 

wild type viruses, representing the two major lineages of influenza B viruses. Using 

uninfected allantoic fluid as a protein background control, we found that mAb 1G3 was able 

to successfully bind all viruses tested (Figure 19). Each virus, including both influenza B 

strains, showed a strong band at roughly 70 kDa, consistent with previous blots. A/South 

Dakota/06/2007 also showed the second smaller band at roughly 25 kDa that was observed 

with PR8 and NYMC X-162.   

These results were startling, as a mAb that can bind multiple viruses not only within 

a subtype but across IAV groups is a relatively rare occurrence. There are roughly of dozen 

of these cross reactive antibodies in the literature, some isolated from isolated patients and 

some developed following successive immunization of animals with multiple HA subtypes 

(29, 121, 140). An antibody that can bind both influenza A and influenza B is the rarest of 

influenza antibodies. To date, there is one antibody published and recently patented that can 

inhibit both influenza A and B in vivo, CR9114 (32).   



58 

 

Despite not binding to uninfected allantoic fluid, we next assessed the possibility that 

the 1G3 epitope in part or in whole consisted of glycan motifs. An antibody to sugar motifs 

may be able to bind a wide range of viruses, but would negate its relevance as a reagent, as a 

means of epitope discovery, or as a potential treatment modality. Previous isotyping of 1G3 

described in Specific Aim 1 revealed it to be IgG1, making an entirely glycan epitope 

unlikely as class switching from IgM to IgG had occurred in the immunized mouse. Class 

switching in a murine model, as in humans, is most often as a result of protein stimulation 

(30). In order to establish the molecular character of the epitope target, we decided to treat 

previously blotted viruses PR8 (H1N1), A/California/07/2009 (H1N1pdm), and 

A/Wisconsin/67/2005 (H3N2) with PNGase F. PNGase F is commercially available enzyme 

purified from Flavobacterium meningosepticum that cleaves N-linked glyco-motifs from 

protein (72, 116). Subsequent to overnight enzyme treatment of infected allantoic fluid, 

mAb 1G3 was still capable of binding each virus, but with diminished affinity (Figure 20). 

These data supported our hypothesis that the 1G3 epitope is modulated by glycan, either by 

direct binding to some critical carbohydrates or most likely to a conformational epitope 

supported by glycan scaffolding. However, because the signal was indeed present after 

enzyme treatment these data also demonstrate that the epitope is not entirely composed of 

sugars and 1G3 does in fact interact with amino acids of HA.   Candidate mAb 1G3 thus far 

was shown to bind wild type and reassortant H1, H1pdm H3, and B viruses (from both 

lineages) spanning the last 20 years. The 1G3 epitope was not present in uninfected allantoic 

fluid and was not dependent on glycans alone.  

In order to confirm candidate mAb 1G3 was indeed binding the viral HA target and 

not a identically sized protein present as a result of propagation in eggs, we next performed a 
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series of blots with purified HA+NA from PR8 as well as whole purified virus NYMC X-

187 and HA+NA from NYMC X-179A. Both NYMC X-187 and NYMC X-179A are high 

yield reassortant viruses prepared via classical reassortment by Jean Marie Silverman and 

Barbara Pokorny in our lab as candidate vaccine seeds. NYMC X-187 is an H3N2 virus with 

HA and NA genes from A/Victoria/201/2009 and six internal genes of PR8. NYMC X-179A 

is an H1N1pdm virus with the HA, NA, and PB1 genes of A/California/07/2009 and the five 

remaining genes from PR8.   

Virus purification is a multistep process that begins with amplifying and harvesting 

virus from infected embryonated chicken eggs. Allantoic fluid was pooled and spun to 

remove cellular debris, and then centrifuged at high speed in an ultracentrifuge to pellet 

virus. Finally, the viruses were purified using a sucrose gradient whereby virus collects at 

the 30%-60% interface. This solution was again centrifuged at high speed (20,000 rpm) 

before being soaked overnight in a calcium containing buffer to maintain the structural and 

enzymatic integrity of HA and NA (13). Viral protein content was measured by a standard 

Lowry assay. 

First, 10 µg of each purified virus or viral HA+NA were blotted in non-reducing 

conditions with 50 µg purified Bovine Serum Albumin (BSA, Sigma) as a binding control. 

As anticipated from previous blots, mAb 1G3 bound purified PR8 (H1N1) HA+NA, NYMC 

X-187 (H3N2), and NYMC X-179A (H1N1pdm) HA+NA, but not the BSA control. PR8 

specific anti-HA mAb 2A6 only bound purified PR8 (H1N1) HA+NA, failing to bind the 

other HA subtypes and the BSA control (Figure 21). This blot was repeated using 1 µg of 

each purified virus to prevent overexposure.  Purified ovalbumin was used as an additional 

binding control.  Consistent with blots done from allantoic fluid, major bands were seen at 
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roughly 55 kDa for the H1 and H1pdm viruses (PR8, NYMC X-179A) and 70 kDa for the 

H3 virus (NYMC X-187) in reducing conditions. Additionally, both the H1 and H1pdm 

viruses showed the second putative HA2 band at 25 kDa. No binding to either control (BSA 

or ovalbumin) was observed despite high protein load (Figure 22). This blot was repeated 

using PR8 specific anti-HA mAb 2A6 as the primary antibody control with ovalbumin as a 

protein binding control. As expected, major banding was only observed for purified PR8 

HA+NA in non-reducing conditions (Figure 23). Again, it was observed that the banding 

pattern for PR8 was identical either with known HA antibody 2A6 and our candidate 1G3.  

We also observed that in reducing conditions bands produced with 1G3 were of 

diminished intensity compared to equivalent blots in non-reducing conditions. This is a 

pattern commonly associated with discontinuous epitopes, contrasted with linear epitopes 

wherein binding should produce an identical signal regardless of protein shape (45, 61). 

While conventional wisdom held that antibodies used to probe Western blots could only 

recognize linear epitopes, it has since been established that some proteins may undergo 

renaturation following transfer. Therefore positive results on a Western blot, especially 

when signal is diminished by reduction, can also be indicative of recognition of a 

discontinuous or conformational epitope (143).  

By using purified virus or viral protein devoid of cellular or host derived debris, we 

were able to confirm a unique pattern where the major band from both H1 and H1pdm 

viruses appeared to be of lower molecular weight than that seen with the H3 virus (70 kDa 

vs 50 kDa). This could be as a result of increased glycosylation of the H3 virus making the 

HA heavier, or because mAb 1G3 binds HA1 of H1 viruses and the larger HA0 monomer of 

H3 viruses. We hypothesized that the 1G3 epitope lies on HA1 subunit, but the 3D 
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conformation necessary for binding is only present in the HA0 monomer of H3 viruses. In 

order to test this hypothesis, the same three purified viruses were subject to overnight 

treatment with trypsin to cleave any HA0 monomers present in solution and then blotted in 

reducing conditions to resolve all HA0 into its two subunits, HA1 and HA2. NYMC X-187 

(H3N2) treated with trypsin could no longer be bound by 1G3 while PR8 HANA (H1N1) 

and NYMC X-179A (H1N1pdm) retained identical banding pattern (Figure 24). These data 

support that the 1G3 target epitope is slightly altered for the H3 viruses, as was suggested by 

differences in banding weight. This also suggests that although the epitope is retained in 

reducing conditions, it is dependent on conformation of the HA subunits as we suspected 

from the observed decrease in affinity following reduction or the removal of glycans by 

PNGase F.  

As another approach to confirming a shared HA epitope as the target of 1G3, next 

decided to test a panel of recombinant HA proteins. Previously we had demonstrated that 

mAb 1G3 did not bind recombinant PR8 H1 HA. However, the PR8 specific 2A6 antibody 

also showed low affinity in Western blot and we suspected that recombinant protein may 

have been compromised in storage (Figure 16). Additionally, we tested a recombinant HA 

from A/Perth/16/2009 (H3) as well as A/Vietnam/1194/2004 (H5). The recombinant protein 

from A/Perth/16/2009 (H3) was sourced from baculoviral cells and was not full length, 

instead encoding only the HA1 domain. Binding would demonstrate not only that 1G3 could 

bind this particular H3 virus, but that it bound the glycosylated HA1 subunit as opposed to 

the H3 HA0 monomer as we suspected was the case from the trypsin blots. 

A/Vietnam/1194/2004 is an H5 virus and is a Biosafety Level 3 highly pathogenic avian 

influenza (HPAI) (3, 99). Its HA component alone as a recombinant protein can be used at 
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BSL-1 for Western blotting, allowing us the opportunity to test this previously untested HA 

subtype. Both the recombinant HA from PR8 (H1) and A/Vietnam/1194/2004 (H5) were the 

extracellular domains secreted from HEK293 cells. MAb 1G3 was not able to bind these 

recombinant proteins in reducing or non-reducing conditions (Figure 25), despite previously 

binding PR8 in allantoic fluid and as purified protein. This is most likely explained by the 

baculoviral or HEK293 cell systems being incapable of maintaining proper shape for 1G3 

binding, either in terms of epitope fidelity or 3D conformation. It’s also possible that either 

as only HA1 or only the extracellular domain, there are amino acids in the membrane 

proximal portion of the HA stem that were missing or incomplete. Finally, it’s also possible 

that as recombinant proteins they are not available in the active HA trimer formation, which 

may be necessary for 1G3 binding. While recombinant proteins are useful, they have been 

cited as poor antibody validation tools (12, 128). 

While we previously established that the 1G3 epitope is not glycan alone, next we 

chose to test two control viruses for 1G3 binding:  Sendai Virus and Respiratory Syncytial 

Virus (RSV). The Paramyxovirus group includes parainfluenza viruses (Sendai), 

Metapneumonia virus, and RSV. These viruses are responsible for a growing number of 

hospitalizations in the United States, especially among children and elderly. Often these 

infections are misdiagnosed as influenza, as symptoms are largely overlapping (21, 110). 

Paramyxoviruses are closely related to Orthomyxoviruses. Like influenza, RSV and Sendai 

are enveloped viruses with a single stranded negative sense RNA genome. However, unlike 

flu their genomes are contiguous and undergo replication in the cytoplasm of infected cells 

(37). While Sendai virus does not infect humans, it is often used as an animal model for 

human parainfluenza infections. Sendai is a well-documented agricultural blight, as it can 
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cause death in chicken stocks (78). Because mAb 1G3 failed to bind any of the recombinant 

proteins tested, we analyzed Sendai and RSV as sucrose gradient purified native protein. 

The Sendai virus used was amplified in the same eggs from the same distributor we use 

internally for influenza, allowing it to serve as a control for egg propagation effects in 

addition to a binding control as a closely related virus. 1G3 did not bind native RSV or 

Sendai in either reducing or non-reducing conditions (Figure 26).  

These blots suggest that candidate mAb 1G3 is a unique antibody that can bind HA 

of H1, H1 pandemic, and H3 viruses of influenza A as well as the HA of two distinct 

lineages of influenza B viruses. Banding pattern and molecular weight analysis suggests that 

the epitope of 1G3 is conformational and lies predominantly on HA1, as each virus tested 

shows a high molecular weight band between 70 and 80 kDA. However at least a part of the 

epitope may be found on HA2 for some viruses, observable as a second lower molecular 

weight band at 25 kDa. Trypsin cleavage ablates the consensus sequence for H3 virus 

NYMC X-187, implying that some part of the antibody footprint lies in or around the 

HA1/HA2 cleavage site located at the C terminal end of HA1. It's also possible that cleavage 

disrupts necessary conformation for H3 binding, but not H1 binding. Interestingly, mAb 

1G3 was not able to bind any recombinant proteins; further supporting a conformational 

epitope that may not be easily recapitulated by non-native protein. Blot results are 

summarized in Figure 27.  

To investigate whether there was any apparent sequence homology between 

heterosubtypic viruses at this predicted HA1/HA2 epitope, we completed an in silico 

sequence alignment of the HA segments of A/Puerto Rico/8/1934 (PR8, H1N1, ID 

CY045764), A/California/07/2009 (H1N1pdm, ID CY121680) and A/Victoria/201/2008 
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(H3N2, ID KM821344). Analysis was performed using sequences from the NCBI Influenza 

Database using LaserGene Suit MegAlign software following alignment by Clustal W 

method.   

We observed that these three viruses share significant homology centered about the 

HA1/HA2 cleavage site despite their different IAV grouping (Figure 28). This is 

unsurprising, as every wild type IAV HA subtype (with the exception of HA14) share the 

same P4-P1 sequence for recognition by trypsin-like proteases in the host. Cleavage 

consistently occurs at the same invariant arginine residue shared by nearly every influenza 

virus, including these three (109). Only HPAI viruses, which contain a multibasic cleavage 

site, differ (112). The fusion peptide at the N terminal region of HA2 is one of the most 

highly conserved peptide sequences across all influenza viruses, however our blotting data 

suggested the majority of the 1G3 epitope is on the HA1 peptide as only some viruses 

displayed the lower molecular weight HA2 band. While sequence hormonology around and 

upstream of the cleavage site present on HA1 is encouraging, most epitopes are not 

continuous. It’s likely that the true epitope of mAb 1G3 is dependent on the conformation of 

the C terminal domain of HA1 both in the context of the monomer and as a resolved subunit.  

Epitope mapping of mAb 1G3 against PR8 HA was completed by PEPperPRINT via 

PEPperMAP
®
 linear epitope mapping using a peptide microarray chip. The sequence of 

A/Puerto Rico/8/1934 (ID B4UPA6) HA was submitted and elongated with neutral linkers 

(GSGSGSG) at both the N and C termini to prevent truncated peptides. The sequence was 

then translated into 15 amino acid peptides with an overlap of 14 amino acids, yielding 565 

unique peptides printed in duplicate (Appendix 2: Peptide Map). Unlike similar 

technologies, peptides were synthesized directly unto the chip to eliminate the need for 
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immobilization. Between different printing steps, “amino acid toners” were melted to release 

amino acids and initiate synthesis. Following washing, the N-terminal Fmoc group was 

unprotected to allow for the next round of toners to be printed and coupled. Control c-myc 

(EQKLISEEDL) peptides were spotted along the perimeter of the chip. The chip was then 

incubated with purified 1G3 at concentrations of 10 µg/mL and 100 µg/mL and stained with 

a DyLight 680 goat anti-mouse secondary before being scanned with a LI-COR Odyssey 

Imaging System. Quantification of spot intensities was done with a proprietary software, 

PepSlide
®
 Analyzer.  

Following analysis, peaks of fluorescence associated with binding failed to reach 

statistical significance. This is mostly likely attributed to our conformational epitope being 

analyzed by a software program which is designed to detect linear binding. Linear binding is 

seen as peaks of neighboring peptides in a tight bell curve centered on the epitope, as 

opposed to several distinct peaks along the protein as we observed. However, the raw data 

provides some valuable insight into a proposed 1G3 epitope.  At both 10 and 100 µg/mL, 

1G3 showed nine significant peaks in fluorescent intensity (Figure 29). There was perfect 

agreement regarding the location of these peaks between the two concentrations. Two of 

these, corresponding with peptides LSSVSSFERFEIFPK and GKEVLVLWGIHHPSN, fall 

in the receptor binding domain and are unlikely to be involved in the neutralizing 

mechanism of 1G3 in context with the lack of observed HA inhibition activity. However, 

two of the remaining seven peaks were consistent with our predicted epitope based on 

Western blotting and in silico analysis. Peptides PVTIGECPKYVRSAKL and 

YAADQKSTQNAINGIT fall at the C terminus of HA1 and N terminus of HA2 within the 

fusion peptide sequence, straddling the protease cleavage site (Figure 30). These epitopes 
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were visualized on the HA HA) monomer and active HA trimer using iCn3D, a web-based 

protein structure viewer hosted by NCBI (Figure 31). These peaks tracked to the HA stem, 

sitting below the globular head and surrounding the fusion peptide located on the interior of 

the trimer. 

The predicted 1G3 epitope was then compared with the published epitopes of 

previously identified broadly neutralizing stem antibodies: CR9114 (32), F16 (14), C05 

(36), and C179 (85). While we were limited to 15 amino acid peptide sequences, epitopes of 

these other antibodies have been established to a single amino acid resolution using X-ray 

crystallography. Our epitope appeared to correspond remarkably well with two known HA 

stem antibodies, CR9114 and C179 (Figure 30). CR9114 is the only published antibody that 

can protect mice from lethal challenge of both groups of influenza A as well as both lineages 

of influenza B (32). C179 was discovered in 1993 and is the first antibody identified that 

could neutralize multiple subtypes of influenza A, however only within Group 1 (85). While 

their epitopes are similar, and in fact overlap at several positions, the binding of C179 is 

rotated 45° from CR9114. Interestingly, C179 has a similar approach angle to the 

epitopically distinct F16 which targets the protease recognition site. It has been 

experimentally determined that group and subtype specific differences at amino acid 

position 111 of HA2 prevent C179 from binding Group 2 IAV (31). While Group 1, like 

A/Puerto Rico/8/1934 (H1N1), feature a histidine; Group 2 strains instead code for threonine 

or alanine. This results in a subtly different conformation of an indole side chain located at 

position 21 on HA2 that prevents interaction with a phenylalanine at the tip of the heavy 

chain complementarity determining region 3 of C179. Mutating His111Thr on HA2 

abrogated C179 binding and underlies its inability to bind Group 2 viruses (31, 66, 85). We 
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hypothesize that because of the more broadly neutralizing character of 1G3, its angle of 

approach is likely more similar to CR9114 which is unaffected by an amino acid change at 

position 111. Both Cr9114 and C157 antibodies target the HA fusion peptide located in the 

stem domain. Functionally, they prevent low pH induced conformational changes to 

HA1/HA2 necessary for release of the virion into the cytoplasm in vitro (22, 115, 137). 

While the linear peptide mapping was performed with the HA sequence of A/Puerto 

Rico/8/1934, we also saw that 1G3 can efficiently bind to heterologous viruses. In order to 

identify any specific amino acids that may be major contributors to the epitope, we 

performed a sequence alignment of PR8 (H1N1), A/Hong Kong/4801/2014 (H3N2) and 

B/Brisbane/60/2008 (Victoria) (Figure 32). Interestingly, over half of the amino acids in the 

proposed 1G3 binding site were conserved between these three very distinct influenza 

viruses, 16 out of 30 residues in total. This demonstrates that although these viruses 

represent both groups of influenza A as well as influenza B, there is significant conservation 

in the stem that can be exploited for broad neutralizing potential. 

Antibody candidate 1G3 has a conformational epitope that may lie at the C terminal 

region of HA1 and the N terminal region of HA2. It appears to share many amino acids with 

the published epitopes of similarly broadly neutralizing stem targeted antibodies, like 

CR9114 and C179. However, mAb 1G3 is a unique antibody that is epitopically similar to 

both C179 and CR9114, sharing amino acids in both HA1 and HA2 footprints, but like 

CR9114 is able to bind both groups of influenza A as well as influenza B.  
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Figure 16: Non-reducing Western blot of Recombinant A/Puerto Rico/8/1934 HA (PR8, 

rHA, H1), NYMC X-162 (H3N1, A/Wisconsin/67/2005 HA parent) and native PR8 (H1N1) 

in allantoic fluid. 1G3 (left) or anti-H1 HA head antibody 2A6 (right) containing hybridoma 

supernatant was used as primary antibody and an infrared goat anti mouse secondary was 

used to visualize bands. Each lane was loaded with 20 µL infected allantoic fluid or 0.1 µg 

rHA as noted. 1G3 successfully bound both PR8 and X-162 to the exclusion of recombinant 

PR8 H1 HA.   
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Figure 17: Reducing Western blot of Recombinant A/Puerto Rico/8/1934 HA (PR8, rHA, 

H1), NYMC X-162 (H3N1, A/Wisconsin/67/2005 HA parent) and native PR8 (H1N1) in 

allantoic fluid. 1G3 (left) or anti-H1 mAb 2A6 (right) containing hybridoma supernatant 

was used as primary antibody and an infrared goat anti mouse secondary was used to 

visualize bands. Each lane was loaded with 20 µL infected allantoic fluid or 0.1 µg rHA. 

Where 2A6 does not bind in reducing conditions, 1G3 bound native PR8 and X-162 with 

both a high (60-70 kDA) and lower (25 kDA) molecular weight band.  
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Figure 18: Reducing Western blot of A/California/07/09(H1N1pdm), 

A/Wisconsin/67/05(H3N2), and A/Puerto Rico/8/1934 (PR8, H1N1) in allantoic fluid using 

1G3 (left) or anti-H1 HA mAb 2A6 (right) containing hybridoma supernatant as primary 

antibody. An infrared goat anti mouse secondary was used to visualize bands. Each lane 

was loaded with 10 µL infected allantoic fluid. 1G3 successfully bound the H1, H1pdm, and 

H3 wild type viruses.  

 

  



71 

 

 

 

 

 

 

Figure 19: Reducing Western blot of two H3N2, two H1N1, and two influenza B viruses in 

allantoic fluid. Viruses from left to right (lanes 1-8): A/Hong Kong/50/2014 (H3N2), 

A/Moscow/10/1999 (H3N2), A/New Caledonia/20/1999 (H1N1), A/South Dakota/06/2007 

(H1N1), B/Brisbane/60/2008 (Victoria), B/Massachusetts/02/2012 (Yamagata Lineage). 

MAb 1G3 containing hybridoma supernatant was used as primary antibody and an infrared 

goat anti mouse as the secondary to visualize bands. 1G3 bound both the influenza A and 

influenza B viruses tested, despite varying HA proteins across subtype, group, and lineage.   
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Figure 20: Non-reducing Western blot A/Puerto Rico/8/1934 (PR8,H1N1), 

A/California/07/2009 (H1N1pdm), and A/Wisconsin/67/2005(H3N2) using 1G3 containing 

hybridoma supernatant as primary antibody and an infrared goat anti mouse as the 

secondary to visualize bands. Each lane was loaded with 20 µL infected allantoic fluid. Left 

panel shows virus treated with a buffer control while viruses in lanes 5, 6, and 7 were 

treated with PNGase F, an enzyme that removes N-linked glycosylation. All viruses were 

incubated overnight at 37°C prior to blotting. While affinity was lower, 1G3 still bound 

viruses devoid of sugar groups.  

 

  



73 

 

 

 

 

 

 

Figure 21: Non-reducing Western blot of purified A/Puerto Rico/8/1934 (PR8, H1N1) 

HANA, NYMC X-187 (H3N2), and NYMC X-179A (H1N1pdm) HANA. MAb candidate 1G3 

(left) or anti-PR8 HA 2A6 (right) containing hybridoma supernatant were used as primary 

antibodies followed by an infrared goat anti mouse secondary to visualize bands. Each lane 

was loaded with 10 µg purified virus/viral protein or bovine serum albumin control (lanes 4 

and 9). 1G3 successfully bound virus purified from egg protein. Blue signal is an artifact of 

overexposure during membrane scanning. 
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Figure 22: Non-reducing (left) and reducing (right) Western blot with purified A/Puerto 

Rico/8/1934 (PR8, H1N1) HANA, NYMC X-187(H3N2), and NYMC X-179A (H1N1pdm) 

HANA using 1G3 hybridoma supernatant as primary antibody, followed by an infrared goat 

anti mouse secondary to visualize bands. Each lane was loaded with 1 µg purified viral 

protein or 80 µg Ovalbumin control.  
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Figure 23: Non-reducing (left) and reducing (right) Western blot with purified A/Puerto 

Rico/8/1934 (PR8, H1N1) HANA, NYMC X-187(H3N2), and NYMC X-179A (H1N1pdm) 

HANA using PR8 specific anti-HA 2A6 hybridoma supernatant as primary antibody, 

followed by an infrared goat anti mouse secondary to visualize bands. Each lane was loaded 

with 1 µg purified viral protein or 80 µg Ovalbumin control. Unlike 1G3, blotting control 

2A6 did not show hetero-HA reactivity.  
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Figure 24: Reducing Western blot of purified A/Puerto Rico/8/1934 (PR8, H1N1) HANA, 

NYMC X-187 (H3N2), and NYMC X-179A (H1N1pdm) HANA. MAb candidate 1G3 

containing hybridoma supernatant was used as primary antibody followed by an infrared 

goat anti mouse secondary to visualize bands. Each lane was loaded with 1 µg purified virus 

or viral protein. Lanes 1, 2 and 3 were subject to a buffer control while lanes 5, 6 and 7 

were treated with trypsin. Trypsin cleavage removes HA0 monomers present in the sample, 

leaving only HA1 and HA2. All samples were incubated overnight at 37°C prior to blot. 1G3 

was no longer able to bind H3N2 virus following treatment with trypsin.  
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Figure 25: Non-reducing (left) and reducing (right) Western blot using recombinant HA 

(rHA) proteins from A/Puerto Rico/8/1934 (PR8, H1), A/Perth/16/2009 (H3) and 

A/Vietnam/1194/2004 (H5). Recombinant PR8 and A/Vietnam HA consists of the secreted 

extracellular domain and was isolated from HEK293 cells. Recombinant A/Perth HA 

consists of only the HA1 domain and was isolated from a baculoviral system. MAb 

candidate 1G3 containing hybridoma supernatant was used as primary antibody followed by 

an infrared goat anti mouse secondary to visualize bands. Each lane was loaded with 1 µg 

recombinant viral protein. 1G3 successfully bound purified native PR8 protein but showed 

no reactivity with any recombinant HA.  

 

  



78 

 

 

 

 

 

Figure 26: Non-reducing (left) and reducing (right) Western blot using sucrose gradient 

purified antigen from Sendai and Respiratory Syncytial Virus as well as an uninfected 

allantoic fluid control. MAb candidate 1G3 containing hybridoma supernatant was used as 

primary antibody followed by an infrared goat anti mouse secondary to visualize bands. 

Each lane was loaded with 1 µg viral protein. 1G3 successfully bound native PR8 to the 

exclusion of the closely related Sendai and Respiratory Syncytial viruses. 1G3 showed no 

reactivity for allantoic fluid alone.  
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Figure 27: Summary of Western blot results. Viruses in the green circle showed an HA0 or 

HA1 band between 60 – 80 kDa in both reducing and non-reducing conditions. Those listed 

in the nested pink circle showed an HA0 or HA1 band plus an additional HA2 band at ~25 

kDa in reducing conditions. MAb 1G3 was not able to bind controls in italics as well as 

recombinant proteins listed in the red circle. Control viruses Sendai and RSV were tested as 

purified whole virus, not recombinant proteins. 
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Figure 28: Sequence alignment of the HA segments of PR8 (H1N1, HA-CY045764, top 

row), A/Victoria/201/2008 (H3N2, KM821344, middle row), and A/California/07/2009 

(H1N1pdm, CY121680, bottom row). Box highlights the P4-P1 loci of the trypsin cleavage 

site. Red dotted line delineates HA1 and HA2 where HA2 N terminus begins with consensus 

sequence G-L/I-F. Blue highlight shows amino acids where H1 and H1pdm viruses agree to 

the exclusion of the H3 virus. Gold highlights amino acids where all three viruses diverge. 

Generally, the area of highest conservation lies around the fusion peptide downstream of the 

trypsin recognition sequence.  
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Figure 29: 15 amino acid peptides with 14 amino acid overlaps were generated from the 

HA sequence of A/Puerto Rico/8/1934 and synthesized directly on to a PEPperMap linear 

peptide array. Fluorescent intensity measured in arbitrary units (a.u.) following peptide 

chip incubation with mAb 1G3 at a concentration of 10 and 100 µg/mL and a fluorescent 

secondary antibody. Where a linear epitope would appear as a bell curve around a single 

sequence, we observed 9 distinct peaks along the length of the HA protein. Full peptide map 

can be found in the appendix. 
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Figure 30: HA amino acid sequence of A/Puerto Rico/8/1934 (UniProt ID B4UPA6). 

Binding peaks of 1G3 from epitope mapping are shown in the top row in purple. Epitope 

sequences of known HA stem antibodies determined by X-ray crystallography (bottom row) 

are noted in blue for CR9114 and pink for C179. GLF, highlighted in yellow, are the first 

amino acids at the N terminus of HA2.  
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Figure 31: 3D visualization of A/Puerto Rico/8/1934 HA with predicted 1G3 epitope via 

iCn3D. A: HA monomer with HA1 in magenta and HA2 in blue. Portions of predicted 1G3 

epitopes PVTIGECPKYVRSAKL and YAADQKSTQNAINGIT are highlighted in cyan on the 

HA stem. B: HA trimer with HA protein in magenta, predicted 1G3 epitopes in blue, and the 

linker sequence of the HA fusion peptide in cyan on the interior of the HA trimer. Sialic acid 

interactions at the receptor binding head are shown in green.  

 

 

 

 

 

 

A 

 

B 



84 

 

 

 

 

 

Figure 32: HA amino acid sequence of A/Hong Kong/4801/2014 (top) and 

B/Brisbane/60/2008 (bottom). The two putative binding sites of 1G3 of interest are 

underlined and bolded. Amino acids within that footprint which are conserved between 

A/Puerto Rico/8/1934 as well as A/Hong Kong/4801/2014 and B/Brisbane/60/2008 are 

highlighted in cyan. GLFGAIA, highlighted in yellow, are the first amino acids of the N 

terminus of the HA2 subunit.  
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Aim 3. Evaluate candidate mAbs efficacy in vitro and in ovo  

Despite the breadth of viral subtypes bound by mAb 1G3 on Western blot, 

interaction with a viral target does not necessarily translate to inhibition or neutralization of 

virus during an infection. In order to assess mAb 1G3’s ability to inhibit virus replication we 

performed Plaque Reduction and Neutralization Tests (PRNTs) coupled with fluorescence 

microscopy in vitro as well as time course inhibition assays in ovo.   

PRNTs are complementary to previously described NI and HAI assays in that they 

measure the functional impact of mAb 1G3 on virus. Where NI and HAI assays quantify 

effect on viral protein, PRNTs instead look only at live, actively replicating virus. Madin 

Darby Canine Kidney (MDCK) cells were seeded into a 6-well plate and allowed to reach 

80-90% confluency. Following 30 mins of viral exposure, inoculum is removed and an 

oxoid agar overlay applied. The overlay itself serves several chemical and physical roles in 

propagating infection. MDCK cells do not possess the necessary cellular proteases for 

productive influenza replication (4, 66). HA on the virion surface must be cleaved into its 

active subunits HA1 and HA2 to allow for entry into the cell as well as exit from the 

endosomal compartment (10, 42, 112). Therefore, the overlay contains TPCK treated free 

trypsin to ensure budding virions display mature HA and are infection competent. The 

overlay also serves to restrict virus to lateral movement to adjacent cells following the initial 

infection while allowing cells to participate in oxygen exchange. Resulting localized foci of 

cell death and detachment are known as “plaques”. 1G3 was applied in the overlay media as 

purified mAb and also Receptor Destroying Enzyme (RDE) treated hybridoma conditioned 

supernatant. RDE is a commercially available enzyme purified from Vibrio cholerae that 

works to eliminate any non-specific inhibitors of viral replication that may be present in the 
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supernatant (60, 65). 72 hours post infection the overlay is removed and plaques visualized 

with 0.1% crystal violet in 20% ethanol to fix and stain what remains of the surviving 

cellular monolayer.  

Initially, all seven candidate monoclonal antibodies with positive NI were screened 

for plaque reduction in vitro. NYMC X-162 (H3N1, A/Wisconsin/67/2005 HA parent) was 

chosen as the first experimental virus because it was one of two of the immunizing viruses 

during Immunization Protocol Alpha. But unlike PR8, NYMC X-162 produces lytic plaques 

with defined edges that are easily quantified - making it an ideal choice for screening. Data 

are shown as a percent reduction relative to total plaque number calculated for virus controls 

to account for heterogeneity inherent in viral infection. Anti-HA mAb 2H9 was used as a 

conditioned hybridoma supernatant control as it is known to target the HA head and inhibit 

viral entry. Of the seven flu mAbs identified in the preliminary Protocol Alpha screen, all 

showed some degree of inhibition against NYMC X-162 prior to RDE treatment (Figure 

32). However, after treatment with RDE mAb 2G5 conditioned supernatant failed to inhibit 

virus at all (Figure 33). Only the 2H9 control and 3 of our candidate antibodies 1G3, 3E9, 

and 2A7 retained the ability to inhibit NYMC X-162 following RDE treatment.  Next to the 

control antibody 2H9, 1G3 containing hybridoma supernatant was the most successful 

inhibitor, reducing plaque number by over 50% and 20% at 1:100 and 1:1000 respectively. 

(Figure 33).  

Due to heterosubtypic binding profile of 1G3 observed in Western blotting, we next 

tested 1G3’s ability to inhibit viruses of other subtypes in vitro. In addition to NYMC X-162 

(H3N1), three viruses were selected; immunizing virus PR8 (H1N1) as well as an H1N1 

pandemic virus (A/California/07/2009) and a wild type H3N2 virus (A/Hong 
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Kong/50/2016). These viruses showed reactivity with mAb 1G3 by Western blot and 

represent two subtypes of HA currently circulating from each influenza A group. MAb 1G3 

containing hybridoma supernatant at a dilution of 1:100 was able to neutralize these viruses 

with considerable efficiency, reaching well over 50% neutralization rates for both of the  

non-immunizing viruses A/Hong Kong/50/2016 (H3N2) and A/California/07/2009 (H1N1) 

(Figure 34). The plaques that developed following infection with A/Hong Kong/50/2016 

were observed to be pinpoint sized. We hypothesize that the almost 100% plaque reduction 

seen against this virus is as a function of plaques that may not have been observable to the 

naked eye.  These data indicate that the binding seen on Western blot has functional 

relevance in the context of in vitro replication and infection capacity for these viruses. MAb 

1G3 not only binds Group 1 and 2 influenza A viruses, but can also inhibit their ability to 

form plaques in cell culture. 

Canonically, it was thought that a hallmark of antibodies that bind NA was a 

reduction in plaque size. This results from targeting the virus toward the end of the life cycle 

and limiting egress of progeny virions. However more recently it has been seen that HA 

stem antibodies can also limit plaque size via restricting virus to the endosomal 

compartment (133, 137). HA head antibodies function almost exclusively at the attachment 

stage and therefore only limit overall plaque number (4, 44). Our antibody candidate 1G3 

was first tested for plaque size reduction against NYMC X-162 and demonstrated the ability 

to significantly limit plaque size at dilutions of 1:100 and 1:1000 of RDE treated hybridoma 

supernatant. 1G3 reduced overall plaque size from an average of 4.3 mm to 1.9 mm and 3.5 

mm respectively (Figure 35).  
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In addition to NYMC X-162 (H3N1), plaque size was also assessed for 

heterosubtypic viruses PR8 (H1N1) and A/California/07/2009 (H1N1pdm) (Figure 36). 

Plaque size was not calculated following infection with A/Hong Kong/50/2016 (H3N2), as 

infection yielded very small plaques with ill-defined borders. Candidate mAb 1G3 was able 

to reduce plaque size following infection with PR8 (H1N1) and A/California/07/2009 

(H1N1pdm) as it had for NYMC X-162 (H3N1), suggesting a conserved mechanism of 

action across distinct IAV groups.  

Elution of a monoclonal antibody during purification is a process that necessitates 

reestablishing efficacy to ensure low pH conditions didn’t distort the conformation or 

character of an antibody. Results seen with hybridoma supernatant were recapitulated with 

purified antibody to ensure data collected was not a result of inhibitors in supernatant that 

may survive RDE treatment. Therefore, PRNTs were repeated with multiple concentrations 

of purified 1G3 against immunizing virus A/Puerto Rico/8/1934 (PR8, H1N1). Plaque 

reduction was maintained and shown to be dose dependent, where the lowest concentration 

tested (0.1µg/mL) resulted in a 30% reduction in plaque number (Figure 37). In this model 

of infection, 100% plaque reduction is not expected because the initial infection period (30 

mins) occurs in the absence of antibody. These results allowed for us to conclude that plaque 

number and size reduction  upon treatment with 1G3 was as a direct result of antibody 

activity and not an inherent property of the hybridoma supernatant. 

Finally, we expanded our experimental viral panel to include B/Brisbane/60/2008. 

This virus has been the dominant Victoria lineage B virus since its introduction and has been 

recommended in vaccine composition by the WHO every year from 2008 till 2018 (24).  

Because MAb 1G3 was shown to bind B/Brisbane/60/2008 on Western blot, it was selected 
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to be a representative B virus to test via PRNT. We found that RDE treated 1G3 supernatant 

was able to significantly reduce plaque number by roughly 50% at a dilution of 1:1000 

(Figure 38), demonstrating that 1G3 indeed has functional activity against this B virus. Like 

wild type H3 viruses, B plaques have pinpoint morphology with individual diameters that 

cannot be measured. Representative images of plaque morphology in virus controls as well 

as in the presence of candidate mAb 1G3 can be seen in Figure 39.  

Taken together, these PRNT data show that binding on Western blot is indeed 

correlated with in vitro neutralization activity of mAb 1G3 against H1, H1pdm, and H3 

viruses as well as a wild type B Victoria virus. We can therefore categorize candidate mAb 

1G3 as not only broadly binding, but broadly neutralizing. To date, only one other antibody 

with activity against influenza A and B, CR9114, has been published (32).  

As a qualitative complement to the PRNT data, we next looked at infection in the 

presence and absence of mAb 1G3 on the cellular level via indirect fluorescent (IFA) 

staining. MDCK cells were seeded into chamber slides and allowed to reach 80-90% 

confluency. Cells were then infected with immunizing virus A/Puerto Rico/8/1934 (H1N1) 

at a multiplicity of infection (MOI) equal to one. Following 30 mins for viral absorption, 

viral inoculum was removed and replaced with cellular growth media, cellular growth media 

supplemented with 10 µg/mL purified mAb 1G3, or a commercial isotype control (Figure 

40).  Unlike a PRNT where an agar overlay is applied to contain virus to plaques, liquid 

media was used to allow virus to move into solution and infect the monolayer in a manner 

more representative of a natural infection. 24 hours post infection cells were fixed and 

stained via IFA. The primary antibody used was 1B3, a PR8 specific anti-HA head mAb 

developed in our lab by Dr Yu He. The secondary antibody was an anti-mouse heavy chain 
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conjugated with Alexa Fluor 488, allowing infected cells positive for the presence of PR8 

HA to be visualized with green fluorescence. We observed that the quality of the cellular 

monolayer was greatly improved with the application of neutralizing 1G3 noted as almost no 

areas of cell death were seen. Instead the DAPI stained monolayer looked indistinguishable 

from the uninfected control. Additionally, positive HA staining was restricted to very few 

isolated cells as opposed to the outward spreading in large patches observed in both the virus 

and isotype controls (Figure 40). The number of HA positive cells in 1G3 treated chambers 

was significantly fewer, while no difference was detected qualitatively or quantitatively 

between virus and isotype control cells (Figure 41).  

These qualitative data provide further support that mAb 1G3 can not only bind but 

also neutralize virus during active in vitro infection. Because these data were obtained with 

purified mAb 1G3, we can also conclude that inhibition of viral replication is as a direct 

result of antibody 1G3 and not any other components of the hybridoma supernatant.   

We have thus far established that candidate mAb 1G3 has functional neutralization 

activity in vitro against H1, H1pdm, and H3 viruses as well as influenza B using a PRNT 

model. We also have shown using liquid media and fluorescent staining that purified 1G3 

significantly alters infection dynamics. We next investigated the ability of purified 1G3 to 

inhibit viral replication and growth in ovo against both immunizing viruses, A/Puerto 

Rico/8/1934 (PR8, H1N1) and NYMC X-162 (H3N1, A/Wisconsin/67/2005 HA parent) as 

well as a representative influenza B virus (BX-31B). The natural reservoir of IAV is aquatic 

birds, this combined with the use of chicken eggs in vaccine manufacturing makes the 

efficacy of influenza antibodies in infected eggs an important parameter for evaluation (94). 
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Influenza A or B viruses at a dilution of 10
-8

 and purified mAb 1G3 at two 

concentrations were co-incubated at 37°C for 30 mins prior to infection. All virus stocks 

were diluted in PBS with calcium and gentamicin to maintain virion stability and prevent 

bacterial contamination. 11 day Specific Pathogen Free (SPF) embryonated chicken eggs 

were first candled to ensure embryonic viability. Eggs were then “windowed” to allow for 

ease of allantoic fluid collection without compromising the relative sterility of the egg. 

Windowing is done by cutting a 1 cm
2
 hole in the shell of the egg below in the air sac and 

opposite to the embryo in aseptic conditions. Allantoic fluid is collected and the window 

covered with UV sterilized parafilm sealed to the intact shell with heated paraffin wax. 

Harvested fluid is then assayed for viral content by HA titer and streaked unto Sheep Red 

Blood Cell plates to check for any possible confounding bacterial contamination. Fluid was 

collected every 12 hours for 72 hours for influenza A viruses and 96 hours for influenza B 

starting at time 0, immediately prior to infection. Titers for each experimental run were done 

simultaneously in duplicate following final fluid collection to limit variance due to 

individual lots of chicken red blood cells. Pre-incubation of virus and antibody at 37°C 

allows an antibody to bind any available epitopes prior to inoculation of the egg. It was 

observed by Dr Yu He that antibodies that target the HA (head or stem) applied in high 

concentrations can prevent infection due to targeting virus at the beginning of the life cycle, 

similarly to what is seen in PRNTs. In cells, antibodies that target NA may allow for viral 

entry but inhibit egress and are typically associated with a delayed onset of titer as opposed 

to total inhibition.  

Antibody candidate 1G3 was tested at two concentrations, 1 and 5 µg/mL. At both 

concentrations tested, 1G3 prevented rapid PR8 (H1N1) expansion at 36 hours and delayed 
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onset of positive viral titer by at least 12 hours. 1G3 at a concentration of 5 µg/mL was able 

to suppress viral growth for almost the entirety of the experimental duration (Figure 42). 

1G3 was also tested against NYMC X-162 (H3N2) and again delayed the positive onset of 

viral titer by at least 12 hours and prevented the virus from reaching its uninhibited max at 

72 hours post infection. Unlike what was seen with PR8 infection, 1G3 was not able to 

contain NYMC X-162 expansion completely at the higher concentration tested (Figure 43).   

Encouraged by the in vitro results, we also tested BX-31B (Victoria). BX-31B is a 

high yield reassortant virus prepared by Dr Shiroh Onodera from B/Lee/40 with the HA and 

NA components from B/Brisbane/60/2008. Unlike influenza A viruses, influenza B is 

slower growing in eggs therefore the infection was allowed to continue for 96 hours total. 

Similarly to what was seen with PR8 infection, 5 µg/mL purified 1G3 inhibited infection 

totally for the duration of the experiment. Where the uninhibited virus showed considerable 

expansion 48 hours post infection, virus pre-incubated with 1 µg/mL 1G3 showed no 

positive titer for another 12 hours (Figure 44).  
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Figure 33: Percent plaque reduction relative to NYMC X-162 (H3N1, A/Wisconsin/67/2005 

HA parent) uninhibited controls of seven hybridoma supernatants prior to treatment with 

receptor destroying enzyme. 2H9, a characterized anti-HA head mAb, was used as a 

hybridoma supernatant control. Data are shown with supernatants at a final dilution factor 

of 1:10 or 1:100. N ≥ 6 wells/condition, shown ± standard deviation, Student’s T Test to 

viral control: * = p<0.05, ** = p<0.01, *** = p<0.001 
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Figure 34: Percent plaque reduction relative to NYMC X-162 (H3N1, A/Wisconsin/67/2005 

HA parent) uninhibited controls of seven receptor destroying enzyme treated hybridoma 

supernatants. 2H9, a known anti-HA head mAb, was used as a hybridoma supernatant 

control. Data are shown with supernatants at a final dilution factor of 1:100 or 1:1000. 

1G9, 1D8, and 2E9 showed no inhibition activity at 1:1000. 2G5 showed no in vitro 

inhibition at either dilution. N ≥ 6 wells/condition, shown ± standard deviation, Student’s T 

Test to viral control: * = p<0.05, ** = p<0.01, *** = p<0.001 
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Figure 35: A/Puerto Rico/8/1934 (PR8, H1N1), A/California/07/2009 (H1N1pdm), A/Hong 

Kong/50/2016 (H3N2) and NYMC X-162 (H3N1, A/Wisconsin/67/2005 HA parent) were 

used at a concentration of ~40 PFUs/ well. Overlay contained growth media in oxoid agar 

or growth media in oxoid agar supplemented with receptor destroying enzyme treated 1G3 

hybridoma supernatant at a final dilution of 1:100.   N ≥ 6 wells/condition, shown ± 

standard deviation, Student’s T Test to respective viral control: * = p<0.05, *** = p<0.001 
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Figure 36: Plaque size reduction mediated by mAb 1G3 vs NYMC X-162 (H3N1, 

A/Wisconsin/67/2005 HA parent) at a dilution of 1:1000 and 1:100. N ≥ 6 wells/ condition; 

bars show average plaque size ± standard deviation. Student’s T Test:  * =p < 0.05, **** 

p= <0.0001 
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Figure 37: Average plaque size following infection with A/Puerto Rico/8/1934 (PR8, 

H1N1), A/California/07/2009 (H1N1pdm), and NYMC X-162 (H3N1, A/Wisconsin/67/2005 

HA parent) at a concentration of ~40 PFUs/ well. Overlay contained growth media agar or 

growth media agar supplemented with 1G3 containing hybridoma supernatant at a dilution 

of 1:100. Plaques were visualized with crystal violet and diameter measured in mm.  N ≥ 6 

wells/condition, shown ± standard deviation, Student’s T Test: * = p<0.05, ** = p<0.01 
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Figure 38: Plaque Reduction and Neutralization Test completed with purified mAb 1G3. 

A/Puerto Rico/8/1934 (PR8, H1N1) was applied to 6 well plates at a concentration of ~40 

PFUs/ well. Overlay contained control growth media agar or growth media agar 

supplemented with purified 1G3 at concentrations shown.  N ≥ 6 wells/condition, shown ± 

standard deviation, Student’s T Test: * = p<0.05, *** = p<0.001 

 

 

 



99 

 

 

 

 

 

Figure 39: Average plaque number following infection with B/Brisbane/60/2008 (Victoria). 

Overlay contained growth media agar or growth media agar supplemented with 1G3 

containing hybridoma supernatant at a dilution of 1:1000 or 1:100.  N ≥ 6 wells/condition, 

shown ± standard deviation, Student’s T Test: * = p<0.05, ** = p<0.01 
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Figure 40: Representative images of plaque morphology following infection with (from left 

to right) A/Puerto Rico/8/1934 (H1N1), NYMC X-162 (H3N1), A/California/07/2009 

(H1N1pdm), A/Hong Kong/50/2016 (H3N2), and B/Brisbane/60/2008 (Victoria). Below are 

representative images of plaques formed in the presence of candidate mAb 1G3 showing 

plaque number and average plaque size reduction.  

 

 

 

 

 

 

 



101 

 

 

 

 

Figure 41: Indirect fluorescent staining of A/Puerto Rico/8/1934 (PR8, H1N1) HA in 

infected MDCK cells. Primary antibody for stained was 1B3, an PR8 specific anti-HA mAb. 

An AlexaFluor488 conjugated secondary was used to visualize infected cells positive for 

PR8 HA. Cellular nuclei were stained with DAPI (blue). Images at 20X. 
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Figure 42: Following indirect fluorescent staining of MDCK cells, AlexaFluor488 HA+ 

cells were counted following A/Puerto Rico/8/1934 infection. No significant difference was 

observed between virus and isotype controls. N ≥ 3 wells/condition, shown ± standard 

deviation, Student’s T Test: ** = p<0.01 
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Figure 43: A/Puerto Rico/8/1934 (PR8, H1N1) viral growth represented by the Log of HA 

titer. Titer was measured every 12 hours for 72 hours following injection at time point 0 of 

PR8 diluted to 10
-8 

in PBS and gentamicin. 1G3 was pre-incubated with virus at 37°C at 

concentrations of 1 or 5 µg/mL. N ≥ 6 eggs/condition, shown ± standard deviation, 

Student’s T Test to viral control for each time point: * = p<0.05, *** = p<0.001 
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Figure 44: NYMC X-163(H3N1) viral growth represented by the Log of HA titer. Measured 

every 12 hours for 72 hours following injection at time point 0 of X-162 diluted to 10
-8 

in 

PBS and gentamicin. 1G3 was pre-incubated with virus at 37°C at concentrations of 1 or 5 

µg/mL.  N ≥ 6 eggs/condition, shown ± standard deviation, Student's T Test to viral control 

for each time point: * = p<0.05, ** = p<0.01 
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Figure 45: BX-31B (Victoria) viral growth represented by the Log of HA titer. Measured 

every 12 hours for 96 hours following injection at time point 0 of BX-31B diluted to 10
-8 

in 

PBS and gentamicin. 1G3 was pre-incubated with virus at 37°C at concentrations of 1 or 5 

µg/mL. N ≥ 6 eggs/condition, shown ± standard deviation, Student's T Test to viral control 

for each time point: * = p<0.05, ** = p<0.01, *** = p<0.001 
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CONCLUSIONS 

 

Through the immunization of mice with varied influenza hemagglutinin (HA) 

proteins, we have generated a novel murine monoclonal antibody 1G3 (IgG1).  MAb 1G3 

can bind viruses from group 1 and group 2 of influenza A as well both major lineages of 

influenza B, Yamagata and Victoria. Using plaque assays, fluorescent staining, and time 

course studies, we have shown that mAb 1G3 can also neutralize heterosubtypic viruses to 

successfully inhibit infection in vitro and in ovo.  

1G3 binds a conformational epitope, making traditional linear mapping difficult. 

However, using a peptide array paired with 3D modeling we propose that 1G3 binds the HA 

stem near the fusion peptide and across the C terminus of HA1 and the N terminus of HA2. 

Although distinct, this putative epitope appears to share many features with the published 

epitopes of known broadly neutralizing influenza antibodies. Through sequence alignment 

we have also shown that critical residues therein show a high degree of conservation 

between different influenza A and B viruses, reflecting strong conservation of the stem 

domain.  

 Influenza’s ability to both drift and shift away from immune recognition makes 

vaccination and treatment challenging (24). Antibodies to influenza have been studied in 

human and animal sera since the 1970’s (93). Following the advent of hybridoma 

technology and various recombinant techniques, hundreds of labs around the world have 

attempted to find and target common epitopes. To date, dozens of antibodies have been 

identified, published, and patented, that can bind across strains and subtypes. However only 

one antibody, CR9114, can protect mice in vivo from lethal challenge with both influenza A 

and B (32). Our mAb 1G3 is the first to show activity against A and B viruses in vitro.  
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 Therefore, mAb 1G3 joins an exclusive class of broadly neutralizing influenza 

antibodies. Because of this extremely rare reactivity profile, we believe that 1G3 has the 

potential to work in concert with other advances in the field to improve upon currently 

available therapies and/or support a universal vaccine.  
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DISCUSSION 

 

Influenza epidemics are a major public health concern. Worldwide it is estimated 

that annual seasonal infection results in at least 3 million cases of severe illness (requiring 

hospitalization) and as many as 650,000 deaths (131). At the height of the 2017-2018 flu 

season, 11% of all deaths in the United States were attributed to influenza and influenza like 

illness in addition to 185 reported pediatric deaths. This was the highest number of pediatric 

deaths since infant and child mortality from influenza became a reportable illness. 80-90% 

of these deceased patients were unvaccinated (17).  Influenza pandemics can result from the 

introduction of novel flu proteins into an immunologically naive human population. The 

most recent “Swine Flu” pandemic in 2009 infected an estimated 65 million people and 

caused a significant amount of morbidity in typically lower risk groups, especially young 

adults (109). The 1918 “Spanish Flu” was even more devastating, estimated to have killed 

roughly 5% of the global population at the time.  

Unfortunately, treatment for influenza infection is significantly limited. Until very 

recently only two classes of drugs were approved for the management of flu, M2 ion 

channel inhibitors and NA inhibitors (NAIs) (77). M2 ion channel inhibitors were developed 

first and function to prevent the acidification of the viral core and subsequent uncoating 

(100, 124). Although initially effective, over time their use has selected for resistant strains 

that maintain pathogenicity - which now predominate the infection landscape (124). The 

CDC recommends against their use as efficacy is at an all-time low (17). NAIs like 

Tamiflu™ and Relenza™ interfere with the activity of the viral neuraminidase, allowing 

virus to gain entry into host cells but preventing progeny virion release. Several large-scale 

retrospective studies have demonstrated that NAIs are effective as prophylaxis for those 
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populations most at risk of complications from influenza infection. However, as treatment 

NAIs are limited and have been met with mixed success (73, 87). Replication in the 

respiratory tract generally peaks 24-48 hours post infection. Therefore NAIs have to be 

prescribed very early in disease course, representing a significant hurdle to their continued 

use and success (77).  NAIs have also been used as a therapeutic modality for patients who 

are already hospitalized with severe illness, although this is considered off label and most 

studies show no advantage of the use the NAIs over traditional supportive therapies (39, 59). 

Resistance mutations are rare but have been recorded in some seasonal H1N1 viruses (73).  

 Regular vaccination remains both the most operative and cost-effective way to 

control influenza. Current seasonal influenza vaccines are effective against infection but are 

not without shortcomings. Due to constant antigenic drift and occasional shift of circulating 

viruses, vaccines need to be reformulated and redistributed to the general public each year. 

Despite significant effort, mismatches do occur that may leave even vaccinated individuals 

vulnerable to illness. Trivalent and tetravalent vaccines are only partially effective in the 

most susceptible target populations, including the elderly and immunocompromised. (24, 

121, 141). Crucially, seasonal vaccines provide no protection against novel strains, 

significantly limiting pandemic preparedness (82).  

 Perhaps the most significant limitation in our current vaccination strategy is that it 

generally induces a narrow and strain specific response (7, 48). Antibodies developed 

following vaccination are most often targeted to the highly variable loops on the globular 

HA head that surround the receptor binding site (127). HA head binding antibodies are very 

adept at neutralization because they prevent the virus from binding to the sialic acid 

receptors necessary for the virus to gain entry into a host cell. Some HA head antibodies can 
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also interfere with the function of the viral NA through steric hindrance, preventing viral 

egress as well as endocytosis (80, 130). However, in addition to being largely strain specific 

these antibodies readily select for escape mutations and lose efficacy quickly against drifted 

strains (11).  

New prevention and treatment modalities for influenza are needed. Recently several 

human antibodies with wider neutralizing activity have been isolated using single B cell 

identification techniques, phage display libraries, and hybridoma cell lines (123). These 

broadly neutralizing monoclonal antibodies (bnmAbs) have been characterized following 

vaccination with heterosubtypic HA, but are comparatively rare following natural infection 

(133).  

Broadly neutralizing influenza antibodies are divided into three types based on the 

breadth of viruses they have been demonstrated to inhibit. Type 1 are effective against 

several group 1 influenza A viruses, Type 2 against several group 2, and Type 3 which are 

effective many HA subtypes belonging to both groups 1 and 2 (137). There are also a 

handful of broadly neutralizing antibodies which target influenza B, these are characterized 

as having activity against a subset of viruses of both the major B lineages (32). Many of 

these antibodies have been shown to be of therapeutic or prophylactic benefit in animal 

models and are summarized in Figure 45. 

Therapeutic Antibodies 

There is a significant existing framework for the use of targeted monoclonal 

antibodies in the treatment of human diseases, including autoimmune disorders, 

cardiovascular pathologies, cancer, and some bacterial infections. The earliest iterations of 

antibody therapy were murine antibodies developed using hybridoma cell lines and were 
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largely disappointing. Unfortunately mouse derived molecules failed to interact as predicted 

in a human immunological context and were not only ineffective, but dangerous as they 

were recognized as foreign by the patient resulting in inflammation and their subsequent 

elimination (19). The era of antibody engineering quickly followed with the advent of the 

first chimeric and then humanized mAbs. Chimeric antibodies are generated by fusing the 

murine variable domain with a human constant domain and are roughly 70% human origin. 

In addition to being less immunogenic, chimeric antibodies can bind their intended target 

while still interacting with the patient’s own Fc receptors (67). Humanized antibodies were 

developed shortly thereafter by replacing the antigen binding hypervariable loops of a 

human antibody with the targeted murine loops – a process known as “complementarity-

determining region grafting”. Humanized antibodies are nearly 90% human but cost more to 

produce as often mutagenesis via a phage library is needed post hoc to restore high affinity 

binding. Almost all of the mAbs approved in the United States currently are either chimeric 

or humanized (19).  

Despite the over 60 FDA approved mAbs to date there is only a single antiviral 

antibody widely available; Palivizumab for Respiratory Syncytial Virus (RSV) prophylaxis 

in high risk infants (123). The reason for the limited development of virally targeted 

antibodies is a combination of factors, including high production cost, difficulties related to 

administration, and the belief that antibodies are most effective prior to exposure - which for 

many viruses is made redundant by vaccination. However there is a growing appreciation of 

the potential of many novel antiviral mAbs, including the now infamous Ebola virus mAb 

Porgaviximab, also known as Zmapp (95). More antiviral antibodies will continue to come 

to market as the increased potency of superior antibodies reduces the cost of production and 
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makes patient compliance more feasible and less expensive by also reducing the number of 

treatments needed. This coupled with a new generation of technologies for antibody 

generation, including humanized animals, single B cell cloning, and combinatorial display 

libraries, is the cause of much cautious optimism for combatting notoriously difficult viruses 

like HIV as well as emerging threats like MERS coronavirus (123).  

Antibodies can act against viruses in several defined ways but are generally divided 

into two categories: those which act on viral particles and those which target infected cells. 

The best measure of activity on free virus is known as neutralization; or the ability of an 

antibody to prevent viral entry. Neutralization is measured in vitro and has been shown to be 

a strong correlate of in vivo protection for a wide range of viruses (74). Neutralization for 

influenza viruses is measured as blockade of either HA or NA through HI, NI, or PRNT 

assays (28).  However for some viruses, and for influenza viruses in particular, activity 

against infected cells in the intact host immunological context appears to be critical for 

antibody efficacy - as in vitro neutralization titers often do not predict in vivo protection (26, 

51, 105, 113). These antibodies interact with the host Fc receptors and may incite a number 

of complex downstream processes including antibody-dependent cytotoxicity (ADCC), 

complement-dependent cytotoxicity (CDC), and antibody-dependent cellular phagocytosis 

(ADCP) (36, 106, 123, 127).  Meaning that despite commonly held wisdom, the constant 

regions of these antibodies are as critical for in vivo protection, if not more so, than the 

antigen binding variable region.  

There is growing evidence for the role of ADCC in the influenza immune response 

as mediated by some HA antibodies. ADCC is a mechanism by which Fc receptor bearing 

natural killer (NK) cells recognize antibody bound cells and release cytotoxic granules into 
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an immunological synapse formed between the NK cell FcγRIIIa and its target. These 

granules generally contain a combination of perforin and granzyme B and their release 

results in the apoptosis of the infected cell (19, 76). It has been demonstrated that stalk mAb 

efficacy is dependent on the presence of functioning Fcγ receptors, as transgenic mice 

lacking Fcγ receptors on murine NK cells are not protected from lethal challenge by anti-HA 

stalk mAbs (28, 57). Interestingly, this same requirement has not been seen for strain 

specific HA head antibodies, which are effective regardless of NK cell presence (29).  

The basis of this observation lies in a difference of mechanism for head and stalk 

antibody function. While head antibodies prevent virus binding similarly in vitro and in vivo, 

most stalk antibodies show a very different mechanistic profile in cells and in animals. Anti-

HA stalk antibodies may primarily inhibit endocytic membrane fusion in vitro, but in the 

complete immunological context of an animal these same antibodies function primarily 

through the activation of ADCC (29, 57, 122). These data may provide a framework of 

understanding why our mAb 1G3 was more effective at lower concentrations in ovo than in 

PRNT cellular assays against the same A/Puerto Rico/8/1934 virus. Chicken embryos 

produce T and B cells by day 11 and 12 of development and do have an avian NK cell 

homologue known as TCRO (58, 83). Therefore, our in ovo studies may be more 

representative of the true neutralizing potential of 1G3 which like other stalk mAbs may 

interact with NK cells to target and destroy virally infected cells. These observations also 

support the data obtained with mAb CR9114 where in vitro neutralization was absent 

against those viruses whereas CR9114 did protect against in mice with functioning NK cells 

(32). However, it is important to note that were CR9114 failed to inhibit influenza B viruses 

in cells, our mAb 1G3 was successful. Therefore 1G3 activity is not dependent on ADCC 
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alone.  

Despite their many advantages, monoclonal antibodies are subject to more than a few 

major limitations and therapeutic considerations. First there are several practical issues, 

namely cost. Because monoclonal antibodies are complex molecules that require extensive 

eukaryotic machinery in order to be properly synthesized, production relies on very large 

cultures of mammalian cells followed by many steps of purification in order to be approved 

for infusion or injection into a human patient (19, 34, 136). High cost is also directly 

proportional to the high concentration of mAbs needed for human efficacy. For example, 

Natalizumab, also known as Tysabri, is a humanized IgG4 developed to treat Multiple 

Sclerosis. Natalizumab is given to patients as 300 mg IV infusion every 28 days for an 

indefinite period of time, often many years, requiring at least 4 grams of antibody per patient 

per year (8). This scheme is common among current therapeutic models for chronic disease, 

however dosing for acute conditions is less clear. As reference, Palivizumab is given 

prophylactically at 15 mg/kg of body weight every 28 days during the RSV season until the 

child reaches 2 years old or is no longer considered at risk (110).  

Interestingly, the high effective serum concentration needed of human antibodies 

might be because of Fc receptor dependent mechanisms of action. Some therapeutic 

antibodies saturate ADCC function in vitro at concentrations as low as 10 ng/µL but require 

effective serum concentrations between 10 and 100 µg/µL (19). Its hypothesized that this 

may be as a result of competition from a patient’s own circulating IgG for available 

FcγRIIIa receptors, as IgG1 has a very high mean serum level in adults (55). It has also been 

demonstrated that affinity between a therapeutic antibody and a patients Fc receptor may be 

a predictive measure of efficacy. Unfortunately, about 80% of the world’s population 
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expresses FcγRIII-F158, a low affinity variant of the receptor which may also contribute to 

high antibody effective concentrations (127). Another consideration is that like natural 

human IgG1, therapeutic IgG1 can interact with both classes of Fcγ receptors. ADCC occurs 

through activating receptors, but inhibitory receptor FcγRIIb is expressed on B-cells, 

macrophages, and dendritic cells. Where FcγRIII possesses a tyrosine activation motif, 

FcγRIIb does not and binding to this receptor sequesters and decreases the overall efficacy 

of exogenous mAbs (19). 

Influenza Monoclonal Antibodies 

There are currently eight anti-influenza antibodies listened as in clinical trials in the 

US. Of these, seven target HA while one targets the extracellular domain of the M2 ion 

channel. Most have been developed within the last 10 years using single B cell isolation 

from vaccinated patient volunteers. These are summarized in Figure 46. 

The HA protein is encoded by RNA segment 4 and is moved across the host rough 

endoplasmic reticulum during translation. HA is synthesized as a monomer, HA0, which is 

composed of 549 amino acids and undergoes significant N linked glycosylation. HA0 is 

assembled into trimers at the virion surface and then must be cleaved into its active subunits 

HA1 (327 amino acids) and HA2 (222 amino acids) in order to be active (109). HA0 

cleavage is a major determinant of tissue tropism and occurs via a trypsin-like serine 

protease at a cleavage site encoded by a single arginine residue (R329) in most influenza A 

viruses (117). HPAI viruses have well characterized mutations at this cleavage site that 

result in the insertion of several basic residues near the requisite arginine, resulting in the 

ability to be cleaved intracellularly by more ubiquitous enzymes like furin (112). Following 

cleavage, the hydrophobic fusion peptide on the N terminal domain of HA2 relocates to the 
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trimer interior forming the fusion peptide pocket and becomes fusogenic (25, 66). However, 

HA1 and HA2 stay associated via disulphide bonds throughout viral entry. HA then 

undergoes significant conformational change in response to the acidification of the 

endocytic vesicle, including the disassociation of the HA1 domain from the HA2 fusion 

domain (42). This results in the extrusion of the fusion peptide from the interior pocket 

while the C terminal domain of HA2 stays anchored in the viral membrane. This structure 

collapses by “zipping up” and drives the fusion of the endosomal and virion membranes, 

necessary for the release of viral contents into the cytoplasm (25).  

HA can be divided into two structural domains, the globular head and the stem. The 

globular head contains the receptor binding domain, as well as part of a vestigial esterase, 

while the stem contains the fusion peptide and the remaining esterase residues. The receptor 

binding domain is located at the top of the globular head and is composed of the 130 loop, 

190 helix, and 220 loop; all encoded by HA1 along with the proximal antigenic sites (69, 

109). In contrast, the fusion domain includes residues from both HA1 and HA2. The fusion 

domain sits in the stem is encoded by the N and C terminal domains of HA1 (amino acids 

11-64, 276-329) as well as the N terminal domain of HA2 (amino acids 1-160) (132).  

Traditional HA head targeted antibodies subvert the propagation of infection by 

preventing the HA receptor binding pocket from appropriately interacting with its sialic acid 

ligand and are associated with positive experimental hemagglutinin inhibition (97). However 

broadly neutralizing HA stem antibodies have been shown to be effective against influenza 

in vitro and in vivo by several mechanisms, irrespective of sialic acid binding (Figure 47). 

Of these, inhibition of fusion between the virus and endosome has been observed in relation 

to all broadly neutralizing stem MAbs (11). It was previously hypothesized that stem mAbs 
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are internalized together with virus and reach the late endosome where binding to their 

epitope prevents the fusion peptide from responding to low pH (71). Indirect evidence for 

this reasoning has been the lack of detectable HAI activity, inhibition of conformational 

changes in recombinant HA, and the prevention of syncytia formation in HA expressing 

cells (35, 85, 111).  Friessen et al have demonstrated using single particle tracking 

technology that mAb CR8020, a stem antibody which neutralizes multiple Group 2 flus, is 

in fact internalized by live cells during infection and are capable of reaching the late 

endosomes (11). CR8020 was developed through human B cell isolation by Crucell and is 

currently in phase II clinical trials supported by Johnson and Johnson (32, 123) 

Due to the close structural relationship between the fusion peptide and cleavage site 

that separates HA1 and HA2, epitopes that prevent endosomal fusion may also prevent 

proteolytic activation of HA exterior to the cell and prior to receptor mediated endocytosis. 

While fusion inhibition is widely reported as the dominant mechanism of virus 

neutralization, this second means of inhibiting virus has been shown to add to the strength of 

some broadly neutralizing mAbs (68, 109, 112). Our own data for mAb 1G3 suggests that 

both of these mechanisms may be involved. Linear epitope mapping and 3D protein 

visualization show that the most likely epitope is near the fusion peptide, at the C terminus 

of HA1 and N terminus of HA2. Additionally, for Group 2 viruses trypsin treatment 

disrupted 1G3 binding; suggesting that the cleavage site could plays an integral role in 

recognition of H3 viruses.  

The third mechanism by which stem antibodies may inhibit cellular viral infection is 

through the interference of viral egress. It was previously accepted that only NA targeted 

antibodies prevented the release of progeny virions, as the primary function of NA is to 
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cleave sialic acid at the surface and prevent HA cross linking (47, 77, 129). Recent studies 

using scanning electron microscopy have shown that some HA targeted antibodies may also 

inhibit virion escape, although there is some debate about the exact mechanism (28, 57). It 

appears that antibodies with specific VH regions may participate directly in cross-linking 

bound virions at the surface of the cell while others may function indirectly through steric 

hindrance of NA activity (68, 130). We found that mAb 1G3 does in fact limit virion egress, 

as evidenced by significant plaque size reduction against both H1 and H3 influenza A 

viruses. Furthermore, we believe this is through indirect inhibition of the viral NA, as 1G3 

mediated NA inhibition is ablated by treating virus with a strong detergent.  

The only antibody described to date that can bind and neutralize both influenza A 

Groups 1 and 2 as well as influenza B viruses is CR9114 (32). CR9114 was generated using 

single B cell isolation from human volunteers who received regular season vaccination and 

constructing combinatorial phage display libraries. CR9114 has been shown to be capable of 

neutralizing H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H12 viruses in vitro. CR9114 

initially showed no activity against any influenza B viruses. However, they found CR9114 

fully protected mice from lethal challenge with B/Florida/4/2006 and B/Malaysia/2506/2004 

when given prophylactically 24 hours post infection at a concentration of 15 mg/kg. Lower 

concentrations were needed for 100% survival against influenza A viruses, as low as 1.7 

mg/kg for both A/Puerto Rico/8/1934 (H1N1) and A/Hong Kong/1/1968 (H3N2) (35). 

Recently CR9114 was also evaluated prophylactically against a panel of H2 viruses, which 

although not currently circulating in humans remains a threat due to a persistent animal 

reservoir.  As with influenza B, CR9114 showed weak activity in cells but was protective 

against a lethal challenge with both A/Ann Arbor/6/1960 and A/swine/MO/4296424/2006 at 
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a concentration of 5 mg/kg (113). These effects were dependent on the presence of Fcγ 

receptors and again demonstrate the importance of ADCC within in vivo studies for 

analyzing stalk mAbs which may not neutralize efficiently in cells. While 1G3 shares some 

epitopic features with CR9114, it has been shown to be broadly neutralizing in vitro, 

therefore the role of ADCC in 1G3 efficacy remains to be seen. 

Future Directions 

Monoclonal antibody 1G3 represents a new member in the broadly neutralizing 

group. While its epitope is similar, and indeed overlaps with that of other known HA stem 

antibodies, its in vitro neutralization profile is unrivaled. Further work will focus on 

establishing the 1G3 epitope with a higher resolution, exploring the possible mechanism or 

mechanisms of action with respect to different lineages of influenza, as well as establishing 

in vivo relevance.  

The gold standard for establishing antibody epitopes is X-ray crystallography. Here 

the target protein and antibody are allowed to bind and then purified in high concentrations 

in a crystalline form. When a single X-ray beam is applied, the resulting pattern of 

diffraction can be used to obtain data on “crystal packing” which can be translated into 

electron density and therefore atoms and amino acids (38, 108). This method has yielded an 

incredible amount of data, including the discovery of the structure of DNA by Rosalind 

Franklin for which Watson, Crick, and Wilkins received the Nobel prize in 1962. Images of 

experimental antibody bound to purified HA obtained using X-ray crystallography allow the 

researcher to identify single amino acids that contribute to affinity. Unfortunately, as a 

technique crystallography is expensive and exceedingly difficult. Crystalizing a protein can 

take upwards of one year which is compounded in our use by crystalizing a protein-antibody 
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interaction. Crystals need to be of the highest purity and in large concentrations to have 

regular repeating unit cells that can be easily interpreted. Proteins are generally crystalized 

in solution, although discerning the best conditions for nucleating high quality crystals is 

almost always a process of trial and error (1).  While X-ray crystallography is accepted as 

the ideal, we may instead consider site directed mutagenesis to complement the data 

obtained from our linear array. When comparing the mapping data across group 1, group 2, 

and influenza B viruses we found some highly conserved amino acids within the predicted 

1G3 footprint on both HA1 and HA2. We could systematically mutate these single amino 

acids and then retest 1G3’s ability to bind HA antigen either via ELISA or Western blot and 

thereby identify those sites which may contribute the most to affinity. Although site directed 

mutagenesis is also time intensive, it is significantly less costly than X-ray crystallography 

and would improve our resolution from 15 amino acid long stretches, instead highlighting a 

few critical residues.   

One important observation from our data is that although 1G3 is effective in vitro 

and in ovo against both H1 and H3 viruses, the banding pattern on Western blot is different; 

especially with respect to trypsin treatment. While performing an additional peptide map 

with any one of the H3 viruses we assayed might yield a radically different epitope, it's more 

likely that the difference between H1 and H3 binding is based in conformational 

dissimilarities that are not apparent in a linear array. Instead there are other some 

experiments which may be able to discern differences in mechanism of 1G3 inhibition 

between H1 and H3 viruses. We suspect that 1G3 inhibits membrane fusion as that has been 

implicated with every HA stem antibody in the literature. However, testing the relative 

efficacy of 1G3 against H1 and H3 mediated fusion would provide some operational insight. 
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There are two widely accepted approaches to measuring fusion inhibition by stem 

antibodies. The first is to transiently express the HA of a virus type of interest, here at least 

one H1 and one H3 virus, on the surface of HeLa cells or another similarly permissive cell 

line. At a pH of roughly 5.0 the HA expressed on these cells will allow for the formation of 

syncytia that are easily seen and scored with a light microscope. We would predict that 

syncytia formation by H1 or H3 protein would be inhibited by a sufficient concentration of 

mAb 1G3, although we would likely observe that concentrations would differ between HAs.  

However, mAb 1G3 did not bind recombinant HA on Western blot and is acutely 

sensitive to HA conformation, therefore transient surface expression from a plasmid may not 

best reflect the activity of 1G3. Another experiment which may be better suited to 1G3’s 

unique character involves directly observing membrane fusion through a single particle 

fusion assay developed by Crucell, the same group who developed CR9114 and CR8020. 

The enveloped membrane of virus is first labeled with fluorescent lipophilic dye in a 

concentration sufficient to result in self-quenching. Following pre-incubation with either a 

control or the stem antibody of interest, the virus-antibody complexes are bound to sialic 

acid residue embedded in a target membrane and imaged. When the pH is lowered from 7.4 

to 5, fusion is measured as a rapid increase in fluorescence signal due to de-quenching 

through diffusion. Live imaging of this event would provide direct evidence of inhibition of 

membrane fusion by 1G3 on intact virions with biologically relevant HA.   

Another possible mechanism of action for 1G3 is the prevention of proteolytic 

cleavage of HA prior to viral internalization. We saw that following overnight trypsin 

treatment 1G3 could no longer bind purified H3 virus on Western blot, heavily implicating 

the protease recognition site in antibody binding. We would also like to incubate both H1 
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and H3 viruses with 1G3 first, then probe with 1G3 by Western blot following overnight 

treatment with trypsin. We suspect that the 1G3 epitope straddles the trypsin recognition site 

for both H1 and H3 viruses and therefore only one band would be visible in reducing 

conditions as the HA0 monomer would remain intact. However, more important than this 

would be to test the additive effect of inhibition of cleavage in vitro.  To do this we would 

need to generate a batch of each virus of interest with uncleaved HA. As MDCK cells do not 

produce any proteases capable of cleaving HA endogenously, this can be accomplished by 

harvesting virus after a single round of replication in the absence of exogenous trypsin. 

These viruses will be incompetent for infection. We would then test the contribution of 

cleavage inhibition by incubating with 1G3 following trypsin treatment of virus or before. If 

uncleaved virus is incubated with trypsin and then 1G3, the subsequent infection would 

assay neutralization only the remaining inhibition points, membrane fusion or egress. 

However, if uncleaved virus and 1G3 are co-incubated together prior to trypsin treatment, 

the pursuant infection would reflect neutralization by both blocking HA cleavage and 

membrane fusion. We would expect that adding 1G3 before trypsin treatment would result 

in the most significant plaque reduction in a PRNT context, as inhibition of cleavage is a 

supplemental mechanism of viral inhibition that will have an additive effect on controlling 

in vitro infection. We would also expect this effect to be even more pronounced with H3 

viruses as is appears from Western blotting that 1G3 binding is disrupted by cleavage.  

Most critically, the efficacy of 1G3 needs to be evaluated in vivo. We would first 

model our experiments based on those completed with CR9114 by Dreyfus et al. They 

evaluated the prophylactic efficacy of their antibody by applying 15, 5, 1.7, 0.6, or 0.2 

mg/kg intranasaly 24 hours post challenge with 25 LD50 of virus. They measured the 
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animal’s survival and body weight for 15 days and also measured viral titer in the lungs 

following sacrifice (32). We would ideally test at minimum one H1, one H3 and one 

influenza B virus from each lineage in a similar infection scheme. It would also be of 

interest to test 1G3 prophylactically against a HPAI H5 or H7 virus, which would require 

the use of a dedicated BSL-3 animal facility in addition to a BSL-3 laboratory for viral 

propagation and preparation.   

We would also like to test the impact of 1G3 as a possible therapeutic in vivo. Our 

PRNT protocol does call for the application of antibody following 30 mins of infection and 

those data strongly suggest that 1G3 can dampen an already in-progress infection. Especially 

salient would be any effect of 1G3 on highly pathogenic avian viruses post infection, as 

these carry a high mortality rate but have been successfully treated with convalescent sera 

(3).    

Interestingly, there are no data available about the therapeutic value of CR9114. 

However, another antibody also developed by Crucell, CR8020, completed Phase 2a human 

clinical trials less than 5 years ago. They tested a single 15 mg/kg injection given 2 days 

post challenge with an H1N1 virus. Unfortunately, study data are not available. Yet another 

Crucell antibody, CR6261, is currently being evaluated with its own Phase 2a trial at a 

reported concentration of 50 mg/kg. This discrepancy drives home the importance of in vivo 

experimentation and the difficulties of antibody therapies for infectious disease.  

While there is a significant amount of work needed to translate monoclonal antibody 

1G3 from our data to human relevance, we are optimistic that because of 1G3’s broad 

neutralizing profile it is worth pursuing.  

 



124 

 

 

 

 

 

 

Figure 46: Influenza HA targeted broadly neutralizing monoclonal antibodies. Type 1 

antibodies target more than one strain of group 1; type 2 targets more than one strain of 

group 2. Type 3 can target influenza A strains of both groups. CR9114 (highlighted in red) 

can also target influenza B (32).  
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Figure 47: Influenza targeted monoclonal antibodies currently in development in the United 

States. Seven of eight target the HA glycoprotein while one, TCN 032, instead targets the 

extracellular region of the M2 ion channel. 
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Figure 48: Mechanisms of HA antibody inhibition of influenza virus infection. Head 

targeted antibodies function primarily at the beginning of the virus life cycle, shown on the 

left, preventing viral attachment. Stem antibodies, right, may prevent HA cleavage before 

internalization or prevent pH mediated conformational changes in the fusion peptide. Both 

head and stem antibodies can prevent the egress of progeny virions either by directly 

crosslinking virus or indirectly inhibited NA via steric hindrance. (11) 
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APPENDIX 

 

1. Table of Viruses 

 

Virus Abbreviation Subtype Origin 

Gene 

Composition 

A/Puerto 

Rico/8/1934 
PR8 IAV, H1N1 Egg adapted  

A/New 

Caledonia/20/19

92 

 IAV, H1N1 Wildtype  

A/Moscow/10/1

999 
 IAV, H3N2 Wildtype  

A/Wisconsin/67/

2005 
 IAV, H3N2 Wildtype  

A/South 

Dakota/06/2007 
 IAV, H1N1 Wildtype  

A/California/07/

2009 
 IAV, H1N1pdm Wildtype  

A/Hong 

Kong/50/2014 
 IAV, H3N2 Wildtype  

B/Brisbane/60/2

008 
 IBV, Victoria Wildtype  

B/Massachusetts

/02/2012 
 IBV, Yamagata Wildtype  

NYMC X-162 X-162 IAV, H3N1 
High Yield 

Reassortant 

HA: 

A/Wisconsin/67/

2005 

NYMC X-179A X-179A IAV, H1N1pdm 
High Yield 

Reassortant 

HA, PB1: 

A/California/07/

2009 

NYMC X-187 X-187 IAV, H3N2 
High Yield 

Reassortant 

HA: 

A/Victoria/2009 
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2. Peptide Map 

 

  1 2 3 

 EQKLISEEDL G EQKLISEEDL G 

1 EQKLISEEDL GSGSGSGMKA

NLLVL 

SGSGSGMKANL

LVLL 

GSGSGMKANLL

VLLC 

2 G GSGSGSGMKA

NLLVL 

SGSGSGMKANL

LVLL 

GSGSGMKANLL

VLLC 

3 EQKLISEEDL LCRLKGIAPLQL

GKC 

CRLKGIAPLQL

GKCN 

RLKGIAPLQLG

KCNI 

4 G LCRLKGIAPLQL

GKC 

CRLKGIAPLQL

GKCN 

RLKGIAPLQLG

KCNI 

5 EQKLISEEDL LSSVSSFERFEIF

PK 

SSVSSFERFEIFP

KE 

SVSSFERFEIFPK

ES 

6 G LSSVSSFERFEIF

PK 

SSVSSFERFEIFP

KE 

SVSSFERFEIFPK

ES 

7 EQKLISEEDL GKEVLVLWGIH

HPSN 

KEVLVLWGIHH

PSNS 

EVLVLWGIHHP

SNSK 

8 G GKEVLVLWGIH

HPSN 

KEVLVLWGIHH

PSNS 

EVLVLWGIHHP

SNSK 

9 EQKLISEEDL LKPGDTIIFEAN

GNL 

KPGDTIIFEANG

NLI 

PGDTIIFEANGN

LIA 

10 G LKPGDTIIFEAN

GNL 

KPGDTIIFEANG

NLI 

PGDTIIFEANGN

LIA 

11 EQKLISEEDL VTIGECPKYVR

SAKL 

TIGECPKYVRS

AKLR 

IGECPKYVRSA

KLRM 

12 G VTIGECPKYVR

SAKL 

TIGECPKYVRS

AKLR 

IGECPKYVRSA

KLRM 

13 EQKLISEEDL AADQKSTQNAI

NGIT 

ADQKSTQNAIN

GITN 

DQKSTQNAING

ITNK 

14 G AADQKSTQNAI

NGIT 

ADQKSTQNAIN

GITN 

DQKSTQNAING

ITNK 

15 EQKLISEEDL LVLLENERTLD

FHDS 

VLLENERTLDF

HDSN 

LLENERTLDFH

DSNV 

16 G LVLLENERTLD

FHDS 

VLLENERTLDF

HDSN 

LLENERTLDFH

DSNV 

17 EQKLISEEDL SEESKLNREKV

DGVK 

EESKLNREKVD

GVKL 

ESKLNREKVDG

VKLE 

18 G SEESKLNREKV

DGVK 

EESKLNREKVD

GVKL 

ESKLNREKVDG

VKLE 

 EQKLISEEDL G EQKLISEEDL G 

     

 4 5 6 7 

 EQKLISEEDL G EQKLISEEDL G 

1 SGSGMKANLLV

LLCA 

GSGMKANLLV

LLCAL 

SGMKANLLVLL

CALA 

GMKANLLVLL

CALAA 

2 SGSGMKANLLV

LLCA 

GSGMKANLLV

LLCAL 

SGMKANLLVLL

CALA 

GMKANLLVLL

CALAA 

3 LKGIAPLQLGK

CNIA 

KGIAPLQLGKC

NIAG 

GIAPLQLGKCNI

AGW 

IAPLQLGKCNIA

GWL 
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4 LKGIAPLQLGK

CNIA 

KGIAPLQLGKC

NIAG 

GIAPLQLGKCNI

AGW 

IAPLQLGKCNIA

GWL 

5 VSSFERFEIFPK

ESS 

SSFERFEIFPKES

SW 

SFERFEIFPKESS

WP 

FERFEIFPKESS

WPN 

6 VSSFERFEIFPK

ESS 

SSFERFEIFPKES

SW 

SFERFEIFPKESS

WP 

FERFEIFPKESS

WPN 

7 VLVLWGIHHPS

NSKE 

LVLWGIHHPSN

SKEQ 

VLWGIHHPSNS

KEQQ 

LWGIHHPSNSK

EQQN 

8 VLVLWGIHHPS

NSKE 

LVLWGIHHPSN

SKEQ 

VLWGIHHPSNS

KEQQ 

LWGIHHPSNSK

EQQN 

9 GDTIIFEANGNL

IAP 

DTIIFEANGNLI

APM 

TIIFEANGNLIAP

MY 

IIFEANGNLIAP

MYA 

10 GDTIIFEANGNL

IAP 

DTIIFEANGNLI

APM 

TIIFEANGNLIAP

MY 

IIFEANGNLIAP

MYA 

11 GECPKYVRSAK

LRMV 

ECPKYVRSAKL

RMVT 

CPKYVRSAKLR

MVTG 

PKYVRSAKLRM

VTGL 

12 GECPKYVRSAK

LRMV 

ECPKYVRSAKL

RMVT 

CPKYVRSAKLR

MVTG 

PKYVRSAKLRM

VTGL 

13 QKSTQNAINGIT

NKV 

KSTQNAINGITN

KVN 

STQNAINGITNK

VNT 

TQNAINGITNK

VNTV 

14 QKSTQNAINGIT

NKV 

KSTQNAINGITN

KVN 

STQNAINGITNK

VNT 

TQNAINGITNK

VNTV 

15 LENERTLDFHD

SNVK 

ENERTLDFHDS

NVKN 

NERTLDFHDSN

VKNL 

ERTLDFHDSNV

KNLY 

16 LENERTLDFHD

SNVK 

ENERTLDFHDS

NVKN 

NERTLDFHDSN

VKNL 

ERTLDFHDSNV

KNLY 

17 SKLNREKVDGV

KLES 

KLNREKVDGV

KLESM 

LNREKVDGVKL

ESMG 

NREKVDGVKLE

SMGI 

18 SKLNREKVDGV

KLES 

KLNREKVDGV

KLESM 

LNREKVDGVKL

ESMG 

NREKVDGVKLE

SMGI 

 EQKLISEEDL G EQKLISEEDL G 

     

 8 9 10 11 

 EQKLISEEDL G EQKLISEEDL G 

1 MKANLLVLLC

ALAAA 

KANLLVLLCAL

AAAD 

ANLLVLLCALA

AADA 

NLLVLLCALAA

ADAD 

2 MKANLLVLLC

ALAAA 

KANLLVLLCAL

AAAD 

ANLLVLLCALA

AADA 

NLLVLLCALAA

ADAD 

3 APLQLGKCNIA

GWLL 

PLQLGKCNIAG

WLLG 

LQLGKCNIAGW

LLGN 

QLGKCNIAGWL

LGNP 

4 APLQLGKCNIA

GWLL 

PLQLGKCNIAG

WLLG 

LQLGKCNIAGW

LLGN 

QLGKCNIAGWL

LGNP 

5 ERFEIFPKESSW

PNH 

RFEIFPKESSWP

NHN 

FEIFPKESSWPN

HNT 

EIFPKESSWPNH

NTN 

6 ERFEIFPKESSW

PNH 

RFEIFPKESSWP

NHN 

FEIFPKESSWPN

HNT 

EIFPKESSWPNH

NTN 

7 WGIHHPSNSKE

QQNL 

GIHHPSNSKEQ

QNLY 

IHHPSNSKEQQ

NLYQ 

HHPSNSKEQQN

LYQN 

8 WGIHHPSNSKE

QQNL 

GIHHPSNSKEQ

QNLY 

IHHPSNSKEQQ

NLYQ 

HHPSNSKEQQN

LYQN 

9 IFEANGNLIAPM

YAF 

FEANGNLIAPM

YAFA 

EANGNLIAPMY

AFAL 

ANGNLIAPMYA

FALS 

10 IFEANGNLIAPM

YAF 

FEANGNLIAPM

YAFA 

EANGNLIAPMY

AFAL 

ANGNLIAPMYA

FALS 
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11 KYVRSAKLRM

VTGLR 

YVRSAKLRMV

TGLRN 

VRSAKLRMVT

GLRNI 

RSAKLRMVTGL

RNIP 

12 KYVRSAKLRM

VTGLR 

YVRSAKLRMV

TGLRN 

VRSAKLRMVT

GLRNI 

RSAKLRMVTGL

RNIP 

13 QNAINGITNKV

NTVI 

NAINGITNKVN

TVIE 

AINGITNKVNT

VIEK 

INGITNKVNTVI

EKM 

14 QNAINGITNKV

NTVI 

NAINGITNKVN

TVIE 

AINGITNKVNT

VIEK 

INGITNKVNTVI

EKM 

15 RTLDFHDSNVK

NLYE 

TLDFHDSNVKN

LYEK 

LDFHDSNVKNL

YEKV 

DFHDSNVKNLY

EKVK 

16 RTLDFHDSNVK

NLYE 

TLDFHDSNVKN

LYEK 

LDFHDSNVKNL

YEKV 

DFHDSNVKNLY

EKVK 

17 REKVDGVKLES

MGIY 

EKVDGVKLES

MGIYQ 

KVDGVKLESM

GIYQI 

VDGVKLESMGI

YQIL 

18 REKVDGVKLES

MGIY 

EKVDGVKLES

MGIYQ 

KVDGVKLESM

GIYQI 

VDGVKLESMGI

YQIL 

 EQKLISEEDL G EQKLISEEDL G 

     

 12 13 14 15 

 EQKLISEEDL G EQKLISEEDL G 

1 LLVLLCALAAA

DADT 

LVLLCALAAAD

ADTI 

VLLCALAAADA

DTIC 

LLCALAAADAD

TICI 

2 LLVLLCALAAA

DADT 

LVLLCALAAAD

ADTI 

VLLCALAAADA

DTIC 

LLCALAAADAD

TICI 

3 LGKCNIAGWLL

GNPE 

GKCNIAGWLLG

NPEC 

KCNIAGWLLGN

PECD 

CNIAGWLLGNP

ECDP 

4 LGKCNIAGWLL

GNPE 

GKCNIAGWLLG

NPEC 

KCNIAGWLLGN

PECD 

CNIAGWLLGNP

ECDP 

5 IFPKESSWPNHN

TNG 

FPKESSWPNHN

TNGV 

PKESSWPNHNT

NGVT 

KESSWPNHNTN

GVTA 

6 IFPKESSWPNHN

TNG 

FPKESSWPNHN

TNGV 

PKESSWPNHNT

NGVT 

KESSWPNHNTN

GVTA 

7 HPSNSKEQQNL

YQNE 

PSNSKEQQNLY

QNEN 

SNSKEQQNLYQ

NENA 

NSKEQQNLYQN

ENAY 

8 HPSNSKEQQNL

YQNE 

PSNSKEQQNLY

QNEN 

SNSKEQQNLYQ

NENA 

NSKEQQNLYQN

ENAY 

9 NGNLIAPMYAF

ALSR 

GNLIAPMYAFA

LSRG 

NLIAPMYAFAL

SRGF 

LIAPMYAFALS

RGFG 

10 NGNLIAPMYAF

ALSR 

GNLIAPMYAFA

LSRG 

NLIAPMYAFAL

SRGF 

LIAPMYAFALS

RGFG 

11 SAKLRMVTGLR

NIPS 

AKLRMVTGLR

NIPSI 

KLRMVTGLRNI

PSIQ 

LRMVTGLRNIP

SIQS 

12 SAKLRMVTGLR

NIPS 

AKLRMVTGLR

NIPSI 

KLRMVTGLRNI

PSIQ 

LRMVTGLRNIP

SIQS 

13 NGITNKVNTVIE

KMN 

GITNKVNTVIEK

MNI 

ITNKVNTVIEK

MNIQ 

TNKVNTVIEKM

NIQF 

14 NGITNKVNTVIE

KMN 

GITNKVNTVIEK

MNI 

ITNKVNTVIEK

MNIQ 

TNKVNTVIEKM

NIQF 

15 FHDSNVKNLYE

KVKS 

HDSNVKNLYEK

VKSQ 

DSNVKNLYEKV

KSQL 

SNVKNLYEKVK

SQLK 

16 FHDSNVKNLYE

KVKS 

HDSNVKNLYEK

VKSQ 

DSNVKNLYEKV

KSQL 

SNVKNLYEKVK

SQLK 

17 DGVKLESMGIY

QILA 

GVKLESMGIYQ

ILAI 

VKLESMGIYQIL

AIY 

KLESMGIYQILA

IYS 
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18 DGVKLESMGIY

QILA 

GVKLESMGIYQ

ILAI 

VKLESMGIYQIL

AIY 

KLESMGIYQILA

IYS 

 EQKLISEEDL G EQKLISEEDL G 

     

 16 17 18 19 

 EQKLISEEDL G EQKLISEEDL G 

1 LCALAAADADT

ICIG 

CALAAADADTI

CIGY 

ALAAADADTIC

IGYH 

LAAADADTICI

GYHA 

2 LCALAAADADT

ICIG 

CALAAADADTI

CIGY 

ALAAADADTIC

IGYH 

LAAADADTICI

GYHA 

3 NIAGWLLGNPE

CDPL 

IAGWLLGNPEC

DPLL 

AGWLLGNPEC

DPLLP 

GWLLGNPECDP

LLPV 

4 NIAGWLLGNPE

CDPL 

IAGWLLGNPEC

DPLL 

AGWLLGNPEC

DPLLP 

GWLLGNPECDP

LLPV 

5 ESSWPNHNTNG

VTAA 

SSWPNHNTNGV

TAAC 

SWPNHNTNGV

TAACS 

WPNHNTNGVT

AACSH 

6 ESSWPNHNTNG

VTAA 

SSWPNHNTNGV

TAAC 

SWPNHNTNGV

TAACS 

WPNHNTNGVT

AACSH 

7 SKEQQNLYQNE

NAYV 

KEQQNLYQNE

NAYVS 

EQQNLYQNEN

AYVSV 

QQNLYQNENA

YVSVV 

8 SKEQQNLYQNE

NAYV 

KEQQNLYQNE

NAYVS 

EQQNLYQNEN

AYVSV 

QQNLYQNENA

YVSVV 

9 IAPMYAFALSR

GFGS 

APMYAFALSRG

FGSG 

PMYAFALSRGF

GSGI 

MYAFALSRGFG

SGII 

10 IAPMYAFALSR

GFGS 

APMYAFALSRG

FGSG 

PMYAFALSRGF

GSGI 

MYAFALSRGFG

SGII 

11 RMVTGLRNIPSI

QSR 

MVTGLRNIPSIQ

SRG 

VTGLRNIPSIQS

RGL 

TGLRNIPSIQSR

GLF 

12 RMVTGLRNIPSI

QSR 

MVTGLRNIPSIQ

SRG 

VTGLRNIPSIQS

RGL 

TGLRNIPSIQSR

GLF 

13 NKVNTVIEKMN

IQFT 

KVNTVIEKMNI

QFTA 

VNTVIEKMNIQ

FTAV 

NTVIEKMNIQFT

AVG 

14 NKVNTVIEKMN

IQFT 

KVNTVIEKMNI

QFTA 

VNTVIEKMNIQ

FTAV 

NTVIEKMNIQFT

AVG 

15 NVKNLYEKVKS

QLKN 

VKNLYEKVKSQ

LKNN 

KNLYEKVKSQL

KNNA 

NLYEKVKSQLK

NNAK 

16 NVKNLYEKVKS

QLKN 

VKNLYEKVKSQ

LKNN 

KNLYEKVKSQL

KNNA 

NLYEKVKSQLK

NNAK 

17 LESMGIYQILAI

YST 

ESMGIYQILAIY

STV 

SMGIYQILAIYS

TVA 

MGIYQILAIYST

VAS 

18 LESMGIYQILAI

YST 

ESMGIYQILAIY

STV 

SMGIYQILAIYS

TVA 

MGIYQILAIYST

VAS 

 EQKLISEEDL G EQKLISEEDL G 

     

 20 21 22 23 

 EQKLISEEDL G EQKLISEEDL G 

1 AAADADTICIG

YHAN 

AADADTICIGY

HANN 

ADADTICIGYH

ANNS 

DADTICIGYHA

NNST 

2 AAADADTICIG

YHAN 

AADADTICIGY

HANN 

ADADTICIGYH

ANNS 

DADTICIGYHA

NNST 

3 WLLGNPECDPL

LPVR 

LLGNPECDPLLP

VRS 

LGNPECDPLLP

VRSW 

GNPECDPLLPV

RSWS 

4 WLLGNPECDPL LLGNPECDPLLP LGNPECDPLLP GNPECDPLLPV
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LPVR VRS VRSW RSWS 

5 PNHNTNGVTAA

CSHE 

NHNTNGVTAA

CSHEG 

HNTNGVTAACS

HEGK 

NTNGVTAACSH

EGKS 

6 PNHNTNGVTAA

CSHE 

NHNTNGVTAA

CSHEG 

HNTNGVTAACS

HEGK 

NTNGVTAACSH

EGKS 

7 QNLYQNENAY

VSVVT 

NLYQNENAYVS

VVTS 

LYQNENAYVSV

VTSN 

YQNENAYVSV

VTSNY 

8 QNLYQNENAY

VSVVT 

NLYQNENAYVS

VVTS 

LYQNENAYVSV

VTSN 

YQNENAYVSV

VTSNY 

9 YAFALSRGFGS

GIIT 

AFALSRGFGSGI

ITS 

FALSRGFGSGII

TSN 

ALSRGFGSGIIT

SNA 

10 YAFALSRGFGS

GIIT 

AFALSRGFGSGI

ITS 

FALSRGFGSGII

TSN 

ALSRGFGSGIIT

SNA 

11 GLRNIPSIQSRG

LFG 

LRNIPSIQSRGL

FGA 

RNIPSIQSRGLF

GAI 

NIPSIQSRGLFG

AIA 

12 GLRNIPSIQSRG

LFG 

LRNIPSIQSRGL

FGA 

RNIPSIQSRGLF

GAI 

NIPSIQSRGLFG

AIA 

13 TVIEKMNIQFTA

VGK 

VIEKMNIQFTA

VGKE 

IEKMNIQFTAV

GKEF 

EKMNIQFTAVG

KEFN 

14 TVIEKMNIQFTA

VGK 

VIEKMNIQFTA

VGKE 

IEKMNIQFTAV

GKEF 

EKMNIQFTAVG

KEFN 

15 LYEKVKSQLKN

NAKE 

YEKVKSQLKNN

AKEI 

EKVKSQLKNNA

KEIG 

KVKSQLKNNA

KEIGN 

16 LYEKVKSQLKN

NAKE 

YEKVKSQLKNN

AKEI 

EKVKSQLKNNA

KEIG 

KVKSQLKNNA

KEIGN 

17 GIYQILAIYSTV

ASS 

IYQILAIYSTVA

SSL 

YQILAIYSTVAS

SLV 

QILAIYSTVASS

LVL 

18 GIYQILAIYSTV

ASS 

IYQILAIYSTVA

SSL 

YQILAIYSTVAS

SLV 

QILAIYSTVASS

LVL 

 EQKLISEEDL G EQKLISEEDL G 

     

 24 25 26 27 

 EQKLISEEDL G EQKLISEEDL G 

1 ADTICIGYHAN

NSTD 

DTICIGYHANNS

TDT 

TICIGYHANNST

DTV 

ICIGYHANNSTD

TVD 

2 ADTICIGYHAN

NSTD 

DTICIGYHANNS

TDT 

TICIGYHANNST

DTV 

ICIGYHANNSTD

TVD 

3 NPECDPLLPVRS

WSY 

PECDPLLPVRS

WSYI 

ECDPLLPVRSW

SYIV 

CDPLLPVRSWS

YIVE 

4 NPECDPLLPVRS

WSY 

PECDPLLPVRS

WSYI 

ECDPLLPVRSW

SYIV 

CDPLLPVRSWS

YIVE 

5 TNGVTAACSHE

GKSS 

NGVTAACSHEG

KSSF 

GVTAACSHEGK

SSFY 

VTAACSHEGKS

SFYR 

6 TNGVTAACSHE

GKSS 

NGVTAACSHEG

KSSF 

GVTAACSHEGK

SSFY 

VTAACSHEGKS

SFYR 

7 QNENAYVSVVT

SNYN 

NENAYVSVVTS

NYNR 

ENAYVSVVTSN

YNRR 

NAYVSVVTSNY

NRRF 

8 QNENAYVSVVT

SNYN 

NENAYVSVVTS

NYNR 

ENAYVSVVTSN

YNRR 

NAYVSVVTSNY

NRRF 

9 LSRGFGSGIITS

NAS 

SRGFGSGIITSN

ASM 

RGFGSGIITSNA

SMH 

GFGSGIITSNAS

MHE 

10 LSRGFGSGIITS

NAS 

SRGFGSGIITSN

ASM 

RGFGSGIITSNA

SMH 

GFGSGIITSNAS

MHE 
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11 IPSIQSRGLFGAI

AG 

PSIQSRGLFGAI

AGF 

SIQSRGLFGAIA

GFI 

IQSRGLFGAIAG

FIE 

12 IPSIQSRGLFGAI

AG 

PSIQSRGLFGAI

AGF 

SIQSRGLFGAIA

GFI 

IQSRGLFGAIAG

FIE 

13 KMNIQFTAVGK

EFNK 

MNIQFTAVGKE

FNKL 

NIQFTAVGKEF

NKLE 

IQFTAVGKEFN

KLEK 

14 KMNIQFTAVGK

EFNK 

MNIQFTAVGKE

FNKL 

NIQFTAVGKEF

NKLE 

IQFTAVGKEFN

KLEK 

15 VKSQLKNNAKE

IGNG 

KSQLKNNAKEI

GNGC 

SQLKNNAKEIG

NGCF 

QLKNNAKEIGN

GCFE 

16 VKSQLKNNAKE

IGNG 

KSQLKNNAKEI

GNGC 

SQLKNNAKEIG

NGCF 

QLKNNAKEIGN

GCFE 

17 ILAIYSTVASSL

VLL 

LAIYSTVASSLV

LLV 

AIYSTVASSLVL

LVS 

IYSTVASSLVLL

VSL 

18 ILAIYSTVASSL

VLL 

LAIYSTVASSLV

LLV 

AIYSTVASSLVL

LVS 

IYSTVASSLVLL

VSL 

 EQKLISEEDL G EQKLISEEDL G 

     

 28 29 30 31 

 EQKLISEEDL G EQKLISEEDL G 

1 CIGYHANNSTD

TVDT 

IGYHANNSTDT

VDTV 

GYHANNSTDTV

DTVL 

YHANNSTDTVD

TVLE 

2 CIGYHANNSTD

TVDT 

IGYHANNSTDT

VDTV 

GYHANNSTDTV

DTVL 

YHANNSTDTVD

TVLE 

3 DPLLPVRSWSYI

VET 

PLLPVRSWSYIV

ETP 

LLPVRSWSYIV

ETPN 

LPVRSWSYIVE

TPNS 

4 DPLLPVRSWSYI

VET 

PLLPVRSWSYIV

ETP 

LLPVRSWSYIV

ETPN 

LPVRSWSYIVE

TPNS 

5 TAACSHEGKSS

FYRN 

AACSHEGKSSF

YRNL 

ACSHEGKSSFY

RNLL 

CSHEGKSSFYR

NLLW 

6 TAACSHEGKSS

FYRN 

AACSHEGKSSF

YRNL 

ACSHEGKSSFY

RNLL 

CSHEGKSSFYR

NLLW 

7 AYVSVVTSNYN

RRFT 

YVSVVTSNYNR

RFTP 

VSVVTSNYNRR

FTPE 

SVVTSNYNRRF

TPEI 

8 AYVSVVTSNYN

RRFT 

YVSVVTSNYNR

RFTP 

VSVVTSNYNRR

FTPE 

SVVTSNYNRRF

TPEI 

9 FGSGIITSNASM

HEC 

GSGIITSNASMH

ECN 

SGIITSNASMHE

CNT 

GIITSNASMHEC

NTK 

10 FGSGIITSNASM

HEC 

GSGIITSNASMH

ECN 

SGIITSNASMHE

CNT 

GIITSNASMHEC

NTK 

11 QSRGLFGAIAG

FIEG 

SRGLFGAIAGFI

EGG 

RGLFGAIAGFIE

GGW 

GLFGAIAGFIEG

GWT 

12 QSRGLFGAIAG

FIEG 

SRGLFGAIAGFI

EGG 

RGLFGAIAGFIE

GGW 

GLFGAIAGFIEG

GWT 

13 QFTAVGKEFNK

LEKR 

FTAVGKEFNKL

EKRM 

TAVGKEFNKLE

KRME 

AVGKEFNKLEK

RMEN 

14 QFTAVGKEFNK

LEKR 

FTAVGKEFNKL

EKRM 

TAVGKEFNKLE

KRME 

AVGKEFNKLEK

RMEN 

15 LKNNAKEIGNG

CFEF 

KNNAKEIGNGC

FEFY 

NNAKEIGNGCF

EFYH 

NAKEIGNGCFE

FYHK 

16 LKNNAKEIGNG

CFEF 

KNNAKEIGNGC

FEFY 

NNAKEIGNGCF

EFYH 

NAKEIGNGCFE

FYHK 

17 YSTVASSLVLL

VSLG 

STVASSLVLLVS

LGA 

TVASSLVLLVS

LGAI 

VASSLVLLVSL

GAIS 
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18 YSTVASSLVLL

VSLG 

STVASSLVLLVS

LGA 

TVASSLVLLVS

LGAI 

VASSLVLLVSL

GAIS 

 EQKLISEEDL G EQKLISEEDL G 

     

 32 33 34 35 

 EQKLISEEDL G EQKLISEEDL G 

1 HANNSTDTVDT

VLEK 

ANNSTDTVDTV

LEKN 

NNSTDTVDTVL

EKNV 

NSTDTVDTVLE

KNVT 

2 HANNSTDTVDT

VLEK 

ANNSTDTVDTV

LEKN 

NNSTDTVDTVL

EKNV 

NSTDTVDTVLE

KNVT 

3 PVRSWSYIVETP

NSE 

VRSWSYIVETP

NSEN 

RSWSYIVETPNS

ENG 

SWSYIVETPNSE

NGI 

4 PVRSWSYIVETP

NSE 

VRSWSYIVETP

NSEN 

RSWSYIVETPNS

ENG 

SWSYIVETPNSE

NGI 

5 SHEGKSSFYRN

LLWL 

HEGKSSFYRNL

LWLT 

EGKSSFYRNLL

WLTE 

GKSSFYRNLLW

LTEK 

6 SHEGKSSFYRN

LLWL 

HEGKSSFYRNL

LWLT 

EGKSSFYRNLL

WLTE 

GKSSFYRNLLW

LTEK 

7 VVTSNYNRRFT

PEIA 

VTSNYNRRFTP

EIAE 

TSNYNRRFTPEI

AER 

SNYNRRFTPEIA

ERP 

8 VVTSNYNRRFT

PEIA 

VTSNYNRRFTP

EIAE 

TSNYNRRFTPEI

AER 

SNYNRRFTPEIA

ERP 

9 IITSNASMHECN

TKC 

ITSNASMHECN

TKCQ 

TSNASMHECNT

KCQT 

SNASMHECNTK

CQTP 

10 IITSNASMHECN

TKC 

ITSNASMHECN

TKCQ 

TSNASMHECNT

KCQT 

SNASMHECNTK

CQTP 

11 LFGAIAGFIEGG

WTG 

FGAIAGFIEGG

WTGM 

GAIAGFIEGGW

TGMI 

AIAGFIEGGWT

GMID 

12 LFGAIAGFIEGG

WTG 

FGAIAGFIEGG

WTGM 

GAIAGFIEGGW

TGMI 

AIAGFIEGGWT

GMID 

13 VGKEFNKLEKR

MENL 

GKEFNKLEKRM

ENLN 

KEFNKLEKRME

NLNK 

EFNKLEKRMEN

LNKK 

14 VGKEFNKLEKR

MENL 

GKEFNKLEKRM

ENLN 

KEFNKLEKRME

NLNK 

EFNKLEKRMEN

LNKK 

15 AKEIGNGCFEF

YHKC 

KEIGNGCFEFY

HKCD 

EIGNGCFEFYH

KCDN 

IGNGCFEFYHK

CDNE 

16 AKEIGNGCFEF

YHKC 

KEIGNGCFEFY

HKCD 

EIGNGCFEFYH

KCDN 

IGNGCFEFYHK

CDNE 

17 ASSLVLLVSLG

AISF 

SSLVLLVSLGAI

SFW 

SLVLLVSLGAIS

FWM 

LVLLVSLGAISF

WMC 

18 ASSLVLLVSLG

AISF 

SSLVLLVSLGAI

SFW 

SLVLLVSLGAIS

FWM 

LVLLVSLGAISF

WMC 

 EQKLISEEDL G EQKLISEEDL G 

     

 36 37 38 39 

 EQKLISEEDL G EQKLISEEDL G 

1 STDTVDTVLEK

NVTV 

TDTVDTVLEKN

VTVT 

DTVDTVLEKNV

TVTH 

TVDTVLEKNVT

VTHS 

2 STDTVDTVLEK

NVTV 

TDTVDTVLEKN

VTVT 

DTVDTVLEKNV

TVTH 

TVDTVLEKNVT

VTHS 

3 WSYIVETPNSE

NGIC 

SYIVETPNSENG

ICY 

YIVETPNSENGI

CYP 

IVETPNSENGIC

YPG 

4 WSYIVETPNSE SYIVETPNSENG YIVETPNSENGI IVETPNSENGIC
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NGIC ICY CYP YPG 

5 KSSFYRNLLWL

TEKE 

SSFYRNLLWLT

EKEG 

SFYRNLLWLTE

KEGS 

FYRNLLWLTEK

EGSY 

6 KSSFYRNLLWL

TEKE 

SSFYRNLLWLT

EKEG 

SFYRNLLWLTE

KEGS 

FYRNLLWLTEK

EGSY 

7 NYNRRFTPEIAE

RPK 

YNRRFTPEIAER

PKV 

NRRFTPEIAERP

KVR 

RRFTPEIAERPK

VRD 

8 NYNRRFTPEIAE

RPK 

YNRRFTPEIAER

PKV 

NRRFTPEIAERP

KVR 

RRFTPEIAERPK

VRD 

9 NASMHECNTK

CQTPL 

ASMHECNTKC

QTPLG 

SMHECNTKCQT

PLGA 

MHECNTKCQTP

LGAI 

10 NASMHECNTK

CQTPL 

ASMHECNTKC

QTPLG 

SMHECNTKCQT

PLGA 

MHECNTKCQTP

LGAI 

11 IAGFIEGGWTG

MIDG 

AGFIEGGWTGM

IDGW 

GFIEGGWTGMI

DGWY 

FIEGGWTGMID

GWYG 

12 IAGFIEGGWTG

MIDG 

AGFIEGGWTGM

IDGW 

GFIEGGWTGMI

DGWY 

FIEGGWTGMID

GWYG 

13 FNKLEKRMENL

NKKV 

NKLEKRMENL

NKKVD 

KLEKRMENLN

KKVDD 

LEKRMENLNK

KVDDG 

14 FNKLEKRMENL

NKKV 

NKLEKRMENL

NKKVD 

KLEKRMENLN

KKVDD 

LEKRMENLNK

KVDDG 

15 GNGCFEFYHKC

DNEC 

NGCFEFYHKCD

NECM 

GCFEFYHKCDN

ECME 

CFEFYHKCDNE

CMES 

16 GNGCFEFYHKC

DNEC 

NGCFEFYHKCD

NECM 

GCFEFYHKCDN

ECME 

CFEFYHKCDNE

CMES 

17 VLLVSLGAISF

WMCS 

LLVSLGAISFW

MCSN 

LVSLGAISFWM

CSNG 

VSLGAISFWMC

SNGS 

18 VLLVSLGAISF

WMCS 

LLVSLGAISFW

MCSN 

LVSLGAISFWM

CSNG 

VSLGAISFWMC

SNGS 

 EQKLISEEDL G EQKLISEEDL G 

     

 40 41 42 43 

 EQKLISEEDL G EQKLISEEDL G 

1 VDTVLEKNVTV

THSV 

DTVLEKNVTVT

HSVN 

TVLEKNVTVTH

SVNL 

VLEKNVTVTHS

VNLL 

2 VDTVLEKNVTV

THSV 

DTVLEKNVTVT

HSVN 

TVLEKNVTVTH

SVNL 

VLEKNVTVTHS

VNLL 

3 VETPNSENGICY

PGD 

ETPNSENGICYP

GDF 

TPNSENGICYPG

DFI 

PNSENGICYPG

DFID 

4 VETPNSENGICY

PGD 

ETPNSENGICYP

GDF 

TPNSENGICYPG

DFI 

PNSENGICYPG

DFID 

5 YRNLLWLTEKE

GSYP 

RNLLWLTEKEG

SYPN 

NLLWLTEKEGS

YPNL 

LLWLTEKEGSY

PNLK 

6 YRNLLWLTEKE

GSYP 

RNLLWLTEKEG

SYPN 

NLLWLTEKEGS

YPNL 

LLWLTEKEGSY

PNLK 

7 RFTPEIAERPKV

RDQ 

FTPEIAERPKVR

DQA 

TPEIAERPKVRD

QAG 

PEIAERPKVRD

QAGR 

8 RFTPEIAERPKV

RDQ 

FTPEIAERPKVR

DQA 

TPEIAERPKVRD

QAG 

PEIAERPKVRD

QAGR 

9 HECNTKCQTPL

GAIN 

ECNTKCQTPLG

AINS 

CNTKCQTPLGA

INSS 

NTKCQTPLGAI

NSSL 

10 HECNTKCQTPL

GAIN 

ECNTKCQTPLG

AINS 

CNTKCQTPLGA

INSS 

NTKCQTPLGAI

NSSL 
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11 IEGGWTGMIDG

WYGY 

EGGWTGMIDG

WYGYH 

GGWTGMIDGW

YGYHH 

GWTGMIDGWY

GYHHQ 

12 IEGGWTGMIDG

WYGY 

EGGWTGMIDG

WYGYH 

GGWTGMIDGW

YGYHH 

GWTGMIDGWY

GYHHQ 

13 EKRMENLNKK

VDDGF 

KRMENLNKKV

DDGFL 

RMENLNKKVD

DGFLD 

MENLNKKVDD

GFLDI 

14 EKRMENLNKK

VDDGF 

KRMENLNKKV

DDGFL 

RMENLNKKVD

DGFLD 

MENLNKKVDD

GFLDI 

15 FEFYHKCDNEC

MESV 

EFYHKCDNEC

MESVR 

FYHKCDNECM

ESVRN 

YHKCDNECME

SVRNG 

16 FEFYHKCDNEC

MESV 

EFYHKCDNEC

MESVR 

FYHKCDNECM

ESVRN 

YHKCDNECME

SVRNG 

17 SLGAISFWMCS

NGSL 

LGAISFWMCSN

GSLQ 

GAISFWMCSNG

SLQC 

AISFWMCSNGS

LQCR 

18 SLGAISFWMCS

NGSL 

LGAISFWMCSN

GSLQ 

GAISFWMCSNG

SLQC 

AISFWMCSNGS

LQCR 

 EQKLISEEDL G EQKLISEEDL G 

     

 44 45 46 47 

 EQKLISEEDL G EQKLISEEDL G 

1 LEKNVTVTHSV

NLLE 

EKNVTVTHSVN

LLED 

KNVTVTHSVNL

LEDS 

NVTVTHSVNLL

EDSH 

2 LEKNVTVTHSV

NLLE 

EKNVTVTHSVN

LLED 

KNVTVTHSVNL

LEDS 

NVTVTHSVNLL

EDSH 

3 NSENGICYPGD

FIDY 

SENGICYPGDFI

DYE 

ENGICYPGDFID

YEE 

NGICYPGDFIDY

EEL 

4 NSENGICYPGD

FIDY 

SENGICYPGDFI

DYE 

ENGICYPGDFID

YEE 

NGICYPGDFIDY

EEL 

5 LWLTEKEGSYP

NLKN 

WLTEKEGSYPN

LKNS 

LTEKEGSYPNL

KNSY 

TEKEGSYPNLK

NSYV 

6 LWLTEKEGSYP

NLKN 

WLTEKEGSYPN

LKNS 

LTEKEGSYPNL

KNSY 

TEKEGSYPNLK

NSYV 

7 EIAERPKVRDQ

AGRM 

IAERPKVRDQA

GRMN 

AERPKVRDQAG

RMNY 

ERPKVRDQAGR

MNYY 

8 EIAERPKVRDQ

AGRM 

IAERPKVRDQA

GRMN 

AERPKVRDQAG

RMNY 

ERPKVRDQAGR

MNYY 

9 TKCQTPLGAINS

SLP 

KCQTPLGAINSS

LPY 

CQTPLGAINSSL

PYQ 

QTPLGAINSSLP

YQN 

10 TKCQTPLGAINS

SLP 

KCQTPLGAINSS

LPY 

CQTPLGAINSSL

PYQ 

QTPLGAINSSLP

YQN 

11 WTGMIDGWYG

YHHQN 

TGMIDGWYGY

HHQNE 

GMIDGWYGYH

HQNEQ 

MIDGWYGYHH

QNEQG 

12 WTGMIDGWYG

YHHQN 

TGMIDGWYGY

HHQNE 

GMIDGWYGYH

HQNEQ 

MIDGWYGYHH

QNEQG 

13 ENLNKKVDDGF

LDIW 

NLNKKVDDGFL

DIWT 

LNKKVDDGFLD

IWTY 

NKKVDDGFLDI

WTYN 

14 ENLNKKVDDGF

LDIW 

NLNKKVDDGFL

DIWT 

LNKKVDDGFLD

IWTY 

NKKVDDGFLDI

WTYN 

15 HKCDNECMES

VRNGT 

KCDNECMESVR

NGTY 

CDNECMESVRN

GTYD 

DNECMESVRN

GTYDY 

16 HKCDNECMES

VRNGT 

KCDNECMESVR

NGTY 

CDNECMESVRN

GTYD 

DNECMESVRN

GTYDY 

17 ISFWMCSNGSL

QCRI 

SFWMCSNGSLQ

CRIC 

FWMCSNGSLQ

CRICI 

WMCSNGSLQC

RICIG 
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18 ISFWMCSNGSL

QCRI 

SFWMCSNGSLQ

CRIC 

FWMCSNGSLQ

CRICI 

WMCSNGSLQC

RICIG 

 EQKLISEEDL G EQKLISEEDL G 

     

 48 49 50 51 

 EQKLISEEDL G EQKLISEEDL G 

1 VTVTHSVNLLE

DSHN 

TVTHSVNLLED

SHNG 

VTHSVNLLEDS

HNGK 

THSVNLLEDSH

NGKL 

2 VTVTHSVNLLE

DSHN 

TVTHSVNLLED

SHNG 

VTHSVNLLEDS

HNGK 

THSVNLLEDSH

NGKL 

3 GICYPGDFIDYE

ELR 

ICYPGDFIDYEE

LRE 

CYPGDFIDYEEL

REQ 

YPGDFIDYEELR

EQL 

4 GICYPGDFIDYE

ELR 

ICYPGDFIDYEE

LRE 

CYPGDFIDYEEL

REQ 

YPGDFIDYEELR

EQL 

5 EKEGSYPNLKN

SYVN 

KEGSYPNLKNS

YVNK 

EGSYPNLKNSY

VNKK 

GSYPNLKNSYV

NKKG 

6 EKEGSYPNLKN

SYVN 

KEGSYPNLKNS

YVNK 

EGSYPNLKNSY

VNKK 

GSYPNLKNSYV

NKKG 

7 RPKVRDQAGR

MNYYW 

PKVRDQAGRM

NYYWT 

KVRDQAGRMN

YYWTL 

VRDQAGRMNY

YWTLL 

8 RPKVRDQAGR

MNYYW 

PKVRDQAGRM

NYYWT 

KVRDQAGRMN

YYWTL 

VRDQAGRMNY

YWTLL 

9 TPLGAINSSLPY

QNI 

PLGAINSSLPYQ

NIH 

LGAINSSLPYQN

IHP 

GAINSSLPYQNI

HPV 

10 TPLGAINSSLPY

QNI 

PLGAINSSLPYQ

NIH 

LGAINSSLPYQN

IHP 

GAINSSLPYQNI

HPV 

11 IDGWYGYHHQ

NEQGS 

DGWYGYHHQN

EQGSG 

GWYGYHHQNE

QGSGY 

WYGYHHQNEQ

GSGYA 

12 IDGWYGYHHQ

NEQGS 

DGWYGYHHQN

EQGSG 

GWYGYHHQNE

QGSGY 

WYGYHHQNEQ

GSGYA 

13 KKVDDGFLDIW

TYNA 

KVDDGFLDIWT

YNAE 

VDDGFLDIWTY

NAEL 

DDGFLDIWTYN

AELL 

14 KKVDDGFLDIW

TYNA 

KVDDGFLDIWT

YNAE 

VDDGFLDIWTY

NAEL 

DDGFLDIWTYN

AELL 

15 NECMESVRNGT

YDYP 

ECMESVRNGTY

DYPK 

CMESVRNGTY

DYPKY 

MESVRNGTYD

YPKYS 

16 NECMESVRNGT

YDYP 

ECMESVRNGTY

DYPK 

CMESVRNGTY

DYPKY 

MESVRNGTYD

YPKYS 

17 MCSNGSLQCRI

CIGS 

CSNGSLQCRICI

GSG 

SNGSLQCRICIG

SGS 

NGSLQCRICIGS

GSG 

18 MCSNGSLQCRI

CIGS 

CSNGSLQCRICI

GSG 

SNGSLQCRICIG

SGS 

NGSLQCRICIGS

GSG 

 EQKLISEEDL G EQKLISEEDL G 

     

 52 53 54 55 

 EQKLISEEDL G EQKLISEEDL G 

1 HSVNLLEDSHN

GKLC 

SVNLLEDSHNG

KLCR 

VNLLEDSHNGK

LCRL 

NLLEDSHNGKL

CRLK 

2 HSVNLLEDSHN

GKLC 

SVNLLEDSHNG

KLCR 

VNLLEDSHNGK

LCRL 

NLLEDSHNGKL

CRLK 

3 PGDFIDYEELRE

QLS 

GDFIDYEELRE

QLSS 

DFIDYEELREQL

SSV 

FIDYEELREQLS

SVS 

4 PGDFIDYEELRE GDFIDYEELRE DFIDYEELREQL FIDYEELREQLS
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QLS QLSS SSV SVS 

5 SYPNLKNSYVN

KKGK 

YPNLKNSYVNK

KGKE 

PNLKNSYVNKK

GKEV 

NLKNSYVNKK

GKEVL 

6 SYPNLKNSYVN

KKGK 

YPNLKNSYVNK

KGKE 

PNLKNSYVNKK

GKEV 

NLKNSYVNKK

GKEVL 

7 RDQAGRMNYY

WTLLK 

DQAGRMNYYW

TLLKP 

QAGRMNYYWT

LLKPG 

AGRMNYYWTL

LKPGD 

8 RDQAGRMNYY

WTLLK 

DQAGRMNYYW

TLLKP 

QAGRMNYYWT

LLKPG 

AGRMNYYWTL

LKPGD 

9 AINSSLPYQNIH

PVT 

INSSLPYQNIHP

VTI 

NSSLPYQNIHPV

TIG 

SSLPYQNIHPVT

IGE 

10 AINSSLPYQNIH

PVT 

INSSLPYQNIHP

VTI 

NSSLPYQNIHPV

TIG 

SSLPYQNIHPVT

IGE 

11 YGYHHQNEQG

SGYAA 

GYHHQNEQGS

GYAAD 

YHHQNEQGSG

YAADQ 

HHQNEQGSGY

AADQK 

12 YGYHHQNEQG

SGYAA 

GYHHQNEQGS

GYAAD 

YHHQNEQGSG

YAADQ 

HHQNEQGSGY

AADQK 

13 DGFLDIWTYNA

ELLV 

GFLDIWTYNAE

LLVL 

FLDIWTYNAEL

LVLL 

LDIWTYNAELL

VLLE 

14 DGFLDIWTYNA

ELLV 

GFLDIWTYNAE

LLVL 

FLDIWTYNAEL

LVLL 

LDIWTYNAELL

VLLE 

15 ESVRNGTYDYP

KYSE 

SVRNGTYDYPK

YSEE 

VRNGTYDYPK

YSEES 

RNGTYDYPKYS

EESK 

16 ESVRNGTYDYP

KYSE 

SVRNGTYDYPK

YSEE 

VRNGTYDYPK

YSEES 

RNGTYDYPKYS

EESK 

17 GSLQCRICIGSG

SGS 

SLQCRICIGSGS

GSG 

  

18 GSLQCRICIGSG

SGS 

SLQCRICIGSGS

GSG 

  

 EQKLISEEDL G EQKLISEEDL G 

     

 56 57 58 59 

1 EQKLISEEDL G EQKLISEEDL G 

2 LLEDSHNGKLC

RLKG 

LEDSHNGKLCR

LKGI 

EDSHNGKLCRL

KGIA 

DSHNGKLCRLK

GIAP 

3 LLEDSHNGKLC

RLKG 

LEDSHNGKLCR

LKGI 

EDSHNGKLCRL

KGIA 

DSHNGKLCRLK

GIAP 

4 IDYEELREQLSS

VSS 

DYEELREQLSS

VSSF 

YEELREQLSSVS

SFE 

EELREQLSSVSS

FER 

5 IDYEELREQLSS

VSS 

DYEELREQLSS

VSSF 

YEELREQLSSVS

SFE 

EELREQLSSVSS

FER 

6 LKNSYVNKKG

KEVLV 

KNSYVNKKGK

EVLVL 

NSYVNKKGKE

VLVLW 

SYVNKKGKEVL

VLWG 

7 LKNSYVNKKG

KEVLV 

KNSYVNKKGK

EVLVL 

NSYVNKKGKE

VLVLW 

SYVNKKGKEVL

VLWG 

8 GRMNYYWTLL

KPGDT 

RMNYYWTLLK

PGDTI 

MNYYWTLLKP

GDTII 

NYYWTLLKPG

DTIIF 

9 GRMNYYWTLL

KPGDT 

RMNYYWTLLK

PGDTI 

MNYYWTLLKP

GDTII 

NYYWTLLKPG

DTIIF 

10 SLPYQNIHPVTI

GEC 

LPYQNIHPVTIG

ECP 

PYQNIHPVTIGE

CPK 

YQNIHPVTIGEC

PKY 

11 SLPYQNIHPVTI

GEC 

LPYQNIHPVTIG

ECP 

PYQNIHPVTIGE

CPK 

YQNIHPVTIGEC

PKY 
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12 HQNEQGSGYA

ADQKS 

QNEQGSGYAA

DQKST 

NEQGSGYAAD

QKSTQ 

EQGSGYAADQ

KSTQN 

13 HQNEQGSGYA

ADQKS 

QNEQGSGYAA

DQKST 

NEQGSGYAAD

QKSTQ 

EQGSGYAADQ

KSTQN 

14 DIWTYNAELLV

LLEN 

IWTYNAELLVL

LENE 

WTYNAELLVLL

ENER 

TYNAELLVLLE

NERT 

15 DIWTYNAELLV

LLEN 

IWTYNAELLVL

LENE 

WTYNAELLVLL

ENER 

TYNAELLVLLE

NERT 

16 NGTYDYPKYSE

ESKL 

GTYDYPKYSEE

SKLN 

TYDYPKYSEES

KLNR 

YDYPKYSEESK

LNRE 

17 NGTYDYPKYSE

ESKL 

GTYDYPKYSEE

SKLN 

TYDYPKYSEES

KLNR 

YDYPKYSEESK

LNRE 

18     

     

 EQKLISEEDL G EQKLISEEDL G 

     

 60 61 62 63 

 EQKLISEEDL G EQKLISEEDL G 

1 SHNGKLCRLKG

IAPL 

HNGKLCRLKGI

APLQ 

NGKLCRLKGIA

PLQL 

GKLCRLKGIAP

LQLG 

2 SHNGKLCRLKG

IAPL 

HNGKLCRLKGI

APLQ 

NGKLCRLKGIA

PLQL 

GKLCRLKGIAP

LQLG 

3 ELREQLSSVSSF

ERF 

LREQLSSVSSFE

RFE 

REQLSSVSSFER

FEI 

EQLSSVSSFERF

EIF 

4 ELREQLSSVSSF

ERF 

LREQLSSVSSFE

RFE 

REQLSSVSSFER

FEI 

EQLSSVSSFERF

EIF 

5 YVNKKGKEVL

VLWGI 

VNKKGKEVLV

LWGIH 

NKKGKEVLVL

WGIHH 

KKGKEVLVLW

GIHHP 

6 YVNKKGKEVL

VLWGI 

VNKKGKEVLV

LWGIH 

NKKGKEVLVL

WGIHH 

KKGKEVLVLW

GIHHP 

7 YYWTLLKPGDT

IIFE 

YWTLLKPGDTII

FEA 

WTLLKPGDTIIF

EAN 

TLLKPGDTIIFE

ANG 

8 YYWTLLKPGDT

IIFE 

YWTLLKPGDTII

FEA 

WTLLKPGDTIIF

EAN 

TLLKPGDTIIFE

ANG 

9 QNIHPVTIGECP

KYV 

NIHPVTIGECPK

YVR 

IHPVTIGECPKY

VRS 

HPVTIGECPKY

VRSA 

10 QNIHPVTIGECP

KYV 

NIHPVTIGECPK

YVR 

IHPVTIGECPKY

VRS 

HPVTIGECPKY

VRSA 

11 QGSGYAADQK

STQNA 

GSGYAADQKST

QNAI 

SGYAADQKSTQ

NAIN 

GYAADQKSTQ

NAING 

12 QGSGYAADQK

STQNA 

GSGYAADQKST

QNAI 

SGYAADQKSTQ

NAIN 

GYAADQKSTQ

NAING 

13 YNAELLVLLEN

ERTL 

NAELLVLLENE

RTLD 

AELLVLLENER

TLDF 

ELLVLLENERT

LDFH 

14 YNAELLVLLEN

ERTL 

NAELLVLLENE

RTLD 

AELLVLLENER

TLDF 

ELLVLLENERT

LDFH 

15 DYPKYSEESKL

NREK 

YPKYSEESKLN

REKV 

PKYSEESKLNR

EKVD 

KYSEESKLNRE

KVDG 

16 DYPKYSEESKL

NREK 

YPKYSEESKLN

REKV 

PKYSEESKLNR

EKVD 

KYSEESKLNRE

KVDG 

17     

18     

 EQKLISEEDL G EQKLISEEDL G 
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 64    

 EQKLISEEDL G   

1 KLCRLKGIAPL

QLGK 

EQKLISEEDL   

2 KLCRLKGIAPL

QLGK 

G   

3 QLSSVSSFERFE

IFP 

EQKLISEEDL   

4 QLSSVSSFERFE

IFP 

G   

5 KGKEVLVLWGI

HHPS 

EQKLISEEDL   

6 KGKEVLVLWGI

HHPS 

G   

7 LLKPGDTIIFEA

NGN 

EQKLISEEDL   

8 LLKPGDTIIFEA

NGN 

G   

9 PVTIGECPKYV

RSAK 

EQKLISEEDL   

10 PVTIGECPKYV

RSAK 

G   

11 YAADQKSTQN

AINGI 

EQKLISEEDL   

12 YAADQKSTQN

AINGI 

G   

13 LLVLLENERTL

DFHD 

EQKLISEEDL   

14 LLVLLENERTL

DFHD 

G   

15 YSEESKLNREK

VDGV 

EQKLISEEDL   

16 YSEESKLNREK

VDGV 

G   

17  EQKLISEEDL   

18  G   

 EQKLISEEDL G   
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