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Abstract: The diagnostic approach to thyroid cancer is one of the most challenging issues in oncology
of the endocrine system because of its high incidence (3.8% of all new cancer cases in the US) and
the difficulty to distinguish benign from malignant non-functional thyroid nodules and establish
the cervical lymph node involvement during staging. Routine diagnosis of thyroid nodules usually
relies on a fine-needle aspirate biopsy, which is invasive and often inaccurate. Therefore, there is
an urgent need to identify novel, accurate, and non-invasive diagnostic procedures. Liquid biopsy,
as a non-invasive approach for the detection of diagnostic biomarkers for early tumor diagnosis,
prognosis, and disease monitoring, may be of particular benefit in this context. Extracellular vesicles
(EVs) are a consistent source of tumor-derived RNA due to their prevalence in circulating bodily
fluids, the well-established isolation protocols, and the fact that RNA in phospholipid bilayer-enclosed
vesicles is protected from blood-borne RNases. Recent results in other types of cancer, including
our recent study on plasma EVs from glioblastoma patients suggest that information derived from
analysis of EVs from peripheral blood plasma can be integrated in the routine diagnostic tumor
approach. In this review, we will examine the diagnostic and prognostic potential of liquid biopsy to
detect tumor-derived nucleic acids in circulating EVs from patients with thyroid carcinoma.

Keywords: thyroid carcinoma; papillary thyroid carcinoma; liquid biopsy; cancer; extracellular
vesicles; exosomes; diagnostic biomarkers; miRNA

1. Introduction

Thyroid cancer is the most common malignancy of the endocrine system, representing 3.8% of
all new cancer cases in the United States and the ninth most common cancer overall. Its incidence
has risen by an average of 5.5% annually over the past ten years [1]. This increase is almost entirely
attributed to an increase in papillary thyroid carcinoma (PTC), which comprises 80% of all thyroid
cancers [2,3].

Two important diagnostic problems still exist for thyroid cancer that could greatly benefit
from the availability of novel blood biomarkers: (i) Distinction between benign and malignant
non-functional thyroid nodules. While 3–7% of the world’s population has a palpable nodule, only 5%
of those nodules are malignant [2,4]. The initial diagnostic work-up includes the measurement
of serum thyroid-stimulating hormone levels, which allows differentiation between functional
and non-functional nodules [5]. This is an important characteristic because functional nodules
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are rarely malignant. If the initial work-up suggests a non-functional nodule with suspicious
sonographic features, an ultrasound-guided fine-needle aspirate biopsy should be performed [4].
However, the results of this approach are often inconclusive and may result in over-diagnosis and
over-treatment [3]. (ii) Identification of cervical lymph node involvement during staging. Up to 50% of
patients with PTC have cervical lymph node involvement. However, preoperative neck ultrasound
imaging identifies only half of the lymph nodes that are found during surgery [4].

For the reasons above, liquid biopsy has great potential in the clinical approach to thyroid cancer.
It consists of a test done on a sample of blood or, less frequently, other bodily fluids to look for
circulating cancer cells, nucleic acids, or proteins from a tumor. Isolation of genetic materials from
bodily fluids is a minimally invasive method to diagnose different types of cancer [6]. Thus, the
availability of a validated circulating biomarker to distinguish PTCs localized to the thyroid (T+N−)
from those with lymph node metastasis (T+N+) would allow to plan ahead for a localized surgery
versus a surgery that includes lymphadenectomy.

Extracellular vesicles (EVs) are nano-biological units released from most cell types into the
extracellular environment. They include exosomes and ectosomes, distinguished on the basis of their
biogenesis [7]. Exosomes are released when multi-vesicular bodies fuse with the plasma membrane,
whereas ectosomes bud directly from the plasma membrane. Afterward, they are taken up by
neighboring or distant recipient cells. Given the difficulty to isolate pure populations of exosomes
or ectosomes, we will refer to them collectively as EVs, as recommended by the recent guidelines
set by the International Society for Extracellular Vesicles [8]. EV cargo includes lipids, proteins, and
nucleic acids—DNA and several types of RNA. Thus, both mRNA and many types of non-coding
RNA, including micro RNA (miRNA), long non-coding RNA (lncRNA), circular RNA (circRNA), small
nucleolar RNA (snoRNA), small nuclear RNAs (snRNA), transfer RNA (tRNA), and piwi-interacting
RNAs (piRNA), have been reported in EVs [6,9].

Diverse physiological functions of EVs are ascribed to cell-to-cell communication, such as
favoring cellular differentiation and epithelial–mesenchymal transition, promoting angiogenesis,
and modulating immune responses [10,11]. EVs play also an important role in pathological conditions
such as cancer. Thus, the EV-mediated crosstalk between cancerous and non-cancerous cells, e.g., those
found in the bone marrow microenvironment, can modulate the biochemistry and consequently the
function of stromal components to stimulate the growth, expansion, and spread of cancer cells [12].
Several reports support the concept that EVs also contribute to distant intercellular communication
in cancer [13,14]. Recently, Hoshino et al. [15] showed that EV-associated integrins determine
organ-specific metastasis through a selective adhesion of EVs to extracellular matrix-enriched cellular
areas, followed by their uptake by resident cells at their predicted metastatic destination [11].

Recent results in PTC [16], as well as in other types of cancer [17], suggest that information
derived from analysis of EVs from peripheral blood plasma can be integrated in the routine diagnostic
approach for patients with non-functional thyroid nodules. Specifically, analysis of the RNA content of
EVs in plasma, in addition to being a less invasive approach than tissue biopsy, may have an important
role in early detection of cancer and in the distinction of benign from malignant nodules, as well as
from localized metastatic thyroid cancer. It can also be utilized to assess the prognosis and detection of
progression or response to treatment.

2. Liquid Biopsy: History, Advantages

As precision medicine is emerging as the new paradigm in oncology, tumor sampling for
molecular characterization is becoming an almost mandatory procedure. However, tissue biopsy
is not always feasible and repeated sampling is often impossible due to invasiveness of the procedure.
This restricts the use of tissue sampling and molecular characterization only to the diagnostic approach,
while therapy monitoring is still impracticable. Liquid biopsy has the potential to overcome this
limit, extending the benefits of molecular characterization to early diagnosis and cancer monitoring.
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This may also produce unprecedented advantages in the treatment of cancer by identifying early
events of resistance, relapse, and progression.

Much of the early research on liquid biopsies has been on circulating cell-free DNA (cfDNA) from
patients with lung, breast, and prostate cancers. cfDNA was first reported in 1948 when Mandel and
Métais demonstrated the presence of both DNA and RNA in plasma from 25 individuals with normal
and pathological conditions [18]. Tumor DNA fragments are released into the circulation as a result of
programmed cell death or necrosis. cfDNA can be sequenced to help diagnosis, predict relapse, and
support clinical decisions for changes in the course of treatment.

The first liquid biopsy test approved by the U.S. Food and Drug Administration for a cancer
disease is the blood-based companion diagnostic to select patients with non-small cell lung cancer
(NSCLC) for treatment with the epidermal growth factor receptor (EGFR) inhibitor, erlotinib [19].
It can detect gene mutations in EGFR, present in approximately 10–20% of NSCLC patients, who must
be identified in order to start an anti-EGFR therapy.

In thyroid cancer, several studies have been conducted on the possible use of cfDNA for prognosis
and disease monitoring. For example, the detection of RET M918T in cfDNA has been reported in
medullary thyroid carcinoma (MTC) as a specific but not very sensitive event during follow-up [20].
In patients with previously assessed somatic RET mutations, the identification of M918T cfDNA
constitutes a prognostic factor for overall survival [18]. While in PTC and MTC the concordance
between mutations found in cfDNA and those found within the patient’s surgical specimen does not
surpass 50%, higher concordance has been suggested in anaplastic thyroid cancer patients, where
tumor growth is much more sustained [21]. Even with this assumption, the present studies on the
cfDNA-based liquid biopsy approach suggest that this may not be the best strategy to pursue in
the clinics.

Circulating cell-free RNAs, like miRNAs, have also been explored as candidates for liquid biopsy
in cancer patients [22]. It has been suggested that miRNAs are actively released in the extracellular
fluid and in the bloodstream by viable cancer cells [23]. This is particularly interesting in the case of
naïve patients because these biomarkers are abundantly released by viable cells before treatment.

The potential of circulating tumor cells (CTCs) in liquid biopsy has been widely investigated in
an increasing number of clinical studies [24], demonstrating the huge interest of both the medical and
scientific communities. Early during pathogenesis of a solid tumor, cells are continuously released
from the primary tumor and disseminate through the bloodstream. These cells, that may be responsible
for metastatic dissemination of the tumor, can be detected very early during tumor development, even
before the manifestation of disease symptoms. Different technologies have been developed for the
isolation of such a rare cell population, but the most frequently adopted is based on the epithelial
immunophenotype of CTCs. While normal mesenchymal cells are quite common in the blood, the
presence of cells presenting epithelial epitopes, like EpCAM, may be considered an unusual event,
possibly related to cancer cell dissemination [25]. CTCs can be immunomagnetically isolated based
on the presence of this epitope with the help of a negative selection such as the common leukocyte
antigen CD45. This technique aims to enrich the population of CTCs, thus providing a sort of sampling
of the original tumor. The limits of this approach are mainly related to the low number of CTCs, which
affect the sensitivity of the approach, and to the inability to detect cells from non-epithelial tumors like
soft tissue sarcomas or some non-epithelial ovarian cancers. It has been also demonstrated that the
expression of epithelial markers is strongly modulated during the detachment of cells from the tumor,
making some epitopes less effective for the isolation of some CTC populations [26]. Publications
describing the use of extracellular vesicles, circulating tumor cells, cell-free DNA, and cell-free RNA
for diagnosis and monitoring of thyroid cancer are listed in Table 1.

3. Potential Advantages of EVs for Liquid Biopsy

The potential of EVs and their content as cancer biomarkers is increasingly being recognized.
Tumor-derived EVs may be investigated for their protein expression or genetic profile as diagnostic or
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prognostic markers [27–30]. A potential drawback of plasma/serum EV analysis is that they contain
not only cancer-derived EVs, but also EVs released by blood cells, endothelial cells, stromal cells, and
others. Moreover, during neoplastic growth, immune response and the often associated inflammation
may alter the rate of release of EVs. Intriguingly, in a recent study by our group [17], orthotopically
growing glioblastoma cells were responsible for 35–50% of all circulating EVs. Although unrelated to
thyroid cancer, this study indicates that the fraction of circulating plasma EVs derived from cancer
cells is highly significant, even in a disease confined to the brain and relatively isolated from the rest of
the body by the blood–brain barrier.

3.1. Protein Expression Profile

Protein profiling of EVs is challenging because of their small particle size, low abundance of
proteins, and heterogeneity. However, using a laboratory-built high-sensitivity flow cytometer,
Tian et al. [31] recently reported a quantitative multiparameter analysis of single EVs down to
40 nm with high analysis rate. By this technique, the authors found a significantly elevated level
of CD147-positive EVs in colorectal cancer patients compared to healthy controls, thus indicating
potential for future proteomics-based development of cancer diagnostic and therapeutic strategies. In
another study, by proteomic analysis of EVs from patients with pancreatic cancer, 18 or 14 proteins
were found to be up-regulated and 11 or 14 proteins down-regulated compared with EVs from healthy
volunteers or from pancreatitis patients, respectively [32]. Also, studies on colorectal cancer cells
and malignant mesothelioma identified specific EV proteins that are considered a potential specific
signature for these diseases [33,34].

3.2. Non-Coding RNA Content

Since the EV membrane protects RNA from blood-borne RNases and EV-associated RNA is
generally free of endogenous RNA contaminants such as ribosomal RNA [35], EVs provide a more
consistent source of RNA for disease biomarker detection compared with cellular or free plasma RNA.
Interestingly, EV-associated miRNAs remain stable for years when EVs are stored at −20 ◦C [36].
The presence of functional RNA in EVs was first described in 2006 for murine stem cell-derived
EVs [37] and in 2007 for murine mast cell-derived EVs taken up by human mast cells [27]. In ovarian
cancer, a specific exosomal signature consisting of 8 miRNAs has been proposed as surrogate diagnostic
for cancer screening in asymptomatic subjects [38]. Another study on EVs of patients with melanoma
found a correlation between down-regulation of circulating miR-125b and disease progression [39].
The group of miR-1246, miR-3976, miR-4644, and miR-4306 were up-regulated in EVs from 83%
of pancreatic adenocarcinoma patients [40]. Dejima et al. discovered that miR-21 and miR-4257
expression in plasma EVs have potential as predictive biomarkers of recurrence in NSCLC patients [41].
Similarly, circulating EV-associated miR-125a-3p in early-stage colon carcinoma [42], as well as
miR-320, miR-574-3p, and RNU6-1 in glioblastoma multiforme [43], have been proposed as diagnostic
biomarkers for early detection and monitoring of these specific types of cancer. A comprehensive list of
EV-associated miRNAs is available in the miRandola database (http://mirandola.iit.cnr.it) [44]. Several
studies on esophageal cancer, prostate cancer, and meningioma confirmed the power of EV-associated
RNA in cancer diagnosis [45–47]. In the FEMX-I melanoma cell line, we recently reported a higher
concentration for 49 miRNAs in EVs than in EV-producing cancer cells, including 20 miRNAs with
cancer-related function [48]. A correlation of EV-associated integrin α6β4 and integrin α6β1 with lung
metastasis, and of integrin αVβ5 with liver metastasis were found by Hoshino et al. [15]. Moreover,
novel studies point to the clinical relevance of other types of non-coding RNA as more represented
in EVs than miRNAs. Nabet and coll. [49] reported the prevalence of non-coding RNA species
distinct from miRNAs, in particular signal recognition particles (SRP) RNA in stromal cell-derived EVs
released during co-culture with breast cancer cells. As we discussed in a recent Commentary [50], this
is surprising given the general consensus in the EV field on the prevalence of coding RNA and miRNA
in EVs. In fact, the main EV data repository, “Vesiclopedia” (https://www.microvesicles.org), contains
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~28,000 entries for mRNAs and ~5,000 entries for miRNAs, but no entries for other non-coding
RNAs. Undoubtedly, miRNAs have been studied more in depth than other non-coding RNAs
in EVs [27,48,51–53], but the presence of a multitude of other non-coding RNA families in EVs
suggests that other types of EV-associated non-coding RNAs, such as SRP RNA, snRNA, snoRNA,
and piRNA [52,54], may have clinical potential as biomarkers for thyroid cancer [55]. More studies
have shown the presence of tumor RNA in the plasma/serum of cancer patients [56]. These include
mRNAs that are correlated with different tumor genes [57–61], tyrosine kinase mRNA, telomerase
components, and viral mRNA. The potential value for therapy management of the EV mRNA profile
in patients with metastatic breast cancer has been recently reported [62].

4. Potential Advantages of EVs for Liquid Biopsy in Patients with Thyroid Cancer

Although only few studies have been performed on EVs released in the blood by thyroid
cancer, recent experimental evidence suggests the involvement of EV miRNAs in thyroid neoplasms,
supporting the hypothesis that these non-coding RNAs could be used to develop, refine, or strengthen
strategies for diagnosis and management of thyroid cancer. For thyroid cancer patients, EV-based
liquid biopsy provides an opportunity to compare a novel tool with the traditional markers used to
monitor patients, such as thyroglobulin or calcitonin. While fine-needle aspiration cytology is the gold
standard for the differential diagnosis of thyroid nodules [63,64], this procedure has limitations in
regard to the discrimination of follicular lesions.

Recent results in other types of cancer, described in the paragraph above, suggest that information
derived from analysis of EVs from peripheral blood plasma can be integrated in the routine diagnostic
approach to the patient with non-functional thyroid nodules. Moreover, specific alterations of
cellular miRNA expression profile have been reported in thyroid carcinoma [65], indicating the
possibility that some of these miRNAs, contained in EVs, may be employed as circulating biomarkers.
miRNAs in the circulation have been analyzed as potential biomarkers of recurrence in PTC [66].
In many cases in which serum thyroglobulin measurements are difficult to interpret, the analysis
of changes in circulating levels of miR-146a-5p and miR-221-3p in PTC patients indicate a good
correlation with the American Thyroid Association (ATA)-defined response to therapy classes. Thus,
Rosignolo et al. [67] suggested that serum levels of miR-146a-5p and miR-221-3p could be used as
complementary biomarkers for the early non-invasive detection of persistent PTC. The association
between high circulating levels of miR-146b, miR-222, miR-221, and follicular thyroid proliferation has
recently been described [68,69]. Two miRNAs (miR-95, miR-190) were differently expressed in serum
of PTC patients. In particular, miR-190 was up-regulated whereas miR-95 was down-regulated, which
in combination can be used for the differential diagnosis of thyroid nodules [70].

Other studies have shown that the circulating levels of miR-146b-5p, miR-221-3p, miR-222-3p,
and miR-146a-5p were reduced upon tumor excision [67,70–72]. The up-regulated expression of
miR-146b-5p, miR-221-3p, and miR-222-3p in the circulation of patients with thyroid cancer has also
been demonstrated in PTC [73,74], as well as in anaplastic and follicular thyroid carcinoma [75,76]
Also, Samsonov et al. [71] found that plasma exosomal miR-21 and miR-181a differentiate follicular
from PTC.

An analytical approach employing a miRNA-based assay on thyroid fine needle aspirate smears
from routinely prepared cytology slides has recently been proposed to improve the diagnostic
process [77]. In addition, we have recently proposed a new miRNA-based molecular classification of
PTC [73].
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Table 1. Publications describing the use of extracellular vesicles, circulating tumor cells, cell-free DNA,
and cell-free RNA for diagnosis and monitoring of thyroid cancer.

Liquid Biopsy in Thyroid Cancer

Sample Type Object Up-/Down-
Regulation Histotype References

EV

miR-146b, miR-222 Up PTC [66]

miR-222, miR-142 Up PTC [68]

miR-25-3p, miR-451a, miR-140-3p, let-7 Up PTC [70]

miR-31-5p, miR-126-3p, miR-145-5p, miR-181a
miR-21 Up PTCFTC [71]

miR-21, miR-181a-5p Up PTC [73]

SRC, TLN1, ITGB2, CAPNS1 - PTC [78]

Drug delivery system - TC [79]

The increase of EPC-EVs and laminins involves folliculogenesis Up FTC [80]

lncRNAs, linc-ROR - PTC [74]

lncRNA MALAT1, SLUG, SOX2,and induced EMT - PTC [81]

CTC

Calcitonin-positive CTCs after 12 years Up MTC [82]

High number of CTCs Up DTC
DM+ [83]

CTCs ≥ 5 is worse OS - TC [84]

High number of CTCs→ progressive cancer disease - TC [85]

PCR detection - TC [86]

cfDNA/ctDNA

BRAF mutation and deregulation miRNA Up/Down PTC [87]

RETM91PT mutation - MTC [20]

cfDNA integrity index - TC [88]

BRAF mutation - TC [89]

95% common alteration between cfDNA and tissue DNA - FTC [90]

BRAF, PIK3CA, NRAS, PTEN, TP53 mutation in cfDNA and
tissue DNA - ATC [21]

BRAF mutation - PTC [91]

ctDNA panel: 9 cancer gene driver - TC [92]

BRAFV600 Up PTC [93]

BRAFV600 Up PTC [94]

BRAFV600 Up DTC [95]

cfDNA methylation of β-actin, CDH1,DAPK, CALCA,
and RARβ2 - DTC [96]

BRAFV600 Up PTC [97]

High number Up DTC [98]

BRAFV600 Up PTC [99]

cfRNA

miR-146a-5p, miR221-3p Up PTC [67]

let-7e, miR-151-5p, miR-222 Up PTC [16]

miR-579, miR-95, miR-29b, miR-190 Down
Up PTC [69]

miR-21, miR-151-5p, miR-222, miR-221 Up PTC [72]

let-7e, miR-151-5p, miR-222 Up PTC [16]

miR-146a-5p, miR-150-5p, miR-199b-3p, miR-342-3p Down PTC [100]

Abbreviations: EV, extracellular vesicles; CTC, circulating tumor cells; cfDNA, cell-free DNA; ctDNA, circulating
tumor DNA; cfRNA, cell-free RNA; EPC, endothelial progenitor cells; lncRNA, long non-coding RNA; linc-ROR,
long intergenic non-protein coding RNA, regulator of reprogramming; EMT, epithelial-mesenchymal transition;
miRNA, micro RNA; PTC, papillary thyroid carcinoma; FTC, follicular thyroid carcinoma; TC, thyroid carcinoma;
MTC, medullary thyroid carcinoma; DTC, differentiated thyroid carcinoma; DM+, distant metastasis positive; ATC,
anaplastic thyroid carcinoma.

We isolated EVs from blood plasma of patients with PTC before surgery and from age- and
sex-matched healthy controls to compare their number and size. Significantly higher numbers of
plasma EVs (p = 0.025) were found at baseline in thyroid cancer patients (n = 6) compared to healthy
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controls (n = 10), as assessed by nanoparticle tracking analysis (Figure 1A). The average size of EVs was
similar (Figure 1B). Thus, EV concentration, not their size, helps distinguish PTC patients from healthy
controls. We then performed real-time RT-PCR for five putative thyroid cancer-associated miRNAs
on EVs isolated from 0.2 mL of plasma of six patients with PTC, and 4 patients with adenoma of the
thyroid. Some of the investigated miRNAs showed an increased expression in PTC patients compared
to those with adenoma and healthy controls (Figure 1C). This is particularly evident for miR-34a and
miR-17-3p, with the first having a significantly different expression in PTC and normal control and the
second showing a significantly augmented expression in carcinoma patients if compared to normal
controls (p = 0.0476). Both miRNAs have been associated with increased proliferation in PTC [101,102].
However, further studies are needed to confirm that these molecules can be valuable liquid biomarkers
in thyroid neoplastic diseases.Int. J. Mol. Sci. 2019, 19, x 8 of 14 
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are presented as the average and standard deviation of six video recordings of 60–90 s per sample. Since 
NTA is accurate between particle concentrations in the range of 2 × 107 to 2 × 109/mL, samples containing 
higher numbers of particles were diluted before analysis and the relative concentration calculated 
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Figure 1. (A) Scatter plot of extracellular vesicle (EV) plasma concentration in normal controls (NC)
and patients with papillary thyroid carcinoma (PTC) by NTA. EVs were isolated by differential
centrifugation. (B) Representative size distribution of EVs from plasma of a patient with PTC and a
NC. (C) Relative quantitation of miRNAs in patients with thyroid adenoma and carcinoma compared
to healthy controls, * p < 0.01. Patients’ blood samples were collected in disodium EDTA tubes. Plasma
samples were prepared by centrifugation and aliquoted into 1.5-mL tubes. EVs were isolated by
differential centrifugation as described in Rappa et al. [48]. We measured their plasma concentration
and individual size by NTA. Data analysis was performed with NTA 3.0 software. The diffusion
coefficient and hydrodynamic radius were determined using the Stokes–Einstein equation, and results
displayed as a particle size distribution. Data are presented as the average and standard deviation of
six video recordings of 60–90 s per sample. Since NTA is accurate between particle concentrations in the
range of 2 × 107 to 2 × 109/mL, samples containing higher numbers of particles were diluted before
analysis and the relative concentration calculated according to the dilution factor. Silica microspheres
of 100 and 200 nm, supplied by Malvern, were used for calibration.
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