
GALILEO, University System of Georgia
GALILEO Open Learning Materials

Physics and Astronomy Ancillary Materials Physics and Astronomy

Summer 2019

Arduino Lab Assignments for Principles of Physics
II
William Baird

Jeffery Secrest

Follow this and additional works at: https://oer.galileo.usg.edu/physics-ancillary

Part of the Physics Commons

This Open Course is brought to you for free and open access by the Physics and Astronomy at GALILEO Open Learning Materials. It has been
accepted for inclusion in Physics and Astronomy Ancillary Materials by an authorized administrator of GALILEO Open Learning Materials. For more
information, please contact affordablelearninggeorgia@usg.edu.

https://oer.galileo.usg.edu?utm_source=oer.galileo.usg.edu%2Fphysics-ancillary%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://oer.galileo.usg.edu/physics-ancillary?utm_source=oer.galileo.usg.edu%2Fphysics-ancillary%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://oer.galileo.usg.edu/physics?utm_source=oer.galileo.usg.edu%2Fphysics-ancillary%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://oer.galileo.usg.edu/physics-ancillary?utm_source=oer.galileo.usg.edu%2Fphysics-ancillary%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=oer.galileo.usg.edu%2Fphysics-ancillary%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:affordablelearninggeorgia@usg.edu

Arduino Part I

The Arduino is an extremely popular microcontroller/programming language system. Because these
devices are under $30 (in some cases, under $15) and the programming environment is free, they have
been used for just about every kind of project you can imagine. Today, we are going to start exploring
them so that we’ll be able to use them in an actual lab later. The first step is to plug the board into a
free USB slot in your computer. From your desktop, start the Arduino program by clicking the icon:

When the program starts up, it should pop up a window that looks something like this:

If the title of the window at the top left isn’t “sketch_” and today’s date, you can click on File New

and then you should get a window like the one above. Notice it is very simple. The first thing in the file

is a line that says void setup() {. Every Arduino program starts with this. Notice that there is an
opening curly brace at the end of this line, and then a few lines down there is a closing curly brace by
itself. As the name suggests, the stuff inside these curly braces is “setup” material, or things that only
need to be done once rather than over and over again. For example, when we get to the point that
we’re sending data from the Arduino to the PC, we will have to tell the PC what data rate to expect.
We only have to do that once, so it goes inside “setup”.

All that is there now is the line that starts “// put your setup…”. Anything after two consecutive
slashes is completely ignored by the program; it is there only for humans to use. The point of this is to
allow you to comment your code so that other people can understand what you’re trying to do. This is

one of the most neglected but most important parts of programming; people tend to be careless and
think “I don’t need to comment this – no one will ever see it but me, and I obviously know what I mean
here”. You would be (unpleasantly) surprised to find out how quickly you will forget what you were
trying to do if you have to go back and alter/maintain this code. There is a balance to this – if you have

a line that says “x=x+1”, you don’t need a comment that says “//add one to x”. With a name

like x, though, you might want to put something like “//x = number of users” to remind you
of what you are counting.

After the closing curly brace from the setup function, you’ll see void loop() {. As the comment
below it indicates, this is where you put any statements that you want the Arduino to execute over and
over again. After it does everything you’ve put between these curly braces, it will go back to the top of

the loop and start all over again. Note that it will not go all the way back and execute the code in the
setup loop again.

The advantage of the popularity of the Arduino is that there are so many pre-existing programs out

there on the internet you could conceivably use it for years and never write your own program from
start to finish, but rather just modify other people’s work to fit your needs. If you look under the “File”
menu, you will see “Examples” and then under that, many more choices. Pick “01.Basics” and then
“Blink”. This is about the simplest program that actually does anything.

The top of this file is about a paragraph of comments explaining it. Notice that another way to indicate

comments is to start a block with “/*” and then end it with “*/”. Everything in between, over however
many lines, will be ignored. The comments explain that the purpose of this program (known as a
“sketch” in Arduino world) is to blink the on-board LED. This setup function has only one command:

The command pinMode is used to specify what you want a particular pin (called a pin though we
generally interface with it through a socket instead) to do - gather data (input) or send data (output).

Ordinarily, we would put a number in as the first argument, where the numbers are stenciled beside
the relevant sockets on the board as shown below:

(https://store.arduino.cc/usa/arduino-uno-rev3)

The reason that isn’t done here is that these samples are written for all Arduinos, and which pin is
connected to the built-in LED changes from board to board. Once you tell the program which Arduino

you have, it will know what pin LED_BUILTIN really refers to in your case. If we want this to turn on

and off, that’s an OUTPUT (and it’s really all we can do for the particular pin that has an LED attached
to it).

Next in the program listing, the main loop handles actually blinking the LED.

There’s not much left to explain here – we change the value of a pin (as long as it’s already been set to
OUTPUT) using the digitalWrite command. The program again makes this usable for all Arduinos

by not referring to the pin with a number but with the keyword LED_BUILTIN. Our two output
choices are HIGH and LOW, referred to in other electronic situations as ON and OFF, 1 and 0, or TRUE
and FALSE.

Finally, the statement delay(1000); tells the Arduino to wait 1000 milliseconds before doing
anything else. Notice that all of these statements have semicolons after them. Practically every

statement will require that, except for some things like “If” statements that require curly braces
instead. A very valuable resource when learning to program is a dictionary of what statements are
available and how to use them. You can find the Arduino’s at https://www.arduino.cc/reference/en/ .

Now you need to send this to the Arduino board. First, go to “Tools” from the top menu. Near the
bottom, it should tell you which Arduino board you have (“Arduino/Genuino Uno” for what we use)
and the “Port” it is using. This is generally a number less than 10 or so, and there’s no way to guess
what it will be on a particular computer, so just look and see where it landed on your machine. These
two things are necessary to program your Arduino and communicate with it. If those are set, you can
look for the “Upload” button (right arrow) and press it:

This will transfer the “Blink” program to the Arduino, and after a brief wait (under a minute in almost
all cases) the board’s LED should start blinking. Now that you’ve done that, imagine you want the LED
to be on for 0.12 seconds and then off for 0.55 seconds. Write the four lines of code below that will
make that happen:

Now put this into your program, upload it, and see if it works as expected.

https://www.arduino.cc/reference/en/

One of the most important things the Arduino can do is to measure a voltage and then tell us what it

got. It does this using the idea of Analog to Digital Conversion (ADC). The details of how this happens
are not important for this class, but the big idea is that we get a digital representation of an analog (i.e.,

real-world) voltage. Like all voltmeters, the Arduino has a range within which it can measure voltages.
For our board, it’s the range from 0 V (ground) to 5 V. Don’t ever put a negative voltage or a voltage

more than 5 V above ground into one of the Arduino pins. It could damage the Arduino or possibly even
the PC connected to it.

The ADC inside our boards is known as a 10-bit ADC. This means it will measure a voltage and rank its

strength on a scale from 0 to 210 – 1, or 0 to 1023. Connecting the ADC pin to ground should make it
read 0, and connecting it to 5 V should make it read 1023. All other voltages are scaled proportionally.
If we have 1024 possible voltages equally spaced between 0 and 5 V, that tells us our resolution here
is 5 V/1024 or about 5 mV. Not bad. Other Arduino boards have 12-bit ADCs that are restricted to the
range from 0 to 3.3 V. What would their resolution be?

___________Volts.

To get the Arduino to read an analog voltage and send it to us, there is already an example sketch in

the environment. Again, go to File  Examples  01. Basics  AnalogReadSerial. Again, it’s a very
short sketch. One difference between this and “Blink” is that we don’t have to set up the pin for input
or output, because this requires us to use the Analog pins instead of the digital ones. In the photo from
before, notice that there are six pins on the bottom right under “Analog In” labeled A0 through A5.
These are always inputs.

We do have to setup the Arduino to talk to the PC. The command to do this is simple:

Serial.begin(9600); where the 9600 refers to how many bits per second the Arduino will send
the PC and vice versa. The main loop isn’t much worse:

The int tells the Arduino that we want to create a variable called sensorValue (you can change the
name of this to anything you want that isn’t already a keyword like pinMode, etc.) and that it only
needs to reserve two bytes of space (16 bits) to hold it. We don’t really need 16 bits for a 10-bit ADC,

but it’s the smallest size that’s not too small to hold it. The part that tells the Arduino to read the voltage

is analogRead(A0). This tells us we will be looking at the voltage on the pin labeled A0.

That information is sent to the computer by the line Serial.println(sensorValue); . Serial
means send it to the PC and we could either use print or println. The “ln” at the end of print means to

print whatever and then start a new line. If we just used Serial.print(whatever), we’d get one long string

of numbers with no breaks that would be very hard to read.

Finally, we wait 1 ms between reads to that we don’t send too much data at once. Put one end of a
wire in the A0 socket and let the other one wave free. Hit the upload button. After it’s finished, we

want to look at the data we’re getting. At the top right of your window, click on the . This opens a
serial monitor. Notice that at the bottom right of this window, it has a “baud” setting. Baud means “bits
per second”, and the Arduino is sending at 9600. If your window is set for anything else, you will get

garbage. You’re free to try it – it won’t cause permanent damage. When you’re done, switch it back to
9600 and then put the free end of the wire into one of the sockets labeled “GND”. What numbers are
you seeing in your monitor?

Now put the free end in the 5 V socket. What do you see now?

Now put the free end in the 3.3 V socket. What do you see now?

Finally, go to Tools  Serial Plotter and see what that does.

Arduino Part II

Now that you have used the Arduino at least once before, we’re going to use it today to actually do a
lab that we’ve already done with the Analog Discovery black box. We will measure the time it takes a
capacitor to discharge through a resistor, but this time we want to completely automate it so that you
don’t have to move wires back and forth. We’ll use most of what you did before to do this. The
capacitor’s voltage will be read by the analogRead statement from before and we’ll charge the
capacitor using one of the digital output pins.

First, we can set up the physical circuit. We need to connect a resistor in parallel with the capacitor. At
one end of the pair, we connect a wire to one of the “GND” sockets on the Arduino. At the other end
of the RC combination, we connect a wire to Analog 0 and a wire to Digital pin 3 as shown below.

Now that you have the physical setup in place, you can start programming. To get started, you can go
to File ExamplesBasics Bare Minimum. That will give you the setup and loop structures every
Arduino program has. Once this opens, save it somewhere under a different name. At the very
beginning, even before the void setup() line, we need to declare a couple of variables (in other
words, tell the Arduino to save some space for two variables we want to use). This is all you need:

int sensorValue = 0;
int tot=0;

void setup() {

The “int” just tells the Arduino how much space to save. It means an integer between -32768 and
+32767.

In the setup()loop, all we need to do is prepare the serial output. We can communicate at a wide
variety of speeds, but we want it to be quick. Try this:

Serial.begin(115200);

Now you have to set up the rest of the program, which is inside the void loop() function.
Remember that to read the voltage from the pin labeled ANALOGIN A0, you just need the
analogRead function. It will look like

 sensorValue = analogRead(A0);

Here’s one of the only parts that will be different from last time. Our plan with this circuit is to
constantly measure the voltage, and then when it drops to a small value, we recharge the capacitor.
Remember that analogRead doesn’t provide us with a “real” voltage but rather with a number from
0 to 1023 where 0 = 0 V and 1023 = 5 V. In this case, we might pick 50 as a small value of voltage since
it would correspond to about 0.25 V. The control structure we want is an if statement, and it looks
like this:

If (condition) {
Do stuff
}

Our condition might be “sensorValue<50” in this case. If this happens, we want to turn on pin 3 as an
output, make it high (= 5 volts), wait a short amount of time, and then turn it back off. It might seem
that all we need here is a digitalWrite to turn pin 3 HIGH, then something like delay(20) to wait 20 ms,
and then we digitalWrite pin 3 low. The only problem here is that we want pin 3 completely out of the
circuit after 20 ms. If it is still connected and set to low, it will just drain the capacitor almost instantly.

The fix is to turn it into an input instead of just making it low. We’re not really going to read it, but
making it an input pin makes it high impedance and therefore effectively removes it from the circuit.
Since we make it an input as we leave the “if” loop, we will have to make it an output at the beginning
of that same loop. So, we need pinMode(3,OUTPUT), digitalWrite(3,HIGH), delay for
20 ms, and then (we can skip the “LOW”) pinMode(3,INPUT).

Once you’re done with the If loop, that’s most of the work. We could just output sensorValue over and
over again, but it turns out that the Arduino is not the best voltmeter in the world. To fix some of its
noise, you should take many measurements and average them. Of course, since the real voltage value
should be dropping all the time, we don’t want to take too much time gathering data or we’ll be
averaging things that really shouldn’t be the same. We’ll go for 10 measurements. This can be done
with a “For” loop:

for (int i=0; i<=9; i++){
 sensorValue = analogRead(A0);
 tot=tot+sensorValue;
}

The first line starts the loop and gives it the conditions: start at zero, go as long as i is less than or equal
to 9, and i++ means add one to i every time through the loop. When you leave the loop, “tot” will
contain the sum of 10 readings. We could divide it by 10, but we don’t really have to since we aren’t
measuring in volts anyway. (Don’t forget that at some point, you’ll want to reset tot to zero; you
decide where that should be in your program).

The last thing we need to do is output tot and the time. The Arduino has an easy-to-use time counter
function called micros(). It gives the elapsed time since the program started in microseconds. The
only catch now is that we also have to have a way to gather all of this data. We could watch it go by in
the Arduino’s serial monitor, but that won’t give us data that Excel can use and fit to an exponential.

The data collection program can be downloaded at my web site
https://sites.google.com/georgiasouthern.edu/wbaird/home if you click in the upper right corner and
go to the “Labs” page. At the bottom, you should see “Serial Data Collection”. Click on it and download
it to your computer. Ignore whatever warnings you may get about how horribly dangerous this is.

When you start it, you’ll see a simple interface. This program is designed to collect up to 9 pieces of
information from the Arduino, but we’re only sending two. It should default to 115200 baud, so that
will match your Arduino. The port number may not match, so change it to match whatever the Arduino
program said to use. Use the “Set Path” button to pick a location for the saved file, and if you want to
change the filename, you can do that, too.

When you hit “Start Collection”, it will begin gathering data. However, you aren’t sending anything yet.
Go back to the Arduino program so we can finish that part. The Data Collection program expects you
to start with a < and then give it 9 numbers separated by commas, and end with a >.

Since we only have two data points at a time, the other 7 will be garbage and we can just fix them as
shown below:

Notice the last statement is Serial.println instead of Serial.print so that we get an end
of line character. This will give us a file that Excel understands.

https://sites.google.com/georgiasouthern.edu/wbaird/home

You should now be ready to collect some data. Once your program is uploaded to the Arduino, you can
start the Data collector. Watch the activity in the Data2 box. You should see the numbers go from about
10000 (10 measurements of about 1023 or so) down to around 500 (10 measurements of 50 or so),
and then restart at 10000. We only need one full cycle of this, but you can collect more if you want.

When you’re done, hit “End Collection” and then use Excel to read in the file. You can of course delete
the columns of just 3, 4, 5, etc. You may also need to delete a few mangled rows of garbage in the
beginning.

Column B will actually be clock time as recorded by the computer. If you click on that column, right
click, and pick “Format Cells” you can pick Time13:30:55 to get it to show you time in seconds. Skip
the first few hundred rows, pick a time, and see how many data points were taken in that one second.
Record that below.

____________ rows per second

Go through and delete rows from the top until you reach your first value of 10000 or more. Now move
down until the first time (after 10000) you get to about 500. This could be several thousand rows,
depending on R and C. Delete everything below that. Now you should have one single discharge. Before
we plot it, we need to convert time to seconds and Voltage to volts. Insert a column between C and D.
We want to start time at zero and we’ll have to divide by 1000000 to go from microseconds to seconds.
The top cell in this new column D should be “Voltage” and then in D2, you can write

=(C2-C2)/1000000

and then fill that in all the way down. In the next empty column (should be F), write in a formula that
will convert your numbers to voltages. You figured out this conversion in the last Arduino lab.
Remember that you also have to divide by 10 now since you took 10 voltage measurements at once.

Finally, graph columns D and F and have Excel fit an exponential trendline to your data. Be sure to
include both the R2 value of the line and the equation of fit.

Using the marked values on your resistor and capacitor, what do you expect for RC?

RC expected ______________ s.

What did you get from your Excel fit?

RC measured ______________ s.

Turn in this sheet and email me both the spreadsheet and the Arduino program for your group.

	GALILEO, University System of Georgia
	GALILEO Open Learning Materials
	Summer 2019

	Arduino Lab Assignments for Principles of Physics II
	William Baird
	Jeffery Secrest

	Arduino.part1
	Arduino.part2

