
1 
 

 

New Definitions of Economic Cross-Efficiency  

Juan Aparicioa,* and José L. Zofíob 

 

a Center of Operations Research (CIO), Universidad Miguel Hernandez de Elche, E-03202 Elche, 

Alicante, Spain. 

b Department of Economics, Universidad Autónoma de Madrid, E-28049 Madrid, Spain.    

Erasmus Research Institute of Management, Erasmus University, NL-3062PA, Rotterdam, The 

Netherlands. 

June 14, 2019 

 

Abstract 

Overall efficiency measures were introduced in the literature for evaluating the economic 

performance of firms when reference prices are available. These references are usually 

observed market prices. Recently, Aparicio and Zofío (2019) have shown that the result 

of applying cross-efficiency methods (Sexton et al., 1986), yielding an aggregate 

multilateral index that compares the technical performance of firms using the shadow 

prices of competitors, can be precisely reinterpreted as a measure of economic 

efficiency. They termed the new approach ‘economic cross-efficiency’. However, these 

authors restrict their analysis to the basic definitions corresponding to the Farrell (1957) 

and Nerlove (1965) approaches, i.e., based on the duality between the cost function and 

the input distance function and between the profit function and the directional distance 

function, respectively. Here we complete their proposal by introducing new economic 

cross-efficiency measures related to other popular approaches for measuring economic 

performance. Specifically those based on the duality between the profitability (maximum 

revenue to cost) and the generalized (hyperbolic) distance function, and between the 

profit function and either the weighted additive or the Hölder distance function. 

Additionally, we introduce panel data extensions related to the so-called cost Malmquist 

index and the profit Luenberger indicator. Finally, we illustrate the models resorting to 

Data Envelopment Analysis techniquesfrom which shadow prices are obtained, and 

considering a banking industry dataset previously used in the cross-efficiency literature. 
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1. Introduction 

In a recent contribution, Aparicio and Zofío (2019) link the notions of overall economic 

efficiency and cross-efficiency by introducing the concept of economic cross-efficiency. 

Overall economic efficiency compares optimal and actual economic performance. From 

a cost perspective and following Farrell (1957), cost efficiency is the ratio of minimum to 

actual (observed) cost, conditional on a certain quantity of output and input prices. From 

a profit perspective, Chambers et al. (1998) define the so-called Nerlovian inefficiency 

as the normalized difference between maximum profit and actual (observed) profit, 

conditional on both output and input prices.  

Cost and profit efficiencies can in turn be decomposed into technical and allocative 

efficiencies by resorting to duality theory. In the former case, it can be shown that 

Shephard input distance function is dual to the cost function and, for any reference 

prices, cost efficiency is always smaller or equal to the value of the input distance function 

(Färe and Primont, 1995). Consequently, as the distance function can be regarded as a 

measure of technical efficiency, whatever (residual) difference may exist between the 

two can be attributed to allocative efficiency. Likewise, in the case of profit inefficiency, 

Chambers et al. (1998) show that the directional distance function introduced by 

Luenberger (1992) is dual to the profit function and, for any reference prices, 

(normalized) maximum profit minus observed profit is always greater than or equal to the 

directional distance function. Again, since the directional distance function can be 

regarded a measure of technical inefficiency, any difference corresponds to allocative 

inefficiency.  

In this evaluation framework of economic performance, the reference output and 

input prices play a key role. In applied studies, the use of market prices allows studying 

the economic performance of firms empirically. However, in the duality approach just 

summarized above, reference prices correspond to those shadow prices that equate the 

supporting economic functions (cost and profit functions) to their duals (input or 

directional distance functions). Yet there are many other alternative reference prices, 

such as those that are assigned to each particular observation when calculating the input 

and directional distance functions in empirical studies. An example are the optimal 

weights that are obtained when solving the ‘multiplier’ formulations of Data Envelopment 

Analysis (DEA) programs that, approximating the production technology, yield the values 

of the technical efficiencies.  

This set of weights can be used to cross-evaluate the technical performance of a 

particular observation with respect to its counterparts. I.e., rather than using its own 
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weights, the technical efficiency of an observation can be re-evaluated using the weights 

corresponding to other units.1 This constitutes the basis of the cross-efficiency methods 

initiated by Sexton et al. (1986). Taking the mean of all bilateral cross-evaluations using 

the vector of all (individual) optimal weights results in the cross-efficiency measure. 

Aparicio and Zofío (2019) realized that if these weights were brought into the duality 

analysis underlying economic efficiency, by considering them as specific shadow prices, 

the cross-efficiency measure can be consistently reinterpreted as a measure of 

economic efficiency and, consequently, could be further decomposed into technical and 

allocative efficiencies. 

In particular, and under the customary assumption of input homotheticity (see 

Aparicio and Zofío, 2019), cross-efficiency analysis based on the shadow prices obtained 

when calculating the input distance function results in the definition of the Farrell cost 

cross-efficiency. Likewise, it is possible to define the Nerlovian profit cross-inefficiency 

considering the vector of optimal shadow prices obtained when calculating the directional 

distance function. One fundamental advantage of the new approach based on shadow 

prices is that these measures are well defined under the assumption of variable returns 

to scale; i.e., they always range between zero and one, in contrast to conventional cross-

efficiency methods that may result in negative values. This drawback of the cross-

efficiency methodology is addressed by Lim and Zhu (2015), who devise an ad-hoc 

method to solve it, based on the translation of the data. The proposal by Aparicio and 

Zofío (2019) also takes care of the anomaly effortlessly, while opening a new research 

path that connects the economic efficiency and cross-efficiency literatures.  

This chapter follows-up this new avenue of research by extending the economic 

cross-efficiency model to a number of multiplicative and additive definitions of economic 

behavior and their associated technological duals. From an economic perspective this is 

quite relevant since rather than minimizing cost or maximizing profit, and due to market, 

managerial or technological constraints, firms may be interested, for example, in 

maximizing revenue or maximizing profitability. As the economic goal is different, the 

underlying duality that allows a consistent measurement of economic cross-efficiency is 

different. For example, for the revenue function, the dual representation of the technology 

is the output distance function (Shephard, 1953), while for the profitability function it is 

the generalized distance function (Zofío and Prieto, 2006). Moreover, since the 

generalized distance function nests the input and output distance functions as particular 

                                                
1 This cross-efficiency evaluation with respect to alternative peers results in smaller technical 
efficiency scores, because DEA searches for the most favorable weights when performing own 
evaluations. 
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cases (as well as the hyperbolic distance function), we can relate the cost, revenue and 

profitability cross-efficiency models. Also, since a duality relationship may exist between 

a given supporting economic function and several distance functions, alternative 

economic cross-efficiency models may co-exist. We explore this situation for the profit 

function. Besides the already mentioned model for profit efficiency measurement and its 

decomposition based on the directional distance function, an alternative evaluation can 

be performance relying on the weighted additive distance function (Cooper et al., 2011) 

or the Hölder distance function (Briec and Lesours, 1999). We present these last two 

models and compare them to the one based on the directional distance function. We 

remark the results of these models differ because of the alternative normalizing 

constraints that the duality relationship imposes. Hence researchers and practitioners 

need to decide first on the economic approach that is relevant for their study: cost, 

revenue, profit, profitability, and then, among the set of suitable distance functions 

complying with the required duality conditions, choose the one that better characterizes 

the production process. Related to the DEA methods that we consider in this chapter to 

implement the economic cross—efficiency models, it is well-known that the use of radial 

(multiplicative) distance functions project observations to subsets of the production 

possibility set that are not Pareto-efficient because non-radial input reductions and output 

increases may be feasible (i.e., slacks). As for additive distance functions, the use of the 

weighted additive distance function in a DEA context ensures that efficiency is measured 

against the strongly efficient subset of the production possibility set, while its directional 

and Hölder counterparts do not. Thus, the choice of distance function is also critical when 

interpreting results. For example, in the event that slacks are prevalent, this source of 

technical inefficiency will be confounded with allocative inefficiency when decomposing 

profit inefficiency. Of course, other alternative models of economic cross-efficiency could 

be developed in terms of alternative distance functions. And some of them could even 

generalize the proposals presented here, such as the profit model based on the loss 

distance function introduced by Aparicio et al. (2016), which nests all the above additive 

functions.  

Finally, in this chapter we also extend the economic cross-efficiency model to a panel 

data setting where firms are observed over time. For this we rely on existing models that 

decompose cost or profit change into productivity indices or indicators based on 

quantities, i.e., the Malmquist productivity index or Luenberger productivity indicator, and 

their counterpart price formulations. As the Malmquist index or Luenberger indicator can 

be further decomposed into efficiency change and technological change components, 

we can further learn about the sources of cost or profit change. As for the price indices 
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and indicators, they can also be decomposed so as to learn about the role played by 

allocative efficiency. We relate this panel data framework to the cross-efficiency model 

and, by doing so, introduce the concept of economic cross-efficiency change. In this 

model the cost-Malmquist and profit-Luenberger definitions proposed by Maniadakis and 

Thanassoulis (2004) and Juo et al. (2015), using market prices to determine cost change 

and profit change, are modified following the economic cross-efficiency rationale. that 

replaces the former by the set of shadow prices corresponding to all observations, which 

results in a complete evaluation of the economic performance observations over timeto 

the extent that a complete set of alternative prices is considered.     

The chapter is structured as follows. In the next section we introduce the notation 

and recall the economic cross-efficiency model proposed by Aparicio and Zofío (2019). 

In the third section we present the duality results that allow us to extend the analytical 

framework to the notion of profitability cross-efficiency based on the generalized distance 

function, and how it relates to the partially oriented Farrell cost and revenue cross-

efficiencies. We also introduce two alternative models of profit cross-efficiency based on 

the weighted-additive and Hölder distance functions. A first proposal of economic cross-

inefficiency for panel data models based on the cost-Malmquist index and profit-

Luenberger indicator is propose in section four. In section five we illustrate the empirical 

implementation of the existing and new definitions of economic cross-efficiency through 

Data Envelopment Analysis and using a dataset of bank branches previously used in the 

literature. Finally, relevant conclusions are drawn in section six, along with future venues 

of research in this field. 

 

2. Background 

In this section, we briefly introduce the notion of (standard) cross-efficiency in Data 

Envelopment Analysis and review the concept of economic cross-efficiency. Let us 

consider a set of n observations (e.g., firms or decision making units, DMUs) that use m 

inputs, whose (non-negative) quantities are represented by the vector   1,..., mX x x , to 

produce s outputs, whose (non-negative) quantities are represented by the vector 

 1,..., sY y y . The set of data is denoted as   , , 1,..., .j jX Y j n  The technology or 

production possibility set is defined, in general, as 

  , :  can produce Ym sT X Y R X
  . 
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Relaying on Data Envelopment Analysis (DEA) techniques, T is approximated as 

 
1 1

, : , , , , 0,
n n

m s
c j ij i j rj r j

j j

T X Y R x x i y y r j  


 

 
        
 

  . This corresponds to a 

production possibility set characterized by constant returns to scale (CRS). Allowing for 

variable returns to scale (VRS) results in the following definition: 

 
1 1 1

, : , , , , 1, 0,
n n n

m s
v j ij i j rj r j j

j j j

T X Y R x x i y y r j   


  

 
         
 

   see Banker et al. 

(1984).2  

Let us now introduce the notion of Farrell cross-efficiency. 

2.1 Farrell (cost) cross-efficiency 

In DEA, for firm k the radial input technical efficiency assuming CRS is calculated 

through the following program: 
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 (1) 

 

Although (1) is a fractional problem, it can be linearized as shown by Charnes et al. 

(1978).  ,c k kITE X Y  ranges between zero and one. Hereinafter, we denote the optimal 

solution obtained when solving (1) as  * *,k kV U .  

                                                
2 Based on these technological characterizations, in what follows we define several measures 
that allow the decomposition of economic cross-efficiency into technical and allocative 
components. As it is now well-established in the literature, we rely on the following terminology: 
We refer to the different factors in which economic cross-efficiency can be decomposed 
multiplicatively as efficiency measures (e.g., Farrell cost efficiency). Numerically, the greater their 
value, the more efficient observations are. For these measures one is the upper bound signaling 
an efficient behavior. Alternatively, we refer to the different terms in which economic cross-
inefficiency can be decomposed additively as inefficiency measures (e.g., Nerlovian profit 
inefficiency). Now the greater their numerical value, the greater the inefficiency, with zero being 
the lower bound associated to an efficient behavior.        
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Model (1) allows firms to choose their own weights on inputs and outputs in order to 

maximize the ratio of a weighted (virtual) sum of outputs to a weighted (virtual) sum of 

inputs. In this manner, the assessed observation is evaluated in the most favorable way 

and DEA provides a self-evaluation of the observation by using input and output weights 

that are unit-specific. Unfortunately, this fact hinders obtaining a suitable ranking of firms 

based on their efficiency score; particularly for efficient observations whose  ,c k kITE X Y   

 1. In contrast to standard DEA, a cross-evaluation strategy is suggested in the literature 

(Sexton et al., 1986, and Doyle and Green, 1994). In particular, the (bilateral) cross input 

technical efficiency of unit l with respect to unit k is defined by 

  




 







*
*

1
*

*

1

, .

s

rk rl
k l r

c l l m
k l

ik il
i

u y
U Y

CITE X Y k
V X

v x

 (2) 

 ,c l lCITE X Y k  also takes values between zero and one, and satisfies 

   , ,c l l c l lCITE X Y l ITE X Y .3 

Given the observed n units in the data sample, the traditional literature on cross-

efficiency postulates the aggregation of the bilateral cross input technical efficiencies of 

unit l with respect to all units k, k = 1,…,n, through the arithmetic mean. This results in 

the definition of the multilateral notion of cross input technical efficiency of unit l: 

    

  




  




  



*
*

1
*

*1 1 1

1

1 1 1
, , .

s

rk rln n n
k l r

c l l c l l m
k k kk l

ik il
i

u y
U Y

CITE X Y CITE X Y k
n n nV X

v x
 (3) 

Before presenting the notion of economic cross-efficiency, we need to briefly recall 

the main concepts related to the measurement of economic efficiency through frontier 

analysis, both in multiplicative form (Farrell, 1957) and in additive manner (Chambers et 

al., 1998). We start considering the Farrell radial paradigm for measuring and 

decomposing cost efficiency. For the sake of brevity, we state our discussion in the input 

space, defining the input requirement set L(Y) as the set of non-negative inputs mX R  

that can produce non-negative output sY R , formally  L Y  =   : X,Y ,mX R T   

and the isoquant of   :L Y  =      : 1 .X L Y x L Y      Let us also 

                                                
3 For a list of relevant properties see Aparicio and Zofío (2019). 

 IsoqL Y
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denote by  ,LC Y W  the minimum cost of producing the output level Y given the input 

market price vector mW R :    
1

, min :
m

L i i
i

C Y W w x X L Y


 
  

 
 . 

The standard (multiplicative) Farrell approach views cost efficiency as originating 

from technical efficiency and allocative efficiency. Specifically, we have: 

 
   

Allocative Efficiency
Technical Efficiency1

Cost Efficiency

, 1
, ;

,
L F

Lm I
L

i i
i

C Y W
AE X Y W

D X Y
w x



 







, (4) 

 

where     , sup 0 : /I
LD X Y X L Y     is the Shephard input distance function 

(Shephard, 1953) and allocative efficiency is defined residually. We use the subscript L 

to denote that we do not assume a specific type of returns to scale. Nevertheless, we 

will refer to  ,cC Y W  and  ,I
cD X Y  for CRS, and  ,vC Y W  and  ,I

vD X Y  for variable 

returns to scale (VRS) when needed. Additionally, it is well-known in DEA that the inverse 

of  ,I
LD X Y  coincides with  ,L k kITE X Y . For the particular case of CRSprogram (1): 

 ,c k kITE X Y =  1
,I

cD X Y .  

Considering actual common market prices for all firms within an industry, then the 

natural way of comparing the performance of each one would be using the left-hand side 

in (4). We then could assess the obtained values for each firm since we were using the 

same reference weights (prices) for all the observations, creating a market based 

ranking. This idea inspired Aparicio and Zofío (2019), who suggest that cross-efficiency 

in DEA could be also defined based on the notion of Farrell’s cost efficiency. In particular, 

for a given set of any reference prices (e.g., shadow prices, market prices or other 

imputed prices), they define the Farrell (cost) cross-efficiency of unit l with respect to unit 

k as 

   *

*

1

,
, ,

L l k

L l l m

ik il
i

C Y V
FCE X Y k

v x





 (5) 

where L{c,v} denotes either constant or variable returns to scale. 

As in (4),      *1
, , ;

,
F

L l l L l l k
L l l

FCE X Y k AE X Y V
D X Y

  . Therefore, Farrell cross-

efficiency of unit l with respect to unit k corrects the usual technical efficiency, the inverse 
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of the Shephard distance function, through a term with meaning of (shadow) allocative 

efficiency. 

Given the observed n units, the traditional literature on cross-efficiency suggests to 

aggregate bilateral cross-efficiencies through the arithmetic mean to obtain the 

multilateral notion of cross efficiency. In the case of the Farrell cross-efficiency this yields: 

     *

*1 1

1

,1 1
, , .

n n
L l k

L l l L l l m
k k

ik il
i

C Y V
FCE X Y FCE X Y k

n n
v x 



  


 
 

(6) 

 

Additionally,  ,L l lFCE X Y  can be always decomposed (under any returns to scale) 

into (radial) technical efficiency and a correction factor defined as the arithmetic mean of 

n shadow allocative efficiency terms. I.e.,  

         
*

*

*1 1 1

1

,1 1 1
, , , , ; ,

n n n
L l k F

L l l L l l L l l L l l km
k k k

ik il
i

C Y V
FCE X Y FCE X Y k ITE X Y AE X Y V

n n n
v x  



     


(7) 

with  ,L l lITE X Y  and  *, ;F
L l l kAE X Y V , L{c,v}, denoting constant and variable returns to 

scale technical and (shadow) allocative efficiencies, respectively. 

We note that  ,L l lFCE X Y  satisfies two very interesting properties: 

First, assuming the existence of perfectly competitive input markets resulting in a 

single equilibrium price for each input (i.e., firms are price takers), if we substitute 

(shadow) prices by these market prices in (7), then   ,L l lFCE X Y  precisely coincides 

with  
1

,
m

L l i il
i

C Y W w x

 , which is Farrell’s measure of cost inefficiency (4). Hence, 

economic cross-efficiency offers a ‘natural’ counterpart to consistently rank units when 

reference prices are unique for all units. This property is not satisfied in general by the 

standard measure of cross-efficiency, if both input and output market prices are used as 

weights; i.e.,    1

1 1

,
,

s

r rl
c lr

c l l m m

i il i il
i i

p y
C Y W

CITE X Y
w x w x



 

 


 
. Indeed Aparicio and Zofío (2019) 

show that besides market prices, input homotheticity is required for the equality to hold; 

otherwise    , ,c l l c l lCITE X Y FCE X Y . Nevertheless, we also remark that the concept 

of economic cross-efficiency can accommodate firm-specific market prices if some 

degree of market power exists and firms are price makers in the inputs markets. In that 
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case individual firms’ shadow prices would be substituted by their market counterparts 

in (7). This connects our proposal to the extensive theoretical and empirical economic 

efficiency literature considering individual market prices, e.g., Ali and Seiford (1993).     

Second, as previously remarked,  ,L l lFCE X Y  is well-defined, ranging between zero 

and one, even under variable returns to scale. This property is not verified in general by 

the standard cross-efficiency measures (see Wu et al., 2009, Lim and Zhu, 2015). This 

is quite relevant because traditional measures may yield negative values under variable 

returns to scale, which is inconsistent and hinders the extension of cross-efficiency 

methods to technologies characterized by VRS.  

An interesting by-product of the economic cross-efficiency approach is that by 

incorporating the economic behavior of firms in the formulations (e.g., cost minimizers in 

 ,v l lFCE X Y ), the set of weights represented by the shadow prices are reinterpreted as 

market prices, rather than their usual reading in terms of the alternative supporting 

technological hyperplanes that they define, and against which technical inefficiency is 

measured. This solves some recent criticism raised against the cross-efficiency 

methods, since shadow prices could be then considered as specific realizations of 

market prices, e.g., see Førsund (2018a, 2018b) and Olesen (2018). 

Next, we briefly introduce the Nerlovian cross-inefficiency. 

2.1 Nerlovian (profit) cross-inefficiency 

Now, we recall the concepts of profit inefficiency and its dual graph measure 

corresponding to the directional distance function (Chambers et al., 1998).  

Given the vector of input and output market prices  , m sW P R 
 , and the production 

possibility set T, the profit function is defined as 

   
,

1 1

, max : , .
s m

T r r i iX Y
r i

W P p y w x X Y T
 

 
    

 
   In what follows, let   ,c W P  and 

 ,v W P  be the maximum profit given the CRS technology Tc  and the VRS technology 

Tv, respectively. 

Profit inefficiency à la Nerlove for firm k is defined as maximum profit (i.e., the value 

of the profit function given market prices) minus observed profit, normalized by the value 

of a pre-fixed reference vector  ,x y m sG G R 
 . By duality, the following inequality is 

obtained  (Chambers et al., 1998): 
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 

  

 

 
   

  


 

 


1 1

1 1

,

, ; ,

s m

T r rk i ik
r i x y

T k ks m
y x

r r i i
r i

W P p y w x

D X Y G G
p g w g

.          (8) 

where    


     


, ; , max : ( , )x y x y
T k k k kD X Y G G X G Y G T  is the directional distance 

function. As for the Farrell approach, profit inefficiency can be also decomposed into 

technical inefficiency and allocative inefficiency, where the former corresponds to the 

directional distance function:  

 
    

 

 
   

   


 

 


1 1

1 1

,

, ; , , ; , ; , .

s m

T r rk i ik
r i x y N x y

T k k T k ks m
y x

r r i i
r i

W P p y w x

D X Y G G AI X Y W P G G
p g w g

  (9) 

The subscript T in   , ,T W P   


, ; ,x y
T k kD X Y G G  and  , ; , ; ,N x y

T k kAI X Y W P G G  

implies that we do not assume a specific type of returns to scale. Nevertheless, as before 

we will use  


, ; ,x y
c k kD X Y G G  and  , ; , ; ,N x y

c k kAI X Y W P G G  for CRS and 

 


, ; ,x y
v k kD X Y G G  and  , ; , ; ,N x y

v k kAI X Y W P G G  for VRS. 

In the case of DEA, when VRS is assumed, the directional distance function is 

determined through (10): 

 
 



 

 













  

  



 








,

1

1

1

, ; ,

. , 1,..., ,

, 1,..., ,

1,

0, 1,..., .

x y
v k k

n
x

j ij ik i
j

n
y

j rj rk r
j

n

j
j

j

D X Y G G max

s t x x g i m

y y g r s

j n

                            (10) 

whose dual is: 
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




 

 

 

  

   

 

 

 

 

 

, ,
1 1

1 1

1 1

. . 0, 1,..., ,

1,

0 , 0 .

s m

r rk i ikU V
r i

s m

r rj i ij
r i

s m
y x

r r i i
r i

s m

min u y v x

s t u y v x j n

u g v g

U V

 

 

  (11) 

 

Let also denote the optimal solutions of problem (11) as  * * *, , .k k kV U 
  

 

Aparicio and Zofío (2019) defined the Nerlovian cross-inefficiency of unit l with 

respect to unit k as: 

 

 
  

   

   

   
       

    
 

   

   

     

   

* * * * * * *

1 1 1 1

* * * *

1 1 1 1

,

, ; , .

s m s m

k k rk rl ik il k rk rl ik il
r i r ix y

v l l s m s m
y x y x

rk r ik i rk r ik i
r i r i

V U u y v x u y v x

NCI X Y G G k
u g v g u g v g

 

 

(12) 

 

As usual, the arithmetic mean of (12) for all observed units yields the final Nerlovian 

cross-inefficiency of unit l: 

   
1

1
, ; , , ; , .

n
x y x y

v l l v l l
k

NCI X Y G G NCI X Y G G k
n 

   

 

(13) 

 

Invoking (9), we observed once again that the Nerlovian cross-inefficiency of firm l is 

a ‘correction’ of the original directional distance function value for the unit under 

evaluation, where the modifying factor can be interpreted as (shadow) allocative 

inefficiency: 

     * *
0 0

1

1
, ; , , ; , , ; , ; , .

n
x y x y N x y

v l l v v l l k k
k

NCI X Y G G D X Y G G AI X Y V U G G
n 

  
  

 (14) 

Finally, these authors showed that the approach by Ruiz (2013), based on the 

directional distance function under CRS, is a particular case of (14). 
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3. New economic cross-(in)efficiency measures 
 

3.1 Profitability cross-efficiency  

We now extend the previous framework of economic cross-(in)efficiency to a set of 

new measures which can be decomposed either multiplicatively or additively. We start 

with the notion of profitability―corresponding to Georgescu-Roegen's (1951) ‘return to 

the dollar’, defined as the ratio of observed revenue to observed cost. We then show that 

it can be decomposed into a measure of economic efficiency represented by the 

generalized distance function introduced by Chavas and Cox (1999), and a factor defined 

as the geometric mean of the allocative efficiencies corresponding to the n shadow 

prices. Let us define maximum profitability as   ,T W P   

 
 

 
 

 
 

,
1 1

/ : , .
s m

r r i i
X Y

r i

max p y w x X Y T Zofío and Prieto (2006) proved that 

    



, ;

,
Gk k
c k k

T

P Y W X
D X Y

W P
, (15) 

where          1, ; inf : ( , / )G
c k k k kD X Y X Y T ,  0 1, is the generalized distance 

function and 


 
1

s

k r rk
r

P Y p y  and 


 
1

m

k i ik
i

W X w x .  

We remark that the generalized distance function in expression (15), rather than 

being defined to allow for either constant or variable returns to scale as in the previous 

models, is characterized by the former. The reason is that the production technology 

exhibits local constant returns to scale at the optimum; hence maximum profitability is 

achieved at loci representing most productive scale sizes in Banker et al. (1984) 

terminology. This provides the rationale to develop the duality underlying expression (15) 

departing from such technological specification. We further justify this choice in what 

follows when recalling the variable returns to scale technology so as to account for scale 

efficiency.  

The generalized distance function  , ;G
c k kD X X  can be calculated relying on 

DEA by solving the following non-linear problem:   
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 
 





 

 














 

 

 





,

1

1

1

, ;

. .

, 1,..., ,

, 1,..., ,

0, 1,..., ,

G
c k k

n

j ij ik
j

n
rk

j rj
j

j

D X Y min

s t

x x i m

y
y r s

j n

        (16) 

Following the Farrell and Nerlovian decompositions (7) and (14), it is possible to 

define allocative efficiency as a residual from expression (15):  

      
 

 


, ; , ; , ; ,
,

G Gk k
c k k c k k

T

P Y W X
D X Y AE X Y W P

W P
      (17) 

where    
  




ˆ ˆ/
, ; , ;

,
G k k
c K K

T

P Y W X
AE X Y W P

W P
 with  ˆ , ;G

k c k k kX D X Y X  and 

 ˆ , ;G
k k c k kY Y D X Y .4 So, allocative efficiency, which is a measure that in the Farrell 

approach essentially captures the comparison of the rate of substitution between 

production inputs with the ratio of market prices at the production isoquant given the 

output level kY , is, in this case, the profitability calculated at the (efficient) projection 

linked to the generalized model. 

As previously mentioned, since the technology may be characterized by variable 

returns to scale, it is possible to bring its associated directional distance function 

 , ;G
v k kD X X  into (17)calculated as in (16) but adding the VRS constraint 

 1

n

jj
 = 

1. This allows decomposing productive efficiency into two factors, one representing ‘pure’ 

VRS technical efficiency and a second one capturing scale efficiency: i.e.,  , ;G
c k kD X X  

     , ; , ; ,G G
v k k k kD X X SE X X  where  , ;G

k kSE X X   

    , ; / , ;G G
c k k v k kD X X D X X . Defining expression (15) under constant returns to scale 

enables us to individualize the contribution that scale efficiency makes to profitability 

efficiency. Otherwise, had we directly relied on the directional distance function defined 

                                                
4 Färe et al. (2002) defined this relationship in terms of the hyperbolic distance function; i.e.,

 ,H
c k kD X Y  


    

 

 
    

 
 

,
1 1

: , , 0, 1,...,
n n

k
j j k j j jz

j j

Y
min X X Y j n .   
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under variable returns to scale in (15), scale inefficiency would had been confounded 

with allocative efficiency in (17). 

Reinterpreting the left hand side of (15) in the framework of cross-efficiency, we next 

define a new economic cross-efficiency approach that allows us to compare the 

(bilateral) performance of firms l with respect firm k using the notion of profitability:  

   
  




* *

* *
, ; ,

,
k l k l

c l l

T k k

U Y V X
PCE X Y k

V U
 

 
(18) 

where, once again,   * *,k kV U  are the shadow prices associated with the frontier 

projections generated by  , ;G
c k kD X X .  

To aggregate all cross-efficiencies in a multiplicative framework we depart on this 

occasion from standard practice and use the geometric mean, whose properties make 

the aggregation meaningful when consistent (transitive) bilateral comparisons of 

performance in terms of productivity are pursued, see Aczél and Roberts (1989) and 

Balk et al. (2017). Hence: 

   




   
  


1
* *

* *
1

, ; ,
,

n
n

k l k l
c l l

k T k k

U Y V X
PCE X Y

V U
 

 
(19) 

 

As in the Farrell and Nerlovian models (7) and (14), we can decompose 

 , ;c l lPCE X Y  according to technical and allocative criteria, thereby obtaining:   

       


 
   

 


1/

* *

1

, ; , ; , ; , ;
nn

G G
c l l c k k c k k k k

k

PCE X Y D X Y AE X Y V U  
 

(20) 

Based on this decomposition, the role played by VRS technical efficiency and scale 

efficiency can be further individualized since  , ;G
C k kD X X   

    , ; , ;G G
v k k k kD X X SE X X .   

We now obtain some relevant relationships between the profit and profitability cross-

(in)efficiencies. Relaying on Färe et al. (2002) and Zofío and Prieto (2006), it is possible 

to show that under constant returns to scale, maximum feasible profit is zero,   ,c W P  
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 0 (if    ,c W P ), and, therefore, maximum profitability is one,   ,c W P  1.5 Also, 

it is a well-known result that, under CRS,    , , ; 0G
c k k c k kITE X Y D X Y .6 Combining both 

conditions, it is possible to express (17) as follows: 

   
 


, , ; , ; 0 .Gk

c k k c k k
k

P Y
ITE X Y AE X Y W P

W X
 

 

(21) 
 

Now, in the usual cross-efficiency context considering k’s shadow prices  * *,k kV U

when evaluating the performance of firm l , we first have that the standard input oriented 

bilateral cross-efficiency can be interpreted as a profitability measure:  

  




*

*
, k l

c l l
k l

U Y
CITE X Y k

V Y
. Second,  







*

*
1

1
,

n
k l

c l l
k k l

U Y
CITE X Y

n V X
 is the arithmetic mean of 

the n individual profitabilities [see (3)]. Additionally, by (21), we obtain the following 

decomposition of  , :c l lCITE X Y  

     
 

  
      

 
*

* *
*

1 1

1 1
, , , ; , ; 0 .

n n
Gk l

c l l c l l c l l k k
k kk l

U Y
CITE X Y ITE X Y AE X Y V U

n nV X
 (22) 

Hence, under the assumption of CRS,  ,c l lCITE X Y can be decomposed as 

 ,L l lFCE X Y  into two technical and allocative factors, expression (7). Indeed, CRS 

implies that the production technology is input-homothetic and Aparicio and Zofío (2019) 

show in their Theorem 1 that in this (less restrictive) case,  ,c l lCITE X Y    ,c l lFCE X Y

, and therefore (22) coincides with (7). Consequently, as in the latter expression, the 

classical input cross-inefficiency measure is equal to the self-appraisal score of firm l,  

 ,c l lITE X Y , modified by the mean of its (shadow) generalized-allocative efficiencies. 

Note also that, as per (20), technical efficiency can be decomposed into VRS and scale 

efficiencies:         , , ,F
c l l v l l l lITE X Y ITE X Y SE X Y .   

Finally, it is also worth mentioning that the profit and profitability dualities and their 

associated economic cross-inefficiencies, including their decompositions, can be directly 

                                                
5 Aparicio and Zofío (2019) show in their Lemma 2 that given an optimal solution to problem (1), 

 * *,k kV U , then   * *,c k kV U   0, i.e., maximum profit equal to infinitum can be discarded. 

6 In terms of the hyperbolic distance function,  ,c k kITE X Y    2
,H

c k kD X Y . 
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related in the case of CRS. Following Färe et al. (2002:673), the precursor of expression 

(15) in terms of the profit function is: 

 
 

  
 




   
1

, , ;
, ;

Gl
T c l l lG

c l l

P Y
W P D X Y W X

D X Y
. (23) 

Since   , 0T W P  in the case of CRS, expression (15) is easily derived from (23) 

and vice versa. However, under VRS,   ,T W P  is not nil and we cannot obtain the 

duality based inequality (15), with the left-hand side not depending on any efficiency 

measure (distance function) and the right-hand side not depending on prices. This 

shows, once again, the importance of defining multiplicative economic cross-efficiency 

measures under the assumption of VRS.   

3.2 Farrell (revenue) cross-efficiency 

Following the same procedure set out to define the Farrell (cost) cross-efficiency, 

 ,L l lFCE X Y in (6), we can develop an output-oriented approach in terms of the radial 

output technical efficiency,  ,c k kOTE X Y under CRS calculated through a DEA program 

corresponding to the inverse of (1)see Ali and Seiford (1993), and the revenue 

function. As usual,  ,v k kOTE X Y  may be computed under VRS adding the constraint 





1

1
n

j
j

. 

The standard output technical cross-efficiency of l based on the optimal 

weightsshadow pricesof k,  * *,k kV U , defines as:  

 
*

*
1

*
*

1

, ,

m

ik il
k l i

c l l s
k l

rk rl
r

v x
V X

COTE X Y k
U Y

u y






 






 (24) 

The introduction of the Farrell (revenue) cross-efficiency requires defining the 

output requirement set P(X) as the set of non-negative outputs sY R  that can be 

produced with non-negative inputs mX R , formally  P X  =   : X,Y ,sY R T   and 

the isoquant of   :P X    :Isoq P X =     : 1 .Y P X Y P X      Let us also 

denote by  ,LR X P  the maximum revenue obtained from using input level X given the 
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output market price vector sP R :    


 
  

 


1

, max :
s

L s s
Y

i

R X P p y Y P X . The standard 

revenue definition and decomposition is given by: 

 
   



 

 



Allocative Efficiency

Technical Efficiency1

Revenue Efficiency

, 1
, ;

,
L F

Ls O
L

s s
i

R X P
AE X Y P

D X Yp y
, (25) 

 

where        , inf 0: /O
LD X Y Y P X  is the Shephard output distance function 

(Shephard, 1953) and allocative efficiency is defined residually. Again, we use the 

subscript L to stress that revenue efficiency can be defined with respect to different 

returns to scale.  

Consequently, considering shadow prices, the Farrell (revenue) cross-efficiency of 

firm l with respect to firm k is:   

     



 
 

* *

*
*

1

, ,
, ,

L l k L l k

L l l s
k l

rk rl
r

R X U R X U
FRE X Y k

U Y u y

 (26) 

with L{c,v} denoting constant and variable returns to scale, respectively. 

As in (25),        *1
, , ;

,
F

L l l L l l kO
L l l

FRE X Y k AE X Y U
D X Y

. Therefore, Farrell revenue 

cross-efficiency corrects the usual technical efficiency, the inverse of Shephard output 

distance function, through a term capturing (shadow) allocative efficiency. 

As in the case of the Farrell cost cross-efficiency (6), we could aggregate all 

individual revenue cross-efficiencies following the standard approach that relies on the 

arithmetic mean. However, in the current multiplicative framework, we rely on our 

preferred choice for the geometric mean, already used in the profitability approach. This 

yields  

     
 

           
 

1
1 *

*
1 1

,
, , ,

n
nn n

L l k

L l l L l l
k k k l

R X U
FRE X Y FRE X Y k

U Y
 (27) 

which can be further decomposed into technical and allocative components: 

             
 

            
 

1
1/*

*
*

1 1

,
, , , ; .

n
nn n

L l k F
L l l L l l L l l k

k kk l

R X U
FRE X Y OTE X Y AE X Y U

U Y
           (28) 
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We now combine the cost and revenue approaches of economic cross-efficiency 

and relate it to the profitability cross-efficiency definition. Assume first that the 

 ,L l lFCE X Y  in (6) is defined using the geometric mean as aggregatorso it is 

consistent with  ,L l lFRE X Y  in (27). Then, given that  ,L l lFCE X Y  depends on 

(shadow) input prices but not on (shadow) output prices, and vice versa for 

 , ,L l lFRE X Y  we suggest to mix both approaches to introduce yet another new cross-

efficiency measure under the Farrell paradigm.  

   
 

 

 

   

   






 
           

   
   
   

 



1
*

1/

*
*

1
1

1 1/
*

*

* 1
1

,
, , ;

,
, .

, , , , ;

n
n nnL l k

F
L l l L l l k

k k l kL l l
L l l n nn

nL l l FL l k
L l l L l l k

k
k k l

C Y V
ITE X Y AE X Y VV XFCE X Y

FE X Y
FRE X Y R X U OTE X Y AE X Y U

U Y

 

(29) 

 ,L l lFE X Y  is related to  ,c l lCITE X Y k  under CRS: 

 
 
 

 

 
 

 

 

   
       

   
   
   
   

 

 

1/ 1/*

*
1 1

1/ 1/
* *

* *
1 1

,

, .
, ,

, ,

n nn n
k l

c l
k kk l

c l l n n
n n

c l k c l k

k kc l k c l k

U Y
CITE X Y k

V X
FE X Y

R X U R X U

C Y V C Y V

 (30) 

The value of (30) must be close to 

   
 

   
   

   
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1/ 1/

* *

1 1

, , .
n nn n

c l T k k
k k

CITE X Y k V U  (31) 

Additionally,  ,L l lFE X Y  always takes values between zero and one, while 

   
 


,

,
,

L l l
L l l

L l l

ITE X Y
FE X Y

OTE X Y
, under any returns to scale assumed. 

At this point, it is worth mentioning that analogous results to the Farrell cost cross-

efficiency can be derived for the cross output technical efficiency and revenue efficiency 

when output-homotheticity is assumed; i.e.,    , ,c l l c l lCOTE X Y k FRE X Y k . 

However,    , ,c l l c l lCOTE X Y FRE X Y  in general if  ,c l lCOTE X Y  is defined as usual 

by additive aggregation and  ,c l lFRE X Y  is defined through multiplicative aggregation. 
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3.3. Profit cross-inefficiency based on the (weighted) additive distance function 

This section introduces a measure of economic cross-efficiency based on the 

weighted additive distance function, which constitutes an alternative to the Nerlovian 

definition based on the directional distance function.  

Cooper et al. (2011) proved that 

 
  

 
   

  
 
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 

 
1 1

1 1

1 1

,

, ; ,

min ,..., , ,...,

s m

T r rk i ik
r i

T k k k k

sm

k mk k sk

W P p y w x

WA X Y A B
pw w p

a a b b

, 
(32) 

 

where 
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

 

 

 
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, ; , max : , , ,

1, 0, 1,..., , 0 , 0
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v k k k k k k j ij ik i rk r j rj
S H

j j

n

j j m s
j

WA X Y A B A S B H x x s i y h y

j n S H

 (33) 

is the weighted additive model in DEA. In particular, Ak and Bk are pre-fixed input and 

output weights, respectively. As in the Nerlovian approach (8), the left hand side of (32) 

measures profit inefficiency, defined as maximum profit (i.e., the value of the profit 

function at the market prices) minus observed profit, normalized by the minimum of the 

ratios of market prices to their corresponding pre-fixed weights. Based on (32), and 

assuming variable returns to scale, profit inefficiency for firm k can be decomposed as 

follows:  

 
    

 
   

   
 
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 
1 1

1 1

1 1

,

, ; , , ; , ; , .

min ,..., , ,...,

s m

V r rk i ik
r i W

v k k k k V k k k k

sm

k mk k sk

W P p y w x

WA X Y A B AI X Y W P A B
pw w p

a a b b

 (34) 

 

Substituting market prices by shadow prices7 in evaluating firm l with respect to firm 

k, we obtain: 

                                                
7 Shadow prices are obtained for DMUk through the linear dual of program (33). 
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. (35) 

Aggregating all profit cross-inefficiencies through the arithmetic meangiven the 

additive framework, allows us to define the new profit cross-inefficiency measure based 

on the weighted additive approach: 

 
 
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
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r i

v l l l l
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l ml l sl

V U u y v x

WACI X Y A B
n uv v u

a a b b

,       (36) 

which can be decomposed as (34), yielding   

     


   * *

1

1
, ; , , ; , , ; , ; ,

n
W

v l l l l v l l l l V l l k k l l
k

WACI X Y A B WA X Y A B AI X Y V U A B
n

.      (37) 

Therefore  , ; ,T l l l lWACI X Y A B  coincides with the sum of the original technical 

inefficiency measure of firm l , determined by the weighted additive model, and a 

correction factor capturing (shadow) allocative inefficiencies. 

It is worth mentioning that, among all the approaches mentioned in this chapter, the 

weighted additive model is the unique such that measures technical efficiency with 

respect to the strongly efficient frontier, resorting to the notion of Pareto-Koopmans 

efficiency. 

3.4. Profit cross-inefficiency measure based on the Hölder distance function 

In this section we introduce a profit cross-inefficiency measure based on the Hölder 

distance function, thereby relating two streams of the literature: cross efficiency and least 

distance. Hölder distance functions were firstly introduced with the aim of relating the 

concepts of technical efficiency and metric distances (Briec, 1998).  

The Hölder norms q    1,q   are defined over a g-dimensional real normed 

space as follows: 
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(38) 

 

where  1,...,
g

gZ z z R  . From (38), Briec (1998) define the Hölder distance function 

for firm k with vector of inputs and outputs  ,k kX Y  as follows: 

             
,

, inf , , : ,
q

k k k k qX Y
D X Y X Y X Y X Y T . (39) 

Model (39) minimizes the distance from  ,k kX Y  to the weakly efficient frontier of 

the technology, denoted as   T , and is interpreted as a measure of technical 

inefficiency. Other related paper where Hölder distance functions have also been used 

linked to the weakly efficient frontier is Briec and Lesourd (1999).  

After introducing some notation and definitions, we are ready to show that we can 

derive a difference-form measure of profit inefficiency from a duality result proven in Briec 

and Lesourd (1999).  

Proposition 1. Let  ,k kX Y  an input-output vector in T. Let t  be the dual space 

of q  with 1 1 1q t  . Then,  

     
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,
1 1

, inf , : , 1, 0 , 0
q

s m

k k T r rk i ik m stD H
r i

D X Y D H h y d x D H D H . 

Proof. See Proposition 3.2 in Briec and Lesourd (1999). ■ 

By Proposition 1, it is obvious that if the input-output market prices  ,W P  are such 

that   , 1
t

W P , then    
 

 
    

 
 

1 1

, ,
q

s m

T r rk i ik k k
r i

W P p y w x D X Y . We are then 

capable of obtaining the usual difference-form measure of profit inefficiency in the left- 

hand side of the inequality and the Hölder distance function in the right hand side, 

showing that it is possible to decompose overall inefficiency through  ,
q

k kD X Y . 

However, as with the previous proposals (8) and (32), profit inefficiency must be 

normalized (deflated) in order to obtain an appropriate measuresee Aparicio et al. 

(2016). Accordingly, we propose the following solution, which was proved in Aparicio et 

al. (2017a). 
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Proposition 2. Let  ,k kX Y  an input-output vector in T. Let t  be the dual space 

of q  with 1 1 1q t  . Let  , m sW P R 
 . Then, 
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(40) 

 

 

As before, departing from (40), and assuming variable returns to scale, profit 

inefficiency for firm k can be decomposed as follows:  
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Considering shadow prices8 rather than market prices when evaluating firm l with 

respect to firm k, we obtain: 
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Then, aggregating all profit cross-inefficiencies through the arithmetic mean yields 

the new profit cross-efficiency measured based on the Hölder distance function: 

     
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which, once again, can be decomposed as (41), thereby obtaining  

        


   * *

1

1
, , , ; ,q

q

n

v l l k k V l l k k
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HCI X Y D X Y AI X Y V U
n

.          (44) 

4. Extensions of economic cross-(in)efficiency to panel data 

We now briefly introduce extensions of the economic cross-efficiency models related 

to panel data with the aim of comparing the evolution of firms’ performance over time. 

                                                
8 These shadow prices come from the optimization model that appears in Proposition 1.  
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To this end, we rely on two proposals related to the Farrell (cost) and Nerlovian (profit) 

approaches. For the former, Maniadakis and Thanassoulis (2004) introduce the so-

called cost Malmquist index: 

   
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(45) 

 

where the superscripts t and t+1 denote two different periods of time. 

If we translate (45) to the cross-efficiency context considering shadow prices (those 

associated with the radial model in DEA), we get the following: 
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(46) 

In this way, we can introduce and decompose the cost Malmquist cross-efficiency 

index for firm l  as the geometric mean of   1 1, ; ,t t t t
c l l l lCM X Y X Y k  for all k : 
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where F
l  is a mix of technological, allocative efficiency and price changes over time. 

For the Nerlovian cross-efficiency approach, Juo et al. (2015) define the change of 

normalized profit inefficiency from period t to period t+1, and propose its decomposition 

into different sources. In particular, these authors introduce a profit-Luenberger indicator: 
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(48) 

 

Accordingly, this definition can be reformulated for firm l  in terms of the shadow 

prices of firm k  (those related to the directional distance function), thereby obtaining: 
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(49) 

 

and the final profit-Luenberger cross-inefficiency indicator for firm l  is defined as: 
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(50) 
 

 

Following Juo et al. (2015), TL  can be decomposed into several components, 

mainly a Luenberger productivity indicator, which ultimately corresponds to a profit-

based Bennet quantity indicator, and a price change term incorporating allocative 

inefficiency (see Balk, 2018). Likewise, the Luenberger productivity indicator may be 

decomposed into efficiency change and technical change. In particular, efficiency 

change coincides with the difference       1 1 1, ; , , ; ,t t t x y t t t x y
T l l l l T l l l lDDF X Y G G DDF X Y G G . In 

this way, the profit-Luenberger cross-inefficiency for firm l  would be decomposed into 

the change experienced by the DEA self-appraisal scores, the directional distance 

function value for firm l  in times t and t+1, and a (shadow) correction factor N
l : 
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(51) 

 

As for other panel data economic cross-(in)efficiency models that can be related to 

existing literature, we note that a profitability efficiency change measure based on 

shadow prices, i.e.,  , ;c l lPCE X Y , can be defined in terms of the Fisher index following 

Zofío and Prieto (2006). Also, following Aparicio et al. (2017b), it is possible to define a 

profit efficiency change measure using the economic cross-inefficiency model based on 

the weighted additive distance function  , ; ,v l l l lWACI X Y A B alternative to the profit 

Luenberger indicator in (49). 
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5. Numerical examples: An application to banking data.  

To illustrate the new cross-(in)efficiency measures and their empirical 

implementation, we rely on a database on 20 Iranian branch banks observed in 2001, 

previously used by Akbarian (2015) to present a novel model that ranks observations 

combining cross-efficiency and analytic hierarchy process (AHP) methods. The 

database was compiled originally by Amirteimoori and Kordrostami (2005), who discuss 

the statistical sources and selected variables. Following these authors, the production 

process is characterized by three inputs and three outputs. Inputs are: I.1) number of 

staff (personnel); I.2), number of computer terminals; and I.3) branch size (square meters 

of premises). On the output side the following variables are considered: O.1) deposits; 

O.2) amount of loans; and O.3) amount of charge. All output variables are stated in ten 

million of current Iranian Rials. The complete (normalized) dataset can be found in 

Amirteimoori and Kordrostami (2005:689), while Table 1 shows the descriptive statistics 

for all these variables. 

 

Table 1. Descriptive statistics for inputs and outputs, 2001. 

 Inputs Outputs 

 
Staff 
(#) 

Computer 
Terminals 

(#) 

Space 
(m2) 

Deposits Loans Charge 

Average 0.738 0.713 0.368 0.191 0.549 0.367 

Median 0.752 0.675 0.323 0.160 0.562 0.277 

Minimum 0.372 0.550 0.120 0.039 0.184 0.049 

Maximum 1.000 1.000 1.000 1.000 1.000 1.000 

Stand. Dev. 0.160 0.138 0.207 0.200 0.261 0.257 
 

Source: Amirteimoori and Kordrostami (2005). 

 

In the empirical application, we illustrate the most representative multiplicative and 

additive models of economic cross-efficiency. In particular the Farrell cost model based 

on the (inverse) of the input distance function, the profit approach based on the 

directional distance function (Nerlove), the weighted additive distance function, and the 

Hölder distance function, as well as the profitability definition based on the generalized 

distance function. We leave the Farrell revenue model and panel data implementations 



27 
 

of the cost Malmquist index and profit Luenberger indicator as exercises to the interested 

readers.  

5.1 Farrell (cost) and Nerlovian (profit) economic cross-efficiency 

For comparison purposes, we calculate the economic cross-efficiency scores 

corresponding to the Farrell (cost) and the Nerlovian (profit) economic definitions 

introduced by Aparicio and Zofío (2019). In the first set of columns of Table 2, under the 

‘Technical (in)efficiency – Distance functions’ heading, we report the results for the 

original Farrell input oriented model that radially measures technical efficiency for bank 

k as in (1), but allowing for variable returns to scale (VRS) i.e.,  ,v l lITE X Y see Ali and 

Seiford (1993) for the multiplier formulation of the program. The ranking of banks in the 

left column is precisely based on these values, which serves us as benchmark. As many 

as 12 banks (60% of the observations) are technically efficient, exemplifying the poor 

discriminatory power of conventional DEA models in small samples and the need for 

cross-efficiency methods.9 The duality between the cost function and the (inverse) of the 

input distance function allows to introduce the bilateral cost cross-efficiency of firm l using 

the shadow prices of firm k, expression (5). Taking the arithmetic mean of all bilateral 

cross-inefficiencies yields the Farrell cross-efficiency measure (6),  ,v l lFCE X Y , which 

is reported in the first (leftmost) column of the second group of results under the heading 

‘Economic cross (in)-efficiencies’. Here, it is interesting to remark that despite the use of 

cross-efficiency methods several banks are still tied in the first place with a cost cross-

efficiency score of one. Finally, the difference between the cost based economic cross-

efficiency measure and the input technical efficiency corresponds to the (average) of the 

allocative inefficiencies obtained for the n shadow prices:  

 *

1

1
, ;

n
F
v l l k

k

AE X Y V
n

, (7). The 

values are reported once again in the first (left) column of the third group of results under 

the heading ‘Allocative (in)efficiency’. Comparing technical and allocative efficiencies, 

we observe that the second component is a comparatively larger source of inefficiency.  

The second set of results reported in Table 2 corresponds to the Nerlovian (profit) 

cross-efficiency. The values of the directional distance function under variable returns to 

scale,  


, ; ,x y
v k kD X Y G G  are calculated with the customary choice of directional vector 

corresponding to the observed input and output quantities,    , ,x y
l lG G X Y . We see 

                                                
9 The number of technically efficient banks reduces to 7 under constant returns to scale, the 
standard assumption in the cross-efficiency literature.    
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that the same 12 bank are efficient and that the ranking for the inefficient observations 

is almost the same, except for banks #18 and #6, whose position is reversed. On this 

occasion, based on the duality between the profit function and the directional distance 

function we can define the bilateral cross-inefficiency measure (12), and aggregating all 

bilateral cross-inefficiencies through the arithmetic mean yields the Nerlovian profit 

cross-inefficiency,  , ; ,x y
v l lNCI X Y G G  in (13), which is reported in the second column of 

the second group of results. Contrary to the Farrell cost cross-efficiency, none of the 

banks are Nerlovian cross-efficient. As before, the difference between profit cross-

inefficiency and the technical efficiency score of the bank under evaluation (represented 

by the directional distance function), yields the average of allocative inefficiencies:  

 



 
* *

1

1
, ; , ; ,

n
N x y
v l l k k

k

AI X Y V U G G
n

 in (14). In this model, allocative inefficiency is almost the 

sole responsible of overall economic cross-inefficiency on average.   
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Table 2. Economic cross-efficiency decompositions.  

  Technical (in)efficiency  Distance functions Economic cross-(in)efficiency Allocative (in)efficiency 

Ranking Bank 
ITEv 


F
vD  G

cD  
G
vD  WAv 

q
D  FCEv NCIv PCEc WADDv HCIv 

F
vAE  N

vAI  G
vAE  

W
vAI  q

vAI  

(1) (10) (16) (16’) (33) (39) (6) (13) (19) (35) (43) (7) (14) (20) (37) (44) 

1 1 1.000 0.000 1.000 1.000 0.000 0.000 0.749 0.659 0.526 13.700 0.196 0.749 0.659 0.526 13.700 0.196 

2 3 1.000 0.000 0.991 1.000 0.000 0.000 1.000 0.522 0.670 8.998 0.160 1.000 0.522 0.676 8.998 0.160 

3 4 1.000 0.000 1.000 1.000 0.000 0.000 1.000 0.333 0.772 2.000 0.097 1.000 0.333 0.772 2.000 0.097 

4 7 1.000 0.000 1.000 1.000 0.000 0.000 1.000 0.330 0.864 2.943 0.091 1.000 0.330 0.864 2.943 0.091 

5 8 1.000 0.000 0.798 1.000 0.000 0.000 0.736 1.119 0.345 18.180 0.230 0.736 1.119 0.432 18.180 0.230 

6 9 1.000 0.000 0.789 1.000 0.000 0.000 0.979 1.071 0.529 9.153 0.155 0.979 1.071 0.670 9.153 0.155 

7 10 1.000 0.000 0.289 1.000 19.648 0.000 0.694 2.498 0.176 62.712 0.262 0.694 2.498 0.608 43.064 0.262 

8 12 1.000 0.000 1.000 1.000 0.000 0.000 1.000 0.502 0.791 4.024 0.125 1.000 0.502 0.791 4.024 0.125 

9 15 1.000 0.000 1.000 1.000 0.000 0.000 1.000 1.115 0.656 4.734 0.020 1.000 1.115 0.656 4.734 0.020 

10 17 1.000 0.000 1.000 1.000 0.000 0.000 1.000 0.932 0.625 12.500 0.173 1.000 0.932 0.625 12.500 0.173 

11 19 1.000 0.000 0.408 1.000 0.000 0.000 0.896 2.500 0.257 17.575 0.214 0.896 2.500 0.628 17.575 0.214 

12 20 1.000 0.000 1.000 1.000 0.000 0.000 0.916 0.582 0.649 8.040 0.134 0.916 0.582 0.649 8.040 0.134 

13 2 0.969 0.024 0.833 0.952 1.732 0.012 0.711 0.521 0.490 19.946 0.224 0.733 0.497 0.588 18.214 0.212 

14 5 0.927 0.043 0.899 0.918 2.556 0.018 0.796 0.596 0.617 8.016 0.181 0.859 0.553 0.686 5.460 0.163 

15 13 0.923 0.052 0.817 0.901 2.036 0.028 0.788 0.681 0.574 8.280 0.191 0.853 0.629 0.703 6.244 0.163 

16 18 0.896 0.104 0.473 0.802 9.951 0.060 0.767 2.026 0.303 25.732 0.224 0.856 1.922 0.639 15.781 0.164 

17 6 0.882 0.096 0.748 0.820 1.572 0.052 0.739 0.506 0.556 9.528 0.179 0.838 0.410 0.744 7.956 0.127 

18 16 0.813 0.146 0.639 0.738 3.459 0.071 0.665 0.914 0.392 12.140 0.253 0.818 0.768 0.613 8.681 0.182 

19 11 0.796 0.151 0.604 0.731 2.446 0.072 0.678 0.826 0.414 9.414 0.243 0.852 0.675 0.685 6.968 0.171 

20 14 0.695 0.281 0.470 0.535 4.843 0.168 0.576 0.914 0.350 16.157 0.288 0.829 0.633 0.746 11.314 0.120 

 Average 0.945 0.045 0.788 0.920 2.412 0.024 0.835 0.957 0.528 13.689 0.182 0.880 0.912 0.665 11.276 0.158 
 Median 1.000 0.000 0.825 1.000 0.000 0.000 0.792 0.754 0.543 9.471 0.186 0.858 0.646 0.663 8.840 0.163 
 Minimum 0.695 0.000 0.289 0.535 0.000 0.000 0.576 0.330 0.176 2.000 0.020 0.694 0.330 0.432 2.000 0.020 
 Maximum 1.000 0.281 1.000 1.000 19.648 0.168 1.000 2.500 0.864 62.712 0.288 1.000 2.500 0.864 43.064 0.262 
 Stand. Dev. 0.088 0.075 0.232 0.130 4.736 0.043 0.142 0.649 0.186 13.038 0.066 0.103 0.654 0.095 9.003 0.054 

 

     Source:  Own elaboration. 
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One wonders if the previously observed similarity in the technical efficiency rankings 

based on the input and directional distance functions extends to their respective 

economic cross-(in)efficiencies. As shown in Table 3, the Spearman rank correlation 

between these results turns out to be rather low:       , , , ; ,x y
v l l v l lFCE X Y NCI X Y G G   

 0.3131, not being statistically significant at the usual levels of confidence. The low 

correlation would be expected, as this simply shows how different rankings can be 

depending on the cross-(in)efficiency models that are compared. In particular whether (i) 

they correspond to a multiplicative or additive definition of economic efficiency, and 

whether (ii) they are based on a partial dimension of the production process and 

corresponding economic objective (e.g., input orientation and cost minimization), versus 

a complete characterization that takes into account both inputs and outputs and a 

maximizing profit behavior. In this case the Farrell and Nerlovian economic cross-

efficiency models differ in both aspects, and therefore a weak correlation could be 

anticipated. 

Table 3. Rank correlations of cross-(in)efficiencies. Spearman coefficients. 

 FCEv (6) NCIv (13) PCEc (19) WADDv (35) HCIv (43) 

FCEv 1.0000     

NCIv 0.3133 1.0000    

PCEc 0.7909* 0.7499* 1.0000   

WADDv 0.6713* 0.6431* 0.8932* 1.0000  

HCIv 0.9170* 0.5004* 0.8853* 0.8101* 1.0000 
 

Notes: Correlations calculated once the (additive) economic cross-inefficiency scores are multiplied by 
-1, so the rankings are based on the same numerical interpretation, i.e., the greater the value, the higher 
the position in the ranking; * p-value < 0.01. 
 

Source: Own elaboration    
 

5.2 New measures of economic cross-(in)efficiency 

Subsequently, in the third column of the first group of results in Table 2, we find the 

generalized distance function,  , ;G
c k kD X Y  in (16), representing the technical part of 

the profitability cross-efficiency model,  , ;c l lPCE X Y  in (19). To obtain these results 

we have chosen    0.5, a value that weights equally inputs and outputs when projecting 

the banks to the production frontier and therefore is neutral. Both the technical and 

economic cross-efficiency scores corresponding to this multiplicative approach are 

significantly lower than those reported for the Farrell cost cross-efficiency model. The 
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reason is that profitability cross-efficiency is measured under the constant returns to 

scale (CRS) characterization of the production technology, while the rest of cross-

efficiencies allow for VRS. Thus, the efficiency scores are smaller in the profitability 

model. This difference can be attributed to scale inefficiencies. For this reason we 

present in the fourth column the directional distance function under variables returns to 

scale,  , ;G
v k kD X Y . This allows calculation of the magnitude of the scale efficiency as 

 , ;G
k kSE X X       , ; / , ;G G

c k k v k kD X X D X X . On average, scale inefficiency is 

0.8565, which means that if banks were to produce at one of the most productive scale 

sizes (Banker et al., 1984), they could yield about 15% more quantity of outputs with a 

similar reduction in the quantity of inputs employed. Also, looking at the subset of 12 

banks that are efficient under VRS, as many as 5 are scale inefficient (#3, #8, #9, #10 

and #19). Moving on to profitability cross-efficiency,  , ;c l lPCE X Y  is reported in the 

third column of the second group of results. Despite the fact that the profit cross-

efficiency takes into account both the input and output dimensions of the production 

process, its ranking of banks correlates positively with that corresponding to the Farrell 

cost definition, showing the compatibility of these two multiplicative measures in the 

current application:      , , , ;v l l c l lFCE X Y PCE X Y   0.7909statistically significant at 

the 1% level. Completing the results for this measure, the ratio of the profitability cross-

efficiency measure to the generalized distance function corresponds to the allocative 

efficiency factor,  


 
 
 


1/

* *

1

, ; , ;

n
n

G
c k k k k

j

AE X Y V U  in (20), presented in the third column of 

the third group of results. Looking at the average of the technical and allocative 

components, the weight of the latter term is relatively larger than the former (as in the 

multiplicative Farrell cost model).   

We now focus on the last two alternative definitions of profit cross-inefficiency based 

on the duality between the profit function and either the weighted additive distance 

function and the Hölder distance functions, respectively. The results corresponding to 

the former,  , ; ,v k k k kWA X Y A B  in (33), are shown in the fifth column of the first group of 

results. Because of its different normalization constraint, its values are significantly larger 

than those observed for thealso additivedirectional distance function 

 


, ; ,x y
v k kD X Y G G , with bank #10 performing rather poorly. The values of the profit cross-

inefficiency corresponding to this model,  , ; ,v l l l lWACI X Y A B  in (35), can be found in 

the fourth column of the second group of results, while its associated allocative 
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inefficiency in the same column of the third group of results, i.e., 

 

 * *

1

1
, ; , ; ,

n
W
V l l k k l l

k

AI X Y V U A B
n

 in (37). 

As for the Hölder distance function,  ,
q

k kD X Y  in (39), underlying the last definition 

of profit cross-inefficiency, we choose as reference the infinitum norm,  see Aparicio 

et al. (2016). This makes this function equal to the directional distance function when the 

directional vector is unit-valued, i.e.,    , 1,1x yG G . For that reason, the results can be 

readily compared to those previously reported for the directional distance function: 

 


, ; ,x y
v k kD X Y G G  with    , ,x y

l lG G X Y . This also extends to the comparison between 

the Hölder and Nerlovian profit cross-inefficiencies. The results for the Hölder distance 

function are reported in the last (rightmost) column of the first group of results, with the 

12 technically efficient banks exhibiting, once again, zero-valued scores. Finally, the 

Hölder cross-inefficiency scores,  ,v l lHCI X Y  in (43), and its corresponding allocative 

inefficiencies,  

 * *

1

1
, ; ,q

n

V l l k k
k

AI X Y V U
n

 in (44), are shown in the last (rightmost) columns 

of the second and third group of results, respectively. As in the Nerlovian profit model, 

the allocative component is the main source of inefficiency.    

The compatibility between rankings resulting from the same economic efficiency 

definition (i.e., profit) are rather high, with the Spearman correlations in the range set by 

     , ; , , ,x y
v l l v l lNCI X Y G G HCI X Y   0.5004 and      , ; , , ,v v l lWA X Y A B HCI X Y   

0.8101both statistically significant as identified in Table 3. Scanning through all 

coefficients, it is the ranking based on the profitability cross-inefficiency the one with the 

higher correlations with either its multiplicative or additive alternatives. This is a relevant 

result since the profitability ranking is based on constant returns to scale while its 

alternatives are created under the assumption of variable returns. This suggests that the 

rankings are not significantly affected by the existence of scale inefficiencies. On the 

other side, it seems that it is the ranking based on the Nerlovian profit cross-inefficiency 

the one that correlates less with any of its alternatives. Also, and rather surprisingly, the 

rankings from the multiplicative, partially oriented, Farrell (cost) cross-efficiency, and the 

additive Hölder (profit) cross-inefficiency are those presenting the highest (and 

significant) correlation:      , , ,v l l v l lFCE X Y HCI X Y   0.9170. The relative values for 

the technical and allocative inefficiencies follow the exact same pattern that in the 

previous Nerlovian and weighted additive models.   
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6. Summary and conclusions 

This study extends the existing definitions of economic cross-(in)efficiency proposed 

by Aparicio and Zofío (2019) by introducing a new set of multiplicative and additive 

measures that can be obtained from the duality relationship between alternative 

representations of economic behavior and their distance function technological 

counterparts. Economic cross-(in)efficiency measures the performance of firms in terms 

of a set of reference prices that could correspond to either market prices, shadow prices 

or any other imputed prices. When market prices are available, it can be shown that for 

homothetic technologies, the process of benchmarking corresponds to the usual 

economic efficiency definitions, e.g., à la Farrell regarding cost efficiency or à la Nerlove 

in the case of profit inefficiency. However, mirroring cross-inefficiency methods, it is 

possible to adapt this framework by considering the complete set of shadow prices that 

are obtained when evaluating the technical efficiency of all firms within the sample. This 

overall economic measure can be interpreted as the capability of firms to behave 

optimally by reaching minimum cost or maximum profit for a wide range of prices. The 

new methodology is particularly relevant in studies where market prices are not readily 

available because of the institutional framework (e.g., public services such as education, 

health, safety, etc.), but yet a robust ranking of observations based on their performance 

is demanded by decision makers and stakeholders.  

The combination of the economic and cross-efficiency literatures solves some of the 

weaknesses of the standard approaches based on DEA for ranking observations, as 

when there is a large set of them that are technically efficient, resulting in ties for the first 

place. Cross-efficiency methods were introduced in part to solve that drawback, yet they 

have been only applied under the assumption of constant returns to scale because of 

the negative scores that may be obtained when the technology is characterized by 

variable returns to scale. The economic cross-(in)efficiency methodology solves this 

problem in a natural way, without proposing ad-hoc methods such as those based on 

data translations (Lim and Zhu, 2015). Also, recent critics raised against cross-efficiency 

methods regarding the (unrealistic) interpretation of the DEA multipliers as sensible 

shadow prices (Førsund, 2018a, 2018b), can now be addressed under the new 

paradigm, since they can be understood as actual realizations of possible market prices.   

To be consistent in the definition of economic cross-(in)efficiency, a duality 

relationship between a supporting economic function and its corresponding distance 

function is required. This allows the decomposition in a subsequent stage of economic 

cross-efficiencies into technical efficiency (the actual value of the distance function) and 
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a residual defined as either the arithmetic or geometric mean of the allocative 

(in)efficiency residuals. Following this scheme, we introduce two new multiplicative 

definitions of economic cross-efficiency. The first one relates the profitability function, 

defined as the ratio of revenue to costs (Georgescu-Roegen, 1951), and the generalized 

distance function (Chavas and Cox, 1999). The second one can be seen as a particular 

case of the former that relates the revenue function and the output distance function 

(Shephard, 1953)just as the Farrell cost cross-efficiency approach. We also present 

two alternative additive definitions of economic cross-inefficiencies based in the duality 

between the profit function and either the weighted additive distance function (Cooper et 

al., 2011), or the Hölder distance function (Briec and Lesourd, 1999). In passing we note 

that these two distance functions are particular cases of the loss function introduced by 

Aparicio et al. (2016), which could be eventually used to develop the most general model 

of economic cross-inefficiency. All these and previous models of economic cross-

efficiency correspond to a cross-sectional evaluation of performance, but they can be 

extended to panel data. In this case the change on cost efficiency over time can be 

combined with our proposed reinterpretation of cross-efficiency methods to yield, thereby 

obtained the counterpart to the so-called cost-Malmquist (Maniadakis and Thanassoulis, 

2004) and profit-Luenberger indicators (Juo et al., 2015). Following the same procedure 

these variations can be decomposed into quantity productivity indices or indicators, and 

a residual capturing the role played by changes in prices (i.e., allocative efficiency 

change) and technological change.          

We show also that the new models can be implemented empirically using DEA 

techniques. For this we rely on a database of financial institutions previously used in the 

cross-efficiency literature. The results show the suitability of adopting the economic 

cross-(in)efficiency approach to rank observations according to their productive 

performance, and its decomposition into its technical and allocative sources. For this 

particular application, we find that results are in general compatible across models 

(particularly for the relative weight of technical and allocative (in)efficiencies), resulting 

in rather high Spearman correlations. This result is also observed for models that are 

quite dissimilar in principle; i.e., those based on a partial orientation such as the Farrell 

cost cross-efficiency and the input distance function, and a complete characterization of 

the production process based on the profit function and the Hölder distance function. 

Nevertheless, the correlation between the former and the Nerlovian economic cross-

efficiency is in turn the lowest across all models. This shows that, as with any efficiency 

and productivity study, the choice of the appropriate reference model is critical when 

assessing performance.    
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We conclude suggesting some paths for further research related to both the 

economic efficiency and the cross-efficiency literature that could be brought to the new 

models of economic cross-efficiency. Regarding the former, it is well known that if 

technologies are non-homothetic, the standard decompositions of economic efficiency 

fail to correctly characterize technical and allocative inefficiency. Within the non-DEA 

approach Aparicio et al. (2015) show that, for non-homothetic technologies, the radial 

contractions (expansions) of the input (output) vectors resulting in efficiency gains do not 

maintain allocative (in)efficiency constant along the firm’s projection to the production 

frontier (isoquants). This implies that they cannot be solely interpreted as technical 

efficiency reductions. From the perspective of, for example, the Farrell cost efficiency 

decomposition in this study, this result invalidates the residual nature of allocative 

efficiency, and justifies the use of flexible distance functions (i.e., directional, weighted 

additive, Hölder, etc.) with a choice of directional vector capable of keeping allocative 

efficiency constant along the projections. As for cross-efficiency, it is well-known that 

there exist alternative optima for the DEA models, which may result in different cross-

efficiency scores. To overcome this situation, weights restrictions could be employed as 

suggested by Ramón et al. (2010). Yet another possibility is the adoption of secondary 

goals such as the so-called benevolent and aggressive approaches proposed by Sexton 

et al. (1986) and Doyle and Green (1994). See also Liang et al. (2008a) and Lim (2012) 

for further refinements. It is also possible to adopt a game cross efficiency approach as 

in Liang et al. (2008b). All these are relevant qualifications and natural extensions that 

would result in the consolidation and improvement of cross-efficiency methods, making 

their diffusion to wider audiences more likely. 
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