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SUMMARY

The human ether-a-go-go-related gene KCNH2
encodes the voltage-gated potassium channel
underlying IKr, a current critical for the repolarization
phase of the cardiac action potential. Mutations in
KCNH2 that cause a reduction of the repolarizing
current can result in cardiac arrhythmias associated
with long-QT syndrome. Here, we investigate the
regulation of KCNH2 and identify multiple active en-
hancers. A transcribed enhancer �85 kbp down-
stream of Kcnh2 physically contacts the promoters
of two Kcnh2 isoforms in a cardiac-specific manner
in vivo. Knockdown of its ncRNA transcript results
in reduced expression of Kcnh2b and two neigh-
boring mRNAs, Nos3 and Abcb8, in vitro. Genomic
deletion of the enhancer, including the ncRNA tran-
scription start site, from the mouse genome causes
a modest downregulation of both Kcnh2a and
Kcnh2b in the ventricles. These findings establish
that the regulation of Kcnh2a and Kcnh2b is gov-
erned by a complex regulatory landscape that
involves multiple partially redundantly acting en-
hancers.

INTRODUCTION

The human ether-a-go-go-related gene (hERG or KCNH2) en-

codes the voltage-gated potassium channel that underlies the

rapidly activating delayed rectifier current IKr (Sanguinetti et al.,

1995; Trudeau et al., 1995). IKr is a major contributor to the repo-

larization phase of the action potential in human cardiomyocytes

(Sanguinetti and Jurkiewicz, 1990). Misregulation of this current

results in slowing of ventricular repolarization and QT prolonga-

tion. When these events occur because of mutations in KCNH2,
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the condition is diagnosed as long-QT syndrome type 2 (LQTS

type 2 or LQT2), a life-threatening heritable arrhythmia that often

leads to polymorphic ventricular tachycardia and, ultimately,

sudden cardiac death (SCD) in young patients (Sanguinetti,

2010). Despite the characterization of KCNH2 and several other

genes as molecular substrate for LQTS, there is a high degree of

unexplained phenotypic variability in the disease, even between

family members carrying the same mutation (Giudicessi and Ac-

kerman, 2013).

Genome-wide association studies revealed common variants

in non-coding genomic regions close toKCNH2 to be associated

with QT interval duration (Arking et al., 2014; Méndez-Giráldez

et al., 2017; Newton-Cheh et al., 2009; Pfeufer et al., 2009), indi-

cating that small perturbations affecting the tight control of

KCNH2 levels can have significant implications for cardiac func-

tion. In the human genome, five different KCNH2 transcripts

have been reported to be transcribed from the KCNH2 locus,

which vary considerably in distribution and expression level

(Guasti et al., 2008; Huffaker et al., 2009; Kupershmidt et al.,

1998; Lees-Miller et al., 1997; London et al., 1997; Trudeau

et al., 1995). At least three of these isoforms—KCNH2A,

KCNH2B, and KCNH2uso—play a functional role in the human

heart. KCNH2A and KCNH2B are highly conserved among spe-

cies. Both transcripts represent different KCNH2 isoforms that

together can form variable heteromeric hERG channels (Larsen

et al., 2008; Sale et al., 2008). Tissue-specific RNA expression

in mice revealed that Kcnh2a is abundantly expressed in murine

heart, brain, lung, and testis, whereas Kcnh2b expression is

more cardiac specific (Lees-Miller et al., 1997; London et al.,

1997). Selective knockdown of Kcnh2b eliminates IKr from adult

ventricular cardiomyocytes and elicits episodes of sinus

bradycardia (Lees-Miller et al., 2003). KCNH2uso does not

form functional hERG channels and is not conserved among

species (Gong et al., 2014).

The high degree of phenotypical heterogeneity in LQTS

patients might be rooted in the complex interplay between mul-

tiple direct and indirect factors involved in the differential
thors.
creativecommons.org/licenses/by-nc-nd/4.0/).
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transcriptional regulation of the separate isoforms that form the

heteromeric hERG channels. Regulation of gene expression is

mediated by cis-regulatory elements (CREs), which physically

contact gene promoters through DNA looping and act together

to stimulate or repress mRNA transcription by influencing pro-

moter activity (Andrey andMundlos, 2017; de Laat and Duboule,

2013). As such, they play an important role in the spatiotemporal

regulation of gene expression. Additionally, there is increasing

evidence that non-coding RNAs (ncRNAs) arise from genomic

locations where CREs are found (e.g., intragenic regions,

UTRs, enhancers) (De Santa et al., 2010; Kim et al., 2010; Mercer

et al., 2009). Depending on their specific subtypes, ncRNAs have

been demonstrated to be involved in, among others, gene regu-

lation, DNA replication, mRNA translation and stability, alterna-

tive splicing, and protein trafficking (Archer et al., 2015; Boon

et al., 2016; Hofmann and Boon, 2014; Kopp and Mendell,

2018; Rothschild and Basu, 2017). Thus, aberrant expression

of ncRNAs can have functional consequences for specific dis-

ease states, which makes ncRNAs interesting targets for novel

therapies.

The potential differential regulation of KCNH2A and KCNH2B

could have important implications for future therapeutic strate-

gies. Therefore, we aimed to investigate the regulatory land-

scape near Kcnh2. We identified and characterized several

candidate CREs and provide evidence that a subset of these

elements is in close physical proximity to the Kcnh2 promoters

specifically in the heart and has regulatory potential both

in vitro and in vivo. We show that a ncRNA transcribed from

one of these CREs is involved in the cardiac expression of

Kcnh2b and two neighboring mRNAs, Nos3 and Abcb8, in

cultured HL-1 cells. CRISPR/Cas9-mediated deletion of this

genomic region from the mouse genome decreased the ventric-

ular expression of bothKcnh2a andKcnh2b in vivo.Wepresent a

map of the regulatory landscape surrounding Kcnh2 and provide

evidence that a downstream regulatory sequence, expressing a

ncRNA, is involved in the regulation of expression of the two

Kcnh2 isoforms.

RESULTS

Identification of Regulatory Elements in the Kcnh2

Locus
The KCNH2 locus harbors multiple common variants associated

with LQTS (Arking et al., 2014). We analyzed publicly available

Hi-C data on lymphoblastoid cells (Rao et al., 2014) and found

that the majority of these variants is located in non-coding re-

gions within a topologically associating domain (TAD) delineated

by binding sites for CTCF, a factor involved in the structural orga-

nization of the genome (Ghirlando and Felsenfeld, 2016; Hol-

werda and de Laat, 2013) (Figure S1). Variants in non-coding

DNA are likely to affect CREs (Maurano et al., 2012). We used

the enhancer prediction tool EMERGE (van Duijvenboden

et al., 2015), integrating publicly available chromatin immunopre-

cipitation sequencing (ChIP-seq) datasets of cardiac transcrip-

tion factors and of proteins associated with active regulatory

sequences and active transcription, to identify CRE candidates

in both the human and mouse locus. On the basis of this predic-

tion, we selected 11 conserved putative cardiac CREs located
within the Kcnh2 locus, the boundaries of which we demarcated

by the location of CTCF binding sites and by the borders of the

TAD (Figures 1A and 1B). To assess their regulatory potential,

we tested the murine candidate CREs by luciferase reporter

assays after transfection in three different cell lines: HepG2, a

hepatocellular carcinoma derived cell line; HEK293T, a human

embryonic kidney cell line; and HL-1, a mouse atrial cardiomyo-

cyte-like cell line. CRE3, CRE9, and CRE11 showed strong

activity in all three cell types, whereas CRE1, CRE4, and

CRE6-CRE10 drove reporter activity in HL-1 cells, albeit to a

lesser extent (Figure 1C). We did not observe a correlation

between activity in HL-1 cells and EMERGE signal strength pre-

dicting cardiac CREs (e.g., compare CRE6 activity and signal).

CREs, as identified by EMERGE (epigenetic data), represent reg-

ulatory elements with different functions, only a subset of which

have the property to enhance expression in transfection assays.

These results indicate that multiple CRE candidates close to

Kcnh2 hold regulatory potential in different cell lines.

To test the regulatory potential of these regions in vivo, all 11

candidates were tested in zebrafish using the ZED vector sys-

tem, which allows simultaneous screening of transgenesis and

RE-driven activity using two fluorescent markers (Bessa et al.,

2009). CRE7, CRE9, and CRE11, active in vitro, showed regula-

tory activity in the zebrafish heart, whereas CRE3 did not display

any cardiac regulatory activity in vivo (Figure 1D). CRE5 and

CRE8 repressed cardiac reporter activity. We measured the

regulatory potential of the conserved human homologs of active

regions CRE1, CRE3, CRE7, CRE9, and CRE11 in HEK293T and

HL-1 cells. Except for CRE9, all tested human CREs drove lucif-

erase activity in both cell lines, indicating conserved regulatory

activity of these regions (Figure 1E). Of all tested CRE candi-

dates, CRE11was shown to hold the strongest regulatory poten-

tial in vitro (both human and murine homologs) and in vivo in

zebrafish, and as such was identified as a promising candidate

to regulate Kcnh2 expression. Analysis of available ChIP-seq

datasets revealed that CRE11 is bound by multiple transcription

factors important for cardiac development, including the T-box

transcription factor Tbx20 (Figure S2A) (Boogerd et al., 2018),

which was shown to control the expression of Kcnh2 in human

cardiomyocytes (Caballero et al., 2017). Furthermore, it is

marked by H3K4me3, a histone modification mark predomi-

nantly associated with active transcription (Heintzman et al.,

2007; Lauberth et al., 2013; Yue et al., 2014). Increased

H3K4me3 on non-coding DNA has been associated with

increased levels of transcription of both the RE and nearby pro-

tein-coding genes (Barski et al., 2007; Clouaire et al., 2012; Pe-

kowska et al., 2011).

Cardiac-Enriched Contact Frequency between CRE11
and the Promoters of Kcnh2 and Nos3

Transcriptional regulation of target genes by CREs requires their

physical proximity (de Laat and Duboule, 2013). To investigate

the physical proximity between the Kcnh2 gene promoters and

putative CREs in the region, we deployed high-resolution chro-

mosome conformation capture sequencing (4C-seq) (van de

Werken et al., 2012). We used murine hepatic tissue as a control

in addition to cardiac tissue to find specific cardiac interactions.

The viewpoints (bait) were set on the Kcnh2 promoter isoform A
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Figure 1. Identification and Functional

Characterization of Regulatory Elements in

the KCNH2 Locus

(A) UCSC Genome Browser view of the human

KCNH2 locus. The EMERGE track depicts

predicted cardiac enhancers on the basis of inte-

grated cardiac-specific datasets. Numbers 1–11

indicate putative cis-regulatory elements (CREs)

within CTCF sites chosen for further testing.

(B) UCSC Genome Browser view of the murine

KCNH2 locus with EMERGE-predicted CREs.

GERP depicts conservation between species.

(C) Regulatory activity of putative murine REs in

HL-1, HEK293T, and HepG2 cells. Luciferase

values of CRE candidates are normalized to

the activity of the empty pGL2-SV40 vector (Ctrl).

*p < 0.05.

(D) Ratio of GFP expression (enhancer activity)

over RFP expression (genomic integration of the

construct) in hearts of zebrafish for each putative

CRE. CRE7, CRE9, and CRE11 activate cardiac

GFP expression, whereas CRE5 and CRE8 seem

to repress basal activity of the ZED vector. Neg1

(reference) and Neg2 represent the empty ZED

vector and a validated neuronal regulator element

Cadps, respectively. Pos1 and Pos2 represent

validated cardiac regulatory elements for Scn5a

and cTnT. *p < 0.05.

(E) Regulatory of human orthologs of in vivo active

CREs in HL-1 and HEK293T cells. Luciferase

values of CRE candidates are normalized to the

activity of the empty pGL2-SV40 vector (Ctrl).

Error bars represent SD. See also Figures S1

and S2A.
(Kcnh2a) and the most promising candidate, CRE11. We

observed a similar interaction profile from both viewpoints and

clear interactions between the viewpoints in both heart and liver

samples (Figure 2; Figure S2C). Kcnh2 is expressed only at low

levels in developing liver (de Castro et al., 2006) and is not ex-

pressed in adult liver (London et al., 1997).

The similar contact profiles and the fixed spatial proximity of

CRE11 with Kcnh2 in both heart and liver tissue therefore sug-

gests that CRE11 is not recruited to the promoter upon initia-

tion of transcription but rather that the Kcnh2 regulatory

domain is organized in a pre-established, permissive organiza-

tion, independent of tissue type (de Laat and Duboule, 2013).

Nevertheless, quantitative analysis of the interactions revealed

an increased interaction frequency between CRE11 and

Kcnh2a in cardiac tissue compared with liver (Figures 2B and

2C). Closer inspection of this contact region shows that it is

broad (±10 kbp) and extends from CRE11 toward CRE10.

Other interactions with the Kcnh2a viewpoint included the re-

gion around CRE9, with a similar distribution of interactions in
2706 Cell Reports 28, 2704–2714, September 3, 2019
heart and liver samples, and with the re-

gion containing CRE5–8, although this

region is too close to the viewpoint to

extract any tissue-specific interactions

(Figures 2A and 2C). From the CRE11

viewpoint we found that the region of
CRE6 to CRE8, which contains the alternative promoter for

Kcnh2 isoform B (Kcnh2b), is more frequently contacted in car-

diac tissue. The contact profile from the CRE11 viewpoint

furthermore suggests that there are multiple sites of interaction

upstream of the Kcnh2a transcription start site, including

particularly strong and cardiac-enriched interactions with the

Kcnh2a and Nos3 promoter. Other interactions were found

near Atg9b, Abcb8, Cdk5, and Agap3 upstream of the view-

point and near Nupl2 downstream of the viewpoint (Figure 2;

Figure S3). These data indicate that the TAD containing

Kcnh2 and CRE11 is approximately 0.3 Mbp in size and

includes 11 genes, among which are several genes that are

functionally active in the adult heart, including Kcnh2, Nos3,

Abcb8, and Asic3 (Cheng et al., 2014; Ichikawa et al., 2012;

Scherrer-Crosbie et al., 2001). Furthermore, these findings

suggest that CRE11, located �85 kbp downstream of the tran-

scription start site of Kcnh2, is an active CRE and in close

spatial proximity to the promoters of both Kcnh2 isoforms

and of Nos3.
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Figure 2. Overview of the Genomic Archi-

tecture of the Kcnh2 Contact Profiles

(A) Normalized contact intensities (gray dots) and

their running median trends (black line) are de-

picted for the viewpoint in Kcnh2 and CRE11.

Medians are computed for 4 kbpwindows, and the

gray band displays the 20th–80th percentiles for

these windows. Below the profile, statistical

enrichment across differently scaled window sizes

(from 2 kbp [top row] to 50 kbp [bottom row]) is

depicted of the observed number of sequenced

ligation products over the expected total coverage

of captured products, with the latter being esti-

mated on the basis of a probabilistic background

model. Local changes in color codes indicate

regions statistically enriched for captured se-

quences, which correspond to the promoter-

enhancer contacts described. The gray 80th

percentile band and color codes in the CRE11

viewpoint tract show contacts with the Kcnh2

promoters and many other regions in the TAD.

From the promoter region of Kcnh2a, the most

prominent interaction is seen with the location of

CRE11.

(B and C) Overlap of heart (red) and liver (blue)

contact profiles for the Kcnh2a promoter (B) and

CRE11 (C) viewpoints reveal contact frequencies

between these two regions are enriched in heart

tissue (gray dashed lines).

See also Figure S2C.
A Bidirectionally Transcribed ncRNA Overlapping
CRE11 Is Abundantly Expressed in Several Tissues in
Mouse
Active CREs are frequently accompanied by transcriptional ac-

tivity at their location, often in a bidirectional manner (Arner

et al., 2015; Kim et al., 2010). Most of these transcripts are

dynamic and unstable (Andersson et al., 2014), but a small sub-

set of CREs produce stable long ncRNAs that may play roles in

the regulation of gene expression (Kim et al., 2010; Larsen

et al., 2008; Li et al., 2013). This prompted us to investigate

whether such transcripts are present at the location of

CRE11. As Kcnh2 is expressed in a variety of tissues, including

the intestine (Farrelly et al., 2003), brain (Huffaker et al., 2009),

and kidney (Carrisoza et al., 2010), we measured expression

levels in multiple adult mouse tissues for Kcnh2 isoforms and

CRE11 transcript. In concordance with previous studies, we

observed that Kcnh2 (combined product of isoform A and B)

expression is highest in brain, specifically cerebellum, and

heart (Figure 3A) (London et al., 1997). For both separate iso-

forms, expression was higher in atria compared with ventricles

(Marionneau et al., 2005), with an overall higher expression on

the right side of the heart compared to the left (Figure 3B) (Luo

et al., 2008).

To determine the transcript levels of CRE11, we used

several strand-specific oligonucleotide sets on both sides of

the CRE (Figure S3). We found that CRE11 ncRNA is polyade-

nylated and transcribed in a bidirectional manner directed

away from the element core. However, transcript levels ex-

hibited a unidirectional preference in the direction away from

Kcnh2 (Figure S3). Transcription of ncRNA emerging from
CREs occurs at CREs that are actively engaged in gene acti-

vation (Kim et al., 2010). Hence CRE tissue specificity is re-

flected by tissue specificity of the ncRNA transcript. Rather

unexpectedly, the transcript levels of CRE11 ncRNA were in

the same range as those of Kcnh2 mRNA (Figure 3C). Again,

we found high transcript levels in cerebellum and cardiac

compartments. High expression of CRE11 was also found in

thymus, kidney, and small intestine, whereas the expression

of both Kcnh2 isoforms in these tissues was low (Figures 3B

and 3C). Overlay of ChIP-seq datasets for p300, Pol2, and

enhancer-associated histone marks in different tissue types

revealed that CRE11 is occupied by these proteins in nearly

every tissue (Figure S2B), providing a possible explanation

for the abundant expression of its ncRNA. Together, these

data reveal that CRE11 ncRNA is strongly transcribed in the

murine heart and other organs and suggest a potential role

in the transcriptional regulation of Kcnh2 or nearby genes,

either by modulating CRE11 enhancer activity or directly influ-

encing transcriptional regulation.

CRE11 ncRNA Is Involved in the Transcription of Nos3,
Abcb8, and Kcnh2b in HL-1 Cell Culture
To test whether theCRE11 transcript is involved in the regulation

of expression of Kcnh2 or other genes within the TAD, we used

antisense oligonucleotides (LNA GapmeRs) to selectively

degrade CRE11 ncRNA in HL-1 cells (Claycomb et al., 1998),

which expresses both Kcnh2a and Kcnh2b and the CRE11-

derived transcript. Two independent GapmeRs induced an

incomplete but reproducible �50% knockdown of CRE11

ncRNA at a concentration of 50 nM compared with a scrambled
Cell Reports 28, 2704–2714, September 3, 2019 2707
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Figure 3. Expression Analysis of Kcnh2 Isoforms and CRE11 in

Murine Adult Tissue Panels
(A) Expression analysis of combined Kcnh2 isoforms shows that Kcnh2 is

predominantly expressed in brain and heart.

(B) Separated expression analysis of Kcnh2a and Kcnh2b reveals that Kcnh2b

is expressed mainly in cardiac tissue and cerebellum, whereas Kcnh2a is

present at lower levels in multiple tissues.

(C) CRE11 is expressed in multiple different tissue types. The level of

expression of CRE11 in brain and cardiac compartments corresponds to the

expression of Kcnh2, but CRE11 is strongly expressed in intestine and kidney,

whereas expression of Kcnh2 in those tissues is low. Expression levels are

normalized to housekeeping gene Eef2 (Kouadjo et al., 2007).

Error bars represent SD. Cer, cerebellum; Int., intestine; L.A., left atrium; L.V.,

left ventricle; R.A., right atrium; R.V., right ventricle; Sk.M., skeletal muscle.
control GapmeR (Figure 4A). The expression of CRE10 ncRNA,

transcribed from CRE10 and expressed 100- to 1,000-fold lower

compared with Kcnh2, was decreased upon knockdown of

CRE11, suggesting that CRE10 and CRE11 function may be

coupled or interdependent (Figure 4B). Next, we assessed the

effect of knockdown of CRE11 on all 22 mRNA transcripts within

the TAD. Although multiple genes within the TAD physically

interact with CRE11, the effect was almost exclusively limited

to the genes that displayed a cardiac-enriched interaction with

CRE11. We found a significant reduction of the cardiac-enriched

isoformKcnh2b, whereas the expression of themore broadly ex-

pressed isoform Kcnh2a was not affected (Figure 4C). Expres-

sion of the neighboring genes Nos3 and Abcb8 was also down-

regulated (Figure 4C), whereas the expression of the other genes

within the TAD was unaffected (Figure S4). Heterologously

expressed Kcnh2a and Kcnh2b in HEK293T cells, which do

not express either isoform endogenously, were not affected

upon transfection of both GapmeRs (Figures S4A and S4B), indi-

cating absence of off-target effects on transcripts of both iso-

forms as a cause for the observed knockdown. These results

suggest that CRE11 ncRNA could be involved in the expression

of Kcnh2b, Nos3, and Abcb8, either by directly controlling their

expression or by modulating enhancer function of CRE11.
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CRISPR/Cas9-MediatedDeletion of CRE11 in theMouse
Genome Results in Modest Reduction of Kcnh2
Expression in the Ventricles
To examine the potential role of CRE11 on Kcnh2 expression

in vivo, we used CRISPR/Cas9-mediated genome editing to

delete the 795 bp CRE11 region (DCRE11; Figure 5A; Figure S3).

Although targeted homozygous mutations affecting Kcnh2

causes embryonic lethality with developmental cardiac defects,

including affected cardiac looping and outflow tract and bran-

chial arch morphogenesis (Teng et al., 2008), CRE11�/� mice

are viable and born according to Mendelian ratios. Analysis of

embryonic morphology in wild-type versus homozygous mice

did not reveal any affected (cardiac) morphology (data not

shown).

Next, we micro-dissected atria, ventricles, and other tissues

expressing Kcnh2 or CRE11 (brain, intestine, kidney, and liver;

Figure 5B; Carrisoza et al., 2010; Farrelly et al., 2003; Huffaker

et al., 2009) from CRE11+/+ and CRE11�/� E17.5 fetuses and

measured expression levels of Kcnh2a, Kcnh2b, and CRE11

by qPCR. The expression of Kcnh2awas significantly decreased

in CRE11�/� fetal ventricles, but not in the atria, compared with

wild-type littermates (p = 0.047; n = 11 and n = 10, respectively;

Figure 5C). Similarly, the expression of Kcnh2b was significantly

decreased in fetal ventricles (p = 0.010; Figure 5C). Expression of

Kcnh2a and Kcnh2b in other tissues was not significantly

changed in CRE11�/� fetuses (Figure 5C). As GapmeR-medi-

ated knockdown of CRE11 ncRNA results in knockdown of not

only Kcnh2b but also Nos3 and Abcb8 in HL-1 cell culture, and

because both ncRNA transcripts and CREs can exert their func-

tion on distal genomic regions, we assessed expression levels

for all genes within the TAD in fetal CRE11+/+ and CRE11�/� ven-

tricles. Deletion of CRE11 did not affect the expression of any of

these genes, including Nos3 and Abcb8 (Figure 5D). We per-

formed chromosome conformation capture (3C) in adult

CRE11+/+ and CRE11�/� hearts using the Kcnh2a or Kcnh2b

promoter as viewpoint. The results suggest that genomic dele-

tion of CRE11 does not affect the overall topology of the

Kcnh2 locus (Figure S5). Combined, these results show that

CRE11 is exclusively involved in but not solely responsible for

the cardiac expression of Kcnh2 in vivo.

DISCUSSION

The potassium channel encoding gene KCNH2 is an important

regulator of repolarization in the human heart, yet little is known

about its transcriptional regulation. Several genome-wide asso-

ciation studies have implicated non-coding variants in the

KCNH2 locus in humans with QT interval duration (Arking

et al., 2014; Méndez-Giráldez et al., 2017; Newton-Cheh et al.,

2009; Pfeufer et al., 2009), suggesting that perturbations in

non-coding regulatory sequences driving its expression can

affect KCNH2 regulation and function. In this study, we aimed

to elucidate the regulatory mechanisms underlying Kcnh2

expression. We identified an active regulatory element (CRE11)

that is in close physical proximity to Kcnh2 in the heart, drives

transgene expression in transient transfection assays and

zebrafish heart, and produces a ncRNA that is involved in the

expression of Kcnh2b but not Kcnh2a in HL-1 cells. Deletion of



A B C Figure 4. Functional Knockdown of CRE11

in HL-1 Cells Results in Reduced Expres-

sion of CRE10, Kcnh2b, Nos3, and Abcb8

(A) qPCR analysis of CRE11 after knockdown with

two independent GapmeRs shows a consistent

50% reduction in ncRNA expression.

(B) Knockdown of CRE11 causes reduced

expression level of the ncRNA transcript derived

from the neighboring CRE10 region.

(C) A significant reduction in expression is

observed for Kcnh2b, Nos3, and Abcb8 upon

CRE11 knockdown with two separate GapmeRs.

Data are normalized to the scrambled GapmeR

control.

Error bars represent SD. *p < 0.05. See also Fig-

ures S2B, S3, and S4.
endogenous CRE11 causes only a slight but significant reduc-

tion of expression levels in vivo of both Kcnh2 isoforms in fetal

ventricles and does not affect atrial expression. Recently, multi-

ple studies have demonstrated that regulatory sequences

capable of driving gene expression often act in a redundant

manner and that genomic deletion of individual enhancer regions

does not necessarily recapitulate the phenotype that is observed

in full knockouts of the target gene (Cunningham et al., 2018; Os-

terwalder et al., 2018; Sarro et al., 2018). The small decrease in

gene expression we observe in CRE11�/� hearts therefore sug-

gests that other REs within the TAD besides CRE11 are involved

in the regulation of Kcnh2 expression. Genomic deletion of

CRE11 did not, however, result in increased contact between

either promoter with the various tested regions within the locus,

including several putative CREs. This suggests that novel or

increased contacts do not appear upon deletion of CRE11 or,

alternatively, that deletion of CRE11 does not rewire the three

dimensional topology of the Kcnh2 locus. Nevertheless, our 3C

results do not exclude the possibility that other regions increase

or decrease their contact frequency with Kcnh2a or Kcnh2b

upon deletion of CRE11. Our in vitro analysis indicates that

among others CRE7 and CRE9 hold regulatory potential and

physically contact Kcnh2, setting the stage for a potential regu-

latory function individually or in synergy with CRE11 and thereby

providing robustness to the regulatory complex in conditions of

impaired RE function.

Selective but incomplete knockdown ofCRE11 ncRNA inHL-1

cells resulted in a significant downregulation of Kcnh2b but not

of the more broadly expressed Kcnh2a, suggestive of a car-

diac-specific function of both CRE11 and Kcnh2b. Accordingly,

a recent study showed that deletion of NKX2-5, encoding a tran-

scription factor crucial for cardiac development, results in

impaired cardiomyogenesis and knockdown of Kcnh2b but not

of Kcnh2a in human embryonic stem cells (Anderson et al.,

2018).Kcnh2b encodesMerg1b, themurine equivalent of the hu-

man hERG1b. In both human and mouse, it co-assembles with

the 1a subunit to form heteromeric K+-selective channels with

properties similar to the rapidly activating component of the de-

layed rectifier K+ current (IKr) (Holzem et al., 2016; Jones et al.,

2004; Larsen et al., 2008; London et al., 1997). hERG1a has

long been regarded as the critical component of cardiac repolar-
ization, whereas the contribution of hERG1b in the human heart

has been disputed (Larsen et al., 2008; Pond and Nerbonne,

2001). However, repolarization of the cardiac action potential

has been demonstrated to be mediated by heteromeric hERG

channels, rather than homomeric channels. Knockdown of the

1b subunit in induced pluripotent stem cell-derived cardiomyo-

cytes (iPSC-CMs) resulted in reduced KCNH2B expression

and peak-tail IKr density (Jones et al., 2014), and clinically iden-

tified mutations in hERG1b lead to LQTS type 2 (Crotti et al.,

2013; Sale et al., 2008). When placed in the perspective of our

present study, this entails that a specific downregulation of

only Kcnh2b by loss of CRE11 can lead to affected expression

and function of KCNH2. Furthermore, our results show that

knockdown of CRE11 in HL-1 cells does not solely affect the

expression of Kcnh2b but also reduces the expression of Nos3

and Abcb8, two genes upstream of Kcnh2 within the same

TAD. Both NOS3 and ABCB8 have been associated with heart

failure (HF), and their expression is downregulated in hearts of

patients with end-stage HF (Ichikawa et al., 2012; Piech et al.,

2002). Nos3�/� mice show extensive ventricular remodeling,

hypertrophy, and contractile dysfunction after myocardial

infarction (Scherrer-Crosbie et al., 2001), whereas targeted

knockdown of Abcb8 in mice results in mitochondrial iron accu-

mulation, increased cell death, and cardiomyopathy (Ichikawa

et al., 2012). The closely related function of KCNH2B, NOS3,

and ABCB8 in cardiac function and their response to CRE11

knockdown in cell culture suggests a regulatory network inwhich

CRE11 ncRNA coordinates the expression ofKcnh2b,Nos3, and

Abcb8 in vivo. The unaffected expression of Nos3 and Abcb8

and the minor decrease in expression of Kcnh2b upon deletion

of endogenous CRE11 in vivo, however, reveals a discrepancy

between CRE11 transcript knockdown and deletion of the

underlying endogenous CRE11 sequence. This suggests a

mechanism whereby CRE11 ncRNA regulates cardiac-specific

expression of only the Kcnh2b isoform (and Nos3 and Abcb8),

whereas the underlying genomic element CRE11 is involved in

more general cardiac expression of both Kcnh2a and Kcnh2b

but not of Nos3 and Abcb8. CRE11 ncRNA could function by

maintaining CRE11 function and stability, as shown for other

enhancer RNAs (Kopp and Mendell, 2018; Rothschild and

Basu, 2017). Its knockdown then possibly causes misregulation
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20kbp Figure 5. Genomic Deletion of CRE11 by

CRISPR/Cas9-Mediated Genome Editing

Affects Fetal Ventricular Kcnh2 Expression

(A) Schematic overview of the murine Kcnh2

locus with the location of Kcnh2a, Kcnh2b, and

the deleted CRE11 site.

(B) Expression levels of Kcnh2a, Kcnh2b, and

CRE11 in wild-type fetal (E17.5) tissues.

(C) Expression levels of Kcnh2a, Kcnh2b, and

CRE11 in CRE11+/+ and CRE11�/� fetal tissues.

Values are depicted as normalized expression of

mutant versus wild-type expression levels.

(D) Expression of Kcnh2b in genes within the

Kcnh2 TAD in CRE11�/� fetal ventricles. Values

are depicted as normalized expression of mutant

versus wild-type expression levels. Expression

levels are normalized to Eef2. CRE11+/+ (wild-

type), n = 11; CRE11�/� (mutant), n = 10.

Error bars represent SD. *p < 0.05 and ***p < 0.01.

See also Figures S4 and S5.
of CRE11 and, consequently, of Kcnh2b, Nos3, or Abcb8.

Although speculative, the discrepancy between a potential role

of CRE11 ncRNA in Nos3 and Abcb8 expression and the

unaffected expression of Nos3 and Abcb8 upon deletion of

endogenous CRE11 might be caused by compensatory mecha-

nisms, possibly through the activity of additional regulatory

sequences, that buffer the loss of CRE11 and its associated

ncRNA throughout development. As we limited our investiga-

tions of the effects of CRE11 to genes within 1 Mb of its location

of origin on the basis of the TAD, our results do not exclude the

possibility of a trans-acting role of the CRE11 ncRNA on the

expression of more distantly located genes. Analysis of the ef-

fects of CRE11 ncRNA on a genome-wide scale by RNA

sequencing of cardiac tissue of CRE11�/� mice could elucidate

the full potential of this CRE or its derived ncRNA.

Previous work showed that knockdown of Kcnh2b but not

Kcnh2a in mice eliminates IKr from both fetal and adult ventricular

cardiomyocytes and results in episodic sinus bradycardia but

not QT prolongation (Lees-Miller et al., 2003). Knockout of all

Kcnh2 isoforms leads to embryonic lethality and a failure of the

heart and brain to develop normally (London et al., 1997; Teng

et al., 2008). In the present study, wemeasured expression levels

in fetal atrial and ventricular cells from Kcnh2-CRE11+/+ and

Kcnh2-CRE11�/� mice to assess the role of CRE11 in vivo. As

deletion of CRE11 only lead to a small decrease of Kcnh2

expression in fetal ventricles, we did not expect significant
2710 Cell Reports 28, 2704–2714, September 3, 2019
or measurable functional effects on

mERG1 channel expression or function,

and as such we did not evaluate electro-

physiological parameters. Furthermore,

although KCNH2 is a major contributor

to the IKr current responsible for myocar-

dial repolarization in the human heart,

repolarization in murine cardiomyocytes

is much faster and mediated by other

currents (Brouillette et al., 2004; Guo

et al., 1999; Xu et al., 1999), and the
role of IKr is negligible (Xu et al., 1999). With this study, we there-

fore predominantly aimed to understand themechanisms under-

lying the transcriptional regulation of Kcnh2 and its isoforms

rather than to elucidate the functional effects of disrupted regu-

lation on ion channel function in vivo. Nevertheless, our results

do not exclude the possibility that expression or function of

Kcnh2 or other genes within the TAD might be affected in other

tissues or conditions.

Common single-nucleotide polymorphisms (SNPs) affecting

QT interval duration have been identified within theKCNH2 locus

by genome-wide association study (GWAS) (Arking et al., 2014;

Newton-Cheh et al., 2009; Pfeufer et al., 2009), functionally

implicating non-coding DNA surrounding KCNH2 with cardiac

repolarization. Altered transcription factor binding through com-

mon variants has been linked to affected regulation of several

cardiac genes (Beaudoin et al., 2015; Kapoor et al., 2014; Re-

schen et al., 2015; Smemo et al., 2012), including LQTS genes

SCN5A (van den Boogaard et al., 2014) and KCNQ1 (Amin

et al., 2012). Except for a variant within CRE10 (rs9640171; Ark-

ing et al., 2014), LQTS variants identified through GWAS (Arking

et al., 2014; Newton-Cheh et al., 2009; Pfeufer et al., 2009),

including variants in linkage disequilibrium, do not overlap

putative CREs in the KCNH2 locus (Figure S1). Although

CRE10 transcript is decreased upon CRE11 knockdown in

HL-1 cells and therefore possibly involved in Kcnh2 regulation,

we did not observe any regulatory activity of CRE10 in vitro in



multiple cell lines or in vivo in transgenic zebrafish reporter as-

says and therefore did not pursue potential effects on gene

expression caused by this variant. GWAS associations can arise

frommultiple variants within a locus that together, but not neces-

sarily individually, implicate loci to traits (Cannon and Mohlke,

2018; Chatterjee et al., 2016). The variant within CRE10 or other

variants within the locus could thus still affect the regulatory

network driving Kcnh2 expression in vivo in manners that are un-

detectable by the experimental procedures as used in this study.

In contrast to common variation identified through GWAS, rare

variants overlapping CREs could theoretically still be identified

through disease-specific studies, but these are difficult for rela-

tively uncommon diseases such as LQTS. The likelihood of rare

non-coding variants contributing to a common cause for LQTS is

small, but examples have been published in other fields of

research (Duan et al., 2014; Lee et al., 2014). Combined, our

results increase our knowledge of the mechanisms underlying

the complex regulation of KCNH2, which provides important

information in the prediction of LQTS susceptibility and progres-

sion in patients.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

DpnII NEB R0543M

Csp6I ThermoFisher Scientific ER0211

BsaI NEB R3535S

HindIII NEB R3104S

EcoRI NEB R3101L

T4 DNA Ligase ThermoFisher Scientific 15224090

FBS ThermoFisher Scientific 10270-106

Critical Commercial Assays

TRIzol Reagent Invitrogen 10296-010

Reliaprep RNA Tissue Miniprep System Promega Cat# Z6112

Superscript II system ThermoFisher Scientific Cat# 18064-071

Deposited Data

Raw and analyzed data This paper GEO: GSE134725

Experimental Models: Cell Lines

Mouse: HL-1 Claycomb et al., 1998 RRID:CVCL_0303

Human: HEK293T (female) ATCC Cat.#CRL-3216; RRID:CVCL_0063

Human: HepG2 ATCC Cat.#HB-8065; RRID:CVCL_0027

Experimental Models: Organisms/Strains

Mouse: FVB/NHanHsd Envigo (Harlan) N/A

Mouse: Kcnh2 CRE11�/� Amsterdam UMC, AMC GM1619

Zebrafish: Strain, strain background (D. rerio), Tupfel long fin (TL) ZIRC,Eugene or

ZDB-GENO-990623–2

N/A

Oligonucleotides

4C_Kcnh2_Prom_D-C_AdultHrt_Fw: AATGATACGGCGACCACC

GAACACTCTTTCCCTACACGACGCTCTTCCGATCTGAGAGGT

TTCTTCCTTTGGATC

Eurofins MWG Operon N/A

4C_Kcnh2_Prom_D-C_AdultHrt_Rv: CAAGCAGAAGACGGCAT

ACGAAAGCTCTCCTCAAGGCATTT

Eurofins MWG Operon N/A

4C_Kcnh2_Prom_D-C_AdultLvr_Fw: AATGATACGGCGACCAC

CGAACACTCTTTCCCTACACGACGCTCTTCCGATCTCTGAG

GTTTCTTCCTTTGGATC

Eurofins MWG Operon N/A

4C_Kcnh2_Prom_D-C_AdultLvr_Rv: CAAGCAGAAGACGGCA

TACGAAAGCTCTCCTCAAGGCATTT

Eurofins MWG Operon N/A

4C_Kcnh2_CRE11_D-C_AdultHrt_Fw: AATGATACGGCGACC

ACCGAACACTCTTTCCCTACACGACGCTCTTCCGATCTCTC

TCTTCTAGCATGGCAGATC

Eurofins MWG Operon N/A

4C_Kcnh2_CRE11_D-C_AdultHrt_Rv: CAAGCAGAAGACGGC

ATACGAGCTCCATGTGGGTAGGAATT

Eurofins MWG Operon N/A

4C_Kcnh2_CRE11_D-C_AdultLvr_Fw: AATGATACGGCGACC

ACCGAACACTCTTTCCCTACACGACGCTCTTCCGATCTCTC

TCTTCTAGCATGGCAGATC

Eurofins MWG Operon N/A

4C_Kcnh2_CRE11_D-C_AdultLvr_Rv: CAAGCAGAAGACGGC

ATACGAGCTCCATGTGGGTAGGAATT

Eurofins MWG Operon N/A

Primers for Kcnh2/CRE qPCR, TAD gene qPCR, ncRNA

antisense oligonucleotides, and GapmeR and CRISPR

sequences, are listed in Tables S2, S3, S4

N/A N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Recombinant DNA

ZED vector Bessa et al., 2009 N/A

pcDNA3.1(+) vector Thermo Fisher Scientific V79020

phRG-TK Renilla vector Promega Cat#E2231

pCS2FA-transposase Kwan et al., 2007 N/A

Software and Algorithms

LNA longRNA GapmeR design tool Exiqon N/A

ZiFit tool Sander et al., 2010 N/A

Emerge van Duijvenboden et al., 2015 https://www.medischebiologie.nl/files/

Occupeak de Boer et al., 2014 https://www.medischebiologie.nl/files/

LinRegPCR Ruijter et al., 2009 https://www.medischebiologie.nl/files/
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Vincent

Christoffels (v.m.christoffels@amsterdamumc.nl).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Lines and Culture Conditions
All cell lines were maintained in a 37�C incubator with 5% CO2. HL-1 (adult female atrial) cells were cultured in Claycomb medium

supplemented with 10%chemically defined HL-1 FBS substitute (Lonza, 77227), 1%Glutamax (ThermoFisher Scientific, 35050-061)

and 1% Pen/Strep (ThermoFisher Scientific, 15070-063). HEK293T (human, embryonic kidney, sex unknown) and HEPG2 (human,

adolescent male liver epithelial) cells were cultured in DMEM (ThermoFisher Scientific, 31966-021) supplemented with 10% FBS

(ThermoFisher Scientific, 10270-106) and 1% Pen/Strep (ThermoFisher Scientific, 15070-063).

Animals and In Vivo Procedures
Animals were maintained in accordance with the Guide for the Care and Use of Laboratory Animals published by the US National

Institutes of Health (NIH Publication No. 85-23, revised 1996). All animal work was approved by the Animal Experimental Committee

of the Academic Medical Center, Amsterdam, and carried out in compliance with the Dutch government guidelines. Fertilized FVB

mouse oocytes were co-injected with Cas9 mRNA and sgRNA in a concentration of 25ng/ml Cas9 mRNA and 10ng/ml per sgRNA.

Deletions were validated by PCR and Sanger sequencing. Founders were backcrossed with wild-type FVB mice to obtain stable

lines. Downstream experiments were performed on F2 mice (both male and female), backcrossed twice with wild-type FVB mice.

To obtain a murine RNA panel, total RNA was isolated from various tissues of wild-type adult mice (FVB/NHanHsd, Envigo (Harlan),

both male and female), and RNA from embryonic tissues was isolated from CRE11�/� and wild-type littermate E17.5 fetuses (both

male and female).

Study Approval
The investigation conforms to the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health

(NIH Publication No. 85-23, revised 1996). All animal work was approved by the Animal Experimental Committee of the Academic

Medical Center, Amsterdam, and carried out in compliance with the Dutch government guidelines.

METHOD DETAILS

Identification of putative REs
Publicly available ChIP-seq datasets on cardiac transcription factors (TBX3, TBX5, TBX20, HEY2, MEF2, SRF), proteins associated

with active regulatory elements (H3K4me1, H3K27ac, p300, DNaseI hypersensitivity marks (DHSs)(ENCODE Project Consortium,

2012; modENCODE Consortium et al., 2010; Stamatoyannopoulos et al., 2012), and active transcription (RNA polymerase 2,

H3K4me3, H3K9ac, H3K36me3) were processed as described by the OccuPeak (de Boer et al., 2014) and EMERGE (van Duijven-

boden et al., 2015) pipeline. In order to capture the maximum number of putative REs, we used a training dataset of validated heart

and brain REs (true positive; TP) against random genomic DNA regions of 1 kbp (true negative, TN) to automatically assign weights to

each dataset. After this, the datasets were merged and the RE predictions were exported to UCSC genome browser in a bedgraph
e2 Cell Reports 28, 2704–2714.e1–e5, September 3, 2019
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format. A detailed description of the EMERGE pipeline is available in the original publication (van Duijvenboden et al., 2015). 11 pu-

tative regions were selected to test for regulatory potential by luciferase assays and in vivo zebrafish assays as described below.

Cloning, Transfection and Luciferase assays
Reporter constructs were generated by ligating putative CREs (Table S1) to pGL2basic+minimal promoter (control reporter).

HEK293T and were grown in 12-well plates in DMEM (ThermoFischer; 31966) supplemented with 10% FCS (GIBCOBRL) and 1%

penicillin-streptomycin (ThermoFischer; 15070063). Transfection was performed polyethylenimine 25 kDa (PEI, Brunschwick) at a

1:3 ratio (DNA:PEI). HL-1 cells were grown in 12-well plates in Claycomb medium (Sigma-Aldrich; 51800C) supplemented with

1% FBS (GIBCOBRL), 1% Glutamax, 1% norepinephrine and 1% penicillin-streptomycin (ThermoFischer; 15070063). Transfection

was performed using Lipofectamine 3000 (ThermoFischer; L3000015), according tomanufacturer’s protocol. Standard transfections

used 1.4 mg of reporter (or control reporter) vector co-transfected with 3 ng phRG-TK Renilla vector (Promega) as normalization con-

trol. Transfections were carried out at least three times and measured in duplo. Luciferase measurements were performed using a

Promega Turner Biosystems Modulus Multimode Reader luminometer. All data was statistically validated using an ANOVA two-way

test.

In vivo zebrafish assay
All 11 CRE sequences were amplified by PhusionTAQ PCR (New England Biolabs, Ipswich, MA, USA) and cloned into the ZED vector

(Bessa et al., 2009) by Gateway technology (Life Technologies BV, Bleiswijk, the Netherlands). The 11 ZED-CRE constructs were

injected in WT zebrafish embryos at 1-cell stage at a final concentration of 15 ng/ml in presence of 25 ng/ml TOL2 transposase

RNA. Embryos were kept at 28.5�C in E3 medium and scored for heart-specific RFP and subsequently heart-specific GFP fluores-

cence at 48 hpf on a Leica MZFLIII fluorescence stereomicroscope (Leica Microsystems GmbH, Wetzlar, Germany) set up with

appropriate fluorescence filters. In vivo imaging of the embryos at 48 hpf was carried out on a Zeiss Axioskop 2Mot plus fluorescence

microscope (Carl Zeiss Micro Imaging GmbH, Jena, Germany) mounted with a Leica DFC490 CCD camera (Leica Microsystems)

using appropriate fluorescence filters. Zebrafish hearts for each RE were scored for their expression of GFP, and percentages of

GFP+ hearts versus GFP- hearts were calculated.

Preparation of 4C-template
4C templates were prepared as previously described (Simonis et al., 2009; van de Werken et al., 2012). In short, adult mouse hearts

were isolated in ice cold PBS. Single cell suspensions were obtained by dissociation of tissuewith IKAUltra Turrax T5 FU, followed by

dounce homogenization. Chromatin was cross-linked with 2% formaldehyde in PBS with 10% FCS for 10 min at room temperature,

nuclei were isolated and cross-linked DNA was digested with a primary restriction enzyme recognizing a 4 bp restriction site (DpnII),

followed by proximity ligation. Cross-links were removed and a secondary restriction enzyme digestion (Csp6I), followed again by

proximity ligation. For all experiments, 200 ng of the resulting 4C template was used for the subsequent PCR reaction, of which

16 (total: 3.2 mg of 4C template) were pooled and purified for next-generation sequencing. The PCR products were purified using

two columns per sample of the High Pure PCR Product Purification Kit (Roche cat. no. 11732676001). The kit separates the PCR

products that are larger than 120 bp from the adaptor-containing primers (which are�75 nucleotides (nt) and�40 nt in size, respec-

tively). Similar results were obtained with products from a single PCR reaction (200-ng template).

4C-seq primer design
PCR primers were designed based on the following criteria. The size of the viewpoint fragment was at least 500bp to allow efficient

cross-linking to other DNA fragments. The fragment end (the region between the primary and secondary restriction enzyme) was

more than 350 bp to allow efficient circularization during the second ligation step. Primers were designed to be maximally 20 nucle-

otides in length. The strategy therefore produces sequencing reads (36-mers in this study) composed of the 4C primer sequence

(20 nucleotides, specific to a given viewpoint) followed by 16 nucleotides that identify a captured sequence. The reading primer al-

ways hybridizes to, and ends at, the 30 side of the first restriction recognition site. This design ensures analysis of only primary ligation

events and provides sufficient sequence information to unambiguously identify most captured sequences. The nonreading primers,

with sizes of 18-20 nucleotides, were designed at a distance of % 100 bp from the secondary restriction site. All primers had a

GC-content between 35%–65% and an optimal basic temperature of 55�C, ranging from 45-65�C. Primers were checked against

themouse genome with MegaBLAST23 (settings -p 88.88 -W 12 -e 1 -F T), which requires primers on the reading side to bematched

uniquely in the genome and primers on the nonreading side to have a maximum of three perfectly matching BLAST high-scoring

segment pairs (HSP).

4C data analysis and statistics
4C templates were mixed and sequenced simultaneously in one Illumina HiSeq 2000 lane. The sequence tags generated by the

procedure are prefixed by the 4C reading primer that includes the DpnII restriction site sequence (described in 4C primer design

section). The 4C reading primer sequences are separated frommultiplexed 4C-seq libraries and the suffixes are extracted for further

processing. Mapping and filtering of the sequence reads was done as previously described (van de Werken et al., 2012). The

algorithm constructs a background model for remote intra- and interchromosomal contacts to correct for systematic biases that
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can occur during the 4C-seq experimental protocol. The algorithm is designed to use controls for sequencing errors and non-unique

sequences while considering the high coverage (100x-100,000x) of fragment ends that are proximal to the viewpoint fragment. To

normalize the interactions in close proximity to the viewpoint the algorithm was used to calculate the median of normalized coverage

for running windows of size 4 kbp (depicted as black line) and sliding windows of 2-50 kbp of linearly increasing size (depicted as

color-coded multiscale diagrams). All median values represent enrichment relative to the maximum attainable 4 kbp median value,

whereas slidingwindows represent enrichment relative to themaximumattainable 12 kbpmedian value. The 20th and 80th percentiles

are also computed and depicted as the gray area around the 4 kbp running windows.

Quantitative expression analysis
To obtain a murine RNA panel, total RNA was isolated from various tissues of wild-type adult mice (FVB/NHanHsd, Envigo (Harlan))

using the TRIzol kit according to manufacturer’s protocol (Invitrogen). Fetal atria, ventricles, brain, intestine, kidneys and livers of

CRE11�/�, and wild-type littermate E17.5 fetuses were isolated by microdissection, and total RNA was isolated using the Reliaprep

RNA TissueMiniprep System (Promega; Z6112). Subsequently, 1000ng total RNAwas used for cDNA synthesis by reverse transcrip-

tion using the Superscript II system (ThermoFisher Scientific; 18064-071). From the murine RNA panels, cDNA synthesis was

performed using random hexamers. cDNA from fetal tissues was synthesized using oligo-dT oligonucleotides. Expression of genes

and regulatory elements was assayed with quantitative real-time PCR using the Roche LightCycler 480 system. Primer sequences

are listed in Table S2. Relative start concentration (N(0)) was calculated as previously described (Ruijter et al., 2009). Values were

normalized to Eef2 expression levels (Kouadjo et al., 2007)

Knockdown experiments using LNATM GapmeRs
LNATM GapmeRs against CRE11 transcript were designed by Exiqon using the LNA longRNA GapmeR design tool. Sequences are

available in Table S3. HL-1 cells were cultured in 6-wells plates using Claycomb medium supplemented with 10% FCS (GIBCOBRL)

and glutamine according to standard protocol. Upon transfection, HL-1 cells were maintained in antibiotics-free culture medium.

GapmeRs were transfected using increasing concentrations of 1, 5, 25 and 50 mM. Four to 6 hours after transfection the culture

mediumwas changed to culture mediumwith antibiotics. Cells were lysed 24 hours after transfection. RNA isolation and quantitative

PCR were performed according to protocol described above. All experiments were performed in duplicate and repeated at least

twice. To assess potential off-target effects, coding sequences ofmurineKcnh2a andKcnh2bwere amplified from fetal heart-derived

cDNA (described above). Primer sequences used for the amplification of cDNA are listed in Table S2. PCR products were cloned in

between HindIII and EcoRI restriction sites of the pcDNA3.1(+) vector. Transfection of HEK293T cells with pcDNA-Kcnh2a and

pcDNA-Kcnh2b expression vectors was performed as described above under Cloning, Transfection and Luciferase assays.

Generation of mutant mice
CRISPR target sites and oligonucleotides to generate single-guide RNAs (sgRNAs) flanking CRE11were designed using the ZiFit tool

(Sander et al., 2010). Target site and oligonucleotide sequences can be found in Table S4. sgRNA production was performed accord-

ing to Cong et al. (Cong et al., 2013). CRISPR oligonucleotides were annealed for 5min at 95�C, and ligated in BsaI-digested pDR274

vector at room temperature for 2-3 hours using T4 DNA Ligase (Invitrogen). Ligation products were transformed on LB plates with

Kanamycin. Colonies were checked by restriction analysis and sequencing for the uptake of the ligated product, and DNA from pos-

itive colonies was extracted by midiprep (Jetstar Kit; 200050). 3mg of the pDR274 expression vector was linearized with DraI for 4

hours at 37�C, and 3mg of the Cas9 expression vector was linearized with PmeI for 4 hours at 37�C. Linearized DNA was purified

by phenol/chloroform extraction. sgRNA from DraI-digested sgRNA expression vector was transcribed using the MEGAshortscript

T7 kit (Life Technologies; AM1354), and Cas9 mRNA from PmeI-digested Cas9 expression vector was transcribed using the mMes-

sage mMachine T7 Ultra kit (Life Technologies; AM1345). sgRNA and Cas9 mRNA was purified using the MEGAclear kit (Life Tech-

nologies; AM1908). Fertilized FVBmouse oocytes were co-injected with Cas9 mRNA and sgRNA in a concentration of 25ng/ml Cas9

mRNA and 10ng/ml per sgRNA. Deletions were validated by PCR and Sanger sequencing. Founders were backcrossed with wild-

type FVB mice to obtain stable lines. Downstream experiments were performed on F2 mice, backcrossed twice with wild-type

FVB mice.

Chromosome Conformation Capture (3C)
3C was performed as described previously (Hagège et al.,2007) with minor modifications (Monroe et al., 2019). CRE11+/+ and

CRE11�/� hearts were isolated from adult mice and nuclei isolation and chromatin crosslinking was performed as described above

(Preparation of 4C template). Crosslinked chromatin was digestedwith BglII (New England Biolabs; R0144S), yielding restriction frag-

ments of > 1000bp and < 10.000bp. Digested chromatin was diluted and ligated overnight at 16�C with T4 DNA Ligase (Roche,

#799009). DNA fragments were de-crosslinked overnight at 65�C, treated with Proteinase K and RNase A and purified by

phenol/chloroform extraction and ethanol precipitation. Unidirectional qPCR primers targeting regions on the same strand were de-

signed according to recommendations described previously (Naumova et al., 2012). Primer sites were designed �80-150bp away

from the restriction site to yield amplicons between 160 and 300bp in size. Primer sequences are listed in Table S5. Real-time quan-

titative PCR to quantify ligation frequencies was performed using SYBR Green (Roche; 4887352001) on a LightCycler 480 system.

Ligation frequencies were normalized to a loading control (Actb; primer sequences in Table S2) and depicted as a ratio of ligation
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frequencies of CRE11�/� over wild-type samples. Experiments were performed with 3 biological replicates per genotype and each

measured in duplo.

QUANTIFICATION AND STATISTICAL ANALYSIS

Results are expressed asmean ±SEM. Details of the various statistical analyses can be found in themethods subsection of a specific

experiment. In general, unless otherwise stated in the text or figure legend, significance refers to p < 0.05.

DATA AND CODE AVAILABILITY

The 4C-seq datasets generated during this study are available at GEO (https://www.ncbi.nlm.nih.gov/geo/) under accession number

GEO: GSE134725.
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