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Objectives: This article explains how to optimize Bayesian D-efficient discrete choice experiment (DCE) designs for the
estimation of quality-adjusted life year (QALY) tariffs that are unconfounded by respondents’ time preferences.

Methods: The calculation of Bayesian D-errors is explained for DCE designs that allow for the disentanglement of respondents’
time and health-state preferences. Time preferences are modelled via an exponential, hyperbolic, or power discount function
and the performance of the proposed DCE designs is compared with that of several conventional DCE designs that do not take

nonlinear time preferences into account.

Results: Based on the achieved D-error, asymptotic standard error, and estimated sample size to obtain statistically significant
estimates of the discount rate parameters, the proposed designs outperform the conventional DCE designs.

Conclusions: We recommend that applied researchers use appropriately optimized DCE designs for the estimation of QALY
tariffs that are corrected for time preferences. The TPC-QALY software package that accompanies this article makes the
recommended designs easily accessible for health-state valuation researchers.
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Time-preference-corrected quality-adjusted life year (QALY)
tariffs avoid confounding between quality of life and time prefer-
ences without resulting in time-dependent QALY tariffs.! In nominal
terms, each QALY still represents 1 year in perfect health, which
conforms to the conventional QALY assumptions. However, when
QALYs are compared across time, they can and should be discounted
to properly reflect time preferences. The latter is already standard
practice in health technology assessment applications, which
means that time-preference-corrected QALY tariffs more closely
align with health technology assessment than traditional QALY
tariffs that are derived under the assumption of linear time
preferences.

Time-preference-corrected QALY tariffs are also preferable
from a theoretical perspective. That is, linear time preferences are
hardly ever observed in human decision making and are

unrealistic to presume from the outset.” Moreover, empirical ev-
idence seems to suggest that the assumption of linear time pref-
erences does not hold in traditional time trade-off (TTO) or,
particularly, in DCE-duration estimations."*"

Incorrectly imposing linear time preferences does not
appear to be very consequential when a TTO elicitation format
is used. However, it can result in severely biased QALY tariffs
when a DCE-duration elicitation format is used. Unlike with
TTO, the fraction of health states that are valued as worse
than immediate death is not directly observed in DCE-
duration tasks. Instead, health states worse than immediate
death are identified using a model-based extrapolation, which
is sensitive to the assumptions made about respondents’ time
preferences. The latter explains why many of the QALY tariffs
that have thus far been established with DCE-duration
methods have a higher percentage of health states classified
as worse than immediate death than occurs with TTO formats
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(see, eg, Jonker et al® and Mulhern et al’ vs Versteegh et al®
and Devlin et al®).

Time-preference-corrected QALY tariffs appear to be important
to avoid downward biased QALY tariffs, particularly with DCE-
duration elicitation formats. At the same time, an impediment to
their implementation is that the estimation of time-preference-
corrected QALY tariffs requires DCE designs that have adequate
statistical efficiency to reliably elicit and disentangle respondents’
time and health-state preferences. As shownin this article, standard
DCE designs are inefficient for the estimation of time-preference-
corrected QALY tariffs and can even result in identification prob-
lems. Accordingly, to avoid these problems from the outset, this
article provides a complete exposition on how to create Bayesian D-
efficient DCE designs that optimally accommodate the estimation of
time-preference-corrected QALY tariffs. In addition, it provides an
easy-to-use software implementation that includes several
commonly used health-state valuation instruments, including the
EQ-5D-5L'? instrument.

Time-preference-corrected QALY tariffs' are derived from a
class of health-state valuation utility functions that are defined as
follows:

UI]f:HUfNPVU[+8UE, 1:17717]:]7,]*t:177T (1)
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C. Power discounting:
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"y and y' denote the di- and tri-gamma function, respectively.
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Here, the utility (Uy) that respondent i obtains from alternative j
in choice task t is defined as the sum of a systematic component
(Hjj: .NPVjj) and an unobserved error term (). The error term is
assumed to be independently and identically extreme value type |
distributed, and the systematic component describes how health-
state utilities are derived from the multiplication of quality and
quantity of life. More specifically:

1. The quality of life (ie, health-state values Hj;) component is
assumed to be modeled as a standard linear additive function
that is defined as the dot product of K dummy coded health-
state characteristics (Xij1,...Xijex) and associated vectors of co-
efficients (64,..,8k):

K . .
Hijlzzkjlﬁk'xljtk$ 1= 17 71~.’ = 177.],t = 1$"7T‘ (2)

2. The quantity of life component is defined as the net present
value (NPVj;) of the number of life years (Qy;) spent in each
health state, which equals the sum of the present values (PV) of
all future life years g=1,...,Q;i::

NPV =S PV, i=1,. k=1 )it =1,..T. 3)

Note that Equation 3 is very general and implies that any discount
function can be used to obtain the PV of future life years. The most
commonly used discounting functions are the exponential,'’ hy-
perbolic,'? and power® discounting functions (see Box 1). Each of
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T For hyperbolic discount rates smaller than 0, the NPV needs to be calculated recursively.
¥ Partial derivatives with respect to the discount rate (r) are required for the calculation of the D-error.
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*In the Bayesian D-error calculations, the § parameters are random variables with a joint probability density function ¢ (.) with given parameters 4. Usually, the §

parameters are assumed to be multivariate normal distributed, ie, B ~ MVN(,X).

these has 1 input parameter, the discount rate (r), which controls
the degree of discounting. The higher the discount rate, the less
weight is attached to life years spent in the more distant future. In
contrast, when all future life years are valued equally, the discount
rate will be 0 and the NPV will be equal to Q. Accordingly, the
traditional QALY assumption of perfectly linear time preferences is
embedded as a special case.

The objective of this article is to present an experimental
design with attribute values (Xj1,...Xjjex and Qy) for each respon-
dent i, alternative j, and choice task t that allows for the efficient
estimation of the health-state preference parameters (§) and
discount rate (r). Several different efficiency measures have been
proposed in the literature, but the most widely used efficiency
measure is the D-error. The D-error takes the determinant of the
asymptotic variance-covariance matrix and scales it with the
number of parameters to be estimated. In this article, we focus
solely on the D-error, although alternative efficiency criteria could
also be used; see Scarpa and Rose'” for a comparison of alternative
design criteria.

In contrast to efficient DCE designs for standard linear addi-
tive utility functions, for which the appropriate D-error calcu-
lations are described in multiple publications (eg, Scarpa and
Rose,'* Kanninen,””> and Rose and Bliemer'®) and included in
several software packages (eg, ChoiceMetrics [Ngene software,
Australia] and JMP [SAS Institute Inc, Cary, NC]), there is

currently no algorithm or software available that can optimize
for the nonlinear multiplicative utility functions as described by
Equations 1 to 3. The reason is that a linear additive utility
function greatly simplifies the D-efficiency calculations, which,
vise versa, implies that more complex D-error calculations are
required for nonlinear multiplicative utility functions.

More specifically, for a standard conditional logit model with a
linear additive utility function (Uy = z{leﬁk.x,-,-tk), the matrix of
partial derivatives with respect to the estimated model parame-
ters (ie, B) equals X. This property is used in the calculation of the
D-error for the conditional logit model as described in Box 2.
However, the matrix of partial derivatives of the utility function as
described by Equations 1 to 3 with respect to the parameters to be
estimated (ie, § and r) does not simplify to X. Hence, the standard
D-error calculations in Box 2 cannot be used for the optimization
of efficient DCE designs for time-preference-corrected QALY tar-
iffs; instead, the calculations as described in Box 3 need to be
used.

As shown in Box 3, the calculation of the D-efficiency for the
nonlinear multiplicative utility function requires the derivation of
the matrix of partial derivatives 0U/dy for all parameters to be
estimated (ie, § and r). This matrix does not reduce to X and de-
pends on the duration and type of discount function used.
Accordingly, a D-efficient DCE design that is optimized for 1 type
of discount function is not necessarily efficient for other dis-
counting functions. More important, D-efficient designs that are
optimized assuming a linear additive utility function (eg, using
currently available software packages) will not take the
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*In the Bayesian D-error calculations, the y parameters are random variables with a joint probability density function ¢ (.) with given parameters 6. Here, all y

parameters are assumed to be multivariate normal distributed, ie, y ~ MVN(u,Z).
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appropriate derivates into account and are unlikely to be D-effi-
cient for any multiplicative utility function.

In addition to the appropriate design optimization criterion,
several other considerations are important for the optimization of
DCE designs for the estimation of both standard and time-pref-
erence-corrected QALY tariffs:

1. Even when a DCE duration design is optimized for a multipli-
cative utility function, unconstrained elicitation formats pro-
vide no guarantee that respondents do not adopt a simpler,
linear additive utility function instead of the required multi-
plicative utility function for the QALY calculations. A linear
additive utility function would reduce the task complexity for
respondents but would theoretically invalidate QALY tariff
calculations based on the observed choice data. To preemp-
tively avoid this problem, Jonker et al"® used a “matched-pairs”
choice format with 2 types of choice tasks: (1) pairwise choice
tasks consisting of different impaired health states with an
equal duration of life, and (2) pairwise choice tasks in which an
impaired health state with longer duration is compared with
perfect health in a shorter duration. In the matched-pairs
format, the 2 types of formats are linked by the imposition
that the impaired health state in the second choice task is
identical to one of the impaired health states in the first choice
task and presented in a single layout. This simplifies the second
choice task for respondents, but the essential point is that the
DCE design contains sufficient overlap in the duration levels to
ensure that respondents make choices that adhere (at least
approximately) to the required multiplicative utility function.

2. Furthermore, even with sufficient overlap in duration, it is
advisable to impose some overlap in the health-state attributes
as well. Although the introduction of level overlap reduces the
statistical efficiency of the DCE design, it also reduces the
complexity of the choice tasks for respondents and conse-
quently improves behavioral efficiency—that is, it tends to
reduce the drop-out rate, increase the level of choice consis-
tency, and avoids problems with attribute nonattendance.”®
These improvements in behavioral efficiency mitigate the loss
in statistical efficiency and increase the quality of the collected
choice data.

3. Another important consideration is the benefit of a severity-
stratified selection of health states in the DCE design. Unlike
with TTO, where the position of immediate death can be
directly observed, the position of immediate death is based
on an extrapolation when using DCE duration. The use of a
severity-stratified DCE design can improve the robustness
of the DCE design and avoid biased estimates when the
utility function is misspecified.'® Hence, some type of severity
stratification is advisable, particularly when (a priori) the cor-
rect model specification and/or discount function is unknown.

4. Finally, many DCE health-state valuation studies have used a
single DCE design, which is shown in its entirety to all partici-
pating respondents. Sindor and Wedel?® have shown that it is
more efficient and robust to simultaneously optimize multiple
versions of a DCE design and assign each respondent (randomly)
to only one of the versions. These so-called heterogeneous DCE
designs differ from traditional blocked designs in the sense that
each subdesign is a stand-alone design as opposed to merely
being a fraction of a stand-alone design. The advantage of het-
erogeneous compared with homogeneous DCE designs is that
heterogeneous designs increase statistical efficiency without
increasing the survey burden for participating respondents;
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each individual respondent completes only one of the
subdesigns.

The optimization of Bayesian D-efficient DCE designs for the
estimation of time-preference-corrected QALY tariffs has been
implemented in Fortran, with built-in support for several health-
state instruments and 3 different nonlinear discount functions (ie,
exponential, hyperbolic, and power). The previously described
design considerations are implemented as follows:

1. Overlap in duration is included by optimizing for the matched-
pairs format.

2. The algorithm supports a flexible amount of attribute-level
overlap.

3. Based on the supplied priors, the algorithm automatically im-
plements a severity-stratified selection of health states (cf Lim
et al').

4. The algorithm creates heterogeneous DCE designs using an
optimization criterion that is a weighted average of the overall
D-error and the average D-error of the individual subdesigns.

Furthermore, the design optimization can be specified with
various numbers of quasi-random draws from the specified priors
to evaluate the Bayesian D-efficiency criterion, and it automati-
cally generates an optimized Latin hypercube sample that has
good sampling properties.?! To avoid left-right bias in the health-
state selection, the design criterion includes comparisons between
options A and B, B and C, and A and C (ie, a full ranking of the
choice options in each choice task).

Generating a time-preference-corrected QALY design with the
Fortran TPC-QALY software package requires the following steps.
First, after opening the program, which requires a Windows
operating system, the user has to select the type of instrument,
type of discount function, number of matched pairs, and number
of subdesigns. On the next screen, the user needs to specify the
amount of level overlap, number of Bayesian draws, duration
levels, and the weights to be used for the heterogeneous design
optimization. The default and recommended setting is to use an
optimization criterion that is for 75% based on the average D-error
of the subdesigns and 25% on the D-error of overall design. Finally,
the Bayesian priors need to be supplied. Note that the TPC-QALY
program imposes a minimum amount of structure on the speci-
fied priors to avoid accidental misspecification (eg, by taking the
ordinal structure of the attributes into account). After the user
clicks on the “optimize” button, the design optimization will run
for a few minutes up to several hours (depending on the computer
speed and the number of Bayesian draws), after which the pro-
gram saves the TPC-QALY DCE design as a .txt file that can be
imported by standard survey software, such as, for example,
Sawtooth Software (Sawtooth Software Inc, Provo, UT). (For a
more detailed description of the TPC-QALY program, see Appendix
Cin the Supplementary Materials found at https://doi.org/10.1016/
jjval.2019.05.014).

To establish the efficiency improvement of TPC-QALY versus
standard DCE designs for the estimation of time-preference-
corrected QALY tariffs, we compared a total of 8 DCE designs. All
design comparisons were based on the largest and most
commonly used instrument that is currently included in the TCP-
QALY software package: the EQ-5D-5L instrument.'° Four different
designs were optimized using the Bayesian D-error criterion as
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described in Box 3—that is, 3 designs assuming an exponential,
hyperbolic, and power function and a fourth design that was
optimized for all of these discount functions simultaneously. In
addition, the following 4 conventional DCE designs were included:

1. A Bayesian D-efficient linear multiplicative DCE design with
utility function

Qye+ege, i=1,.Lj=1,Jit=1.T.

K
Ujje = |:Zklﬁkvxijtk

(4)

that correctly incorporates the multiplication of quality and
quantity of life while imposing linear time preferences. Designs
optimized using this criterion have been used in, for example,
Jonker et al® and Lim et al."

2. Three different Bayesian D-efficient linear additive DCE designs
with utility function

K . .
Uijt:Zk:]ﬂk-Xijrk+ Br+1-Qie +eje, i=1,..Li=1,.J;t=1,.T,
(5)

in which duration is included as an additional linear additive

attribute; that is, a heterogeneous efficient design with severity

stratification, a homogeneous efficient design without severity
stratification, and a homogeneous efficient design without
severity stratification that was optimized using 0 priors.

All DCE designs were optimized using the default settings of
the TPC-QALY program: 100 Bayesian draws, 2 levels overlapped,
12 matched pairwise choice tasks, and, for the heterogeneous DCE
designs, 10 subdesigns with 75% optimization weight on the
average D-error of the individual subdesigns and 25% on the
overall D-error of the DCE design. A standard modified Fedorov
optimization algorithm was used to optimize the health states.
The duration levels were fixed at (/2,3,5,7,8,9,10,11,12,12,15,15/)
years for choice options A and B in the matched-pairs format, with
the levels randomly distributed across choice tasks. The duration
levels for option C were selected from all integers smaller than the
corresponding duration levels of options A and B and additionally
comprised 3 and 6 months of duration. A greedy optimization of
the duration levels was performed by evaluating all possible
duration levels every 10 000 optimization iterations.

The reported design efficiencies were based on the best ach-
ieved D-error after 3 separate runs of 200 000 optimization iter-
ations each. The performance of the constructed DCE designs was
subsequently evaluated in terms of the achieved D-error for the
estimation of time-preference-corrected QALY tariffs and the
achieved asymptotic standard error and estimated sample size for
obtaining statistically significant estimates for the discount rate
parameter. Accordingly, both the overall performance of the DCE
designs and the designs’ ability to disentangle respondents’ time
and health-state preferences were investigated.

The priors for the Bayesian efficient design optimizations are
listed in Appendix A (see the Supplementary Materials found
at https://doi.org/10.1016/j.jval.2019.05.014). These were obtained
by fitting a conditional logit model with each of the included
utility functions on the DCE-duration data that were previously
used by Lim et al.' These data were collected using a severity-
stratified heterogeneous DCE design with 8 subdesigns, which
was optimized using the standard multiplicative utility function as
described in Equation 4 with 21 matched pairwise choice tasks
per subdesign. The data set comprises 517 respondents that were
randomly sampled from the Dutch general population.
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The same priors that were used in the design optimizations of
the TPC-QALY designs were also used for the D-error and sample
size evaluations of the designs. However, whereas the design
optimizations were based on a full ranking of the choice options,
the design evaluations were based on the D-error of the actual
presentation format of the matched pairs (ie, A vs B and B vs C,
with options A and B randomized). This is computationally more
demanding and hence not used for the design optimizations, but it
results in more accurate sample size estimates that are not infla-
ted by an auxiliary choice task that is not intended to be seen by
respondents. Finally, all sample size estimates were obtained us-
ing the calculations as described by De Bekker-Grob et al®'
assuming 80% power and 0.05 significance level.

Ideally, a small number of draws is specified in the design
optimizations because the optimization time scales linearly with
the number of draws selected. However, a sufficiently large
number of draws needs to be used to ensure that the Bayesian D-
error criterion correctly identifies the relative efficiency of small
design changes made by the optimization algorithm. Interestingly,
the absolute accuracy of the D-error is unimportant; all that is
required to obtain the same level of accuracy is that the ranking of
the D-error of different designs remains correctly identified.??
Moreover, given a limited optimization time and a large design
space, it can even be optimal to sacrifice some accuracy to be able
to perform more optimization iterations in a fixed amount of time.

To evaluate the impact of the number of Bayesian draws on the
optimization of TPC-QALY designs, Latin hypercube samples with
50, 100, 200, and 300 draws were optimized using a columnwise-
pairwise algorithm, and a fourth sample with 1000 draws was
optimized using a genetic algorithm (cf Liefvendahl and Stocki).?*
Then, an exponential TPC-QALY design was optimized using the
default TPC-QALY settings as described earlier and using 100
Bayesian draws. During the design optimization, the successive
DCE designs and the number of design improvements (ie, the
number of choice tasks swapped by the modified Fedorov algo-
rithm) were saved every 10000 iterations. The D-errors of the
saved designs were subsequently evaluated using the different
numbers of Bayesian draws, and the rank of the calculated D-er-
rors was calculated to determine whether a different number of
draws would have produced divergent rankings of the consecutive
designs.

Table 1 presents the results obtained from the D-efficiency
comparisons based on the 8 DCE designs. In terms of relative
design efficiencies, there is a major difference in statistical per-
formance between the 4 DCE designs that are explicitly optimized
for the estimation of time-preference-corrected QALY tariffs and
the other 4 conventional DCE designs that are not. As shown, any
DCE design optimized for nonlinear time preferences works well
irrespective of the choice of discount function. This implies that
there is little added value in optimizing a DCE design for multiple
discount functions simultaneously, particularly when considering
the additional run time that is required for optimizing such de-
signs. In contrast, the conventional DCE designs have considerably
lower design efficiencies: the DCE design optimized for a linear
multiplicative utility function has an average relative design effi-
ciency of 0.91, the heterogeneous linear additive design with
severity stratification 0.80, and the homogeneous linear additive
designs without severity stratification 0.69.
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DCE design efficiency for time-preference-corrected QALY tariff estimations*

1. Exponential utility function 0.0619 1.00
2. Hyperbolic utility function 0.0621 1.00
3. Power utility function 0.0624 0.99
4. Exponential and hyperbolic and power 0.0622 1.00
5. Linear multiplicative 0.0682 0.90
6. Linear additive 0.0744 0.80
7. Standard linear additive’ 0.0807 0.70
8. Standard linear additive 0 priors’ 0.0805 0.70

TPC indicates time-preference-corrected; abs, absolute; rel, relative.

—_

N oo o i wob~N

0.0564 1.00 2 0.1844 1.00 3
0.0563 1.00 1 0.1846 1.00 2
0.0566 0.99 4 0.1846 1.00 1
0.0564 1.00 3 0.1853 1.00 4
0.0611 0.91 5 0.1997 0.92 5
0.0674 0.80 6 0.2192 0.81 6
0.0747 0.67 7 0.2380 0.71 7
0.0751 0.67 8 0.2391 0.70 8

*Absolute design efficiencies are based on the Bayesian D-error criterion, and relative design efficiencies are in comparison to the most efficient discrete choice

experiment (DCE) designs.

"The standard designs are homogeneous DCE designs without severity stratification; all other designs are heterogeneous DCE designs with severity stratification.

Table 2 presents the asymptotic standard error (SE) and sample
size estimates for the discount rate parameters as determined for
each of the 8 DCE designs. The 4 DCE designs that were specifically
optimized for the estimation of time-preference-corrected QALY
tariffs again perform very similarly to one another. They also
perform better in terms of SE and sample size estimates than the
DCE designs based on a linear utility specification. Similar to the
results presented in Table 1, the multiplicative design performs
better than the heterogeneous linear additive design with severity
stratification and much better than the homogeneous linear ad-
ditive designs without severity stratification. In fact, the latter
designs results in 2.5 to 3.5 times larger SE and up to 11 times
larger sample size estimates than those of the nonlinear multi-
plicative DCE designs.

Table 2 also highlights the implications of the choice of dis-
count function in terms of the statistical identification of the
discount rate parameters and recommended minimum sample

size. As shown, the asymptotic SE of the hyperbolic discount rate
parameter is twice as large, and that of the power function rate
parameter 4 times as large as the asymptotic SE of the exponential
discount rate parameter. Hence, based on DCE designs that are, in
turn, based on the priors as obtained using the data set of Lim
et al,'® the exponential discount function appears to be better
identified than the hyperbolic and power discount functions. This
translates into larger sample sizes as required for the hyperbolic
and power discount functions. Interestingly, the larger SE of the
power function is mitigated by the larger power discount rate
parameter of 0.33, which is further away from 0 and thus requires
a smaller sample to get statistically significant estimates than the
exponential and discount rate parameters of 0.11 and 0.12,
respectively. This also explains why the power discount function
has smaller sample size estimates than the hyperbolic discount
function even though its SE of the discount rate parameter is
almost twice as large.

Asymptotic standard error and sample size estimate for the discount rate parameter*®

1. Exponential utility function 0.43 100
2. Hyperbolic utility function 0.45 108
3. Power utility function 0.46 112
4. Exponential and hyperbolic and power 0.46 110
5. Linear multiplicative 0.58 181
6. Linear additive 0.61 198
7. Standard linear additive’ 1.11 650
8. Standard linear additive 0 priors’ 1.42 1068

TPC indicates time-preference-corrected.

—_

00 N o U1 w b~ N

0.96 400 1 1.74 175 1
0.99 421 3 1.79 184 4
1.00 431 4 1.79 184 3
0.99 419 2 1.77 180 2
1.26 677 5 2.24 289 5
1.44 885 6 2.66 407 6
2.67 3055 7 5.00 1440 7
3.21 4435 8 6.04 2095 8

*Estimated sample size to determine significant deviation from linear time preferences with o = 0.05 and 80% power.
"The standard designs are homogeneous discrete choice experiment (DCE) designs without severity stratification; all other designs are heterogeneous DCE designs with

severity stratification.



Bayesian D-errors of designs optimized for an
exponential TPC utility function. * All Bayesian draws were
created using pre-optimized Latin hypercube samples (LHS) and
based on the priors for the exponential TPC utility function. The
total optimization time for 200 000 iterations with 100 Bayesian
draws was 15 minutes (single threaded) on an Intel core i7-8086k.
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Figure 1 provides an overview of the design optimization
progress for the TPC-QALY designs. As shown, the optimization
algorithm achieves the vast majority of the design improvements
within the first 10000 optimization iterations: 98% of the total
decrease in the D-error was achieved in the first 10,000 optimi-
zation iterations, 99% within the first 30 000 iterations, and less
than 1% in the remaining 170000 iterations. More important,
irrespective of the number of Bayesian draws, all of the design
iterations are ranked identically (note that more detailed output is
presented in Appendix Table 2 in Appendix A in the Supplemen-
tary Materials). Hence a larger number of Bayesian draws did not
increase the optimization accuracy.

The estimation of time-preference-corrected QALY tariffs re-
quires a multiplicative utility function and involves a nonlinear
discount function, which are not supported by existing DCE
optimization packages. As shown in this article, standard DCE
designs that can be optimized using currently available software
packages are inefficient, which implies that substantially larger
sample sizes are required to obtain a similar level of reliability. For
this reason, we strongly recommend the use of appropriately
optimized DCE designs for the estimation of time-preference-
corrected QALY tariffs.

A potential limitation of the results presented is that they are
based on a specific set of priors, which were based on a single data
set that, in turn, was obtained using a DCE design that was not
specifically optimized to accommodate any of the included dis-
count functions. Additionally, the data set that was used to obtain
the priors comprised more than 500 respondents and conse-
quently resulted in relatively precise conditional logit estimates.
For this reason, we present in Appendix B (in the Supplementary
Materials found at https://doi.org/10.1016/j.jval.2019.05.014) the
results of a sensitivity analysis in which the size of the standard
errors of the priors was substantially increased. The size of the
standard deviations was maximized under the constraint that
99.5% of the Bayesian draws would retain the same sign as the
prior mean and thus retain the “correct” sign in the design opti-
mizations. These standard deviations also correspond to the
maximum amount of preference heterogeneity that is allowed by
the TPC-QALY program. Accordingly, it is comforting to establish
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that the results presented in Appendix B closely correspond to the
results presented in the main text.

In addition to introducing the Bayesian D-error optimization
criteria and evaluating the relative performance of designs
created using these criteria, this article is accompanied by an
easy-to-use software implementation that can generate DCE-
duration designs for the most commonly used exponential,
hyperbolic, and power discounting functions. Our software
package, called TPC-QALY, optimizes for the correct D-efficiency
criterion, includes attribute-level overlap on both the duration
and health attributes, supports heterogeneous DCE designs, and
automatically applies health-state  severity stratification.
Accordingly, the TPC-QALY software allows applied researchers
to easily generate theoretically sound and efficient DCE designs
that accommodate the estimation of time-preference-corrected
QALY tariffs.

At the same time, there is an important caveat. The design
optimization crucially relies on informative priors to implement
the severity-stratified candidate sets, to determine the selected
health states, and to optimize the included duration values. For
this reason, the TPC-QALY software package is not intended to be
used with uninformative priors. Furthermore, because the severity
stratification and the selection of duration values in the DCE
design will be sensitive to the specified discount values, we
recommend that 1 or more pilot samples are used to update the
priors during the data collection. When doing so, the presented
results suggest that the exponential discount function produces
pilot results with the smallest standard errors. From this
perspective, it is comforting that the presented results also
confirm that the optimization of TPC-QALY designs with one
type of discount function does not preclude the estimation of
time-preference-corrected QALY tariffs with 1 of the alternative
discount functions.
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