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Abstract

Background: Drug-drug interactions (DDIs) can cause patient harm. Between 46 and 90% of patients admitted to
the Intensive Care Unit (ICU) are exposed to potential DDIs (pDDIs). This rate is twice as high as patients on general
wards. Clinical decision support systems (CDSSs) have shown their potential to prevent pDDIs. However, the
literature shows that there is considerable room for improvement of CDSSs, in particular by increasing the clinical
relevance of the pDDI alerts they generate and thereby reducing alert fatigue. However, consensus on which pDDIs
are clinically relevant in the ICU setting is lacking. The primary aim of this study is to evaluate the effect of alerts
based on only clinically relevant interactions for the ICU setting on the prevention of pDDIs among Dutch ICUs.

Methods: To define the clinically relevant pDDIs, we will follow a rigorous two-step Delphi procedure in which a
national expert panel will assess which pDDIs are perceived clinically relevant for the Dutch ICU setting. The
intervention is the CDSS that generates alerts based on the clinically relevant pDDIs. The intervention will be
evaluated in a stepped-wedge trial. A total of 12 Dutch adult ICUs using the same patient data management
system, in which the CDSS will operate, were invited to participate in the trial. Of the 12 ICUs, 9 agreed to
participate and will be enrolled in the trial. Our primary outcome measure is the incidence of clinically relevant
pDDIs per 1000 medication administrations.

Discussion: This study will identify pDDIs relevant for the ICU setting. It will also enhance our understanding of the
effectiveness of alerts confined to clinically relevant pDDIs. Both of these contributions can facilitate the successful
implementation of CDSSs in the ICU and in other domains as well.

Trial registration: Nederlands Trial register Identifier: NL6762. Registered November 26, 2018.

Keywords: Intensive care, Drug-drug interactions, Computerized decision support systems, Alert fatigue, Stepped-
wedge trial
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Background
Drug-drug interactions (DDIs) are an important cause of
adverse drug events (ADEs) [1]. In ICU patients, ap-
proximately 16% of all ADEs are caused by a DDI [2].
ADEs in the ICU are linked to increased length of stay,
higher morbidity and mortality and increased hospital
costs [3]. A DDI occurs when one or more drugs affect
the pharmacokinetics (the body’s effect on the drug)
and/or pharmacodynamics (the drug’s effect on the
body) of one or more other drugs [4]. In the ICU, be-
tween 46 and 90% of the patients are exposed to a po-
tential DDI (pDDI) [5]. This rate is twice as high
compared to patients on general wards [6, 7]. A pDDI is
defined as two potentially interacting medications ad-
ministered concomitantly [8]. A pDDI may lead to an
actual DDI, which could result in an ADE.
Studies have demonstrated the potential of clinical deci-

sion support systems (CDSSs) in preventing pDDIs [9, 10].
CDSSs focus on helping clinicians to improve their clinical
performance. Computerized clinical decision support is
defined as “providing clinicians or patients with computer-
generated clinical knowledge and patient-related informa-
tion, intelligently filtered or presented at appropriate times,
to enhance patient care” [11]. A CDSS provides guidance at
the point of prescribing by means of usually interruptive
medication alerts that warn the prescriber for risky situa-
tions such as pDDIs [10]. However, the literature shows
that there is considerable room for improvement, especially
regarding the clinical relevance (and thereby the specificity)
of the medication alerts generated by CDSSs [12–14].
Which pDDI alerts are generated by a CDSS depends on
the underlying (sometimes commercial) knowledge base.
[15] Lack of a fit between the clinical setting and the pDDI
knowledge base used can be a cause of low specificity of
medication alerts. Low specificity leads to alert fatigue and
a high override rate of alerts. [16] Studies show that clini-
cians override alerts, including pDDI alerts, in 49 to 96% of
the cases [16, 17]. These “side effects” of CDSS diminish
the potential value of CDSSs for medication safety.
The ICU setting differs from other in- and outpatient

settings for several reasons: patients in the ICU are more
vulnerable for DDIs due to often-present impaired ab-
sorption, diminished renal and hepatic function, and
polypharmacy [18]. On the other hand, as ICU patients
are under continuous monitoring, some pDDIs are more
acceptable than for non-ICU patients, because continu-
ous monitoring allows for effective and timely risk man-
agement. Therefore, pDDI alerts that are clinically
relevant in non-ICU settings may be of limited clinical
value in the ICU. However, consensus on which pDDIs
are clinically relevant in the ICU setting is lacking, and
this hampers adequate pDDI alerting through CDSSs.
Therefore, the primary aim of this study is to evaluate

the effect of tailoring pDDI alerts to the ICU setting on

pDDI prevention among Dutch ICUs. To this end, we
first identify which pDDIs are considered clinically rele-
vant for the ICU setting through a standardized and
rigorous Delphi procedure with a national expert panel.
Next, we will use the resulting set of clinically relevant
pDDIs as the ICU-specific pDDI knowledge base that a
CDSS will use to generate alerts. Subsequently we will
evaluate the effectiveness of this tailored strategy on the
prevention of the clinically relevant pDDIs.

Theoretical foundation
Alert fatigue can be described as “the mental state that
is the result of alerts consuming too much time and
mental energy, which can cause relevant alerts to be un-
justifiably overridden along with clinically irrelevant
ones” [16, 19]. Alert fatigue may lead to patient harm,
when alerts pertinent to patient safety are overlooked
and ignored [10]. To combat alert fatigue, it is important
to optimize the balance between sensitivity and specifi-
city of an alerting system [10, 12, 16]. The sensitivity of
an alerting system is the ability of the system to produce
an alert when that is necessary. When sensitivity is high,
there are only few situations in which the system fails to
provide an alert when it should have provided one. The
specificity of an alerting system is the ability of the sys-
tem to produce an alert, only if necessary. When the
specificity is high, the system produces few unnecessary
alerts (‘false alarm’) [13, 16]. To visualize sensitivity and
specificity influencing alert fatigue and alert overrides,
van der Sijs et al. [16, 20] applied Reason’s model of ac-
cident causation to drug-safety alerting and used this
model to interpret how errors arise in an alerting sys-
tem. The model is shown in Fig. 1.
Lack of a fit between the clinical setting (e.g. ICU set-

ting) and medication alerts is one cause of low
specificity. Therefore, we hypothesize that using a pDDI
knowledge base not tailored to the ICU setting, would
lead to alert fatigue and thereby to ignoring pDDI alerts,
as is depicted in Fig. 1. This in turn may result in also
overriding clinically relevant pDDI alerts, compromising
medication safety in the ICU. Therefore, to improve the
specificity of pDDI alerts for the ICU setting, we first
need to assess which pDDIs are clinically relevant for
the ICU setting. A tailored pDDI knowledge base for the
ICU setting will increase the specificity of pDDI alerts
and reduce alert fatigue and pDDI alert overrides. This
in turn will decrease the risk of ignoring relevant alerts,
and eventually decrease the number of pDDIs.

Methods/design
Study design
To evaluate the effect of tailoring the pDDI knowledge
base to the ICU setting on pDDI prevention we will im-
plement a trial with a stepped-wedge design. A stepped-
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wedge trial is a type of cluster trial in which an interven-
tion is rolled-out sequentially to the clusters over a
number of periods that are called ‘steps’ [21]. By the end
of the trial period, all clusters will have received the
intervention. The order in which the clusters receive the
intervention is randomized [22]. Data analysis to deter-
mine the overall effectiveness of the intervention subse-
quently involves comparison of the data points in the
control section of the wedge with those in the interven-
tion section [21].
We prefer a stepped-wedge design over a random-

ized controlled trial because withholding CDSS from
those already using it is not considered ethical in our
study. Withholding decision support in an environ-
ment where physicians are used to receive support to
prevent pDDIs could have a negative effect on patient
safety. Furthermore, methodologically speaking the
stepped-wedge design is comparable to a parallel clus-
ter RCT. Also, when the clusters are large, as is the
case in our study, a stepped-wedge design is more
powerful than a parallel design [23].
The order in which the ICUs will receive the interven-

tion will be randomized, because randomization helps
reduce the risk of bias and thereby increase the internal
validity of the study [24]. An independent researcher
who is not involved in further conduct of this study will

perform the computerized randomization. As all the pre-
scribing physicians in the participating ICUs and the in-
vestigators will be aware of the ‘step’ from control to
intervention status, blinding is not feasible. Further de-
tails on the implementation of the stepped-wedge design
in this study can be found in the paragraph ‘Stepped-
wedge design implementation’.
This protocol is reported in accordance with the

SPIRIT 2013 guideline for content of clinical trial proto-
cols [25]. The results of this study will be reported in ac-
cordance with the CONSORT statement [26].

Study setting
The setting of this study is the Dutch intensive care.
In the Netherlands, all ICUs are mixed medical-surgi-
cal closed-format ICUs. All Dutch ICUs participate in
the Dutch quality registry called National Intensive
Care Evaluation (NICE). The NICE registry offers
ICUs feedback and benchmarking on patient out-
comes, including mortality, and allows them to com-
pare their outcomes with those achieved nationally
and by groups of similar hospitals [27].
To participate in our study, we require that an ICU

department should use the commercial patient data
management system, MetaVision ICU (iMDSoft®) during
the whole trial. This is a pragmatic criterion, but one

Fig. 1 Adapted version Reason’s model of accident causation applied to drug safety alerting from van der Sijs et al. (with permission) [16, 20]
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that allows a straightforward integration of the intended
CDSS within this system. In particular, our CDSS will be
obtained by adapting a current version of a CDSS that
already works with MetaVision ICU but which provides
pDDI alerts indiscriminately, hence regardless of clinical
relevance for the ICU setting. In effect we need to re-
place the existing pDDI knowledge base in this CDSS to
one which is tailored to the ICU setting. This essentially
means that we will make a critical selection of the pDDIs
for which the alerts should fire. By opting for one type
of data management system and the CDSS that is able
to operate within it, all participating ICUs will receive
the pDDI alerts in the same manner. We invited all
ICUs that use MetaVision, 12 in number, to participate
in this study via the network of the NICE registry. Nine
ICUs have agreed to participate in the trial and have
provided an intensivist of the ICU as a local contact per-
son. The remaining three ICUs decided not to partici-
pate in the trial because their hospital was in the process
of migration to a different, hospital-wide, patient data
management system. The nine participating ICUs have
an overall capacity of 156 beds, and in total around
11200 (median: 854; IQR: 793–1785) patients are admit-
ted yearly. One ICU is academic, eight are non-aca-
demic. The ICUs are geographically well distributed over
the Netherlands.
The CDSS system that is compatible with MetaVision

ICU, and available since January 2012, is the Medication
Interaction Module (MiM, ItéMedical®). The use of MIM
within MetaVision ICU is optional. Five out of the nine
participating ICUs already use MiM in Metavision ICU
for four to six years before the start of the trial. The
MiM can produce two types of medication alerts at the
point of prescribing: pDDI alerts and duplicate orders
alerts. Each ICU can set the (severity) level at which
MiM provides alerts. The pDDI knowledge base inte-
grated in MiM is the so-called G-standard. The G-stand-
ard is an evidence-based professional database for the
management of medication alerts, developed and main-
tained by a working group of the Scientific Institute of
Dutch Pharmacists. [8] The G-standard is used in most
Dutch hospitals as the underlying knowledge base for
decision support. For each pDDI, the working group as-
signs a severity and evidence level based on Summary of
Product Characteristics and literature. Furthermore, the
working group also provides a summary of interaction
mechanism and recommendations on how to handle
medication alerts (e.g. by monitoring of laboratory
values). This situation is unique, as in many other coun-
tries, the development and maintenance of CDSS know-
ledge bases for medication are not organized at a
national level. In the G-standard, medications are repre-
sented by generic product codes. The generic product
code describes medication on the pharmaceutical level,

based on the following pharmaceutical characteristics:
active ingredients, strength, dosage form and route of
administration [28]. All pDDIs are enlisted in the G-
standard as pairs of generic product codes. The G-stand-
ard however originates from the outpatient setting and
is not tailored to the ICU setting.

Patient eligibility criteria
Patients over the age of 18 years admitted to the ICU
having any administered medications during their ICU
admission will be included.

Establishing clinically relevant pDDIs
To determine which pDDIs are clinically relevant for the
ICU setting, we will apply a modified Delphi procedure,
in which an expert panel of intensivists and hospital
pharmacists will assess the clinical relevance of pDDIs.
The pDDIs to be assessed will be selected from the G-
standard according to their frequency in the ICU and
the assigned severity level. In essence, a pDDI is defined
as clinically relevant for the ICU setting when non-
standard monitoring for possible pDDI effects is re-
quired, or the pDDI should always be avoided. The
modified Delphi procedure will be based on the RAND
method [29], and will consist of an online questionnaire
and expert panel meeting.

Intervention
Our intervention consists of a version of the MiM that
will only provide alerts for pDDIs considered clinically
relevant in the ICU, according to our Delphi procedure.
pDDI alerts considered not clinically relevant for the
ICU will be turned off. This MiM version tailored to the
ICU setting will be called MiM+. Our hypothesis is that
alert fatigue can be reduced by MIM+, as the set of
pDDIs for which alerts are provided at the point of pre-
scribing, will be restricted and more specific for the ICU
setting.
In the four participating ICUs that do not use the

current MIM CDSS for pDDIs, the MiM+ software will
be installed. Duplicate order alerts will not be shown in
these four ICUs.
In the five ICUs that already use MiM as CDSS for

pDDIs, MiM+ will start operating in these ICUs during
the intervention phase. However, pDDI alerts not
assessed during our Delphi procedure and for which an
ICU gets alerts according to its current alert level set-
ting, will not be changed. Furthermore, other types of
alerts such as duplicate order alerts will also not be
changed by our intervention. In short, the ICUs with a
MiM CDSS will experience change in the alerts that
were assessed in the Delphi rounds, in the sense that
alerts for the pDDIs deemed irrelevant will be sup-
pressed. All participating ICUs will receive an on-site
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training for the prescribing physicians about MiM+
given by a researcher involved in this study.
Apart from this intervention, all participating ICUs

will receive two performance feedback rapports before
MiM+ implementation. In these reports, results of a
retrospective analysis of medication administration data
on the occurrence of pDDIs will be included. The results
will include pDDI occurrence over one year for the spe-
cific ICU, benchmarked against the other participating
ICUs.

Qualitative evaluation
Success of CDSS interventions is partly dependent on
human factors such as user expectations and acceptabil-
ity, and system usability [30]. Therefore, in order to bet-
ter understand why MIM+ worked or not afterwards, we
also will conduct a qualitative evaluation before and after
MiM+ implementation. For this evaluation, a mixed
method approach will be used including semi-structured
interviews with users, observations of users handling
pDDI alerts and a survey among ICU physicians. In
Fig. 2, an overview of this study over time can be found.

Stepped-wedge design implementation
In our study, each ICU represents one cluster and the
MIM+ is rolled-out over nine steps of one month each
(see Fig. 3). At each step, one cluster will start with the
MIM+. Maximum power for a given number of clusters
is achieved when each cluster has its own step [22]. The
total duration of the trial is ten months. Whenever an
ICU starts with the MIM+, the first month will be con-
sidered a pilot month, in which small, local changes to
the MiM+ will be allowed. For example, an ICU could
argue for the inclusion of an alert for an extra pDDI that
was not included in the MiM+ or to discard a pDDI
alert from the MiM+. This will be allowed, because the
type of patients and medications can differ between
ICUs and this could lead to different needs for pDDI
alerts. We hypothesize that such local limited tweaking

will rarely happen but can positively influence system ac-
ceptance [30].

Study outcomes
The primary outcome of this study is the incidence of
clinically relevant pDDIs per 1000 medication adminis-
trations. To be able to compare our results to other
studies, we also defined secondary outcomes. These are
the number of pDDIs per patient, the number of clinic-
ally relevant pDDIs per patient, the proportion of pa-
tients admitted to the ICU with at least one pDDI, and
the proportion with at least one clinically relevant pDDI
[9]. Other secondary outcomes are ICU length of stay,
the override rate of clinically relevant pDDI alerts and
the number of ADEs related to DDIs per 1000 medica-
tion administrations. In Table 1 definitions of study out-
comes are described. These definitions are in line with
previous studies [5, 8].
In addition, we will also measure the proportion of ap-

propriately handled clinically relevant pDDIs. This is an
important outcome, specifically in the ICU setting,
where the patient is in a critical condition and some-
times the risk of prescribing interacting medications is
subject to the need for treatment [17]. Furthermore, if
prescribing a pDDI cannot be averted, there are several
management strategies to keep the potential harm to a
minimum. Management strategies include for example
monitoring laboratory values such as creatinine, potas-
sium, therapeutic drug monitoring and adjustment of
medication dosage [8]. Because of this, it is not only im-
portant to know whether a reduction in the number of
clinically relevant pDDIs has occurred, it is also import-
ant to know how many pDDIs occurred that were han-
dled appropriately, for example by conducting
therapeutic drug monitoring.
To assess whether a clinically relevant pDDI alert is han-

dled appropriately or not, for each clinically relevant pDDI
we will list the possible management strategies based on
the recommendations available in the G-standard. A pDDI

Fig. 2 Timeline of different components of this study

Bakker et al. BMC Medical Informatics and Decision Making          (2019) 19:159 Page 5 of 10



will be considered as handled appropriately if there is ‘evi-
dence in the data’ that one or more of the defined manage-
ment strategies has been implemented based on
medication, laboratory and ECG data of the patient.

Data collection
To assess the effect of our intervention on the primary
and secondary outcomes, and to gain insight in pDDI
type and occurrence for the purposes of our Delphi pro-
cedure, we will use routinely recorded data extracted
from MetaVision ICU, MiM/MiM+, and the NICE
registry.
Data covering all ICU admissions in the period from

at least one month prior to the MIM+ implementation
up to one month after the intervention period will be
extracted. All data from Metavision ICU and MiM/
MiM+ will be collected at the patient level using a coded
admission number of the patient as an identifier. This
coded admission number cannot be used to identify a

specific patient. The following routinely recorded data
from Metavision ICU will be extracted: medication or-
ders, orders for an electrocardiogram (ECG) and labora-
tory orders. Medication orders will include the name of
the ordered medication, generic product code of the
medication, dosage and frequency, validation of the
order indicating whether the medication order was actu-
ally administered, the start and end time of the order,
and whether or not the order was cancelled. In MetaVi-
sion ICU, each administration is registered separately.
These data are necessary to assess the primary outcome:
the occurrence of clinically relevant pDDIs per 1000
medication administrations. Laboratory orders will in-
clude name of test ordered, date and time of the order,
and for results of the test. ECG orders will include date
and time of the order. ECG and laboratory data together
with medication data are necessary to assess if, following
a pDDI alert, appropriate management strategies were
employed (secondary outcome: appropriately handled

Fig. 3 Timeline of stepped-wedge trial

Table 1 Overview of study outcomes

Study outcomes Definition

pDDI Two potentially interacting medications administered concomitantly which could result in an actual DDI.

Clinically relevant pDDI A pDDI considered clinically relevant for the ICU setting, according to the results from our Delphi procedure.

ADE related to DDI A DDI that resulted in patient harm.

Appropriately handled
pDDI

Two potentially interacting medications were administered concomitantly (pDDI), but there is evidence that adequate
measures were taken to prevent patient harm or diminish the risk of patient harm.
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clinically relevant pDDIs) and to assess whether ADEs
occurred (secondary outcome: number of ADEs related
to DDIs per 1000 medication administrations).
The following routinely recorded data from MiM and

subsequently MiM+ will be extracted: all (clinically rele-
vant) pDDI alerts that were produced, date and time of
the alert, which medication (name and generic product
code) was involved, if the alert was overridden or not,
and if entered by the user, the reason for overriding the
alert. These data are necessary to assess the secondary
outcome: override rate of (clinically relevant) pDDI
alerts per 1000 medication administrations.
To detect (clinically relevant) pDDIs in the medication

orders data, we will develop a computerized algorithm
based on the pDDI rules from the G-standard. This al-
gorithm will then be applied to medication order data
from the participating ICUs. Only validated medication
orders, i.e. medication orders that were actually adminis-
tered, will be considered. In addition, each separate
administration for a specific drug will be attributed to
one composite medication administration if the time gap
between separate administrations does not exceed a spe-
cific amount of time, such as 24 h (regardless of the
route of administration).
A second developer will validate the algorithm. To as-

sess the number of ADEs related to DDIs per 1000
medication administrations, we will develop computer-
ized ADE triggers. Triggers are sentinel words or events
that may point to the occurrence of an ADE, such as in-
creased or decreased laboratory values, ordering an ECG
or prescribing an antidote [31]. The triggers that we
develop and ADEs identified by these triggers will be
published along with the results of this study.
In addition to data from Metavision ICU and MiM/

MiM+, we will also use data submitted to the NICE
registry by the participating ICUs. These data include
clinical, physiological and demographic data required to
calculate outcomes such as ICU length of stay, hospital
length of stay, hospital mortality, and expected mortality
based on disease severity predicted from clinical data of
the first 24 h of ICU admission [27]. Data from Metavi-
sion ICU, MiM/MiM+ can be linked with NICE registry
data using the earlier mentioned unique coded admis-
sion number.

Data validation
All extracted data will be validated. Validation consists
of automated checking for missing values and outliers.
Missing values will be reported in the results. Outliers
will be investigated and in case of obviously incorrect
measurement or entry mistake, outliers will be dropped.
Only data that can be linked to the NICE database will
be included in the analysis, but in essence every

admission in any of the participating ICUs should cor-
respond to an admission in the NICE registry.

Sample size
To calculate power of our stepped-wedge trial, the statis-
tical software PASS 15.0.4 (NCSS LLC., Kaysville, UT)
was used. The calculation considers the following fac-
tors: the number of steps, the size of the steps, the num-
ber of clusters per step, the number of medication
administrations per cluster per step, the anticipated im-
provement of the intervention, the estimated event rate,
and the estimated intra-cluster correlation (ICC).
The anticipated improvement was defined as the over-

all difference in the number of clinically relevant pDDIs
per 1000 medication administrations before and after
the MiM+ implementation. We estimate an average rela-
tive reduction of 20% in all participating ICUs. Accord-
ing to a systematic review assessing effects of IT-based
interventions on outcomes related to DDIs, relative re-
ductions ranging from 15 to 29% have been reported [9].
Based on preliminary analysis of medication data ex-

tracted from 5 out of the 9 participating ICUs and one
ICU that does not participate in the MiM+ component
of the intervention, the number of clinically relevant
pDDIs per 1000 medication administrations was esti-
mated to be 42.0 (event rate). With a relative reduction
of 20%, the event rate after the intervention is therefore
estimated to be 33.6. As an indicator of face validity, a
senior intensivist who is involved in the study, consid-
ered that a 20% relative reduction from 42.0 is clinically
relevant. With a sample of 9 clusters in a stepped-wedge
cluster-randomized design with 10 time periods, 9 steps,
and one cluster switching from control to intervention
at each step and an average number of 6000 medication
administrations per cluster, with an average of 600 medi-
cation administrations per cluster per time period, calcu-
lations show 83% power to detect a relative reduction of
20%, considering an estimated intra-cluster correlation
of 0.12. The calculations are based on the Poisson distri-
bution, the test statistic used is the two-sided Wald Z-
Test and the significance level of the test is 0.05.

Statistical analysis
Depending on the distribution of variables, descriptive
statistics will be presented as mean and standard devi-
ation, median and IQRs, or percentage as appropriate.
Continuous variables will be compared using the t-test
or Mann-Whitney test. Categorical variables will be
compared with a Chi squared test or Fisher’s exact test.
To assess the effect of tailoring pDDI alerts to the ICU
setting on the number of pDDIs per 1000 medication
administrations we will analyse data from the stepped-
wedge trial, adjusting for data clustering and for tem-
poral trends if necessary. A generalized linear model will
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be fitted with correction for clustering via generalized
estimating equations. To adjust for possible confounding
patient characteristics (age and disease severity) and
other variables (such as the previous use of MiM prior
to MiM+) will be considered for addition in the model
as covariates. We anticipate that most DDIs will occur
around the third day of admission, because by that time
chronic home medication often is restarted in the ICU
while medication typically prescribed in the ICU is still
prescribed [32].
All analyses will be performed according to the

intention-to-treat principle. For hypothesis testing a
probability level of less than 0.05 will be considered sta-
tistically significant. All statistical tests will be two-sided.
The R statistical software environment will be used for
the analyses.

Harm
We do not anticipate any harm to the study population
caused by our interventions.

Protocol amendments
Important protocol modifications will be communicated
to the appropriate parties, such as the participating
ICUs, trial registry or the Medical Ethics Committee.

Confidentiality
Only pseudonymized data will be extracted from Meta-
Vision ICU, the MiM and MiM+. For that purpose, each
ICU admission will be assigned a coded admission num-
ber as a unique identifier. This number is meaningless
outside the ICU and the NICE registry. With each par-
ticipating ICU we will draw an agreement considering
data sharing and data extraction arrangements. All data
will be stored according to data management policy pre-
vailing in our organization and will be accessible only by
authorized trial investigators.

Dissemination policy
Study results will be communicated via scientific publi-
cation and presentations during conferences as well as
via newsletters to the participating ICUs.

Discussion
Our study has several strengths. First, this is a large
multi-center study with a stepped-wedged randomized
controlled study design. In this study, different types of
data are combined, such as medication data and labora-
tory data and these data can be linked with data from
the NICE registry. In addition to our primary outcome,
we use secondary outcomes and are able to compare our
results with other studies. Moreover, besides counting
the number of pDDIs, we investigate whether or not the
pDDI was handled appropriately. The stepped-wedge

design is a powerful design that is comparable to a paral-
lel cluster randomized controlled trial design. When the
number of measurements within the clusters are large,
as in our case, the stepped-wedge design will be more
powerful than a parallel design [23]. Second, by involv-
ing future users of the MiM+ in the Delphi procedure to
assess which pDDIs are considered clinically relevant in
the ICU setting, acceptance of the MiM+ is more likely
[30, 33]. Third, by using routinely registered data, this
study imposes no extra registration burden to the ICUs
and the data reflects daily practice. Fourth, the effective-
ness of sociotechnical implementations depends on the
organizational and cultural setting in which it is imple-
mented. [30] By performing a qualitative evaluation, we
will have a better ability to explain the effects of tailoring
pDDI alerts to the ICU setting. Lastly, our hypothesis
that tailoring pDDI alerts to the ICU setting will im-
prove pDDI prevention is founded on Reason’s model of
accident causation applied to drug-safety alerting [16].
By using a theoretical model, we build on existing know-
ledge and are able to explore the underlying mechanisms
of alert effectiveness described in this theory.
There are also limitations. Adjusting the pDDI know-

ledge base of a CDSS is not the only factor that has
potential to reduce alert fatigue. There are other factors
influencing alert fatigue, such as timing and design of
the alert, which will not be investigated in this study
[13]. However, as all ICUs in this study will use the same
CDSS, we expect these other factors to be equal in all
participating ICUs. Furthermore, the presence of other
alerts, such as duplicate order alerts, may increase alert
fatigue and thereby potentially diminish the effect of our
intervention.
Lastly, consensus methods such as our Delphi proced-

ure contain certain methodological issues such as bias in
the selection of participants, and subjectivity in the
judgements of expert panel members. To ensure experts
involved are representative for the Dutch ICU care, we
will not only invite experienced intensivist and hospital
pharmacists from the participating hospitals but also
from Dutch hospitals not participating in the trial. By
using a scoring instrument and live panel discussion, we
aim to limit subjectivity in judgments about clinical rele-
vance of pDDIs.
As with cluster randomized trials in general, stepped-

wedge designs require larger sample sizes because
patients may be similar within one cluster. Even though
randomization improves the balance of important char-
acteristics across study arms, with a small number of
clusters as in our study, such a balance cannot be en-
sured [22]. A second methodological limitation is the
potential for confounding by temporal trends. Compari-
sons of outcomes between earlier and later periods may
be influenced by background changes that affect the
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outcome of interest, irrespective of the intervention [22].
We believe that given the relatively short study period of
10 months this risk is limited.
Although in this study, for practical reasons, we use

specific CDSS software (MiM+), the knowledge gained
about which pDDIs are clinically relevant to the ICU
can be used in any other type of CDSS. Therefore, if suc-
cessful, implementing our set of clinically relevant
pDDIs should be beneficial in other ICUs, also outside
the Netherlands, as frequently occurring pDDIs in the
ICU setting seem comparable between countries [34].
Our results may also encourage caregivers from other
settings, and developers of CDSSs, to establish a pDDI
knowledge base for a specific setting of patient group,
for example for pediatric or oncology care.

Conclusion
Use of CDSSs to aid clinicians in safe medication
prescribing is becoming standard in healthcare [9]. How-
ever, CDSSs still have important limitations, notably to
alert fatigue and high override rates [3, 10]. The sensitiv-
ity and specificity associated with the underlying know-
ledge base used in the CDSS are important factors
linked to alert fatigue and hence to CDSS effectiveness
[12]. Our trial will contribute to the current knowledge
and understanding of the effectiveness of CDSS on, spe-
cifically, pDDI prevention in the ICU setting, and more
globally to the potential gains obtained by improving the
specificity of alerts in other settings. Our results may
contribute to knowledge necessary for successfully opti-
mizing CDSSs for pDDI prevention and other domains.
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