

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Sep 17, 2019

Insight into the IEEE 802.1 Qcr asynchronous traffic shaping in time sensitive network

Zhou, Zifan; Berger, Michael Stübert; Ruepp, Sarah Renée; Yan, Ying

Published in:
Advances in Science, Technology and Engineering Systems Journal

Link to article, DOI:
10.25046/aj040128

Publication date:
2019

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Zhou, Z., Berger, M. S., Ruepp, S. R., & Yan, Y. (2019). Insight into the IEEE 802.1 Qcr asynchronous traffic
shaping in time sensitive network. Advances in Science, Technology and Engineering Systems Journal, 4(1),
292-301. https://doi.org/10.25046/aj040128

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/227558501?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.25046/aj040128
https://orbit.dtu.dk/en/publications/insight-into-the-ieee-8021-qcr-asynchronous-traffic-shaping-in-time-sensitive-network(da152c1e-6584-41ac-b201-ff161b89e8d4).html
https://doi.org/10.25046/aj040128

Advances in Science, Technology and Engineering Systems Journal
Vol. 4, No. 1, 292-301 (2019)

www.astesj.com

ASTES Journal
ISSN: 2415-6698

Insight into the IEEE 802.1 Qcr Asynchronous Traffic Shaping
in Time Sensitive Network

Zifan Zhou*, Michael Stübert Berger, Sarah Renée Ruepp, Ying Yan

Department of Photonics Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark

A R T I C L E I N F O A B S T R A C T

Article history:
Received: 20 December, 2018
Accepted: 12 February, 2019
Online: 26 February, 2019

Keywords:
Network Traffic Shaping
Time Sensitive Network
Latency Critical Transmission

TSN is an attractive solution for latency-critical frame transmission built
upon IEEE 802 architecture. Traffic scheduling and shaping in TSN aim
to achieve bounded low latency and zero congestion loss. However, the
most widespread solution (i.e. Time-Aware Shaper) requires a network-
wide precision clock reference and only targets on cyclical traffic flows.
This paper focuses on the performance evaluation of the ATS, which
applies shaping algorithm to any flows and requires no clock reference.
Simulations are proposed for evaluation and comparison. Metrics includ-
ing end-to-end delay, buffer usage and frame loss rate are collected to
assess the shaping performance. Results show that ATS achieves effective
traffic shaping and switching without synchronous mechanisms, while
there is an evident trade-off for using these specific algorithms.

1 Introduction

To facilitate the information exchange in the network
world, diverse devices and network technologies were
introduced over the years, the communication has now
become more comprehensive and autonomous. The
increase of interconnecting level within the network
system cause an explosive growth of network traffics.

The utilization of Internet of Things (IoT) and Cy-
ber Physical System (CPS) in industrial domain bring
about the concept of Industry 4.0, the industrial net-
works are now a mixture of field bus system, Ethernet
approaches and wireless solutions [1]. In mobile com-
munication networks, centralized baseband process-
ing and cloud service, i.e. Centralized-Radio Access
Network (CRAN) and Cloud-Radio Access Network
(Cloud-RAN) are introduced to the access network
between devices and radio transceiver [2][3], regard-
ing as a typical approach to achieve Fifth Generation
(5G) mobile network [4]. Accordingly, distributed data
transmission turns into be more integrated, it becomes
more challenging to fulfill the stringent transmitting
requirements for time-sensitive flows.

Having the development of the network applica-
tions in mind, it is a prerequisite condition to build a
fundamental transmission network which is capable
of providing appropriate services. The ongoing works
of Time Sensitive Network (TSN) aim to enhance stan-
dard Ethernet to fulfill the need for deterministic, re-
liable and efficient communication. TSN comprises a

set of standards, as a part of work in the IEEE 802.1
working group, this work originated from the Audio
Video Bridging (AVB) standards, it provides services
of bridging, network management and building real-
time transmission over Ethernet within a LAN or MAN
domain, different features are defined in separated
standards to ensure the performance from several per-
spectives.

One of the primary features in TSN is the tim-
ing synchronization, where all nodes and end stations
within a TSN domain are set by a common timing sig-
nal. Relying on the synchronization, general traffic
scheduling and shaping in TSN enhances the delivery
of frame with high predictability, namely, the time in-
stance when each transmission occurs is guaranteed
in the network. However, it raises strict requirement
on the precision of global timing mechanism - any tim-
ing misalignment possibly imposes failures to the net-
work. Thus high complexity is required for implemen-
tation and maintenance. Time-triggered scheduling
and shaping also requires a consistent and recurrent
egress gate behavior and it has to be synthesized be-
fore flows are transmitted from the source, thus the
synchronous scheduling and shaping procedure only
applies to a subset of traffic flows arrive periodically.

The Asynchronous Traffic Shaping (ATS) project
is created by the IEEE 802.1Qcr working group [5].
It is an approach designed without any dependency
on network-wide planning, cycle synchronization or
time-triggered actions, while the purpose is to provide

*Corresponding Author: Zifan Zhou, Department of Photonics Engineering, Technical University of Denmark, zifz@fotonik.dtu.dk

www.astesj.com 292
https://dx.doi.org/10.25046/aj040128

http://www.astesj.com
http://www.astesj.com

Z. Zhou et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 1, 292-301 (2019)

deterministic and relatively low transmission delay for
general time-sensitive flows and has no requirements
on the traffic pattern. An Urgency-Based Scheduler
(UBS) solution was proposed at an early stage of de-
velopment [6], which contains two algorithms based
on the Rate-Controlled Service Disciplines (RCSDs)
[7], besides, a concept of Paternoster scheduling is also
included in the 802.1 Qcr web page [5]. At the time of
writing, a new ATS algorithm is included in the latest
version of the draft standard, all of these algorithms
are involved in this paper. The main contributions of
this paper are summarized as follows:

• Elaborating the principles of ATS by designing
relatively accurate models and measuring the
performance in simulation scenario. All mod-
els are built in software modeler that describes
network topology and functionalities.

• Collecting the average per-hop delay, buffer us-
age and frame loss rate deriving from simula-
tions. Based on the results, comparisons are done
between all ATS approaches, also the models
are set with different configurations to optimize
scheduling utilization.

2 Related work

To the best of our knowledge, few paper have perfor-
mance evaluation of ATS algorithms through software
simulation. The synchronous scheduling has been men-
tioned in many works, most of them indicate that it is
essential to apply scheduling to provide time-sensitive
services. On the other hand, existing researches on
ATS accomplish the theoretical analysis on the features
of ATS, in this section, a few works that are relevant
with the analysis, measurement and modeling of TSN
scheduling are included.

2.1 Researching on traffic scheduling in
TSN

Some works in the literature elaborate the require-
ments and implementation of the real-time scheduled
traffic in TSN networks. For instance, references [8]
and [9] give examples of applying Ethernet and sched-
uled TSN to in-vehicle and wireless communication
systems, emphasizing the importance of scheduling.
The evaluation in [8] proves that Ethernet is able to
transport the traffics mixing of different vehicle func-
tions but scheduling is necessary in the overload situ-
ations. In [9], results show that it is difficult for con-
ventional Ethernet to fulfill the jitter requirements
of Common Public Radio Interface (CPRI), while this
problem could be solved by implementing enhanced
scheduled traffic.

Multiple time-sensitive flows usually co-exist in the
same network, taking into account the mutual interfer-
ence among these flows, G. Alderisi et al proposed a
temporal isolation of flows that refer to the same traffic

class[10]. The work comprises of simulations of sched-
uled traffic in Audio Video Bridging (AVB) network,
the traffic scheduling is driven by strict priority and
off-line configuration. The results show that the tempo-
ral isolation between Scheduled Traffic (ST) and other
traffic classes guarantees low and predictable latency
for ST class.

The procedure of configuring synchronous schedul-
ing is considered to be time-consuming, in [11], a
graphical network modeling tool was designed to auto-
mate synthesis of gate control list in TSN scheduling, it
is able to convert user-defined flow, topology and Qual-
ity of Service (QoS) to the constraints for synthesis.
The tool applies object-oriented modeling, logic pro-
gramming and Satisfiability Modulo Theories (SMT)
to achieve automation of synthesis, it also simplifies
the procedure for configuration. In [12] and [13], two
performance analysis of real-time Ethernet are intro-
duced. In [12], the evaluation of AVB standards are
carried out in a simulation environment, and it shows
the interfering flows have limited influence on the la-
tency of AVB flows and the latency of the flows are
constrained by size of payload. And in [13], an ex-
perimental setup is proposed to analyze the latency
and jitter of synchronous traffic scheduling in TSN.
The results in this work also indicates that the latency
and jitter of scheduled traffic are independent from
unscheduled traffics, besides, it is worth mentioning
that the network stack software of end station has a
strong effect on the behavior of critical periodic traffics
in such experimental environment.

A prototype real-time Ethernet switch is proposed
in [14], the switch provides real-time communication
based on a time-triggered schedule. The switch sup-
ports frame transmission with a network-coherent time
line and online administration control, and it enforces
isolation of three different traffic classes so as to pre-
vent any interference from non-time-sensitive traffic.
A hardware/software co-design concept of Ethernet
controller is presented in [15], the controller is par-
titioned into communication and application compo-
nents, dedicated modules are allocated to critical trans-
mission to fulfill timing requirement and reduce the
load of microcontroller. The results show that the
hardware extension of Ethernet controller significantly
reduces the working load of software communication
stacks, especially with a mixture of scheduled and non-
scheduled traffics. With the controller, the jitter of
time-scheduled transmission can be improved sharply.

2.2 Relevant work on ATS

One of the most significant metrics to evaluate TSN
networks is the worst-case delay, the calculation of ATS
delay bounds in [6] does not account for accumulative
burstiness of the same traffic class. E. Mohammadpour
et al. proposed a performance evaluation of ATS and
Credit Based Shaper (CBS) in [16]. Firstly, the delay
calculation included in [6] is extended in this paper, in
regard to generic features of TSN. Moreover, backlog
bounds of buffers are given based on network calculus.

www.astesj.com 293

http://www.astesj.com

Z. Zhou et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 1, 292-301 (2019)

A relatively stringent end-to-end latency bound of TSN
is computed instead of adding up the bounds calcu-
lated at every switch on the path. The work increases
the tightness of upper bound of end-to-end delay in
TSN network and benchmarks a theoretical analysis
for such a network.

In order to achieve the flexibility of ATS by aggre-
gating flows and assign separate priority level at each
hop, the synthesis of ATS becomes a more complicated
process, in terms of forwarding flows to queues and
assigning priority levels to queues. In [17], Johannes
and Soheil present a SMT based solution along with a
topology rank, cluster based heuristic of this method.
The work demonstrate that with the SMT method, it is
feasible to find an existed solution of synthesis and the
Topology Rank Solver (TRS) heuristic reduces the com-
putational effort to achieve the method significantly.

3 Asynchronous Shaping

3.1 Modules and Architecture

As depicted in Figure1, the switch with asynchronous
shaping implements an independent clock that does
not synchronize with other switches. For a given
queue that supports asynchronous shaping, flows sent
out from the queue are shaped by a bonded shaper,
which calculates eligibility time and assigns the time
to frames, the time are then used for traffic regulation
by the transmission selection algorithm, a frame is eli-
gible for transmission if the assigned eligibility time is
less than or equal to the current time. The flow shaping
actions are implemented through an open/closed gate
control instance attaching to the queue: the gate for
the specific queue will be opened when the frame in
that queue is eligible to be transmitted. The algorithms
used for calculating eligibility time is described in the
following sections.

Figure 1: Architecture of ATS switch

Transmission latency usually comprises of link
propagation delay and intermediate devices delay, a
desirable queuing discipline should reduce effectively
the storage delay in the devices. In the UBS proposal,
a queuing hierarchy is introduced to the ATS pipeline,
as Figure2 shows, the queuing framework contains:
(1) per-flow shaped queues, which are classified ac-

cording to the identification of the frame, e.g. flow ID,
traffic class and flow destination address (2) Shared
queues, which merge frames with the same internal
priority level and egress port but are transmitted from
different shaped queues, in shared queue, frames are
transmitted based on the First Come First Serve (FCFS)
principle.

Queuing schemes for input frames are defined as
[6]: QAR1: frames from different transmitters are not
allowed to be stored in the same shaped queue. QAR2:
frames from the same transmitter but not belong to
the same priority in the transmitter are not allowed to
be stored in the same shaped queue. QAR3: frames
from the same transmitter with the same priority in
the transmitter, but not belong to the same priority in
the receiver are not allowed to be stored in the same
shaped queue.

Figure 2: Architecture of ATS switch

The main purposes of implementing these queuing
schemes are to enable flexible configuration among
different flows, and to fulfill network services from
various network domains and administrators.

According to the queuing schemes, the minimum
number of shaped queues is limited by the number of
ports in device. An n-port node needs at least n − 1
mandatory queues to fulfill QAR1 scheme.

Basically, scheme QAR2 and QAR3 achieve the
separation of flows on a priority base, which enable
frames with higher priority can bypass the lower-
priority frames, to ensure the transmission delay of
high-priority flows will not be affected by interfering
flows. The isolation of queuing brings benefit to pre-
vent the propagation of malicious flows, assuring that
the ordinary flows will not get influence, it also en-
ables flexible operations according to administrative
requirements e.g. flow blocking or transmitter block-
ing. Considering asynchronous shaping, due to the
classification of frame queuing, the shaper is able to
conduct more granular operations based on larger scale
of in-queue frame state. Thus ATS could lessen the
queuing time of time-sensitive frames and achieve fast
forwarding.

3.2 UBS algorithms

In order to achieve asynchronous shaping and keep
low storage delay, an interleaved scheduling algorithm
is introduced in UBS. Two approaches deriving respec-

www.astesj.com 294

http://www.astesj.com

Z. Zhou et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 1, 292-301 (2019)

tively from frame-by-frame leaky bucket algorithm
and token-based leaky bucket algorithm [7] are intro-
duced: Length-Rate Quotient (LRQ) and Token Bucket
Emulation (TBE). Both algorithms enable the shaper
with a constraint on the rate of input and output flow
as:

li(d) ≤ b+ d · r (1)

Where li donates the accumulative amount of trans-
mitted bits, as a function of the time; b is the size of
burstiness; d and r are the time duration and data
rate, the constrain can be regarded as a benchmark
for mixed traffic network without interaction among
different flows.

LRQ and TBE are both designed for asynchronous
shaping in TSN, however differ in the shaping con-
cept. The principle of LRQ is to shape the traffic flow
with a stable transmitting/leaking rate, regardless of
the incoming flow pattern, it is able to convert bursty
flow or flows with any pattern to stable, constant and
distributed output flows. On the other hand, in the
TBE method, the shaper controls the traffic flow with
an average rate while allows a certain level of burst,
namely, as long as sufficient number of "token" exists in
the "bucket", a transmission can therefore get started
immediately.

Instead of scheduling synchronously on timing ba-
sis, each asynchronous shaper keeps an local eligibil-
ity time to indicate when next frame is allowed to be
transmitted. For LRQ algorithm, the eligibility time is
calculated as the quotient between the size of the pre-
viously transmitted frame and the reserved link rate
of the particular class, as shown in the pseudo code:

Algorithm 1 LRQ algorithm Pseudo code

1: /* Initialization */

2: for i in (0 : I) do
3: f low[i].timestamp = 0
4: end for
5: /* Shaping */

6: while true do
7: if queue[i].size > 0 then
8: f = queue[i].head
9: L = f .length

10: i = f .index
11: ti = f low[i].timestamp
12: end if
13: if tnow ≥ ti then
14: output f from queue
15: ti = tnow + (L/ri)
16: end if
17: end while

The shaper updates the per-flow state every time
a transmission is finished. Consequently, the LRQ
shaper forces a time vacancy between frames and
closes the gate for the shaped queue until next frame
gets eligible for transmission, so that it keeps a stable
average output rate. For TBE, the eligibility time is

calculated as the time it needs to accumulate enough
"tokens", as shown in the pseudo code:

Algorithm 2 TBE algorithm Pseudo code

1: /* Initialization */

2: for i in (0 : I) do
3: f low[i].timestamp = 0
4: f low[i].token = Burstsize
5: end for
6: /* Shaping */

7: while true do
8: if queue[i].size > 0 then
9: f = queue[i].head

10: L = f .length
11: i = f .index
12: ti = f low[i].timestamp
13: Ki = f low[i].token
14: end if
15: if Ki + (tnow − ti) ∗ f low[i].bitrate ≥ L then
16: output f from queue
17: ti = tnow

18:
Ki = min(Burstsize, Ki + (tnow − ti) ∗ f low[i].bitrate)

−L
19: f low[i].timestamp = ti
20: f low[i].token = Ki
21: end if
22: end while

In principle, TBE algorithm could increase the uti-
lization of network resources than LRQ, especially in
the case when the network is lightly loaded, since in
TBE algorithm, the spacing time between two adjacent
frames is not added every times, unless the token level
of the flow is less than the pending frame.

Accordingly, the state of output gate relies on cur-
rent number of "token" in the per-flow "bucket": if the
length of pending frame exceeds the current amount
of "token", the shaper has to shut down the gate until
the number of "token" increases with time and accumu-
lates to an enough amount. Therefore, the TBE shaper
allows a limited extent of bursty flow when the number
of token is sufficient.

3.3 ATS algorithm

In the recently proposed draft of ATS standard[5], a
new shaping approach is included. Basically, the ap-
proach is also derived from Leak Bucket algorithms,
including the concept of token bucket which is used to
constrain the output rate of flows, preventing bursty
flows spreading along the path. A local system clock
function determines the selectability time per frame,
which is the time when the frame is queued and avail-
able for transmission selection. All frames that reach
their selectablity time are selected for transmission
in ascending order of the assigned eligibility times.
Any frame may experience an additional, non-negative
processing delay between its arrival time and its se-
lectability time. This delay may vary per frame, thus

www.astesj.com 295

http://www.astesj.com

Z. Zhou et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 1, 292-301 (2019)

there is a delay vatiation over a sequence of frames.
The pseudo code of ATS algorithm is shown below:

Algorithm 3 ATS algorithm Pseudo code

1: /* Initialization */

2: Teligibility = 0
3: TbucketFull = 0
4: TgroupEligibility = 0
5: TbucketEmpty = −(burstSize/rate)

6: /* Frame Processing */

7: DlengthRecover = f rame.length/rate
8: DemptyT oFull = burstsize/rate
9: TshaperEligibility = TbucketEmpty +DlengthRecover

10: TbucketFull = TbucketEmpty +DemptyT oFull

11:

Teligibility =max(Tarrival ,

TgroupEligibility ,

TshaperEligibility)
12: /* Shaping */

13: if Teligibility ≤ (Tarrival +MaxT ime/1.0e9) then
14: TgroupEligibility = TshaperEligibility

15:

T bucketEmpty = (Teligibility < TbucketFull) ?

TshaperEligibility :

TshaperEligibility + Teligibility − TbucketFull ;
16: AssignAndP rocessd(f rame,Teligibility)
17: else
18: Discard(f rame);
19: end if

The bucket full time is the time instant when the
bucket is full with tokens, the size of bucket is equiv-
alent to the burst size, on the contrary, bucket empty
time is the time when there are no tokens existing in
the bucket. The initial bucket empty time should be at
least empty to full duration before the initial bucket full
time. Basically, the empty to full duration is the duration
needed to fill up the bucket with tokens from empty
to full by the committed information rate. The length
recovery duration denotes the duration that the tokens
are accumulated by a number equaling to the length
of the frame.

Considering a single shaper, the shaper eligibility
time is the time when the number of tokens in the
bucket is more or equal to the frame size. Taking into
account a group of shapers within the same shaper
class, the group eligibility time means the most recent
eligibility time from the previous frame processed by
the shaper in the same class. Max residence time is a pa-
rameter used to limit the time a frame residing in one
node, a frame is valid only within the Max residence
time.

As the code indicates, the calculation of eligibility
time of the frame strongly depends on the size of last
transmitted frame and the arrival time of itself. Dif-
ferent with the TBE algorithm, the eligibility time is
not directly calculated from number of tokens in the
bucket, instead, the bucket full time and bucket empty
time are considered. The ATS algorithm also allows

a certain scope of bursty flows, while for oversized
flow bulk, the shaper will still limit the amount of out-
putting flow to avoid accumulating bigger flow bulk
in the downstream node.

3.4 Paternoster queuing and scheduling

Paternoster algorithm is developed based on a cycli-
cally scheduling approach, Cyclic Queuing and For-
warding (CQF) [18], it provides deterministic and
bounded delay but removes the dependence on syn-
chronous timing. The principle of Paternoster is to im-
plement four cyclic egress queues per class of service
per port, each node and end station has local timing,
and the time is counted in the unit of epoch duration
τ . Four terminologies: prior, current, next and last are
used to describe all epochs and cyclic queues, Table 1
illustrates the mechanism:

Every epoch has an associated current queue, all
incoming frames will be directed to the same current
queue during one epoch unless the queue gets full,
the following frames arrive at the same epoch are for-
warded to the next and last queue as far as next epoch
starts. Frames will be dropped if the volume of frames
exceed reserved storage in all three queues. At the
egress ports, only the current queue works as out-
bound queue per epoch, which means only the cur-
rent queue is allowed to transmit and receive frames
simultaneously.

The length of epoch of each traffic class remains
its consistency within the defined network. Higher-
priority flows are assigned with a shorter epoch to
ensure less delay bound. Transmission of best-effort
flows only fills the remaining bandwidth left from re-
served flows. The best-effort frames will be dropped
if the anticipated transmission time is beyond the cur-
rent epoch. In principle, the length of τ should be
configured to long enough for all reserved transmis-
sion and at least one best-effort frame with maximum
size.

Compared with synchronous scheduling, Paternos-
ter sacrifices some of the delay predictability but re-
moves the synchronous timing signaling. Meanwhile,
it reduces the lower bound of delay and distributes
received frames to four queues, which provides similar
scheduling performance with synchronized schedule
and simplifies the implementation of synchronization.
From the perspective of buffer usage, the division of
queuing in Paternoster offers more available storage
resources, thus guarantee a lower frame loss rate com-
pared with conventional CQF.

www.astesj.com 296

http://www.astesj.com

Z. Zhou et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 1, 292-301 (2019)

The end-to-end queuing delay of Paternoster is in-
dependent of the network topology and interfering
traffics, the primary factor that bounds the delay is
the duration of cycle epoch τ . The best case of end-
to-end delay occurs when frames are forwarded from
and to current queues in all relays, accordingly, the
waiting time in queues is negligible. The minimum
end-to-end delay depends on the number of hops (h)
and processing time. The worst case caused by the sit-
uation where all three queues - current, next and last
are assigned fully with frames. Thus per-hop queuing
delay increases to:

dP _hop ≤ (Q − 1) · τ (2)

Where Q denotes the total number of queues, then
end-to-end queuing delay becomes

dP _ET E ≤ (Q − 1) · τ · h (3)

Therefore, in Paternoster scheduling, frames are
distributed to egress queues in a more sparse manner,
and cut-through transmission is also feasible when the
current queue receives and transmits frames at the
same time, which cannot be done with CQF. These fea-
tures of Paternoster guarantee more accurate per-flow
state to the shaper and enable fast forwarding without
having synchronous timing signaling.

4 Modeling

In this section, models of ATS approaches in a simu-
lation environment are proposed. We used Riverbed
modeler for designing models and running simula-
tions, it is a discrete-event simulation tool providing
performance evaluation for internet technology appli-
cations.

Figure 3: Process domain of traffic generator in Riverbed modeler

In the modeler, behavior of all modules in nodes are
defined by process state machine, a process domain is
usually consisted of multiple states and the execution
of system kernel transits from one state to another as
responding to events have occurred, such as expiration
of timers and frames arrival. Actions and functions are
included inside states. One state could have several
transitions corresponding to different transiting condi-
tions or events. An example process domain of traffic
generator is given in Figure 3.

The modeler supports a multi-layer process hierar-
chy, a root process could create its own child processes,

multiple child processes are allowed to coexist at the
same time, the first generation child processes may
then in turn create new processes, which would be
referred to as second generation. A tree structure of
process relationships are given in Figure4. The simula-
tion kernel provides communication mechanisms that
allow memory sharing among root and child processes,
which is fitting for building the pipeline of queuing
and shaping schemes, in this work, processes in the
simulator emulate different modules in the switch, the
internal forwarding of frames is achieved by passing
the memory among processes.

Figure 4: Process Hierarchy

4.1 Modeling UBS

Based on the root-child process hierarchy, the ingress
modules and functionality in UBS are done in the root
process, which parses the frames and forwards to the
shared queue group, which are a series of child pro-
cesses created by the root, representing the per-flow
shaper associated with each shaped queue, the benefits
of applying this hierarchy for UBS is that each bridge
and end station, from the root process point of view,
has the direct access to every shaper, which means it is
able to monitor and evaluate real-time state of all per-
flow shaping, for instance, it could terminate a child
process of one shaper when there are no more queued
frames, and generates a new process for the shaper
once new frames arrive at the same class of flow.

Figure 5 depicts the root process in UBS. In pro-
cess model, green circles represent forced states and
red circles for unforced states: unforced states allow a
pause between enter and exit executives of the states
during execution, and the process remains suspended
only until invocation causes it to progress into the exit
executives of its current state; On the contrary, forced
state does not allow the process to wait during the exe-
cution, thus forced state starts, finishes both enter and
exit executives immediately.

Figure 5: Process model of UBS

The root process of UBS includes two kinds of in-

www.astesj.com 297

http://www.astesj.com

Z. Zhou et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 1, 292-301 (2019)

terruptions for all the states:

• Packet arrival: external interrupt when new
frames arrive at the ingress port, frames are then
parsed and recognized by an assigned identifi-
cation tag (e.g. VLAN, source and destination
address) in header field and will be forwarded to
the corresponding child process.

• Timer out: internal interrupt scheduled by the
root process itself, two timers are used here: a
shared timer is set to simulate the elapsed time
for the whole transmission procedure of each
frame, from the first bit to the last bit leave
the egress port; another cycle timer is set with
a higher frequency than the shared timer, it is
used for a periodic check on shared queues, since
in the modeler, a process could not detect the
frames being passed from child process to root
process, namely, the timer is used to check pe-
riodically if there are any frames waiting in the
shared queue to be transmitted to egress ports.

Two types of child processes, implementing LRQ
and TBE algorithms respectively, are presented in this
paper. In the simulation, root and child processes both
have the same access to the shared memory, frames
received by the root process will be allocated to the
specific memory block and invoke the corresponding
child process, afterwards the child process extracts the
frames from the given memory address, calculates the
eligibility time and forwards them to the correspond-
ing shaped queue.

For LRQ algorithm, the child processes first need
to get the size of head-of-queue frame, and sets up a
timer lasts for a duration equals to the quotient be-
tween frame size and reserved link rate. A draft of
state machine for LRQ child process is shown in Figure
6.

Figure 6: Child process model of LRQ

A flag is used in the child process to indicate
whether the shaper is being occupied, its value decides
the next state of transition from initial state when child
process receives a new frame. In the case when the last
frame in queue has been completed with transmission,
the child process destroys itself to release the system
resources and also to inform the root process the cur-
rent vacant state of a specific shaper. A timer is used in
child process to implement the time interval between
frames as defined in LRQ algorithm, thus, a frame is
eligible to be transmitted when it becomes head of
the queue and the timer set after the transmission of
previous frame expires.

TBE is achieved by the other type of child process,
similar to LRQ child process, TBE also needs the ac-
knowledgement of frame size to calculate the eligibility
time for transmission in the shapers, however, it is not
necessary to delay the transmission of each frame with
this shaping algorithm, the state of the shaper highly
depends on the token level, the state transitions are
like in Figure 7.

Figure 7: Child process model of TBE

In shaping state, the token level is kept by a vari-
able bi , the level increases with a constant rate of each
shaper, the system kernel updates the state of variable
ti with current time, when an eligible frame is transmit-
ted from the shaper, two possible comparison results
between token level and frame size are considered in
shaping state:

bi ≥ size: forward head-of-queue frame to shared
queue directly

bi < size: start a timer with duration of (size −
bi)/ri once the timer expires the frame is for-
warded

The process model of ATS use the same architecture
as the TBE model, as introduced in this section, the
model contains two major parts: root process and child
process, the former covers the operations such as for-
warding frames to shaped queue and extracting frames
from shared queue, the latter implements the ATS al-
gorithm inside each shaper. Shared memory block
between root and child processes enables the internal
frame transfer inside one node.

4.2 Modeling Paternoster

In the model of Paternoster, the epoch updating is done
by setting a cyclic timer each with duration τ . The
queue indexes of each service class are represented
by four fixed numbers, so that prior, current, next
and last queues are allocated with corresponding num-
bers at different epochs, the number of queue groups
is a configurable option, in this work, two groups of
queues numbered from 0 to 3 and from 4 to 7 stand
for two service classes, 8 shows the state transitions in
the Paternoster model.

www.astesj.com 298

http://www.astesj.com

Z. Zhou et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 1, 292-301 (2019)

Figure 8: Process model of Paternoster

Timer 0 and 1 are set for class 0 and class 1 epochs
updating, every time before transmit frames from cur-
rent queue the shaper has to make sure prior queue is
drained, otherwise it is supposed to dequeue frames
from prior, the remaining frames need to be dropped
if the amount exceeds a specific threshold, if not,
the frames in prior are allowed to be transmitted.
Threshold variables are defined in the model and used
in epoch updating states Update class1 and Update
class0. Additionally, if no transmission happens dur-
ing the epoch updating time and frames exist in the
current queue, the shaper has to launch new transmis-
sion after the update is finished. Thus the functions of
epoch update contains:

• Update index of prior, current, next and last
queues

• Update reserved bandwidth

• Check the amount of remaining frames in prior,
if exceeds the threshold then drop all left frames,
if not, transmit all frames

• Check any undergoing transmission exists, if not,
start transmitting from current queue, else, wait
for the ongoing transmission to be finished

According to Stream Reservation Protocol (SRP), the
bandwidth reservation is done in terms of allow a
certain amount of frames counting in bit during a
time period, the amount equals to epoch duration
(τ) multiply reserved data rate (ri), it is represented
by rsv_remaining variable in the model, an amount
equals to the frame size is subtracted from the re-
served bandwidth when a frame is transmitted. Inside
the Enqueue state, the model enqueues frames to cur-
rent, next and last queues successively, and drops the
frames when all three queues are full with reserved
bandwidth.

Dequeue state contains the procedure of getting
frames from queues and transmission selection based
on priority classes, class with higher priority, class0
in this project, is checked before other classes, an ex-
ample of checking sequence is: prior queue of class0
→ current queue of class0→ prior queue of class1→
current queue of class1→ . . .when a frame is extracted

from queue, the process starts a timer stands for the
transmission time of the frame from egress port, since
the modeler is driven by discrete events.

5 Simulations and Results

To evaluate the asynchronous shaping algorithms, in
this section, the LRQ, TBE and Paternoster models
proposed in the last section are used for carrying out
simulations in Riverbed simulator, the ATS algorithm
proposed in the standard draft is not given in this
work. A simple topology where only one flow exists, as
depicted in Figure 9, is tested to evaluate the behavior.

Figure 9: Simulation Scenario

Simulation parameters are given in Table. II. In
this paper, the main concern is to simulate different
working environments for the ATS switch, thus all the
values are taken based on simulation requirements
instead of real-world use cases.

The simulation results are based on our previous
proposed paper [19]. In Table. III, the average frame
loss rate comparison among Paternoster with differ-
ent epoch length and UBS are given. Since all devices
have limited storage space and each traffic class is as-
signed with dedicated bandwidth, excess frames over
the bandwidth limit will be dropped. Independent to
the algorithm, the input flows to UBS follow the leaky
bucket constraint, thus LRQ and TBE algorithms have
similar frame-loss performance as shown in the first
row.

www.astesj.com 299

http://www.astesj.com

Z. Zhou et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 1, 292-301 (2019)

As traffic intensity keeps increasing, the loss rate
also constantly increase for all scheduling algorithms.
The comparison shows that under the same input in-
tensity, UBS has relatively lower loss rate, while the
rate of Paternoster is related to the epoch length (τ):
shorter length means less storage space per epoch thus
causing higher loss rate, the reserved bandwidth of
each flow is calculated as : 3 · τ · datarate.

Table IV shows the storage usage of the switch dur-
ing simulation. Regarding the switch, time for trans-
mission of one frame depends on frame size, data rate
also arrival and departure time of adjacent frames in
LRQ algorithm. From the results: when the bandwidth
of input flow is less than reserved level (input intensity
= 32,48Mbps), UBS/LRQ has the most queued frames
on average while Paternoster A with the longest epoch
length has the least. As outlined above, the storage
of frames in Paternoster schedulers are related with
epoch length. Compared with Paternoster B and C,
A is able to accommodate and forward more frames
during one epoch, thus A has the least queued frames.
Since UBS/LRQ algorithm enforces a pending time
after each transmission, the forwarding efficiency is
lower than others.

On the other hand, when the bandwidth of input
flow is equal or greater than reserved level (input inten-
sity ≥ 50Mbps), Paternoster C has the least number of
queued frames: according to Table III, C discards most
frames among all schedulers under the same condition,
moreover, it iterates more epoch update during the
entire running time, which means more forwarding
operations are executed.

Finally, table V lists the average delay measurement
comparison. The variation of the delay statistics con-
forms with that of average number of queued frames.
Paternoster A and UBS/TBE have the shortest delay
when the input intensity is less than reserved, because
Paternoster with longer epoch length enables more for-
warding operations, also less frames are dropped due
to bandwidth limitation, while Paternoster C performs
faster operations when the input overflows. The aver-
age delays of all Paternoster schedulers keep increasing
with input intensity.

The average delay of LRQ and TBE increases with
the input traffics before overload, however, because
of the linearly increasing feature of the Leaky Bucket
Constraint, LRQ and TBE schedulers allow more trans-
missions of frames with smaller size under overload
environment, thus the per-hop delay decreases sharply
with the increase of input intensity.

6 Conclusion

Currently, the standard 802.1Qcr for Asynchronous
Traffic Shaping (ATS) is still not finalized. Asyn-
chronous shaping aims at providing low congestion
loss and deterministic performance while not using
time synchronization in TSN, the objective of this pa-
per is to test the performance of ATS in a series of
simulations. With models built in Riverbed modeler, it

is able to simulate the work of ATS and collect results
for analyses.

The evolution of ATS starts with priority-based tra-
ditional Ethernet, where traffic flows are sorted by
assigned priority, upon which frames are selected for
transmission. Then approach like CBS is introduced
to shape egress flows to prevent congestion caused by
bursty flows. Also new traffic class like AVB is created,
providing services with limited level of deterministic
to specific flows.

In TT Ethernet and TSN, the notion of global time
synchronization is integrated in all nodes and end sta-
tions, scheduling approach is then able to carry out
operations on time-triggered schedule and offer deter-
minism for time-sensitive flows. Schedulers like TAS
and CQF are both set up on the time base, the perfor-
mance requires high precision on time synchronization,
which is possible to be affected by failures.

ATS presents scheduling without global notion of
timing, while still provide service with high-level of
determinism. From results collected in the simulations,
UBS with LRQ algorithm performs weakly in lightly
loaded networks, in terms of delay and bandwidth uti-
lization. While TBE algorithm allows a certain level
of bursty transmission during idle period also limits
the egress flow with leaky bucket constraints when
network is rather full or overfull.

Deriving from CQF, Paternoster scheduling in-
creases the number of cyclic queues for each traffics
class, providing bounded transmission delay for all
flows. Knowing from simulation results, the trade-off
between frame loss probability and delay in Paternos-
ter depends on the length of epoch, short duration
could be set for flows taking less bandwidth than re-
served value, also assigning shorter epoch to higher
priority flows results in lower transmission delay.

7 Acknowledgement

This work has been partially supported by the “Fron-
thaul (FH) and time sensitive network (TSN) technolo-
gies for Cloud Radio Access Network (C-RAN)” project
founded by Eurostars Funding.

References
[1] Vitturi, Stefano, Paulo Pedreiras, Julian Proenza, and Thilo

Sauter. "Guest editorial special section on communication in
automation." IEEE Transactions on Industrial Informatics 12,
no. 5 (2016): 1817-1821.

[2] Wu, Jun, Zhifeng Zhang, Yu Hong, and Yonggang Wen. "Cloud
radio access network (C-RAN): a primer." IEEE Network 29, no.
1 (2015): 35-41.

[3] Checko, Aleksandra, Henrik L. Christiansen, Ying Yan, Lara
Scolari, Georgios Kardaras, Michael S. Berger, and Lars
Dittmann. "Cloud RAN for mobile networks—A technology
overview." IEEE Communications surveys & tutorials 17, no. 1
(2015): 405-426.

[4] Chih-Lin, I., Corbett Rowell, Shuangfeng Han, Zhikun Xu,
Gang Li, and Zhengang Pan. "Toward green and soft: a 5G
perspective." IEEE Communications Magazine 52, no. 2 (2014):
66-73.

www.astesj.com 300

http://www.astesj.com

Z. Zhou et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 1, 292-301 (2019)

[5] IEEE Std. ’802.1Qcr IEEE Standard for Local and metropoli-
tan area networks - Bridges and Bridged Networks Amend-
ment: Asynchronous Traffic Shaping’, 2018. [Online]. Avail-
able: https://1.ieee802.org/tsn/802-1qcr/. [Accessed: 06- Nov-
2018].

[6] Specht, Johannes, and Soheil Samii. "Urgency-based scheduler
for time-sensitive switched ethernet networks." In Real-Time
Systems (ECRTS), 2016 28th Euromicro Conference on, pp.
75-85. IEEE, 2016.

[7] Zhang, Hui, and Domenico Ferrari. "Rate-controlled service
disciplines." Journal of high speed networks 3, no. 4 (1994):
389-412.

[8] Lim, Hyung-Taek, Lars Völker, and Daniel Herrscher. "Chal-
lenges in a future IP/Ethernet-based in-car network for real-
time applications." In Proceedings of the 48th Design Automa-
tion Conference, pp. 7-12. ACM, 2011.

[9] Wan, Tao, and Peter Ashwood-Smith. "A performance study of
CPRI over Ethernet with IEEE 802.1 Qbu and 802.1 Qbv en-
hancements." In Global Communications Conference (GLOBE-
COM), 2015 IEEE, pp. 1-6. IEEE, 2015.

[10] Alderisi, Giuliana, Gaetano Patti, and Lucia Lo Bello. "Intro-
ducing support for scheduled traffic over IEEE audio video
bridging networks." In Emerging Technologies & Factory Au-
tomation (ETFA), 2013 IEEE 18th Conference on, pp. 1-9. IEEE,
2013.

[11] Farzaneh, Morteza Hashemi, Stefan Kugele, and Alois Knoll.
"A graphical modeling tool supporting automated schedule
synthesis for time-sensitive networking." In Emerging Tech-
nologies and Factory Automation (ETFA), 2017 22nd IEEE
International Conference on, pp. 1-8. IEEE, 2017.

[12] Lim, Hyung-Taek, Daniel Herrscher, Martin Johannes Waltl,
and Firas Chaari. "Performance analysis of the IEEE 802.1
ethernet audio/video bridging standard." In Proceedings of
the 5th International ICST Conference on Simulation Tools

and Techniques, pp. 27-36. ICST (Institute for Computer Sci-
ences, Social-Informatics and Telecommunications Engineer-
ing), 2012.

[13] Farzaneh, Morteza Hashemi, and Alois Knoll. "Time-sensitive
networking (TSN): An experimental setup." In Vehicular Net-
working Conference (VNC), 2017 IEEE, pp. 23-26. IEEE, 2017.

[14] Santos, Rui, Ricardo Marau, Alexandre Vieira, Paulo Pedreiras,
Arnaldo Oliveira, and Luis Almeida. "A synthesizable ethernet
switch with enhanced real-time features." In Industrial Elec-
tronics, 2009. IECON’09. 35th Annual Conference of IEEE, pp.
2817-2824. IEEE, 2009.

[15] Groß, Friedrich, Till Steinbach, Franz Korf, Thomas C. Schmidt,
and Bernd Schwarz. "A hardware/software co-design approach
for ethernet controllers to support time-triggered traffic in
the upcoming IEEE TSN standards." In Consumer Electron-
ics–Berlin (ICCE-Berlin), 2014 IEEE Fourth International Con-
ference on, pp. 9-13. IEEE, 2014.

[16] Mohammadpour, Ehsan, Eleni Stai, Maaz Mohiuddin, and
Jean-Yves Le Boudec. "Latency and Backlog Bounds in Time-
Sensitive Networking with Credit Based Shapers and Asyn-
chronous Traffic Shaping." In 2018 30th International Teletraf-
fic Congress (ITC 30), vol. 2, pp. 1-6. IEEE, 2018.

[17] Specht, Johannes, and Soheil Samii. "Synthesis of Queue and
Priority Assignment for Asynchronous Traffic Shaping in
Switched Ethernet." In Real-Time Systems Symposium (RTSS),
2017 IEEE, pp. 178-187. IEEE, 2017.

[18] IEEE Std. ’802.1Qch IEEE Standard for Local and metropoli-
tan area networks - Bridges and Bridged Networks Amend-
ment: Cyclic queuing and forwarding’, 2016. [Online]. Avail-
able: https://1.ieee802.org/tsn/802-1qch/. [Accessed: 06- Nov-
2018].

[19] Zhou, Zifan, Ying Yan, Michael Berger, and Sarah Ruepp. "Anal-
ysis and modeling of asynchronous traffic shaping in time sen-
sitive networks." In 2018 14th IEEE International Workshop on
Factory Communication Systems (WFCS), pp. 1-4. IEEE, 2018.

www.astesj.com 301

http://www.astesj.com

	 Introduction
	Related work
	Researching on traffic scheduling in TSN
	Relevant work on ATS

	Asynchronous Shaping
	Modules and Architecture
	UBS algorithms
	ATS algorithm
	Paternoster queuing and scheduling

	Modeling
	Modeling UBS
	Modeling Paternoster

	Simulations and Results
	Conclusion
	Acknowledgement

