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ABSTRACT 
Acoustic metamaterials (AM) have emerged as an academic discipline within the 
last decade. When used for sound insulation, metamaterials can show high 
transmission loss at low frequencies despite having low mass per unit area. This 
paper investigates the possibility of using AMs for increasing the sound insulation 
of finite single leaf walls (SLW), focusing on the coincidence effect problem. 
Formulas are derived using a variational technique for the forced sound 
transmission of finite SLW with a coupled array of single degree of freedom 
resonators. An analytical model is presented for this simple case, and the effects of 
the band gap in sound transmission and radiation are analysed. Moreover, the 
influence of each parameter is studied giving way to an optimized way of designing 
this type of structures using constrained parameter optimization. Different objective 
functions are compared and discussed. Finally, some conclusions are drawn 
regarding the effectiveness of the proposed model, possible applications, and future 
work.    
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1. INTRODUCTION 

The importance of sound insulation has increased in cities with the ever-growing 
population. Buildings are in closer proximity to each other. Also growing number of 
vehicles has given rise to noise pollution in cities, which in-turn has necessitated sound 
insulation in buildings. In offices, it is essential to keep the noise level at the minimum to 
enhance employee efficiency [1-3]. In schools, audio comfort is one of the primary 
conditions necessary for an effective learning environment. If there are background noises 



or a high decibel rating inside a classroom, students could struggle to hear adequately, or 
may find discomfort from straining to hear. It is also easier to become distracted [4].  

Acoustic metamaterials have emerged as an academic discipline within the last 
decade. The definition may be broadly interpreted as systems or materials that display (as 
a whole) extraordinary properties not found in natural materials with respect to sound and 
vibration characteristics, such as negative apparent mass and/or bulk modulus. 
Metamaterials can show high transmission loss (TL) at low frequencies despite having 
low mass per unit area [8-13]. They owe this behaviour to internal subwavelength 
periodic structures. One of the most important characteristics of the AM is the so-called 
band gaps (BG), a frequency region where wave propagation is not possible. This 
property shows great promise to be a good tool to be used in sound insulation, absorption, 
and even radiation. Sound insulation of walls in buildings or vehicles is a broadband 
problem, and for a single homogenous structure, the sound insulation is mainly given by 
the mass per unit area of the wall, which leaves not much room for improvement [6-7]. 
There are however a few possible problems that are well suited for the use of acoustic 
metamaterials, namely the low frequency resonance in double wall constructions, wave 
propagation and flanking transmission of walls periodically reinforced by beams, and the 
coincidence effect. Band gaps can be introduced into these structures by mounting an 
array of resonators to them. This type of construction has been studied and validated in 
recent years [8-13].  

This paper investigates the possibility of using AMs for increasing the sound 
insulation of single leaf walls, focusing on the coincidence effect problem. The approach 
utilized in this paper is the same as Brunskog’s when investigating the forced sound 
transmission of single leaf walls using a variational technique [16]. In the present research 
simple formulas are derived for the forced sound transmission of a finite single leaf wall 
with a coupled array of single degree of freedom resonators. An analytical model is 
presented for this simple case, and the effects of the band gap in sound transmission and 
radiation are analysed. The developed model is restricted to the low frequency range 
where the wavelengths of the wall is much longer than the periodic distance of the 
resonators. Moreover, the influence of each parameter is studied, giving way to a possible 
optimized way of designing these type of structures.    
 
2. THEORY 

This section will present the theory utilized in this paper. The variational 
formulation of the problem used throughout this study is based on Brunskog’s work [16] 
and is extended for the case described in the following section. 
 
2.1 Problem description 

Consider a finite thin plate with mass per unit area 𝑚  lying in the x-y plane 
coupled with periodically attached resonators as seen in figure 1a. The plate is located 
inside a rigid baffle at z = 0. For z < 0 the acoustic field consists of an incident plane 
wave 𝑝𝑖, a reflected plane wave 𝑝 , and one scattered field 𝑝  due to the motion of the 
finite wall. On the positive side of z only the transmitted wave is present (𝑝 ). The 
resonators have mass per unit area 𝑚  and stiffness per unit area 𝑠 . Structural damping 
of the spring is considered by assigning the inherent losses to the spring element. For 
harmonic motion this can be represented by a complex stiffness 𝑠′′ =  𝑠 (1 + i𝜂 )  where 
𝜂  is the damping loss factor and  𝑠    is the real part of the complex spring constant. It is 
of interest to analyse the transmission through this structure and the influence of the 
resonators. 

 



 

Figure 1: (a) A finite wall of dimensions a × b coupled with a series of mass-
spring resonators located inside a rigid baffle in the x-y plane, at z=0. (b) Simplified 

diagram of a small section 
 

2.2 Model development  
Considering the described problem, it is pertinent to start from the forced 

Helmholtz equation for bending waves in plates. This describes a plate being excited by 
an external field with pressure distribution 𝑝 (𝑥, 𝑦)  

 

∇ 𝑤 (𝑥, 𝑦) −  𝑘 𝑤 (𝑥, 𝑦) =
( , )

  ,                                   (1) 

where kb is the wavenumber of the free bending wave in the plate, and 𝐵  the bending 
stiffness of the plate. With this notation, 𝑤 (𝑥, 𝑦) corresponds to traverse displacement. 
Note that ∇ = ∇ ∇  is the bi-harmonic operator and ∇  is the Laplace operator. 

As we can see in figure 1b, the resonators will behave as motion excited 
resonators. The displacement of the plate and the displacement of the mass of the 
resonators are related by  

 

𝑤 (𝑥, 𝑦) = 𝑤 (𝑥, 𝑦)
  ( ) 

(   )   
  ,                                     (2) 

where 𝜔  represents the natural resonant frequency of the mass-spring system being 
 

𝜔 =  
    

 .                                                                  (3) 

 
Using Equation 1 and 2 the following expression can be developed 
 

∇ 𝑤 (𝑥, 𝑦) −  𝑘 +  
  ( ) /

(  )     
𝑤 (𝑥, 𝑦) = 0 .                 (4) 

This expression is the modified Helmholtz equation that takes into account the behaviour 
of the plate coupled with the resonators. From Equation 4, it can be seen that the modified 
wavenumber is 
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𝑘 =  𝑘 +  
  ( ) /

(  )   
  .            (5) 

 
2.3 The wall impedance  

If the wall is a thin plate like in the case studied in this paper, the Kirchhoff plate 
equation describes the wave motion in the plate [22]. The wall impedance operator can 
be written as 

 𝓏 =  +  + 𝑖𝜔𝑚                                           (6) 

The case presented in this study takes into account the influence of the resonators, so 
Equation 6 cannot be implemented directly. Re-writing Equation 4 it is possible to get an 
expression of similar form as 

 

𝓏 =
𝐵′

𝑖𝜔

𝜕2

𝜕𝑥2
+  

𝜕2
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2

−  
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𝑘𝑏

4  .                     (7) 

 
Substituting the bending wavenumber for the plate 𝑘  = 𝜔 𝑚 /𝐵  into Equation 7 
gives 

 

 𝓏 = +  + 𝑖𝜔𝑚 −  
   ( ) 

(  )    
,                   (8) 

 
which can be interpreted as the impedance operator of the plate plus a term controlled by 

the resonators. Assuming that the travelling wave is in the form of 𝑒 , kx and 
ky being wavenumbers, the wall impedance is reduced to 

 

 𝓏 =
𝐵′

𝑖𝜔
𝑘𝑥

2 +  𝑘𝑦
2 2

+ 𝑖𝜔𝑚𝑝
′′ −  

𝑚𝑟
′′𝜔  𝑠′′  (1+i𝜂𝑠) 

𝑖𝑚𝑟
′′(𝜔0

2− 𝜔2)− 𝜂𝑠 𝑠′′ 
.                 (9) 

In order to include the losses in the plate, the loss factor 𝜂  is included as an imaginary 
part of the Young’s modulus E → E (1 + i𝜂 ) and by that also to the bending stiffness B’ 
→ B’ (1 + i𝜂 ). 
 
2.4 Radiation Impedance 

The formula of the radiation impedance of a finite plate utilized in this paper was 
derived and explained in a previous study [16], so here it is only presented for clarity 

 

Zf =  ∫ ∫ 4 cos(𝑘𝜇 𝜅) cos 𝑘𝜇 𝜚   

  ×  (𝑎 −  𝜅)(𝑏 −  𝜚)𝑑𝜅𝑑𝜚,                                                     (10) 

where a and b are the dimensions of the plate in the x and y direction, S is the area of the 
plate (S=ab), k is the wavenumber on air, 𝜇 = sin (θ) cos (φ), and 𝜇 = sin (θ) sin (φ), θ is 
the evaluation angle and φ is the azimuth angle. 



 
2.5 Effective mass 

It is of interest to develop an expression of the effective mass (also referred to as 
apparent mass) of the proposed model. It is straightforward to do so from the wall 
impedance  

 

𝑚 = 𝐵 𝑘 +  𝑘 − 𝜔𝟐𝑚 −  
 𝟐   ( ) 

(  )    
 .              (11) 

An approximate expression can be found if losses in the spring are neglected 
 

𝑚 ≈ 𝑚 +
   

(  )
 .                                   (12) 

In this form it is much easier to understand the behaviour of the effective mass. For low 
frequencies the mass of the plate and resonators are added. This means that, in this 
frequency region, the proposed model is effectively working as a wall with mass equal to 
the sum of the plate and resonators.  

 
2.6 Theoretical band gap 

It is known from the literature that this kind of arrangement, referred to as 
metamaterials, produce a frequency band where free wave propagation is not possible. 
Near this band gap is where sound transmission will be at its lowest [8-13, 18-20], so 
being able to predict or tune this band gap to a particular frequency range is of interest. It 
is important to understand which parameters play a role and how they influence this 
phenomenon. In order to prevent wave propagation, the wavenumber has to be imaginary. 
Analysing Equation 5 it is understood that in order for this to happen 

 

      𝑘 +  
  ( ) /

(  )   
< 0 .                          (13) 

  If losses are not considered and after some modifications, this reduces to 
 

𝜔 𝑚 +  
  

(  )
< 0  .                            (14) 

 
The first condition is 𝜔 > 𝜔  as this is the only way a term in Equation 14 could become 
negative to fulfil the presented inequality. Continuing with the derivation the upper 
frequency limit can be found. In Equation 15 the theoretical band gap is presented: 

 
𝜔 > 𝜔

𝜔 < 𝜔 +  
  

 
                                       (15) 

 
It is shown that the upper limit of the band gap is also related to the natural 

frequency of the resonators. The mass of the plate is an important factor in the band gap. 
From Equation 15 the size of the band gap can be expressed as 

 

∆𝜔 = 𝜔 +  
  

−  𝜔 .                                         (16) 



Substituting Equation 3 in Equation 16, 𝑠 = 𝜔 𝑚  and defining a mass ratio 𝑀 =
𝑚𝑟

′′

𝑚𝑝
′′ 

gives 
 

∆𝜔 = 𝜔 √1 + 𝑀 − 1  .                                       (17) 

As a result of this it can be stated that the frequency width of the band gap grows with 
mass ratio M. This is an important relationship to take into account when designing this 
type of construction.  
 
2.6 Diffuse field transmission 

The same approach utilized in Brunskog’s paper [16] will be used in this study. 
For the sake of simplicity, the derivation of the equations will not be repeated here. The 
diffuse field transmission using Paris formula reads 

 

    𝜏 =  ∫ ∫   
𝔑 𝓏

𝓏  𝓏
sin 𝜃 𝑑𝜃𝑑𝜑,                         (18) 

where ρ is the density of air, c is the speed of sound in air, θ is the incidence angle, φ is 
the azimuth angle, 𝓏  is the radiation impedance and 𝓏 is the wall impedance, equation 
10 and 9 respectively in this paper. It is assumed that the resonators do not contribute to 
the sound radiation. In the following sections transmission loss (TL) will be used to 
analyse the proposed model. It is defined as 

 

𝑅 = 10 log   .                                             (19) 

3.  RESULTS AND ANALISIS  
Two test cases will be presented in this section to analyse the analytical model and 

the sound insulation behaviour of the proposed structure. In both cases a brick wall with 
dimension 2 × 3 × 0.05 m is used. Material properties are shown in Table 1.  

 
Table 1: Material properties                                                                         

Property Value 
Young’s modulus 17×109 [Pa] 
Density 2000 [Kg./m3] 
Poisson’s ratio 0.2 

 
The stiffness of the springs for both cases are selected specifically to match the 

resonant frequency of the resonators to the coincidence frequency of the plate. As known 
from the equations presented and previous studies [8-13], the TL is at its highest in the 
resonant frequency. So tuning the resonators to the coincidence frequency, where the 
plate has the lowest TL, is the chosen method to counter act the coincidence effect 
problem of traditional wall constructions. The mass ratio M is one for both cases. 

 
3.1 Without losses 

The first case to be considered is a brick wall with the aforementioned dimensions 
and properties without considering the structural losses of the plate or the springs. Results 
are presented in Figure 2. 



 

 
Figure 2: Results of the test case with no losses a) wave speed, b) transmission loss, and 

c) effective mass. Vertical dashed line indicates BG limits 
 

Results include three graphs depicting (a) wave speed, (b) transmission loss, and 
(c) effective mass. In each one the metamaterial is compared to a plate without resonators. 
The theoretical band gap is indicated by the vertical dashed line. As expected, when losses 
in the springs are not being considered the approximation for the limits of the BG given 
in equation 18 become an exact solution. The wavenumber in this region takes an 
imaginary value so wave propagation is not possible.  

Moreover, it can be seen that the transmission loss of the metamaterial has its 
maximum in the coincidence frequency of the plate, as it was designed. Below this 
frequency the metamaterial exhibits greater TL than the plate. It is exactly 6 dB higher, 
explained in the fact that the metamaterial has twice the mass of the plate (M=1). The 
displacement of the plate and the mass of the resonators are in phase below the resonant 
frequency and out of phase for higher frequencies. The effect of this can be seen in the 
fact that for frequencies above the BG the metamaterial and the plate have the same TL, 
even though the metamaterial has twice the mass. The coincidence effect problem is not 
solved by this proposed structure, but in fact shifted to a higher frequency as seen in figure 
2(b).  The TL dip is still present in the upper limit of the band gap. 

The effective mass grows higher when approaching the resonance frequency, 
which provides the basis for the increment in transmission loss. Within the band gap the 
apparent mass is negative, converging to the mass of the plate for higher frequencies. 

 
3.2 With losses  

The next case is considering losses in the springs and the plate. Losses are η=0.03 
for both. Results are presented in Figure 3. 

 



 
Figure 3: Results for the case considering structural losses of the plate and springs a) 
wave speed, b) transmission loss, and c) effective mass. Vertical dashed line indicates 

BG limits 
 

When losses in the springs are being considered the theoretical band gap is no 
longer an exact solution, but still a good approximation. The presence of losses makes the 
width of the BG smaller, meaning that the higher the losses the smaller the band gap.  

The peak of the TL is less prominent, but also the coincidence dip is softened. As 
expected the general behaviour of the structure remains the same. 

 

 
Figure 4: Results considering structural losses of the plate and springs compared to a 
plate of same mass a) wave speed, b) transmission loss, and c) effective mass. Vertical 

dashed line indicates BG limits 



 
In figure 4 results of the same case are compared to a plate with equivalent mass, 

so as to better gauge the benefits of the proposed metamaterial in terms of transmission 
loss. This means that the plate has double the thickness because is modelled of the same 
material (0.1 m). As a consequence the coincidence frequency is lower. This seems to be 
a more fair comparison and the limitations of the model become evident. For frequencies 
above the band gap the TL of the metamaterial is much lower than the one of just the 
plate. So there seems to be a trade-off between the two approaches. 

 
4.  PARAMETER OPTIMIZATION 

Knowing the limitations of the proposed structure brings the question of whether 
it is possible to optimize the parameters as to maximize transmission loss. In other words, 
to find a combination of mass ratio, spring loss factor, and spring stiffness that would 
provide the best possible sound insulation. However, defining what is better in terms of 
sound insulation is not a trivial task. To begin with, it would depend on the usage this 
structure is given. It can be used as a partition separating two rooms as it has been 
exemplified in the previous section but it also could be used for sound insulation in, e.g, 
cars. The spectrum of noises and sounds varies from case-to-case, so finding an overall 
best solution is problematic with the given limitations of this structure. ISO standard 717 
[20] defines single-number quantities for airborne sound insulation of building elements 
such as walls. This provides a solid base to compare different solutions, at least if 
considering building structures.  

 
4.1 Cost function 

The weighted sound reduction index Rw [20] is the selected value to judge which 
solution is better. The cost function used in this paper is  

 

𝜑 =   ,                                                   (20) 

 
with 𝑅  being the sound reduction index of the metamaterial solution. This means that 
𝑅  will be maximized.  

 
4.2 Constrained Optimization test case 

The developed cost function is used to optimize the case presented in section 3.2. 
In order to keep the solutions realistic upper and lower bounds were used. The constraints 
and optimized values are shown in table 2.  

 
Table 2: Constraints used for optimization and optimized values                                                                        

Property Lower 
Bound 

Upper 
Bound 

Optimized 
value 

M 0.1 1 0.97 
𝜼𝒔 0.001 0.5 0.29 
𝒔  1 × 108 1 × 1010 2.48 × 109 

 
Different algorithms were tested. Gradient based optimization was not suitable for 

this case. The cost function is not sensitive enough to changes in the optimization 
parameters so the algorithm would quickly converge to a solution. The initial guess is 
basically the result. Taking this into account a genetic algorithm was used for the 
optimization (Matlab’s “ga” function). In this way most permutations are tested, almost 



ensuring a good result at the cost of efficiency. At this time, efficiency is not a concern 
so this is an acceptable drawback. Figure 5 presents the result of the optimization. 

 

 
Figure 5: Constrained parameter optimization TL results. Vertical dashed line indicates 

BG limits 
 

The weighted sound reduction index of the optimized metamaterial solution is 
Rw=56 dB meanwhile the value for the wall with equivalent mass is Rw=47 dB. 
Furthermore, the minimum TL value of the optimized structure is bigger than the 
minimum value of just the wall. The optimization process seems to have maximized the 
frequency range where the transmission loss of the metamaterial is larger than the wall 
and tuned the BG above the coincidence frequency. The coincidence effect is smoothed 
out by the losses in the springs. The feasibility of the optimized values shown in Table 2 
are not explored in this study.  

On the other hand, for frequencies above the band gap the TL of the wall is higher 
than the metamaterial.  

 
5.  DISCUSION  

The developed analytical model for sound transmission loss of a finite SLW with 
a coupled array of single degree of freedom resonators was tested and analysed. The 
behaviour of the proposed metamaterial structure is on par with experimental and 
numerical results of various studies [18-20]. In the frequency region around the natural 
resonance of the resonators, a range exist were wave propagation is not possible. The 
developed expression for this band gap confirms that the size of this region is dependent 
on the mass ratio and the resonant frequency. An increase in the mass of the resonators 
(or a decrease in the mass of the plate) leads to a larger band gap.  

The transmission loss grows with frequency, reaching its maximum in the lower 
limit of the band gap (approximately the resonant frequency). This is followed by a 
decrease until it reaches its minimum value around the upper limit of the BG. This 
behaviour can be explained by looking at the effective mass. Towards the natural 
frequency of the resonators, it also grows to its largest value. Within the band gap, the 
effective mass becomes negative. For frequencies above the BG, the mass of the 



resonators and the plate are moving out of phase, while below they are in phase. The 
developed model is restricted to the frequency range where the wavelengths of the 
vibrations travelling through the wall are much longer than the periodic distance between 
the resonators. This provides a limitation when designing these types of structures. 

Furthermore, it is of interest to discuss the feasibility of the proposed structure as 
a tool to increase sound insulation at constant mass per unit area, paying special attention 
to the coincidence effect problem. Tuning the resonators to the coincidence frequency 
provides good TL rendering that problem void, but it also introduces a new higher 
coincidence frequency. This means that the problem is just shifted to another frequency. 
Added damping provides a way to minimize this new dip in TL but it still exists. The 
optimization process presented in section 4 shows a way to broaden the frequency region 
where the sound insulation of the metamaterial is superior to the one of the wall of 
equivalent mass. In this case, the BG was tuned above the coincidence frequency with 
springs with high losses. Being guided by the weighted sound reduction index proposed 
in ISO 717 one might conclude that the proposed structure is a superior sound insulator. 
For frequencies above the BG the metamaterial structure provides less sound insulation. 
In future work it would be interesting to test metamaterials based on multiple degrees of 
freedom resonators and study their effectiveness in combating the coincidence effect 
problem. It would also be of interest to validate this analytical model with numerical 
simulations and experimental data. 

      
6.  CONCLUSIONS 
 The analytical model developed in this paper is useful to better understand 
metamaterials composed of single degree of freedom resonators and how the different 
parameters affect their behaviour. The proposed structure is an effective sound insulator. 
The coincidence effect problem is not resolved but shifted to an upper frequency. The 
possibility of using springs with high losses and tuning the band gap above the 
coincidence frequency emerges from the optimization process as a possible solution to 
this phenomenon.  
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