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Abstract. Entanglement distribution between distant parties is one of the most important and challenging tasks
in quantum communication. Distribution of photonic entangled states using optical fiber links is a fundamental
building block toward quantum networks. Among the different degrees of freedom, orbital angular momentum
(OAM) is one of the most promising due to its natural capability to encode high dimensional quantum states.
We experimentally demonstrate fiber distribution of hybrid polarization-vector vortex entangled photon pairs.
To this end, we exploit a recently developed air-core fiber that supports OAM modes. High fidelity distribution
of the entangled states is demonstrated by performing quantum state tomography in the polarization-OAM
Hilbert space after fiber propagation and by violations of Bell inequalities and multipartite entanglement
tests. The results open new scenarios for quantum applications where correlated complex states can be
transmitted by exploiting the vectorial nature of light.
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1 Introduction
Quantum communication requires the reliable transmission
of quantized information carriers (qubits) among several and
spatially separated parties,1 toward development of quantum
networks. In particular, protocols based on genuine quantum
schemes, such as entanglement swapping,2–5 superdense cod-
ing,6–9 and quantum teleportation,10–16 have to be adopted in future
networks to access communication advantages that would be
unattainable by using any classical resource. The key element
of these schemes is entanglement, which is one of the most dis-
tinctive quantum phenomena, predicted by Einstein, Podolsky,
and Rosen,17 that defy the classical notion of local causality.18

Quantum correlations are an essential ingredient for quantum
foundations studies and for different quantum information
processes.19–22 Great interest has been devoted to the coherent
distribution through optical fibers of such quantum correlations
since it constitutes the cornerstone for the future quantum
networks.23–26 Several photon degrees of freedom can be

employed for this task, such as frequency, orbital angular mo-
mentum (OAM), time, and polarization.25–29 In particular, OAM
of light is one of the most promising, albeit challenging to
manipulate. Photons owning a nonzero OAM are characterized
by the azimuthal phase dependence eilϕ, where lℏ is the
amount of OAM carried by each photon, and l is an unbounded
integer value representing discrete quantum states.30,31 Due to its
unbounded nature, OAM has been largely investigated both for
classical and quantum communications, being capable of encod-
ing high dimensional quantum states (qudits), which enhance
the photon information capacity.32–43 Experimental investiga-
tions on OAM supporting fibers for classical communications
have been reported.32,33,44–46 Still, distribution of quantum states
through multimode fibers supporting OAM modes is a newborn
research field, where only a few experiments have been realized
to date.47,48 In Ref. 47, high-dimensional quantum states, en-
coded in weak coherent pulses, have been transmitted and
detected through a 1.2-km length air-core fiber at telecom
wavelength, demonstrating the feasibility of high-dimensional
quantum communication and quantum key distribution proto-
cols. In Ref. 48, a solid core vortex fiber has been exploited,*Address all correspondence to Fabio Sciarrino, E-mail: fabio.sciarrino@uniroma1.it
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demonstrating the possibility of two-dimensional quantum com-
munication with structured photons. Nonetheless, the transmis-
sion of entangled photon pairs still needs to be explored.

In this work, we demonstrate distribution of hybrid entangle-
ment between a linearly polarized photon and a vector vortex
(VV) beam, i.e., a doughnut-shaped beam with an inhomo-
geneous polarization pattern, at telecom wavelength. The VV
beam is transmitted through a 5-m long air-core fiber,49 whose
very low mode mixing preserves OAM states and, in turn, hy-
brid entanglement. This peculiar feature opens up new scenarios
and opportunities in quantum communications toward fiber-
based quantum networks, enabling the capability to employ
high-dimensional quantum states, embedded in the photon
polarization and OAM degrees of freedom.

2 Vector Vortex Beam and Hybrid
Entanglement Generation

Vector vortex beams constitute a special class of vector beams,
which are characterized by an inhomogeneous polarization
distribution over their transverse profile.50 In particular, a VV
beam has an azimuthally varying polarization pattern, surround-
ing a central optical singularity.51–53 Due to their distinctive
polarization distributions, VV beams have shown unique fea-
tures, making them appealing for different research purposes,
e.g., microscopy,54 optical trapping,55,56 metrology,57,58 nanopho-
tonics,59 and communication.60–67 Formally, the state jR; li
(jL; li) describes a photon with uniform right (left) circular
polarization carrying lℏ of OAM, and a VV beam can be con-
veniently described by a nonseparable superposition of polari-
zation-OAM eigenmodes. In this superposition, OAM quanta
carried by the photons define the order m of the VV beam.
In particular, a VV beam belongs to a Hilbert space spanned
by states fjR;mi; jL;−mig.53 For instance, if m ¼ 1 and if we
consider equally distributed superpositions jr1i ¼ ðjR;þ1iþ
jL;−1iÞ∕ ffiffiffi

2
p

and ja1i ¼ ðjR;þ1i − jL;−1iÞ∕ ffiffiffi

2
p

, radially and
azimuthally polarized beams are obtained.51,52

Here, we experimentally demonstrate fiber distribution of a
VV-polarization entangled photon state. The conceptual scheme
of the experiment is reported in Fig. 1. A polarization-VV beam

entangled photon pair is generated from an initial polarization
entangled pair (blue ribbon). Only one photon of the pair enc-
odes the VV state (green ribbon). Subsequently, the VV beam is
coupled and transmitted through the 5-m long air-core fiber
and then measured together with the linearly polarized photon.
In our case, VV beams of order m ¼ 7 are generated, whose
expressions are

jr7i ¼
jR;þ7i þ jL;−7i

ffiffiffi

2
p ; (1)

ja7i ¼
jR;þ7i − jL;−7i

ffiffiffi

2
p : (2)

The polarization patterns associated to states jr7i and ja7i are
shown in Fig. 1(a). In the following, we will refer to jr7i and
ja7i as jri and jai, respectively. The experimental apparatus
is reported in Fig. 2. Polarization entangled photon pairs,
ðjHijVi þ eiϕjVijHiÞ∕ ffiffiffi

2
p

, are generated at 1550 nm wave-
length by a periodically poled potassium titanyl phosphate
(ppKTP) crystal placed into a polarization Sagnac interferom-
eter and pumped with a continuous-wave laser at 775 nm.
Indeed, for fiber-based quantum communication, it is important
to exploit photons within the C-band (1530 to 1565 nm), where
optical fibers show minimal losses. The relative phase ϕ of the
entangled state is controlled to generate the singlet state

jψis ¼
1
ffiffiffi

2
p ðjHi1jVi2 − jVi1jHi2Þ; (3)

where the subscripts 1 and 2 indicate the two interferometer out-
put modes. According to the notation in Fig. 2, photons along
output mode 2 impinge on a vortex plate (VP), adding OAM
order m ¼ 7. The VP can be considered as a nontunable q-plate
(QP), i.e., a device that couples the polarization and the OAM
of a single photon.68 Specifically, in the circular polarization
basis fjRi; jLig, the action of a QP with topological charge
q, on a single photon of OAM order k, is described by the

Fig. 1 Hybrid entangled state transmission. (a) Hybrid VV-polarization entangled photon pair
generated in the experiment: entanglement in polarization of the photon pair (blue ribbon) and
entanglement between polarization and OAM of the single photon (green ribbon, VV state) are
sketched. The inhomogeneous polarization patterns of the VV state jr i (bottom) and jai (up) are
explicitly shown. (b) Schematic of the experiment: hybrid VV-polarization entangled state is
generated by an initial polarization entangled photon pair. One photon of the pair encodes the
VV state by the action of a VP. The VV beam is transmitted through the air-core fiber. Finally,
state detection shows that hybrid VV-polarization entanglement (blue and green ribbons) is pre-
served after fiber transmission.
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transformation: jL; ki→QPjR; kþ 2qi and jR; ki→QPjL; k − 2qi. In
our case, m ¼ 2q ¼ 7 and the initial OAM order is k ¼ 0.
Exploiting the spin-orbit coupling, we generate the VV state
jri or jai depending on the input polarization state, jHi or jVi,
respectively.69,70 Thus, the polarization entangled singlet state is
transformed into the hybrid entangled state

jψi ¼ 1
ffiffiffi

2
p ðjHi1jai2 − jVi1jri2Þ: (4)

The versatility of our experimental approach is based on
full control of each degree of freedom through suitable optical
components, allowing the preparation of the desired hybrid
VV-polarization entangled state [Eq. (4)].

3 Hybrid Entanglement Distribution and
Measurement

The main purpose of our work is to prove the feasibility of en-
tanglement distribution with OAM states transmitted through an
air-core fiber. In particular, we demonstrate that the coherence of
the complex hybrid entangled state in Eq. (4) is preserved. This
is possible since the states jri and jai are superposition of anti-
aligned states, i.e., spin (polarization) and OAM with opposite
sign, hence the VV beams are degenerate in time along the fiber

transmission.49 Indeed, an eventual nondegeneracy of those
states could impair the coherence of the VV states and, there-
fore, of the entangled pair. Different theoretical analysis and
measurements can be performed to assess the fidelity of the
transmitted states and to quantify entanglement, depending
on the requirements in the certification process.71 In this work,
the quality of the transmitted states is measured through the
standard tomography processes,72 and their entanglement is cer-
tified through CHSH-like inequality violations73 and tripartite
entanglement tests.74–79

3.1 Source State

As a first step, we characterize the initial polarization entangled
state in Eq. (3). To fully determine the quality of the state gen-
erated by the ppKTP source, we perform a quantum state
tomography within the polarization space of the two photons.
The measurements are implemented by collecting twofold
detection after two polarization analysis stages placed along
each output mode of the source. The obtained tomography is
shown in Fig. 3(a), where the relative fidelity with respect to
the ideal singlet state is Fs ¼ ð93.5� 0.2Þ%. Furthermore,
we carry out a nonlocality test obtaining as the maximum value
S of the CHSH inequality SðrawÞs ¼ 2.67� 0.01.73 Subtracting
the accidental coincidences from SðrawÞs , such parameter be-
comes Ss ¼ 2.68� 0.01.

3.2 Hybrid Entangled State (HyEnt)

Subsequently, we consider the global hybrid VV-polarization
entangled state in Eq. (4) and measure the twofold detection
after the VV state propagation through the air-core fiber. The
fiber structure allows the transmission of OAMmodes with very
low mode mixing among them. It is composed by a central air
core surrounded by a high refractive index ring, creating a large
refractive index step that shapes the field of the modes, allowing
for their guidance. The fiber we used supports OAMmodes with
l ¼ �5;�6;�7 and has shown to achieve 1 dB∕km losses.
Further details and specifications on the fiber are reported in
Refs. 47 and 49. In our experiment, we have decided to work
with modes l ¼ �7, achieving a coupling efficiency η ¼ 0.5.
At this stage, we consider that the entangled two qubit state
lies in a four-dimensional space spanned by the basis
fjHi1jai2; jVi1jai2; jHi1jri2; jVi1jri2g, which is composed by
the polarization of photon 1 and the VV states of photon 2. The
qubit encoded in photon 1 is measured by a polarization analysis
stage (green platform in Fig. 2). Conversely, the measurements
of the VV qubit, i.e., photon 2, are implemented by a VP, iden-
tical to the one used in the generation process, and a polarization
analysis stage (purple platform in Fig. 2). The VP converts back
the VV beam to the fundamental Gaussian-like mode, restoring
the initial polarization state for photon 2 before impinging on
the first VP. In this way, the VV states jri and jai are directly
mapped into polarization states jHi and jVi, which are mea-
sured with the usual set of quarter-wave plate (QWP), half-
wave plate (HWP), and a polarization beam splitter (PBS) (see
Fig. 2).61,69,70 State tomography in the four-dimensional space is
reported in Fig. 3(b). We consider as a target state the ideal evo-
lution of the density matrix describing the experimental state
generated by the source. The resulting fidelity between such
state and the state measured after the fiber propagation is Fh ¼
ð97.9� 0.2Þ%. Furthermore, we observe violation of the CHSH
inequality, obtaining the value SðrawÞh ¼ 2.62� 0.03 for raw data

Fig. 2 Experimental apparatus for the generation, distribution
and analysis of the hybrid entangled states. Pairs of telecom
polarization entangled photons are generated by exploiting a
periodically poled titanyl phosphate crystal (ppKTP) in a Sagnac
interferometer, which contains a dual-wavelength polarizing
beam splitter (DPBS) and a dual half-wave plate (DHWP).
Photons exiting along mode 1 are sent to a polarization analysis
stage, composed of a QWP, an HWP and a PBS. Photons along
mode 2 pass through a dichroic mirror (DC), which separates the
pump from the photons. Photons in mode 2 impinge on a VP to
generate a VV beam state and, in turn, the desired hybrid en-
tangled state. The VV states are coupled to an air-core fiber
and then measured with an OAM-polarization analysis stage
composed of a second VP followed by a polarization analysis
setup. To perform the measurements on the polarization and
OAM degrees of freedom independently, an additional polariza-
tion measurement stage has to be inserted before the OAM-to-
Gaussian conversion regulated by the second VP. Finally, both
photons are coupled into single-mode fibers linked to avalanche
photodiode single photon detectors (APDs).

Cozzolino et al.: Air-core fiber distribution of hybrid vector vortex-polarization…

Advanced Photonics 046005-3 Jul∕Aug 2019 • Vol. 1(4)



and value Sh ¼ 2.67� 0.03 by subtracting for accidental coin-
cidences, thus violating by 21 and 22 standard deviations the
separable limit S ¼ 2, respectively.

3.3 Intrasystem Entangled State (Intra)

Now, we focus on the VV state embedded in photon 2 and its
transmission through the air-core fiber. Such analysis quantifies
the quality of the VV beam state generation, transmission
through the air-core fiber, and conversion to the fundamental
Gaussian mode. The single photon VV states jri and jai,
Eqs. (1) and (2), are maximally entangled in the OAM and
polarization degrees of freedom. They correspond to single-
particle entanglement states, referred to as intrasystem entangle-
ment. The nonseparability between polarization and OAM states
is not related to nonlocal properties since they are relative to
the same physical system. However, Bell-like inequalities can
be exploited to demonstrate the single-particle entanglement,
ruling out models that assume realism and noncontexuality of
commuting observables, relative to such systems.80–83 Hence,
we certify the presence of intrasystem entanglement carrying

out quantum state tomography and performing CHSH-like
inequality in the space of polarization and OAM degrees of
freedom of photon 2. Horizontally polarized heralded single
photons are sent to the VP to conditionally prepare state jri
for photon 2. The measurements on the polarization and the
OAM degrees of freedom of photon 2 are performed independ-
ently. For this purpose, two cascaded measurement stages are
needed (green and purple platforms in Fig. 2). A first stage
(HWP, QWP, and PBS) performs the polarization analysis
(green platform in Fig. 2). The second stage composed of a
VP and a polarization analysis (purple platform in Fig. 2) mea-
sures the photon state in the OAM space. As before, the VP
maps the information encoded in OAM to a polarization
state, which is then measured. Finally, before detection the
photon is coupled to a single-mode fiber, tracing out all
OAM contributions different from the zero order. The measured
quantum state tomography is shown in Fig. 3(c), and the
relative fidelity calculated with respect to the Bell state jΦþi
is Fi ¼ ð99.4� 0.6Þ%. The corresponding parameters Si ob-
tained from the CHSH-like inequality violations are SðrawÞi ¼
2.76� 0.05 and Si ¼ 2.82� 0.05. The set of CHSH violations

Fig. 3 Two-qubit quantum tomographies. (a) Real (top) and imaginary (bottom) parts of the
measured density matrix of the polarization entangled state generated by the source, before
conversion in OAM. (b) Real (top) and imaginary (bottom) parts of the measured density matrix
of the two-photon VV-polarization entangled state after the transmission of photon 2 through
the OAM fiber. (c) Real (top) and imaginary (bottom) parts of the measured density matrix of
the VV state on photon 2, transmitted through the OAM fiber. The OAM states j0i and j1i in the
tomography are defined by the relations: j0i ≡ ðj þ 7i þ j − 7iÞ∕ ffiffiffi

2
p

and j1i ≡ iðj − 7i − j þ 7iÞ∕ ffiffiffi

2
p

.
Real and imaginary parts of the experimental density matrices are reconstructed via quantum
state tomographies.
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measured for each state (source, HyEnt, and intra) is summa-
rized in Table 1, and the mean values of the measured operators
are shown in Fig. 4.

These results have been carried out for degenerate anti-
aligned states, corresponding to Eqs. (1) and (2), that experience
negligible temporal dispersion during propagation. Other
classes of OAM modes, enabling to reach higher dimensional
systems, can be transmitted through the air-core fiber by adding
an appropriate precompensation stage.47 Such stage allows one
to counteract the modal dispersion due to different effective
refractive indices in the fiber.49

3.4 Three Qubits HyEnt

The previous measurements have independently certified the
high fidelity of both the hybrid VV-polarization entangled state
and the single photon VV beam state after propagation in the air-
core fiber.

We now characterize the hybrid VV-polarization entangled
state in Eq. (4) with a different apparatus that does not assume
a two-dimensional Hilbert space for photon 2 spanned by
fjri; jaig. The measurements on the final state are performed
by a polarization analysis stage for photon 1 and by polarization

and OAM analysis stages for photon 2, as the one adopted for
the intrasystem entanglement characterization (Fig. 2). This ap-
paratus allows one to independently measure the polarization
and the OAM component of photon 2 so that the total encoding
three-qubit space can be now spanned by the polarization and
OAM degrees of freedom in addition to the polarization of
photon 1. Thus, by performing the three-qubit quantum state
tomography of the transmitted state (Fig. 5), a final fidelity
F ¼ ð88.1� 0.2Þ% with respect to the ideal state in Eq. (4)
is obtained. This shows that the fiber preserves the injected state
without adding noise contributions. These results provide addi-
tional evidence that the fiber is suitable for the transmission of
higher-dimensional quantum states. As for the other cases, also
for the three-qubit case we perform a device independent test
of the quantum correlations, showing their preservation after
fiber transmission of the VV state. First, we test the Mermin–
Ardehali–Belinski–Klyshko inequality,74–76 which provides an
upper bound for contextual hidden variable theories, describing
the correlations between observables relative to three qubits:

M ≡ jhA1B2C2i þ hA2B1C2i þ hA2B2C1i − hA1B1C1ij ≤ 2 :

(5)

The observables Ai, Bi, and Ci (i ¼ 1,2) are dichotomic (with
eigenvalues �1) and relative to the first, the second, and the
third qubit, respectively. Violation of such inequality certifies
the nonclassical correlations of tripartite states. Furthermore,
if a value M ≥ 2

ffiffiffi

2
p

is found, models in which quantum
correlations are allowed between just two of the three qubits
(biseparable quantum models) are ruled out as well.84,85 The state
Eq. (4) in the three-qubit space is able to reach the algebraic
value of M ¼ 4 by choosing the operators: A1 ¼ −σAz ,
A2 ¼ σAx , B1 ¼ −σBz , B2 ¼ σBx , where σi (i ¼ x; z) are the
Pauli operators relative to photons 1 (A) and 2 (B) in the
polarization in basis fjHi; jVig; and C1 ¼ σCz , C2 ¼ σCx ,
where the Pauli operators are in the OAM basis fj0i ≡ ðj þ 7i þ
j − 7iÞ∕ ffiffiffi

2
p

; j1i ≡ iðj − 7i − j þ 7iÞ∕ ffiffiffi

2
p g relative to photon 2.

Measuring such operators after the VV state transmission
and calculating the parameter M, we obtain MðrawÞ ¼ 3.43�
0.04 from raw data, and the value M ¼ 3.53� 0.04 by
subtracting accidental coincidences. In this way, we violated
the classical bound by 35 and 38 standard deviations and the
quantum biseparable bound by 15 and 17 standard deviations,
respectively.

Finally, we further study the correlation of the state in Eq. (4)
by performing a Hardy test,77,78 recently generalized in a suitable
form for more than two parties by Ref. 79. Given a system with
certain null correlation probabilities, a paradox arises when
other events are automatically forbidden in the framework of
noncontextual hidden variable models while they can happen
within a quantum context. Since experimentally measuring null
probabilities represents a difficult task, Hardy logical contradic-
tions can be conveniently mapped into more general inequal-
ities. In Ref. 79, an extended multiparty version of Hardy’s
paradox is proposed, leading to an inequality that for three
qubits reads

H ≡ PðA1A2A3Þ − PðA1B2B3Þ − PðA1B2B3Þ
− PðB1A2B3Þ − PðB1A2B3Þ − PðB1B2A3Þ
− PðB1B2A3Þ ≤ 0; (6)

Table 1 CHSH violations. The CHSH violation parameters ob-
tained from raw data (Sraw) and by subtracting for accidental co-
incidences (S) are reported for the polarization entangled state
generated by the source, the hybrid VV-polarization entangled
state (HyEnt), and the intrasystem entangled VV state embedded
in the photon 2 and transmitted through the air-core fiber (intra).

State Measurement time SðrawÞ S

Source 160 s 2.67� 0.01 2.68� 0.01

HyEnt 2560 s 2.62� 0.03 2.67� 0.03

Intra 1920 s 2.76� 0.05 2.82� 0.05

Fig. 4 CHSH measurement operators. Expectation values moduli
of the measured operators that maximize the violation of the
CHSH parameter S ¼ hA1B1i − hA1B0i þ hA0B1i þ hA0B0i. The
values are relative to the polarization entangled state generated
by the source (green bars), the hybrid VV-polarization entangled
state (blue bars), and the intrasystem entangled VV state em-
bedded in the photon 2 and transmitted through the air-core fiber
(yellow bars). All error bars are due to Poissonian statistics of
the measured events.
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where Ai (Bi) represents a dichotomic operator A (B) acting on
qubit i ¼ 1, 2; 3 with eigenvalues �1, Bi ≡ −Bi and the prob-
abilities PðX1Y2Z3Þ ≡ PðX1 ¼ 1; Y2 ¼ 1; Z3 ¼ 1Þ. In our case,
the transmitted three-qubit state permits one to maximally vio-
late the generalized Hardy test by choosing the operators: A1 ¼
A2 ¼ −A3 ¼ σz and B1 ¼ B2 ¼ B3 ¼ σx relative to the qubits
jpoli1 and jpoli2 (in basis fjHi; jVig) and joami2 (in basis
fj0i; j1ig), respectively. The experimental value H obtained
for raw data is HðrawÞ ¼ 0.085� 0.008 and by accounting for
accidental coincidences it becomes H ¼ 0.104� 0.008 (theo-
retical value for the ideal state is H ¼ 0.25). Such values allow
one to violate the noncontextual bound by 10 and 12 standard
deviations, respectively. Note that the tripartite correlations
obtained are generated by both contextual (intrasystem) and
nonlocal (intersystem) entanglement. Thus, the correlations lie
between three qubits and not between three different and spa-
tially separated parties.

4 Conclusions and Discussion
Future quantum communication will require the distribution of
quantum states over long distances. The protocols implemented
within such systems will include the distribution of high-dimen-
sional and entangled quantum states. Indeed, spanning Hilbert
spaces of greater dimensions allows higher information capacity
and noise resilience, leading to enhanced quantum information
processing.38,86,87 In this context, VV states represent a powerful
resource for classical and quantum applications.

Here, we demonstrated the feasibility of distributing complex
VV states through an OAM supporting fiber, also permitting one
to preserve entanglement with a different system. In particular,
we achieved the transmission of a VV state, presenting corre-
lations between polarization and OAM, entangled with the
polarization of a separate second photon. To fully assess the ro-
bustness to decoherence and quality of the transmitted complex

Fig. 5 Three-qubit quantum tomography. Real and imaginary parts of the measured density
matrix of the hybrid VV-polarization state in space fjpoli1jpoli2joami2g after the fiber transmis-
sion (right) and of the theoretical density matrix of state in Eq. (4) (left). The OAM states j0i and
j1i in the tomography are defined by the relations: j0i ≡ ðj þ 7i þ j − 7iÞ∕ ffiffiffi

2
p

and j1i≡
iðj − 7i − j þ 7iÞ∕ ffiffiffi

2
p

. Real and imaginary parts of the experimental density matrices are recon-
structed via quantum state tomography.
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entangled state, we performed quantum state tomographies, vi-
olations of CHSH-like inequalities and multipartite entangle-
ment tests. The achieved fidelities of the transmitted state
demonstrate the capability to perform high fidelity distribution
in an OAM supporting fiber of a hybrid VV-polarization en-
tangled state at telecom wavelength. In particular, the possibility
of simultaneously encoding and distributing information in the
polarization and OAM degree of freedom of a single particle
represents a useful resource due to the higher robustness to
losses while tools for their processing have been identified.88

This work paves the way toward adoption of high-dimensional
entanglement in quantum networks. Further perspectives of
this work involve the investigation of fiber-based distribution
of different orders of OAM entangled states and their distribu-
tion over longer distances, exploiting the potential scalability
arising from a fiber-based approach. Indeed, the results pre-
sented here are expected to be extended to long distance trans-
mission since low mode mixing can be achieved in longer
fiber.47 Other perspectives involve interfacing of OAM inte-
grated circuits89–91 through OAM supporting fibers for future
quantum networks.

Note: During the preparation of this manuscript, the authors
became aware of a work by Huan Cao et al. on a similar topic.92
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