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Abstract

Morphological analysis of the left atrial appendage is an important tool to assess risk of
ischemic stroke. Most deep learning approaches for 3D segmentation is guided by binary
labelmaps, which results in voxelized segmentations unsuitable for morphological analysis.
We propose to use signed distance fields to guide a deep network towards morphologically
consistent 3D models. The proposed strategy is evaluated on a synthetic dataset of simple
geometries, as well as a set of cardiac computed tomography images containing the left atrial
appendage. The proposed method produces smooth surfaces with a closer resemblance to
the true surface in terms of segmentation overlap and surface distance.
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1. Introduction

The left atrial appendage (LAA) is a complex tubular structure originating from the left
atrium (LA). The LAA is known to have large morphological variabilities between patients
and studies have shown a correlation between the LAA morphology and the risk of ischemic
stroke (Di Biase et al., 2012). This makes morphological analysis of the LAA a relevant
topic. Cardiac computed tomography angiography (CCTA) images of patients with sus-
pected risk of thrombus formation in the LAA can be used for generating high resolution
3D models of the LA and LAA useful for morphological analysis. Manual segmentation of
the CCTA images is possible but not viable for large population-based studies. Automatic
deep learning methods can be a good alternative, where especially the U-net architecture
has proven powerful (Ronneberger et al., 2015). However, the traditional 2D U-net cannot
capture the 3D consistency in the image, whereas the 3D counterpart is limited to work on
low resolution patches due to memory restrictions. Despite this, the 3D U-net shows good
results in terms of Dice-score in many applications, but excessive voxelization of the 3D
segmentation makes it unsuitable for morphological analysis.
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3D U-net guided by signed distance fields

In this paper we propose to use signed distance fields (SDFs) to guide a 3D U-net towards
creating morphologically consistent 3D models of anatomical structures. The SDF is more
suitable for representing a smooth surface than a binary volume and provides additional 3D
topological information to the network without increasing the computational burden.

2. Methods

To compare the effect of representing the anatomical shape as a SDF instead of a binary
occupancy grid, two similar networks are used. The pixel-wise classification (PWC) network
is a standard 3D U-net predicting binary labelmaps. The input image is downsampled to
643 using linear interpolation and the 643 output labelmap is upsampled to the original
resolution using nearest neighbour upsampling. The network is trained with a cross-entropy
loss.

Predicting a SDF is no longer a classification task but a regression problem. The pixel-
wise regression (PWR) network is kept as similar to the PWC architecture as possible, to
ensure the same learning capacity. To optimize the network for the regression task, the
softmax activation of the final layer is replaced by a linear activation function, as it was
seen in other PWR networks (Yao et al., 2018). Both downsampling of the input image and
upsampling of the output SDF is done using linear interpolation. The used loss function is
a mean squared error (MSE) inversely weighted with the absolute value of the SDF. This
ensures the network prioritizes the learning around the contour of the anatomy.

The performance of the two methods is evaluated based on volume overlap and surface
distance. The volume overlap is measured as Dice-score for the entire segmentation and a
contour-Dice, where the Dice-score is calculated only inside a mask around the segmentation
contour. The mask is created from dilation and erosion of the true segmentation with a
5× 5× 5 kernel. The surface distance is measured as an average symmetric distance (ASD)
and root mean square symmetric distance (RMSD).

3. Experimental results

Synthetic data: Geometric shapes A synthetic dataset is created with cuboids, rhom-
boids, ellipsoids and cylinders of different sizes and rotations in a 5123 binary grid. The
two networks are trained on 19 examples of each shape (76 examples in total) and tested
on 6 examples of each shape (24 examples in total). The evaluation results and examples
of predictions using the two methods together with the true surface are seen in Table 1 and
Figure 1 respectively.

Medical data: Segmentation of left atrium including left atrial appendage The
method is further evaluated on a medical dataset consisting of 30 CCTA scans with manually
annotated LA and LAA. The CT images are acquired by the Department of Radiology,
Rigshospitalet, University of Copenhagen. The acquired CT volumes are of 512×512×560
voxels with a voxel size of 0.5 × 0.5 × 0.25 mm. A region of interest is extracted around
the LA and LAA resulting in average ROI size of 375 × 375 × 405 voxels. The PWR and
PWC networks are trained on 25 images and tested on 5 images. The evaluation results are
seen in Table 1 and Figure 1 shows the surface from the manual annotation together with
examples of outputs from the two methods.
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Figure 1: A: Results on selected test examples from synthetic dataset. B: Results on se-
lected test examples from medical dataset. C: Contours on axial and coronal slice
of one example. PWC: Pixel-wise classification, PWR: Pixel-wise regression.

Table 1: Average evaluation metrics on test images from the synthetic and medical dataset.

Synthetic Medical
PWC PWR Gain PWC PWR Gain

Dice(×100) 92.38 97.08 5.09% 89.97 92.04 2.30%
contourDice(×100) 68.49 87.69 28.03% 63.88 72.18 12.99%
ASD 1.573 0.714 54.61% 1.267 1.097 13.41%
RMSD 1.947 1.018 47.71% 2.087 1.695 18.78%

4. Discussion and conclusion

Based on the results in both experiments, it is evident that the PWR method creates
surfaces that on average are closer to that of the actual anatomy and these surfaces look
more realistic due to the smooth nature of the normals. Guiding the U-net with SDFs
results in an increase in overall Dice-score, where the largest improvement is seen around
the contour. While the gross-structure of the LA and LAA is preserved in the predicted
surfaces, the high frequency details are lost due to the low resolution sampling of the SDF.

For future work we plan to evaluate how well these low-frequency shapes preserve impor-
tant morphological and clinical parameters such as LA diameter, LAA length, LAA orifice
diameter, curvature, etc. Furthermore the method is to be evaluated on larger medical
databases, where 3D models of anatomical structures also are of interest.
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