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Abstract: The participation of wind power in the energy mix of current power systems is progressively
increasing, with variable-speed wind turbines being the leading technology in recent years. In this
line, dynamic models of wind turbines able to emulate their response against grid disturbances, such
as voltage dips, are required. To address this issue, the International Electronic Commission (IEC)
61400-27-1, published in 2015, defined four generic models of wind turbines for transient stability
analysis. To achieve a widespread use of these generic wind turbine models, validations with field
data are required. This paper performs the validation of three generic IEC 61400-27-1 variable-speed
wind turbine model topologies (type 3A, type 3B and type 4A). The validation is implemented by
comparing simulation results with voltage dip measurements performed on six different commercial
wind turbines based on field campaigns conducted by three wind turbine manufacturers. Both IEC
validation approaches, the play-back and the full system simulation, were implemented. The results
show that the generic full-scale converter topology is accurately adjusted to the different real wind
turbines and, hence, manufacturers are encouraged to the develop generic IEC models.

Keywords: DFIG; field testing; full-scale converter; generic model; IEC 61400-27-1; validation

1. Introduction

Wind energy emerged as the most promising renewable energy source (RES) in the world over
the past few years. Since 2014, annual wind power installations have surpassed 50 GW each year on
a global scale, bringing the total cumulative capacity up to 591 GW at the end of 2018 [1]. China is
leading the global market with 206 GW of installed capacity, followed by the US (127 GW) and several
EU countries. With a total installed capacity of 179 GW in the EU at the end of 2018, wind power
had installed more capacity than any other type of electricity generation in the EU in that year [2],
positioning itself as the second largest type of power generation capacity in the region.

In addition to the installed capacity, wind power plays a key role in electricity demand coverage.
In the EU, wind power met 14% of the electricity demand in 2018 [2], which is 2% higher than in 2017.
Denmark presents the highest share of wind energy in its electricity demand (41%) in the EU. Ireland,
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Portugal, Germany and Spain also exhibited a considerable contribution of wind power to demand
coverage in 2018: 28%, 24%, 21% and 19%, respectively.

Network operators, either transmission system operators (TSOs) or distribution system operators
(DSOs), perform transient stability analysis to correctly integrate the increasing penetration of wind
power into the energy mix of current power systems. Dynamic wind turbine (WT) simulation models
are required for this purpose [3]. However, in contrast to traditional synchronous generators, most WT
models are not standardized or validated [4]. In this sense, the models developed by WT manufacturers
are able to reproduce the behavior of their WTs with the greatest accuracy [5]. Nevertheless, the use of
WT vendor models for transient stability analysis presents the following challenges: (i) they require
specific simulation software [6], (ii) each vendor model is commonly subject to a non-disclosure
agreement [7], (iii) each WT has specific controls depending on the manufacturer [8], (iv) increased
accuracy is provided at the expense of increased complexity and number of parameters and, as a
consequence, high computation time [9].

In light of the above considerations, the International Electrotechnical Commission published the
Standard International Electronic Commission (IEC) 61400-27-1 in February 2015 [10]. IEC 61400-27-1
defined four generic WT models to conduct dynamic simulations of power system disturbances such
as short-circuits. These generic models, also known as standard or simplified models, involve several
assumptions and have several key properties, as follows:

• They are public [11].
• They are independent of the software simulation tool used [12].
• They should be easily parameterized to emulate particular responses from any WT vendor

available in the market.
• They are intended for fundamental frequency positive sequence response [13]. Hence, they can

be used for balanced short-circuits, i.e., three-phase symmetrical faults.
• Wind speed is assumed to be constant over the simulation. This assumption is acceptable because

generic WT models use simulation time steps in the range of 1 ms and 10 ms and the total
simulation time is between 10 s and 30 s [14], with both of these conditions being common
features for transient stability analysis [15].

Under this framework, the present paper performs the validation of six generic WT models based
on the guidelines imposed by IEC 61400-27-1. For the first time in the literature, field campaigns
conducted by three WT manufacturers, Siemens–Gamesa, Senvion and ENERCON, are used for the
validation of three different WT technologies. Specifically, the variable-speed WT topologies, i.e., the
doubly-fed induction generator (DFIG) and the full-scale converter, which represent the largest market
share in current power systems, were submitted to voltage dips of different magnitude and duration.
The validation methodology defined by the IEC 61400-27-1 was implemented to evaluate the accuracy
of the generic WT models.

Following this introduction, the rest of the paper is structured as follows: Section 2 provides an
overview of the current state of the art regarding variable-speed WTs, where the lack of field validation
works is highlighted. Section 3 describes the methodology and testing procedure implemented in the
present work, the results of which are provided in Section 4. Finally, Section 5 summarizes the main
conclusions of the paper.

2. Overview of Generic Variable-Speed WTs and Previous Field Validation Works

MW-range WTs may be operated in two different ways: either fixed-speed or variable-speed
operation. Fixed rotor speed is the oldest WT technology [15], while variable-speed is the most
advanced technology and hence the current choice for every WT manufacturer [16]. Two different
WT topologies are identified as variable-speed operation, Figure 1: the DFIG, also known as type 3
(Figure 1a), and the full-scale converter, also known as type 4 (Figure 1b).
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Figure 1. Diagrams of the variable-speed wind turbines (WTs).

As shown in Figure 1, both of these variable-speed WT technologies include a bi-directional
AC-DC/DC-AC converter. The main difference between them is the converter rated power: the
converter is rated to 25–30% of the WT rated power for type 3 [17]; while the converter evacuates all
the energy produced by the generator (either an induction generator, IG, or a synchronous generator,
SG) in type 4. Hence, the type 4 generator is completely decoupled from the grid by the converter [18].
The power converter is composed of a machine (or rotor) side converter (MSC), a grid side converter
(GSC) and the dc-link. Depending on the fault-ride trough (FRT) capability of the WT, the generic
type 3 WT model is divided into two subtypes [10]: type 3A for WTs where the MSC and the chopper
are sufficiently dimensioned for FRT without disconnecting the converter; and the type 3B, which
is equipped with a crowbar device connected to the MSC in order to short-circuit the rotor when
over-currents and over-voltages voltages are detected [19]. In fact, the type 3B WT is transformed
into an induction generator with a rotor-connected resistance during crowbar activation [20]. In a
similar way, two subtypes are also defined for the generic type 4 WT model: type 4A, which omits the
aerodynamic and mechanical components due to the addition of a chopper in the dc-link; and type 4B,
where choppers are not included and hence post-fault power oscillations are present.

Due to the complex behavior of variable-speed WTs, and taking into account the particular
features of the generic IEC WT models listed in Section 1, there is little previous literature on the
validation of these models. Two of the first contributions are found in [20,21], where both generic
type 3 models, type 3B and type 3A, respectively, were validated with a 2 MW based WT operating at
full-load conditions against one voltage dip test case. A generic type 4B model was validated against
one voltage dip in [22], where the post-fault power oscillations were clearly observed. Generic type 3B
and type 4A models, both from the same vendor, were validated in [5,8,12] based on the field results
obtained from several test cases. It should be noted that the authors of the present work collaborated
in most of the previously cited contributions, as well as being members of Working Group 27 of the
IEC Technical Committee 88 in charge of the development of IEC 61400-27.

Under this framework, it can be clearly observed that the field validation of generic WT models
is a current topic of interest in the wind power industry. Nevertheless, the number of contributions
found in the literature is limited. Furthermore, there is a lack of contributions with the involvement of
several WT manufacturers and this is the gap the present paper aims to fill. Since each WT vendor has
specific controls, the FRT response of each actual WT is different. Hence, the validation of several WT
topologies provided by different manufacturers is the key contribution of the present paper.

3. Description of the Validation Methodology and Testing Procedure

Validating a model consists of comparing the emulated response with the measured data from
field tests, both referring to the same wind turbine terminals (WTT). According to IEC 61400-27-1 [10],
the measured and simulated data should be represented in per unit (pu) values based on the nominal
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active power and the nominal voltage at the WTT. The results of the validation procedure will include
the following parameters:

• Time series of the measured and simulated fundamental frequency positive sequence parameters,
such as voltage (u), active power (p) and reactive power (q).

• Error time series for the previous parameters, xE where x represents the specific parameter to be
validated (u, p or q), which are defined by the difference between measured field data (x f ield) and
simulated data (xsim), Equation (1).

xE(n) = x f ield(n)− xsim(n) (1)

• Three key validation errors are estimated for the previous error time series: mean error (xME),
Equation (2), mean absolute error (xMAE), Equation (3) and maximum absolute error (xMXE),
Equation (4).

xME =
∑N

n=1 xE(n)
N

(2)

xMAE =
∑N

n=1 |xE(n)|
N

(3)

xMXE = max
(
|xE(1)|, |xE(2)|, ..., |xE(N)|

)
(4)

Three different fault windows (W) are considered for the estimation of each key validation error,
as represented with different colors in Figure 2: (i) a pre-fault window lasting 1000 ms before the fault
occurs at t f ault (this is the first time the voltage dip occurs in one of the phases); (ii) a fault-window that
covers a time period from t f ault to the fault clearance, tclear; (iii) a post-fault window lasting 5000 ms
after tclear. As observed in Figure 2, two quasi-steady state (QS) sub-windows were defined during
both fault and post-fault periods. These QS sub-windows are used to avoid a misunderstanding of the
validation errors due to electromagnetic transients that could appear in the field but are outside the
scope of root mean square (RMS) simulations. The calculation of the final validation errors at each
window is summarized in Table 1.

 

uWTT

ttbegin tfault tfaultQS tclear tclearQS tend

Wpre-fault Wpost-fault

140 ms WfaultQS 500 ms Wpost-faultQS

Wfault

1000 ms 5000 ms

Figure 2. Voltage dip validation windows.

Table 1. Windows used for the estimation of the validation errors.

Error Pre-Fault Fault Post-Fault

xME Wpre-fault Wfault Wpost-fault
xMAE Wpre-fault WfaultQS Wpost-fault
xMXE Wpre-fault WfaultQS Wpost-faultQS
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Furthermore, the validation methodology defined by IEC 61400-27-1 includes two different
approaches to represent the grid model. On the one hand, the full system simulation approach
considers the modeling of the whole system composed of the equivalent grid, the interface between the
grid and the WT and the generic WT model [23]. On the other hand, the play-back approach involves
only the WT being modeled and the measured voltage being directly played-back into the generic WT
model. Therefore, the play-back validation methodology is recommended for assessing the accuracy
of the generic WT model as the uncertainties related to grid and test equipment models are reduced.

FRT mobile test units were used to perform the field tests and measurements of the actual WTs.
Figure 3 shows several photos of the different field campaigns carried out by the manufacturers
involved in the present work: Siemens–Gamesa (Figure 3a), Senvion (Figure 3b) and ENERCON
(Figure 3c), to perform the field tests used for the validation of the generic IEC WT models.

(a) Siemens–Gamesa. (b) Senvion. (c) ENERCON c©.

Figure 3. Photos of the field campaigns carried out by the WT manufacturers.

The validation methodology previously described, as well as the FRT mobile units, were used
to perform six different field tests for the validation of the generic WT models, as shown in Table 2.
Three different WT topologies (Type 3A, Type 3B and Type 4A) from three WT manufacturers were
considered. Siemens–Gamesa implemented the play-back validation methodology, while Senvion and
ENERCON deployed the full system simulation approach. A wide range of voltage dip characteristics
(residual voltage and dip duration) were also considered. It should be noted that the residual voltage
shown in Table 2 is based on the measurement guidelines defined by IEC 61400-21-1 [24]. This means
that the field test is defined by a voltage dip without a WT and, subsequently, when the WT is
connected and the test is performed, the final residual voltage may increase due to the actual reactive
current injection.

Table 2. Description of the validation tests performed.

Test WT WT WT Manufacturer Validation WT Load, Residual Voltage, Dip Duration,
ID Type Capacity Methodology p (in pu) u (in pu) t (in ms)

1 3A 3.46 MW Siemens-Gamesa play-back 1.00 0.20 550
2 3B 2 MW 0.45 0.35 723

3 3A 2 MW Senvion full system 0.97 0.23 980
4 4A 3.4 MW 1.02 0.50 500

5 4A 2 MW ENERCON full system 0.98 0.25 1520
6 4A 6 MW 0.21 0.75 3000
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4. Results

This section, which presents the main results obtained in this work, is divided into two subsections
in order to differentiate between type 3 and type 4 validation test cases. For each field test shown in
Table 2, results will be addressed in two different ways: (i) three figures with the time series of the
three measured (in black) and simulated (in blue) key parameters (u, p and q), as well as the error time
series (in red); (ii) one table summarizing the three validation errors (xME, xMAE and xMXE) at each
validation window.

4.1. Type 3 WT Validation Test Cases

This subsection discusses the validation results for the DFIG field tests: test ID 1, test ID 2 and
test ID 3.

4.1.1. Test ID 1

Figure 4 shows the results of test ID 1, which was performed on a DFIG WT with a dc-link
chopper as active protection device, i.e., a type 3A WT. The measured voltage profile shown in
Figure 4a was obtained through the connection of a series impedance at the FRT mobile test unit before
the measurement starts, which is disconnected at t = 4.12 s.

Regarding the active power response, Figure 4b, a considerable constant deviation is observed
between field and simulation when the fault was cleared (tclear = 2.05 s) and the active power recovery
ramp has finished. This deviation is due to the far greater complexity found in the pitch model and
torque controller in the actual WT compared to the simplified generic IEC WT model. Therefore, a
significant validation error was found for the average value during the post-fault period, as observed
in Table 3, pME = pMAE = 0.09 pu. This active power oscillation also occurs because the drive-train
model of the real WT is more complex than the two-mass model considered for the generic WT model.
Nevertheless, it can be observed that the oscillation frequency fits properly.

Regarding the reactive power response, Figure 4c, the IEC generic WT model generally emulates
the behavior of the actual WT with great accuracy. However, a negative reactive power peak appears
in the field at the fault clearance due to the transformer inrush current, which is a non-linear effect that
cannot be properly represented by transformer RMS models. Therefore, as observed in Table 3, mean
reactive power errors are considerably low (≤0.01 pu), while the maximum error is large (0.15 pu) due
to the disconnection of the series impedance of the FRT test unit.
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(a) Voltage.

Figure 4. Cont.



Energies 2019, 12, 3039 7 of 18

0 1 2 3 4 5 6 7 8
Time (s)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

A
ct

iv
e 

po
w

er
 (

pu
)

Field data 
Simulation data 
Error

(b) Active power.

0 1 2 3 4 5 6 7 8
Time (s)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

R
ea

ct
iv

e 
po

w
er

 (
pu

)

Field data 
Simulation data 
Error

(c) Reactive power.

Figure 4. Test ID 1 results.

Table 3. Validation errors for test ID 1, in pu.

Error Pre-Fault Fault Post-Fault
p q p q p q

ME 0.01 0.01 0.02 0.00 0.09 0.01
MAE 0.01 0.01 0.04 0.01 0.09 0.01
MXE 0.01 0.01 0.07 0.03 0.16 0.15

4.1.2. Test ID 2

Test ID 2 presents the second field case performed by the vendor Siemens–Gamesa. Figure 5
shows the results of this test, while Table 4 provides the calculation of the validation errors. It is worth
noting that the voltage dip characteristics of test ID 2 were quite similar to those of test ID 1, with the
main difference being the loading condition of the WT and the WT topology.
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(b) Active power.
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Figure 5. Test ID 2 results.
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Table 4. Validation errors for test ID 2, in pu.

Error Pre-Fault Fault Post-Fault
p q p q p q

ME 0.00 0.00 0.07 0.04 0.03 0.00
MAE 0.00 0.00 0.08 0.04 0.05 0.02
MXE 0.01 0.01 0.14 0.06 0.09 0.03

Firstly, regarding the voltage profile, Figure 5a, the identical response between simulation and
field, as also found in Figure 4a, should be highlighted. This is due to the implementation of the
play-back validation approach.

The active power response, Figure 5b, shows a slight deviation between field and simulation
due to the difficulties of representing exactly the same active power delivery during the voltage dip.
This is because the actual WT integrates a particular active power limitation algorithm that cannot
be represented with the generic WT model. In addition, the power dynamic in the actual WT during
the voltage dip is slower than in continuous operation and this different dynamic behavior cannot
be represented by the IEC model. This also has an impact on the ramp-up once the fault is cleared.
Furthermore, the real WT absorbs active power at the fault clearance (tclear = 2.22 s), which cannot be
properly emulated by the generic WT model due to the simplification in terms of transients. Therefore,
the active power validation errors have a significant value during both fault and post-fault periods, as
shown in Table 4.

Furthermore, reactive power validation errors also present a larger value in comparison to test
ID 1, which is directly related to the crowbar dynamics, as observed in Figure 5c at both fault inception
and fault clearance.

4.1.3. Test ID 3

Figure 6 shows the results of the last field test performed on a DFIG WT. Specifically, this WT is a
Senvion MM series WT that implements the same IEC model type as that used for test ID 1, i.e., Type
3A. In addition, both the WT loading condition and the residual voltage were almost identical. Table 5
summarizes the validation of test ID 3.

In this field test, the grid was modeled by the full system simulation approach of IEC 61400-27-1,
as commented in Section 3. Figure 6a compares both the measured and the simulated voltage at the
wind turbine terminals, where the three-phase voltage dip occurs at t = 1.05 s. Due to the reactive
current infeed of the WT during the dip, the voltage level rises. In contrast to tests ID 1 and ID 2, a
small hysteresis was observed in the measured voltage at voltage dip clearance (tclear = 2.02 s), which
cannot be represented by the simulated voltage due to the lack of hysteresis in the transformer model.

The eigenfrequency between active power measurement and simulation shown in Figure 6b is
quite similar during both the fault and post-fault period. Specifically, the simulated response is almost
identical to the measured one during the fault period, which causes a notably reduced validation error:
pME = pMAE = 0.01 pu. However, a delay was identified in the measurement at fault clearance, which
is caused by the power converter operation (further details are provided in [16]). This power converter
effect was not considered in the generic IEC WT model.

Table 5. Validation errors for test ID 3, in pu.

Error Pre-Fault Fault Post-Fault
p q p q p q

ME 0.00 0.00 0.01 0.01 0.02 0.04
MAE 0.01 0.00 0.01 0.01 0.05 0.04
MXE 0.03 0.01 0.03 0.02 0.10 0.10
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(c) Reactive power.

Figure 6. Test ID 3 results.

4.2. Type 4 WT Validation Test Cases

This subsection discusses the validation results for the full-scale converter WT topology: tests
ID 4, ID 5 and ID 6.



Energies 2019, 12, 3039 11 of 18

4.2.1. Test ID 4

The WT used for the test ID 4 was model 3.4M (Pn = 3.4 MW), belonging to the manufacturer
Senvion. It is represented by IEC 61400-27-1 as a Type 4A WT model. The grid was the same as that
used for test ID 3, which was modeled by the full system simulation approach.
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Figure 7. Test ID 4 results.
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Figure 7 shows the results of validation test ID 4. A three-phase voltage dip with a residual voltage
of 0.5 pu occurred at t f ault = 1.05 s and ends at tclear = 1.54 s, Figure 7a. As previously mentioned,
this residual voltage was increased by the reactive current infeed during the voltage dip. In addition,
a small hysteresis effect of the transformer is observed on the measured voltage (in black) at fault
clearance. However, the hysteresis was not implemented in the transformer model and, hence, this
effect cannot be reproduced by the simulation (in blue).

The measured active power, Figure 7b, fluctuates according to the wind speed variations.
However, the simulated active power is set to rated power because the wind speed was assumed to be
constant, according to IEC 61400-27-1, as stated in Section 1. The fit of the active power during the fault
period was reasonably accurate: pME = pMXE = 0.01 pu. However, a small deviation in the active
power ramp is observed once the fault is cleared. This was caused by the simplifications included in
the generic WT model, which should be neglected for power system stability studies.

Furthermore, the reactive power, Figure 7c, which was controlled according to the voltage level,
also presents quite an accurate adjustment between field and simulation. There was a small deviation in
the reactive power at fault clearance due to the already mentioned hysteresis effect in the measurement,
which was not represented in the generic WT model. This effect was not considered in the IEC
validation methodology because it was a question of transients, which were outside the scope of
system stability studies, as commented in Section 2.

Finally, Table 6 summarizes the validation errors estimated for test ID 4, where it can be observed
that the representation of the generic IEC type 4A model is reasonably accurate before, during and
after the voltage dip.

Table 6. Validation errors for test ID 4, in pu.

Error Pre-Fault Fault Post-Fault
p q p q p q

ME 0.02 0.00 0.01 0.00 0.01 0.01
MAE 0.02 0.00 0.00 0.00 0.02 0.01
MXE 0.03 0.01 0.01 0.01 0.03 0.02

4.2.2. Test ID 5

Figure 8 shows the validation results for test ID 5, which are provided by an ENERCON E-82 WT
model with 2 MW rated power. For the simulation case, the generic IEC type 4A model was used,
implementing a full system validation approach.

Figure 8A shows a three-phase voltage dip down to 25% of the nominal voltage. The WT was
operating at rated active power and zero reactive power. As can be observed, the series impedance
of the FRT container was switched on at t = 1 s. The short-circuit impedance was switched on at
t f ault = 3 s and the fault duration was 1.5 s (tclear = 4.5 s).

Once the FRT series impedance is connected, a small deviation is found in the reactive power
response, Figure 8c. This is caused by an additional voltage regulation of the actual WT, which is not
represented by IEC 61400-27-1 type 4A model. When the fault occurs, the WT starts injecting reactive
power according to the adjusted factor K = 2, as detailed in Equation (5), where Iq represents the
reactive current, In the nominal current, U+ the positive sequence voltage, Un the nominal voltage and
U0 the reference voltage.

∆Iq = K · In ·
−∆U+

Un
; with, ∆U+ = U+ −U0 (5)

As observed in Figures 8b,c, quite an accurate fit between the simulation and the measurements
was observed during the fault period. This implies that the current limitation model was well
represented by the generic type 4A model. However, a transient transformer effect is shown when the
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fault is cleared, which cannot be accurately emulated. In summary, considerably accurate validation
results were obtained for both active and reactive power, as summarized in Table 7.
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Figure 8. Test ID 5 results.
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Table 7. Validation errors for test ID 5, in pu.

Error Pre-Fault Fault Post-Fault
p q p q p q

ME −0.02 −0.04 0.01 −0.01 −0.01 0.01
MAE 0.02 0.04 0.02 0.01 0.02 0.02
MXE 0.02 0.04 0.03 0.02 0.03 0.05

4.2.3. Test ID 6

Test ID 6 provides the validation results of an ENERCON E-126 WT with 6 MW rated power, as
shown in Figure 9. As for test ID 5, the generic IEC type 4A model was used in a full system validation
approach.

Figure 9a shows a three-phase voltage dip down to 75% of the rated voltage. The WT was
operating at partial active power and zero reactive power. As observed in Figure 9a, the series
impedance of the FRT container was switched on at t = 1 s, the short-circuit impedance is switched on
at t f ault = 2 s and the fault duration is 3 s. In fact, ID 6 was the test with the longest dip duration.

Once the short-circuit occurred, quite an accurate response of both active and reactive power
was observed, Figure 9b,c, respectively. As in test ID 5, the WT turbine starts injecting reactive power
when the fault occurs according to the adjusted factor K = 2, as detailed in Equation (6), where
UUVRT or OVRT defines an additional dead band for the reactive current calculation and the other
parameters are the same as those defined for Equation (5).

∆Iq = K · In ·
−∆Ur

Un
; with, ∆Ur = ∆U ± (Un −UUVRT or OVRT). (6)

A small constant deviation between the simulation and the reactive power measurements is
found during the fault period, Figure 9c. In contrast, higher deviations are observed for active power,
Figure 9b. These deviations were due to the current injection method of the actual WT, which was
based on a regulation algorithm that includes the dc-link voltage. In fact, the dc-link part and the
regulation algorithm were not represented by the generic IEC type 4A model. Once the fault is cleared,
some saturation effects are observed in the measurements, which were not represented by the generic
transformer model.

Finally, Table 8 summarizes the key validation errors for test ID 6. As observed, very low
validation errors were found for active and reactive power during both fault and post-fault periods.
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(a) Voltage.

Figure 9. Cont.
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Figure 9. Test ID 6 results.

Table 8. Validation errors for test ID 6, in pu.

Error Pre-Fault Fault Post-Fault
p q p q p q

ME 0.00 0.00 0.02 0.01 −0.01 0.00
MAE 0.00 0.00 0.02 0.01 0.01 0.00
MXE 0.02 0.00 0.08 0.01 0.02 0.00

5. Conclusions

Given the increased penetration of wind power in the energy mix of current power systems, the
need for public standard (i.e., generic) WT models to perform transient stability analysis is growing.
IEC 61400-27-1, published in February 2015, defined four generic WT dynamic models able to be
adapted to any particular WT vendor’s commercial model. As it was published relatively recently, very
few validation works with field data have been performed. Hence, TSO, DSOs, WT manufacturers
and other stakeholders do not currently have evidence of the generic WTs’ accurate response. The
present work has validated three different generic WT topologies (type 3A, type 3B and type 4A) with
six different actual variable-speed WTs from three manufacturers (Siemens–Gamesa, Senvion and
ENERCON).
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First, both IEC validation approaches, the play-back and the full system, were implemented,
finding that when the play-back approach is used, the simulated voltage is identical to the measured
voltage. In fact, when using the full system approach, the measured voltage experiences a slight
hysteresis at voltage dip clearance, which cannot be represented by the simulations due to the lack of
hysteresis in the transformer model.

Regarding the DFIG WT model validations, type 3B presented larger validation errors than
type 3A, which is due to the crowbar protection system. In fact, the generic crowbar model
implemented in type 3B is a simplification of a quite complex model.

Furthermore, the type 4 WT models provided a highly accurate response, for both active and
reactive power, with respect to the three different type 4A WTs considered. In the case of the ENERCON
E-126 WT, a larger deviation between field and simulation was found, which was based on the
particular representation of the current injection for this WT. In this sense, if a deeper voltage dip
occurs, the active power results will be affected by the current limitation, which would yield a more
accurate validation result.
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Abbreviations

The following abbreviations are used in this manuscript:

AC Alternating current
DC Direct current
DFIG Doubly-fed induction generator
DSO Distribution system operator
EU European Union
FRT Fault-ride through
GB Gearbox
GSC Grid side converter
IEC International Electrotechnical Commission
IG Induction generator (also known as asynchronous generator)
MSC Machine (or rotor) side converter
pu per unit
QS quasi-steady state
RES Renewable energy source
RMS Root mean square
SG Synchronous generator
TSO Transmission system operator
US/USA United States of America
W Window
WECC Western Electricity Coordinating Council
WT Wind turbine
WTR Wind turbine rotor
WTT Wind turbine terminal
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