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ABSTRACT: Cancer is a major health risk in the modern
society that requires rapid, reliable, and inexpensive
diagnostics. Because of the low abundance of cancer DNA
in biofluids, current detection methods require DNA
amplification. The amplification can be challenging; it
provides only relative quantification and extends time and
cost of an assay. Herein, we report a new oligonucleotide
hybridization platform for amplification-free detection of human cancer DNA. Using a large PEG-capture probe allows rapid
separation of the bound (mutant) versus unbound (wild type) DNA. Next, a supramolecular hydrogel forming peptide attached
to a detection oligonucleotide probe serves as a signal amplification tool. Having screened multiple short peptides and
fluorophores, we identified the system P1 + cyanine 3.5 that allows for sensitive quantitative detection of mutation L858R in
EGFR oncogene. The peptide−fluorophore-based assay provides absolute target DNA quantification at the detection limit of 20
ng cancer DNA versus >500 ng for Cy3.5-labeled oligonucleotide in only 1 hour.

■ INTRODUCTION

Oncogenes are regions of normal human DNA that upon
mutation drive cancer development and progression.1,2 Point-
of-care (POC) approaches aim for detecting mutations in
human oncogenes in a reliable and affordable way.1 Recent
research on single nucleotide polymorphisms (SNP) in human
oncogenes is now being actively translated into diagnostic
solutions. However, DNA samples are subjected to polymer-
ase-chain reaction (PCR) prior to SNP detection. This raises
issues with standardization of PCR, target quantification, and
inability to detect numerous SNPs such as KRAS G12D, and so
forth.1,2 Besides predicting cancer, SNP in oncogenes is a
valuable guide for treatment. Recurring target oncogenes
include PIK3CA, FBXW7, EGFR, BRAF, and NRAS.3 More-
over, various resistance mechanisms were revealed by SNP
profiling in single cancer cells, suggesting considerable
resistance heterogeneity of tumor tissues.4

Performing amplification-free detection requires a signal
boosting approach that would allow detecting cancer DNA
with a required signal-to-noise ratio at ultra-low target
amounts.5 One way to achieve this was demonstrated by
using fluorophore-labeled branched DNA.6,7 These labeled
probes caused an increase of the signal by multiple
fluorophores obtained in the received hybrids from cascade
hybridization reactions.6,7 Another method involves the direct
physical fluorescence amplification mechanism, based on
origami DNA optical antennas.8 Origami DNA is capable of
incorporating noble metal nanoparticles, leading to a

plasmonic hotspot for fluorescent enhancement.9 Other
amplification-free methods include SERS analysis,10 piezo-
electric plate sensors,11 and Raman spectroscopy-based
methods.12

Optical and electrochemical detection methods are promis-
ing approaches to achieve a sensitive and repeatable assay that
is also robust and quick to use.13−16 Previously, we
demonstrated an enzyme-free detection of cancer SNP using
synthetic oligonucleotide probes and fluorescence micros-
copy.13 Although sensitive, this methodology requires a
significant experimental effort and a confocal fluorescence
microscopy equipment. Thus, techniques with simultaneous
improvements toward high throughput and portability are still
appealing.14

Fluorescent readouts are capable of giving rapid and
quantitative results.13 Therefore, fluorescence is implemented
in various diagnostic tools used in research and clinical
practice.17 Latest developments in this field aim at multiplexed
fluorescence readouts by using time responses of color-coded
signals.18 Especially in multiplex detection, assay artifacts due
to interference of probes or fluorophores make it important to
select the appropriate fluorophore and assay conditions.19

Generally, scaffolding along biomolecules is an attractive
paradigm for signal boosting that has been explored in, for
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example, DNA origami and DNA−fluorophore signal boost-
ing.8,13 Oligo- and polypeptides is another class of
biomolecules that can form diverse nanostructures with
fluorophores. Peptides are cheaper reagents compared to
large DNA, and their self-assembly is faster than DNA.20−23 As
a drawback, the formation of peptide nanostructures is more
difficult to predict compared to DNA. Nevertheless, self-
assembly of rationally designed peptide sequences is emerging
as a potential route for peptide hydrogel design with promising
applications in biosensing.21−23 Researchers have successfully
designed several supramolecular hydrogels based on peptides
and peptide conjugates with oligonucleotides or poly-
mers.24−26 It was shown that the peptide sequence is key to
form a hydrogel, and that peptides can be ideally engineered to
form hydrogels with desired properties.27,28 The knowledge
obtained from several peptide sequences and their conjugates
provides an useful insight into the formation mechanism of the
gel.24−28 Moreover, the conditions at which gelation takes
place including individual and collective features of each amino
acid have been described.29−31

Additionally, fluorescent hydrogels have gained research
concern because of their practical applications as a convenient
tracer in biomedical engineering.32,33 Multiple fluorescence-
based hydrogels have been developed recently by either
chemical or physical immobilization of fluorophores, for
biosensing, thermoresponsive sensing, and hydrogel degrada-
tion tracking.34−36 Nevertheless, reported routes for attaching
fluorophores to hydrogels have limitations, mainly because of
the complexity of the hydrogel microenvironment and often
unpredictable interactions with analytes.37,38 As a result, there
is still an unmet need in new robust methodologies for
preparation and applying fluorescent hydrogels.37,38

In this work, we aimed at a POC detection for human
oncogene EGFR, using a peptide−fluorophore signal boosting
approach. Our hypothesis to be tested was that cancer DNA
can be detected by a specific hybridization probe conjugated
with a peptide sequence that can form a hydrogel. We selected
a sequential hybridization methodology, along with an optical
read-out of a fluorophore−peptide hydrogel, as a robust and
accessible method for POC applications.15,16

■ RESULTS AND DISCUSSION
Initially, we performed a screening of peptide candidates,
aiming at their following properties: (1) ability to form a
hydrogel in aqueous media; (2) non-quenching inclusion of
fluorophores into the gel; (3) linear dependence of the
fluorescence signal to the amount of the added peptide. Based
on existing literature,32−38 short charged peptides have a high
propensity for gelation in aqueous media. We included three
peptide candidates in this study (Figure 1; Supporting
Information, Tables S1 and S2). Among a broad range of
available fluorophores, we used Cy3.5, AlexaFluor547, and
anthracene (AC), as shown in Figure 1C. The rationale behind
the choice of these fluorophores was their high quantum yield
and confirmed interactions with biomolecules.39,40 Azide
functionalities were incorporated into the fluorophores to
provide an ability of covalent conjugation to a control probe,
described below. However, having an azide is not critical for
hydrogel formation and can be omitted.37,38

The procedure for preparation of hydrogels included mixing
of an aqueous solution of peptide with a solution of
fluorophore in dimethylsulfoxide (DMSO) and leaving the
mixture for over 1−48 h at room temperature. The quality of

liquid → hydrogel transition, if hydrogel formation occurred,
was rated, and each sample was categorized with one out of
three possible statuses: no gel, gelish, and gel. These categories
were given based on the viscosity of the liquid/gel and the
visible behavior of the sample when mechanical forces such as
spinning, tending, and slight shaking were applied. By
measuring gelation efficiency at different time points, we also
studied kinetics of hydrogel formation and fluorescence
response of the applied dyes to the amount of peptide
(Supporting Information; Figures S1 and S2).
Figure 1 shows hydrogel formation by best-performing

candidates. The complete results of the peptide−fluorophore
hydrogel formation screening and their hydrogel formation
rating can be taken from Table S2, Supporting Information. All
peptides formed a hydrogel under the applied conditions.
Upon adding fluorophores, P2 and P4 had the best results;
whereas P1 formed a hydrogel only with Cy3.5 (Figure 1;
Supporting Information, Table S2). Notably, peptide P3
showed no hydrogel formation, most likely because of its
hydrophobic properties. Adding fluorophores slightly slowed
down the gelation for P1, P2, and P4, especially in the case of
AlexaFluor547. Moreover, the fluorescence of AlexaFluor547
was completely quenched by adding all the peptides (Figure
1A).
Fast formation of a peptide hydrogel is a key feature for

successful POC diagnostics. We investigated the kinetics of
hydrogel formation and optimized the conditions to secure a
complete gel formation in 1.5 h (Supporting Information;
Figures S1 and S2). In this experiment, we followed the
gelation by fluorescence response of Cy3.5 which was added to
the concentrated solution of the peptide in 1× phosphate
buffered saline (PBS), 110 mM [Na+], pH 7.0. Our data show
a 33% quenching of Cy3.5 fluorescence during first 40 min
after adding the peptide and a dye to the media; after 1.5 h, the
fluorescence response does not change. Based on this result,
and on a visible behavior of the samples, we concluded that the
hydrogel formation for P1 + Cy3.5 has been complete in 1.5 h.
In contrast, for P2 and P4, gelation took as long as 12 h upon
adding Cy3.5 (Figure S2, Supporting Information).

Figure 1. Hydrogel formation by selected peptides: (a) P1 with
different dyes; (b) Cy3.5 with P2−P4; (c) Chemical structures of
fluorophores used in this study. Peptide sequences were as follows:
written in C → N direction: P1, GGKKRRQKGR; P2, RKKRRRRR;
P3, GGAAGGAY; P4, YGGAAGGK.
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Next, we focused on optimizing the ratio of the peptide to
fluorophore in order to achieve the highest brightness at the
lowest peptide amount. The data shown in Chart S2,
Supporting Information, reveal that the most sensitive system
is P1 and Cy3.5. In the case of AC, no clear concentration
dependence of fluorescence response appeared (Supporting
Information, Chart S2). Based on these data, we selected the
system P1 + Cy3.5 in molar ratio 1:10 as the most promising
for further POC assays.
We proceeded with developing a detection methodology for

cancer DNA. The design of the assay is shown in Figure 2. A
capture probe is attached to PEG 8×. According to our idea,
PEG would make large size products with cancer DNA, and in
that way, a bound capture:cancer DNA can be easily separated
from unbound DNA (wild type) by size exclusion.41 The
detection probe is complementary to the upstream region of
the capturing sequence and contains a terminally attached
hydrogel forming peptide P1. We selected EGFR oncogene for
the pilot study, given its high importance in monitoring
multiple types of cancer including breast cancer and
melanoma, as well as its recently confirmed role in hyper-
activation of cancer progression as a response to immunother-
apy.42,43

For the assay, the detection and capture probes have been
designed using publicly available NCBI data and our previously
reported probe uniqueness analysis.13 Following our previous
studies, we enriched the oligonucleotides with affinity and
specificity enhancing locked nucleic acids.13 Oligonucleotide 1
(ON1) has been purchased as a 5′-amino-modified precursor
and converted to alkyne-modified ON1′ by reaction with STP
alkyne reagent. 3′-Alkyne modified ON2 has been synthesized
in house, using the automated solid-phase phosphoramidite
method. Oligonucleotides ON1′ and ON2 have been
characterized by IC HPLC and MALDI-TOF MS (Supporting
Information; Table S3, Figure S3).
Commercially available PEG 8× azide has been conjugated

with alkyne-modified capturing probe ON1′ under standard
CuAAC click conditions.44 The product has been purified by
NAP-5 gel filtration and characterized by HPLC, fluorometry
titration with complementary DNA, and by denaturing PAGE.
HPLC confirmed full conversion of ON1′ after the click
reaction with PEG 8× (Supporting Information, Figure S4); by
adding a DNA complement and a double-stranded DNA
binding fluorophore Eva Green, we confirmed that all the
attached strands in ON3 were able to form a duplex with the
target DNA (Supporting Information, Chart S4). Finally,

Figure 2. Scheme of P1 + Cy3.5 amplification-free assay and sequences of its key components. Azide-modified P1 sequence: N3(CH2)5C(O)-
GGKKRRQKGR-NH2. LNA = locked nucleic acid, indicated with a plus in front of a nucleotide letter. Molecular weight cutoff value of 100 kDa
has been selected based on the calculated mass for PEG-capture probe:target complex bound to at least one cancer DNA molecule over 1000 nt
long.
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denaturing PAGE stained with SybrGreen confirmed a product
length of approx. 130 nt (Supporting Information, Chart S5).
This corresponds to attachment of six oligonucleotides ON1 to
PEG 8×.
Knowing the number of attached capture probes per PEG

core allowed us to establish a molecular weight cutoff
(MWCO) value for DNA binding assay. Thus, the molecular
weight of the PEG−oligonucleotide conjugate has been
estimated as 56 kDa. Upon binding at least one fragment of
genomic DNA of a size over 1000 nt, the weight of the
complex would exceed 100 kDa. Therefore, a MWCO of 100
kDa has been applied in the assay described below.
Azido-derivative of P1 has been conjugated under a similar

CuAAC procedure44 with precursor ON2. As a control, we
conjugated ON2 with Cy3.5 azide; all the products have been
characterized by IC HPLC and MALDI-TOF (Supporting
Information, Table S3, Figure S5).
Next, we conducted a genotyping assay and benchmarked it

to mono-Cy3.5-labeled detection probe and quantitative PCR
(qPCR; Figure 3 and Supporting Information, section 3). For

the assay, we used EGFR-mutated DNA from human cancer
cells. The DNA sample has been purified by a Qiagen DNA

work up kit, followed by digestion with EcoRI. This provided
DNA fragments of 7000 bp in average, confirmed by QiaExpert
analysis. The detection assay has been conducted in a 96-well
format, which is suitable for conventional microplate
processing and read-out equipment. At the selected concen-
tration, a signal for free Cy3.5 was 445 ± 2 a.u. When the assay
was conducted with a detection probe lacking a peptide, a
background fluorescence signal of 19 ± 2 a.u was recorded
(data shown in Figure S6). A free Cy3.5 dye has been removed
by a triple washing procedure; the complete removal of the dye
has been confirmed by fluorometry analyses of the washes
(data not shown). Along with this experiment, a series of
controls has been performed, including spike-in of wild type
DNA into the EGFR sample, adding unmodified P1 to speed
up the gelation, and qPCR. These data can be found in
Supporting Information, Figures S7 and S8.
We observed a concentration-dependent sensing of EGFR

DNA by the P1 + Cy3.5 system, with a limit of target detection
(LOD) of only 20 ng cancer DNA (550 pM), versus >500 ng
(15 nM) for Cy3.5-labeled oligonucleotide (Figure 3).
The LOD for the peptide hydrogel assay is similar to

conventional qPCR and is 5-fold lower than for DNA
microarrays.45 The LOD of 550 pM is also similar to DNA
fluorophore nanostructures reported before, when a conven-
tional fluorometry has been applied.5 The LOD of our method
can be further decreased by applying advanced optical
solutions, reaching previously reported low femtomolar for a
DNA-Eva Green complex.5,13

The detection procedure for our assay is 2-fold faster than
for qPCR (Supporting Information, Figure S8).3 Moreover, the
estimated cost for the peptide hydrogel assay is USD 0.2,
versus 0.89 USD per reaction for qPCR (in house data). Last,
the assay does not require handling an enzyme, dNTP, and
other sensitive reagents, which makes it easier to carry out.3

To verify the assay specificity, we used the HMC cell line
that does not contain a mutated EGFR. P1 + Cy3.5 assay
showed 99% specificity for the mutated EGFR over wild-type
DNA (Figure 3). We also performed a spike-in experiment,
where EGFR DNA was mixed with HMC at different ratios.
Using the P1 + Cy3.5 hybridization assay, detection down to
20% EGFR in wild-type HMC DNA has been achieved
(Supporting Information; Figure S7).
The multivalence of PEG capture probe increases the

probability of cross-binding between DNA strands. This could
lead to changes in the calibration curve at increasing DNA
target concentrations. Although not observed for the double-
stranded DNA target used herein (Figure 3), a cross-binding
would be a considerable risk for long single-stranded DNA
targets. This needs to be taken into consideration, and if it

Figure 3. Amplification-free detection of mutated EGFR DNA from
cancer cells: LOD determination and control with wild-type DNA for
P1 + Cy3.5 (a), vs Cy3.5-labeled detection probe (b). The data for
mutated vs wild-type DNA are shown in blue and red, respectively.
Excitation/emission wavelengths: 580 nm/610 nm.

Table 1. Results of the MD Study in DINC2.0a

peptide fluorophore energy of the dimer, kcal/mol RMSD, Å (dimer) energydye docking, kcal/mol RMSD, Å, peptide−fluorophore
P1 Cy3.5 −3.9 7.1 −5.1 6.0

AF547 −5.9 0.2
AC −5.0 7.8

P2 Cy3.5 −3.8 6.8 −5.2 4.7
AF547 −5.6 3.0
AC −4.8 6.2

P3 Cy3.5 −4.1 3.4 −4.5 4.0
P4 Cy3.5 −3.8 5.0 −4.5 3.7

aRMSD is an average value for three lowest energy structures obtained in docking studies.
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occurs, a buffer composition could be adjusted to more
denaturing conditions.
As another control, we conducted the assay with EGFR

DNA and P1 + Cy3.5, in the presence of additional P1. We
wondered if having an excess of free peptide could promote
hydrogel formation, leading to higher fluorescence and lower
LOD. Indeed, adding 5−10 nM free P1 promoted the gelation
which now took as little as 30 min. However, when adding
over 10 nM free P1, the separation procedure for non-bound
DNA and peptide has been complicated and an increased false-
positive signal has been observed (data not shown).
We assessed reproducibility of the assay by a series of three

repeated independent measurements, in the DNA target
concentration range 20−200 ng. The measurements were
carried out for EGFR DNA by our assay and qPCR. The
calculated coefficient of variation (CV) for the peptide
hydrogel assay was 1.5−2.5%, and it increased upon decreased
DNA target amount, which is expected. The observed CV was
qPCR was ∼2.6 fold higher in the range 3.7−6.7% (Supporting
Information; Table S4).
To investigate the structure of peptide−fluorophore hydro-

gels, we performed a series of molecular dynamics (MD)
studies (Supporting Information, section 5; Table 1, Figures
S9−S20). In doing this, we used RPBS PEPFOLD 3 and
DINC 2.0, which are suitable force fields for analyzing peptide
folding and interactions.46,47 Our approach to building the
structural model for peptide−fluorophore hydrogel included 4
steps: (1) predicting the 3D structure of individual peptides;
(2) studying self-assembly of each peptide; (3) simulating
interactions of individual peptides with fluorophores; and (4)
building a complete model for the peptide−fluorophore
interaction within a hydrogel.
Our MD results are shown in Table 1 and in Figures S9−

S20, Supporting Information. Among all studied peptides, P1
forms the most well-defined helix (Figure S9). P2 also forms a
helical motif vs. hairpin formation predicted for P3 and P4
(Supporting Information, Figures S10−S12). P1−P4 have
almost similar free energies predicted for dimer structures;
however, in P1 and P2, the average distance between two
peptide chains is longer, 6.8−7.1 Å versus 3.4−5.0 Å for P3−
P4 (Table 1). This correlates with a lower energy for docking
products of P1−P2 with fluorophores vs. P3−P4. According to
the literature, having a cavity of >5 Å is a structural
requirement for embedding small molecules into peptide
assemblies.48,49 Therefore, P1 and P2 are the most potent
candidates, according to MD, for interaction with fluorophores
(Figure 4A).
Close proximity of a fluorophore to a biomolecule can be

caused by active hydrogen bond formation.50 This seems to be
the case for polar group-rich Cy3.5 and AlexaFluor547,
compared to the longer distance between the peptides to
nonpolar AC (Supporting Information, Figures S15 and S18 vs
Figures S13, S14, S16, S17, S19, and S20). However, a close
proximity of a fluorophore to the biomolecule might lead to
quenching of fluorescence, for example, by the Dexter
mechanism or photo-induced electron transfer.51 To account
for this, we conducted a series of titrations for fluorophores
Cy3.5 and AC, with peptides P1 and P3 (Supporting
Information, section 6). A fluorophore has been mixed with
a peptide in different ratios, and the resulting hydrogel has
been analyzed by vis absorbance (Figure 4B; Figure S21),
excitation (Figure S22), and emission spectra (Figure S23).

UV-Visible absorbance spectra of Cy3.5 are weakly changed
by adding P1/P2 (Figure 4B). This is on the contrary to AC,
which exhibits quenching of absorbance and a 4 nm blue shift
of absorbance maxima upon adding P1 (Figure S21).
Excitation spectra for both Cy3.5 and AC are slightly quenched
upon adding P1/P3, with similar positions of maxima to vis
absorbance spectra. Fluorescence emission reveals an active
excimer formation by AC, with emission maxima at 530 and
585 nm, also in the presence of P1 (Supporting Information,
Figure S23). Fluorescence intensity of Cy3.5 is poorly affected
by adding P1 and is slightly quenched in the presence of P3.
For Cy3.5 + P1, fluorescence maxima are bathochromically
shifted by 3 nm compared to free Cy3.5. These results point
on two important structural features of the studied systems
which also fit with the results of MD studies: (1) AC actively
interacts with itself by forming an excimer, and it poorly
interacts with P1; (2) Cy3.5 is incorporated into hydrogel,
most likely, by weak hydrogen binding with P1; (3) upon
hydrogel formation, Cy3.5 is positioned into a more polar
environment compared to the free dye, leading to a
bathochromic shift of emission maxima.51

Altogether, our MD data and optical assays confirm
favorable properties of the P1 + Cy3.5 system for hydrogel
formation, accompanied by high fluorescence intensity of
Cy3.5, as a result of several structural features. First, P1 folds
into a helical structure and self-assembles. Second, P1 assembly
creates a series of cavities for embedding Cy3.5. Third,
hydrogen bonding retains Cy3.5 in a complex with P1. Last,
Cy3.5 forms relatively weak hydrogen bonds with P1, leading
to its high fluorescence intensity being remained in the
hydrogel (Figure 4A).

Figure 4. Structural model (a) and UV-Visible absorbance (b) for P1
+ Cy3.5 hydrogel. The model has been obtained in PEPFOLD 3/
DINC2.0 MD and docking environment. Cy3.5 is shown in yellow.
Computed ΔG values for the model are given in Table 1. Absorbance
spectra have been recorded in 0.5% DMSO−1× PBS buffer, pH 7.0,
using 2.5 μM Cy3.5 and different molar ratios of P1.
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■ CONCLUSIONS
In conclusion, we developed an amplification-free detection
method for human cancer DNA. The method is based on size
exclusion of mutant DNA bound to the PEG-capture probe,
and on detection by forming a fluorophore−peptide gel. As a
proof of principle, we successfully detected EGFR oncogene at
an amount down to 20 ng total DNA, with specificity over
99%. However, other oncogenes can be tested by our approach
as well. Our method is simple, fast, and relatively inexpensive,
opening up exciting opportunities for POC applications. Our
structural model explains how the selected peptide interacts
with Cy3.5 fluorophore and might open new paths for
developing amplification-free diagnostic systems.
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Esbjörner, E. K. Binding of cell-penetrating penetratin peptides to
plasma membrane vesicles correlates directly with cellular uptake.
Biochim Biophys Acta Biomembr. 2011, 1808, 1860−1867.
(37) Birch, D.; Christensen, M. V.; Staerk, D.; Franzyk, H.; Nielsen,
H. M. Fluorophore labeling of a cell-penetrating peptide induces
differential effects on its cellular distribution and affects cell viability.
Biochim Biophys Acta Biomembr. 2017, 1859, 2483−2494.
(38) Hedegaard, S. F.; Derbas, M. S.; Lind, T. K.; Kasimova, M. R.;
Christensen, M. V.; Michaelsen, M. H.; Nielsen, H. M. Fluorophore
labeling of a cell-penetrating peptide significantly alters the mode and
degree of biomembrane interaction. Sci. Rep. 2018, 8, 6327.
(39) Nåbo, L. J.; Madsen, C. S.; Jensen, K. J.; Kongsted, J.;
Astakhova, K. Ultramild protein-mediated click chemistry creates
efficient oligonucleotide probes for targeting and detecting nucleic
acids. ChemBioChem 2015, 16, 1163−1167.
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