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ABSTRACT 

Periodic molecular dynamics (MD) simulations of proteins may suffer from image interactions. 

Similarly, the hydrophobic effect required to keep a protein folded may not be enforced by 

small simulation cells. Accordingly, errors may arise both from the water concentration per se 

and the image interactions. Intrinsically disordered proteins are particularly sensitive, 

providing a worst-case estimate of the errors. Following this reasoning, we studied Aβ40 (Aβ), 

a disordered peptide central to Alzheimer’s disease, by 100 different simulations with variable 

cell size from very large (20 Å) to very small (3 Å). Even for this very disordered peptide, most 

properties are not cell-size dependent, justifying the common use of modest-sized (10 Å) cells 

for simulating proteins. The radius of gyration, secondary structure, intra-peptide, and peptide-

water hydrogen bonds are similar relative to standard deviations at any cell size. However, 

hydrophobic surface area increases significantly in small cells (confidence 95%, two-tailed t-

test), as does the standard deviation in exposure and backbone conformations (>40% and 

>27%). Similar results were obtained for the force fields OPLS3e, Ambersb99-ILDN, and 

Charmm22*. The similar prevalence of structures and α-β transitions in long and short 

simulations indicate small diffusion barriers, which we suggest is a defining hallmark of 

intrinsically disordered proteins. Whereas hydrophilic exposure dominates in large cells, 

hydrophobic exposure dominates in small cells, suggesting a weakening of the hydrophobic 

effect by image interactions and the few water layers available to keep the protein compact, 

with a critical limit of 2-3 water layers required to enforce the hydrophobic effect.  

 

Keywords: Molecular dynamics, box size, image interactions, Aβ, hydrophobic effect. 
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I. INTRODUCTION 

This paper reports molecular dynamics (MD) simulations exploring the conformational 

ensembles of the intrinsically disordered peptide Aβ as a function of variable cell size and water 

content, which is both of technical and chemical interest. Aβ plays a central role in Alzheimer’s 

disease (AD) as the constituent of the hallmark senile plaques in patient brains and as the toxic 

oligomer-forming species whose formation is affected by mutations in genes APP and PSEN1 

and PSEN2 that cause severe early onset familial AD.1–4 Understanding the dynamics and 

structural transitions of this peptide under various physiologically relevant conditions is of 

major interest, with a particular aim of targeting the pathogenic conformations by molecular 

intervention such as antibodies or anti-aggregation agents.5–10 

Molecular dynamics (MD) simulations of proteins are reported in thousands of papers each 

year.11–15 Even if the chemical model and force field reflect adequately the chemical state of 

the protein itself, the solvent-protein system is typically studied in a periodic simulation box. 

It is widely assumed that image interactions in periodic MD simulations undermine results if 

the simulation cell is too small,16–19 due to periodicity and artifacts in the energy evaluations. 

It is commonly assumed that a 10 Å distance from the edge of a box to the protein is a good 

practice to avoid image interactions, although this assumption is rarely tested. Diffusion 

coefficients20,21 and thermal conductivities22 may depend on simulation cell size, and water 

interactions are impaired in small cells.23 In contrast, many properties have been found to be 

independent of cell size,24 including to some extent protein conformation.25 However, Hage et 

al. recently found that large cell sizes are required to enforce the hydrophobic effect in 

hemoglobin26, but this role of simulation cell size and the water layer required to enforce the 

hydrophobic effect on proteins is currently debated and controversial27,28. 

Many studies have investigated the effect of Ewald summation and cut-offs of the 

electrostatic and the Lennard-Jones interactions18,29–34. Cutoff effects are, not surprisingly, 

particularly important for electrostatic interactions between atoms with large point charges, 

including charged residues of proteins18,29,35,36. Artificial periodicity becomes particularly 

problematic as the Coulomb interaction increases, i.e. for highly charged, concentrated solutes 

in low-dielectric solvents18.  

At the same time, one can expect the hydrophobic effect, which generally keeps the protein 

compact37–39, to be impaired in small simulation cells, since a certain “critical” amount of water 

can be hypothesized to be required to enforce the effect. Obviously, the hydrophobic effect is 

a real chemical effect whereas the cell size effect is a technical effect of the MD simulation, 
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yet they can both work to weaken the realism of the simulation. The relative importance of the 

two effects is probably protein-dependent, and to estimate the critical amount of water required 

to keep a protein folded, intrinsically disordered proteins are ideal as they are particularly prone 

to conformational changes and thus likely to put an upper limit to both effects. Despite the 

major progress in studying intrinsically disordered proteins using MD4041–47, we are not aware 

of any previous investigation of the cell-size effect on the conformational ensemble of an 

intrinsically disordered protein. 

To understand these issues in detail, we study here a small, charged peptide that has a 

particularly context- and concentration-dependent ensemble: Aβ40 is an intrinsically disordered 

peptide ideal for this purpose. It carries a charge of -3 at physiological pH and is extremely 

aggregation prone, and its secondary structure depends on the surroundings45,48,49, plausibly 

enabling a conformation change from compact globular in solution to extended helical in 

membranes50–53. The properties of Aβ are very conformation-dependent and the biologically 

relevant conformations are very hard to identify.50,51,54 The structural ensemble of Aβ40 is 

important because its aggregation and membrane interactions are main culprits of AD,9,10,55–57 

and exposed hydrophobic parts and coil character correlate with the toxicity of Aβ variants that 

cause disease,58–60 and may enhance oligomerization10,50,61,62 or interact maliciously with cell 

membranes.63–66  

MD simulations have helped to relate the structural states of Aβ to its potential biological 

activity.59,60,67–74 Despite these efforts, the bioactive conformations of Aβ in human brains 

remain unknown, although they probably involve hydrophobic exposed parts that correlate 

with toxicity.54,58,60 Aβ is known to concentrate at the synaptic cleft, the center of neuronal 

transmission and an extremely crowded molecular environment, with a typical width of the 

cleft being 20 nm.75,76 This implies that only 60-70 aligned water molecules separate the two 

synaptic terminals; in this massively crowded region Aβ is likely to display its main normal 

and pathogenic functions.77–80 We expect that the hydrophobic effect and its requirements in 

terms of water are very relevant under such conditions. 
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Figure 1. A) Structurally aligned twenty conformations of Aβ40 from the PDB structure 2LFM. 

B) Lowest energy conformation (top) of Aβ40 used in the present study. C) Amino acid 

sequence of Aβ40 showing the residues forming α-helix. D) Ramachandran plot of the lowest 

energy conformation, with 25 residues in the core region (red) and seven residues in the 

additional allowed region (yellow). No residue is present in the disallowed region (white).   
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II. METHODS 

A. Starting Aβ40 model  

The experimental NMR structure of Aβ40 in aqueous solution (PDB code 2LFM; Figure 1)48 

was used as it represents the peptide in 100% water. Other NMR-derived structures have co-

solvents or co-solutes. Starting from an extended chain is unlikely to ever reach the 

experimentally observed disordered state as it requires full ab initio folding (millisecond time 

scale) and such ensembles can carry bias towards structure types that have lower barriers from 

the extended conformation, notably coil and strand, making 2LFM a best choice of starting 

structure. The PDB file contains 20 conformations ranked based on lowest energies, with 

structural RMSD 1.7-3.7 Å (Figure 1A). The lowest energy conformation was used in the 

present study (Figure 1B). The peptide was prepared using Protein Preparation Wizard with 

default settings81 at pH 7. Hydrogen atoms were added, hydrogen bonds were optimized and a 

local protein optimization was performed to remove steric clashes. The prepared protein 

contains -3 charge at physiological pH (please see the amino acid sequence, Figure 1C), with 

the N- and C-terminals charged as ammonium and carboxylate groups, respectively. The 

structure is in good agreement with available experimental NMR and CD data when using 

structure-balanced force fields to estimate ensemble properties82, and has a backbone 

conformation without disallowed regions (Figure 1D).  

 

B. System preparation  

In order to understand the effect of the cell size on MD simulations, five different orthorhombic 

periodic cells, ranging from the commonly used (10 Å) to large (15 and 20 Å) and very small 

(3 and 5 Å), were studied. These cell sizes were defined by using the shortest distance from the 

cell edge to the peptide. The large cells test the sensitivity of the peptide properties to cell size 

beyond the typically used size of 10 Å, to test if this common assumption is valid for this highly 

conformation-sensitive peptide. In contrast, the small cells have the distance between the 

protein molecule and box edge below the interaction cutoff, and thus estimate the influence of 

interactions between the periodic images of the boxes and the removal of water layers around 

the peptide. The importance of these effects are likely protein dependent and thus important to 

know for small intrinsically disordered peptides such as Aβ.  

     Previously, we observed that a combination of Charmm22* force field83 and TIP3P water 

model84 produces conformational ensembles in excellent agreement with experimental NMR 
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and CD data, which is important because of the major effect of force field on the structure of 

Aβ82. The more polar TIP3P water model tends to favor more compact folded structures, 

consistent with a larger hydrophobic effect of the stronger solute-solute TIP3P interactions vs. 

other water models82. Therefore, we studied the systems using these force fields. Each system 

was neutralized by adding 3 Na+ ions and additional 0.15 M NaCl was added in each. We used 

the viparr.py and build_constraints.py Python scripts of the Viparr tool and the System Builder 

tool of Desmond81,85 to prepare the systems.  

The five systems were prepared with their specific concentrations of Aβ40 as listed in 

Supplementary Table S1. The cell volumes of the 3-, 5-, 10-, 15- and 20-Å cells are 46045, 

63490, 124891, 216508 and 344340 Å3, respectively. There is approximately 10 times more 

water molecules in the largest cell (20 Å, 10607 water molecules) than in the smallest cell (3 

Å, 1097 water molecules). The concentrations range from about 0.005 M to 0.04 M. Please 

note that most MD simulations in the literature are in the middle range of this interval as they 

commonly use box sizes of 10 Å82, whereas experimental assay concentrations are much more 

dilute, in the micromolar range77,86. It is thus important to know if this approximation done in 

very many studies has a negative impact on realism vs. experimental assays. 

 

C. Energy minimizations and MD simulations 

Each system was energy-minimized using a combination of steepest descent and 

Broyden−Fletcher−Goldfarb−Shanno methods. MD simulation was then performed in NPT 

ensemble at 300 K and 1.0013 bar for 100 ns using a multistep protocol of Desmond81,85. The 

integration time-step of 2 femtoseconds was used. The energies were noted with an interval of 

1.2 picoseconds (ps) and trajectories were recorded at each 100 ps interval that generated 1001 

snapshots in each run. The temperature and pressure were kept stable using the Nose-Hoover 

chain thermostat87 and the Martyna-Tobias-Klein barostat88. The long-range electrostatic 

interactions were calculated using Ewald mesh summation technique with a cut-off of 9.0 Å. 

Each simulation performed in this study was initiated using a different, randomly seeded start 

velocity. The initial velocities for each atom were drawn randomly from a Maxwell-Boltzmann 

distribution. In total, 10 μs of these concentration-dependent all-atom simulations were 

performed with the Charmm22* force field, divided into 100 seeded 100-ns simulations. 

Additionally, 16 μs simulations were computed with two other force fields as described below. 
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Additional ten randomly seeded simulations with 5 Å cell size were performed for 100 ns 

at 320 K with all other parameters similar to the other simulations, in order to analyze the effect 

of varying temperature on both sides of the physiological regime (most assays are performed 

at room temperature, 300 K, but the peptide is active at body temperature, 310 K). We 

hypothesized that thermal disorder could affect the peptide dynamics in particular in the low 

water concentration limit where the water-water interactions are weaker.  

To understand the impact of sampling using many short (100 ns) vs. a few longer (1000 

ns) MD simulations, we also performed three randomly seeded simulations of the system with 

10 Å cell size, each lasting for 1000 ns at 300 K under same conditions as above except for the 

trajectory recording time. These trajectories produced a substantially longer averaging history 

relevant to the identification of slow processes with considerable diffusion barriers. 

Specifically, we wanted to test if there were any differences in the buildup of strand character 

at long simulation times to a level that could not be reached on the 100-ns time scale. Each 100 

ns trajectory was analyzed for the equilibrated last 50 ns time, and the 1000 ns trajectories were 

analyzed for the last 950 ns and 500 ns time, to avoid artifacts of the first equilibration phase 

where structures diverge from the minimized initial start structure. To test for long diffusion-

limited processes, we averaged the long simulations both over the last 950 ns and over the last 

500 ns and analyzed the differences compared to the short simulations.  

Finally, to test the sensitivity of our results to the choice of force field, we performed 

twenty simulations for each of the 3-, 5-, 10-, and 15-Å cells using two additional force fields, 

OPLS3e89,90 and Amber99sb-ILDN91. Each simulation was performed for 100 ns using the 

same protocol as described above (for a total of 8 µs with each force field). Previously, 

Charmm22* and Amber99sb-ILDN were shown to be accurate and structure-balanced for 

studying Aβ ensembles82, and we thus expect the results provided here to be maximally realistic 

in terms of force field choice.  

The secondary structures, RMSD and RMSF plots were generated using the Simulation 

Interaction Diagram tool of the Desmond, and the hydrogen bonds and radius of gyration were 

studied using Simulation Event Analysis tool. For analyzing the hydrophobic and the 

hydrophilic SASA, the Python script trj_sasa.py was used with a probe radius of 1.4 Å, and the 

representative structures of the trajectories were identified by affinity propagation using the 

trj_cluster.py script of Schrodinger with default parameters81.  
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III. RESULTS AND DISCUSSION 

A. Sampling quality of MD simulations 

We performed MD simulations of Aβ40 using simulation cells of five different sizes (3 Å, 5 Å, 

10 Å, 15 Å, and 20 Å), with both two smaller and two larger cells than the typical size used in 

default studies (~10Å). For each cell size, we performed 20 randomly seeded simulations for 

100 nanoseconds, giving 2000 ns for each cell size. We also performed three longer simulations 

of 1000 ns each to test the impact of averaging over long vs. short MD simulations. 

Furthermore, we studied the peptide for additional 10 x 100 ns at 320 K to understand the 

sensitivity of our findings to reasonable variations in temperature. We analyzed the secondary 

structure, radius of gyration, hydrophilic and hydrophobic solvent accessible surface area 

(SASA), inter- and intra-molecular hydrogen bonding.  

To estimate whether MD simulations adequately sample a property of interest, one should 

compare many simulations with different randomly seeded start velocities, run these 

simulations for a considerable time, and then consider them together as independent 

observations92. Only the later horizontal parts of the trajectories are included in the statistics, 

as the initial trajectories reflect divergence from the starting structure, which is correlated to 

snapshots of the early trajectory. The RMSD and RMSF plots of all trajectories are shown in 

Supplementary Tables S2-S13. In contrast to many systems and experiments where precision 

is usually quite high and triplicates are enough to reach decent results, Aβ is fundamentally 

disordered and has a large variance in its conformational ensemble, which produces stochastic 

(chaotic) results even in experimental assays.77  

Similarly, very large standard deviations can be expected in MD for observables with 

large amplitude of motion even if they are well-sampled; this is true for conformational 

properties of Aβ as these are naturally fluctuating on fast timescales82. Some properties with 

slow time scales (> 1 microsecond) may be completely outside the simulation time scale, most 

notable changes in secondary structure of stable folded proteins, which have large diffusion 

barriers to change structure19,93. Not surprisingly, in disordered proteins such as Aβ, the 

diffusion barriers to changes in secondary structure are much smaller, i.e. in nanoseconds 

timescale. We show below that longer (1000 ns) and shorter simulations (100 ns) produce 

similar prevalence of secondary structure transitions, and thus the characteristic time for these 

events is < 100 ns for this disordered peptide, much shorter than for compact folded proteins 

with large barriers separating the secondary structure types. Accordingly, as analyzed below, 

all the properties of interest in this study are well sampled on the applied simulation time scales. 
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Figure 2. A) Percentage of residues with α-helix structure for 100 different 100-ns simulations 

of Aβ40, with 20 simulations at five different cell sizes (3, 5, 10, 15, and 20 Å) (Charmm22*; 

averaged over the last 50 ns of each simulation). B) Box-and-whisker plot of the helix content 

shown in A. C) Plot (as in A) of the percentage of β-strand. D) Box-and-whisker plot of strand 

content varying from 0-6%.      

 

B. Disordered Aβ with ~0-27% (average 8-12%) helix and common α-β transitions 

The analysis of the secondary structures in all the simulations at 300 K (with different cell 

sizes: 3, 5, 10, 15 and 20 Å) shows that α-helix was persistent except for a few simulations 

where β-strand was prominent (Figure 2A-2D and Supplementary Tables S14-S20). In all 

cases studied, the peptide remains predominantly disordered, with most of the residues being 

coil, turn or bend, in accordance with the experimental data.48,82 Complete loss (< 2%) of 

secondary structure, with neither helix or strand present, occurred regularly (13 times out of 

100 simulations) and was independent of cell size. 

In most simulations, some helix was present, averaging to ~8-12% for the five cell sizes, 

with standard deviations of 6-8% helix character (Supplementary Table S20). The average 

strand character was 1-2%. Typically, β-strand formation to 5-15% was observed in 1-2 seeds 

of each of the five sets of 20 seeded 100-ns simulations, making α-to-β transition a relatively 

common feature (5-10%) of the peptide at all water concentrations. None of these tendencies 
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were significantly dependent on the cell size or water content, and the similar tendency of α-

to-β transition in all five groups suggest that the initial process of this transition is well-

sampled. In the 15-Å cell, two larger (10-12%) α-to-β transitions and two smaller (4-6%) 

produced a larger standard deviation (SD) in the strand content for this peptide but these 

variations are still less than 6% and should be seen in the context of the very small average 

strand content. In conclusion, the secondary structure and initial events of the α-to-β transitions 

are well-sampled and independent of simulation cell size. Even at very small cell sizes (3 and 

5 Å) where image interactions are clearly involved, the secondary structure content was similar 

to that of the larger cell sizes (10, 15 and 20 Å).  

 

C. Hydrogen bonds and backbone conformations of Aβ at variable water concentrations 

In order to analyze the hydrophobic packing of Aβ40, intra-peptide and peptide-water hydrogen 

bond networks were analyzed (Figure 3A, and Supplementary Table S20). With an increase 

in the hydrophobic packing, the peptide-water hydrogen bond networks will decrease and intra-

peptide hydrogen bonding will increase. For the 3-Å cell, the number of intra-peptide and 

peptide-H2O hydrogen bonds lies in the intervals 16.2−25.3 and 100.6−118.7, respectively, 

with averages of 20.0 (SD = 2.7) and 111.6 (SD = 5.0), respectively. In the 5-Å cell, the number 

of intra-peptide and peptide-H2O hydrogen bonds is 15.9−24.6 and 102.8−121.2 for the 

simulations, and their averages over all simulations are 20.7 (SD = 2.9) and 111.1 (SD = 4.9), 

respectively. Similar patterns prevail for the 10-Å, 15-Å, and 20-Å cells. Correspondingly, the 

peptide-water hydrogen bonds lie between 105.1−122.0, 101.3−125.9 and 104.7−123.0, with 

averages of 114.8 (SD = 4.5), 115.3 (SD = 6.9) and 113.2 (SD = 5.5) for the 10-Å, 15-Å, and 

20-Å cells, respectively. We thus conclude that the number of hydrogen bonds is unaffected by 

the cell size, i.e. the number is similar for both very large (with high water content) and very 

small (with less water content) cells.  

To understand the impact of the reduction in water potential on the backbone 

conformations of the peptide, the Ramachandran plots of the representative structures of each 

simulation from cluster analysis were also analyzed (Figure 3B and Supplementary Table 

S20; excluding the six glycine residues and two terminal residues, as they can occur in any 

region of the plot). For comparison to experimental data, the 20 NMR conformers from the 

2LFM entry48 were also analyzed. These conformers have 71.9−90.6% of the residues (23-29 

residues) in the core region and 9.4−28.1% (3−9 residues) of the 32 analyzed residues in the 

additional allowed region.  
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Figure 3. A) Box-and-whisker plot of the number of peptide-water hydrogen bonds and 

peptide-peptide hydrogen bonds for the last 50 ns of 100 different 100-ns Charmm22* 

simulations. The top values represent peptide-water hydrogen bonds and the bottom values 

represent peptide-peptide hydrogen bonds. B) Box-and-whisker plot of backbone 

conformations assigned to core, allowed, generously allowed and disallowed regions of the 

Ramachandran plot, averaged over the last 50 ns of all 100 100-ns simulations.  

 

In most of the representative structures for all cell sizes, no residues had disallowed 

backbone conformations, except for few simulated structures, where one or two residues (two 

residues only in two cases) were present in the disallowed region. Notably, in the smallest cell 

(3 Å), the variations in the core and additional allowed regions were consistently larger, a 

feature that relates to the high variation in the hydrophobic SASA. This may be due to the 

constraint in the conformational relaxation and the periodic image interactions in very small 

cell size with only one or two water layers. However, it also shows the reduced ability of a few 
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water layers to keep the peptide compact. The 15-Å cell was an exception, caused by the high 

frequency of α- to -β transitions. Nevertheless, the Ramachandran values of all cells are in 

excellent agreement with the 20 NMR conformers of 2LFM. The average core regions for 3, 

5, 10, 15 and 20 Å cells were 83.5% (SD = 10.1), 86.2% (SD = 5.8), 80.9% (SD = 7.0), 81.9% 

(SD = 7.4) and 84% (SD = 6.5), respectively.   

 

D. Solvent accessible surface area 

In order to understand the early conformational changes of Aβ40 occurring at low water 

potential, the hydrophobic and hydrophilic solvent accessible surface areas (SASA) of the 

peptide were analyzed for all 20 simulations of each of the five cell sizes (Figure 4A and 

Supplementary Table S20). It is interesting to note that Aβ has very similar total hydrophobic 

and hydrophilic exposure, both in the range 1500−2000 Å2, indicating its very high 

amphiphilicity, a feature that rationalizes its well-established interaction with 

membranes49,52,94.  

We observe interesting trends in the ensemble-averaged surface behaviors across the 100 

simulations (Figure 4A). First, the hydrophobic SASA is significantly more variable in the two 

smallest cells where only a few layers of water are generally available. The average 

hydrophobic SASA in the small cells is also comparatively higher, 1760 Å2 (SD = 271 Å2) and 

1718 Å2 (SD = 272 Å2) for the 3-Å and 5-Å cells, compared to the values 1598 Å2 (SD = 186 

Å2), 1582 Å2 (SD = 194 Å2) and 1628 Å2 (SD = 121 Å2) of the 10-Å, 15-Å, and 20-Å cells 

(Supplementary Table S20). In all the larger cells, the hydrophilic surface area consistently 

separates from the hydrophobic surface area, whereas in the 3-Å and 5-Å cells, the hydrophobic 

exposure variability completely overlaps the range of hydrophilic exposure and thus routinely 

turn the balance in favor of hydrophobic exposure.  

The data for the large cells show that 10 Å is sufficient for all studied properties of Aβ, 

largely validating the use of modest-sized simulation cells for MD simulations of proteins that 

are less structure-sensitive than Aβ. In contrast, the small cell sizes are not physically relevant 

as they contain periodic image interactions leading to conformational restriction effects. 

However, the fact that we observe similar values for almost all properties for small and large 

cell sizes even for a highly charged, disordered peptide such as Aβ strongly indicates that 

artifacts of small cells are small and potentially overestimated. On the other hand, the very 

central ability of the peptide to stay compact (the hydrophobic effect) interestingly plays out in 
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the range of typical simulation box sizes, with 10 Å being required to consistently enforce the 

compact state. This suggests that the hydrophobic effect is mainly enforced by water-water 

interactions (rather than peptide-peptide or peptide-water interactions). 

Hage et al. found that large cell sizes are required to describe hemoglobin26. This result 

has been debated by Gapsys and de Groot,27,28 and thus the role of simulation cell size and the 

water amount required to enforce the hydrophobic effect is currently controversial. We expect 

that the hydrophobic effect requires more water layers for a large solvent-exposed surface such 

that the critical amount of water needed to enforce the hydrophobic effect is protein-size 

dependent. Whereas large cells may be needed for hemoglobin26, only 10-Å cells, or 2-3 layers 

of water molecules, are required to enforce the hydrophobic effect of Aβ. The hydrophobic 

exposed parts of Aβ probably represent the bioactive conformations and correlate to 

toxicity51,54,58. The synaptic cleft where Aβ concentrates79 only has 60-70 water molecules 

between the synaptic terminals of two neurons,75,76 and we thus predict that impaired 

hydrophobic effects will be an important feature of peptide dynamics and lead to hydrophobic 

exposure specifically in this region where Aβ is active, which should be very relevant to studies 

of Aβ toxicity and drug development efforts.  

We conclude that Aβ has a smaller tendency to exhibit hydrophobic exposure at high water 

potential, and that the hydrophilic exposure outweighs the hydrophobic exposure, but that the 

amphiphilic balance is destroyed at low water potential. The differences are statistically 

significant, as shown from a two-tailed Student t-test for hypothesized same mean. Whereas 

the 3-Å and 5-Å cells have insignificantly different hydrophobic SASA (Supplementary 

Table S21), the mean hydrophobic exposure is significantly different at the 95% confidence 

level for the small vs. all the larger 10-, 15-, and 20-Å cells when these tests are performed 

independently (Tables S22-S24). In contrast, the hydrophilic surface is not significantly related 

to cell size (Tables S25-S28), and the average values are very similar with 1840 Å2 (SD = 142 

Å2), 1846 Å2 (SD = 117 Å2), 1791 Å2 (SD = 125 Å2), 1816 Å2 (SD = 163 Å2), and 1779 Å2 

(SD = 119 Å2) for the 3-Å, 5-Å, 10-Å, 15-Å, and 20-Å cells, respectively. 

We hypothesized that this significant change in the balance between hydrophilic and 

hydrophobic exposure in small cells may be accompanied by a change in the size of the peptide. 

To test this, the radius of gyration (Rg) of Aβ40 in all the simulations of different cell sizes was 

computed. Rg is very similar ranging across all simulations from 9.4 to 13.8 Å with average Rg 

~11 Å and SD 0.6-1.0 Å (Figure 4B and Supplementary Table S20). The change in cell size 

does not have a statistically significant effect on Rg of the peptide. However, the within-
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ensemble averages of Rg and hydrophobic surface exposure correlate significantly, as the 

exposure is related to a partial increase in the size of the peptide, and for all five cell sizes the 

relation has R2 values between 0.35-0.50 (Figure 4C and Supplementary Figure S1). 

 

 

Figure 4. A) Solvent-accessible surface area of Aβ, divided into hydrophobic and hydrophilic 

parts, averaged over 20 MD simulations at five different simulation cell sizes (3, 5, 10, 15, and 

20 Å). B) Box-and-whisker plot of the radius of gyration (Rg) of the simulations at five cell 

sizes. C). Calculated R2 from linear regression of the relation between Rg and hydrophobic 

solvent-accessible surface area for 20 simulations at each cell size; in all cell sizes, the two 

properties correlate significantly (95% confidence interval) with R2 values of 0.35-0.50.  

 

E. Terminal distance analysis and sampled Aβ structures 

We also analyzed the distance between the Cα-atoms of the N- and C-terminal residues (Figure 

5A and Supplementary Table S29) of the representative structures from cluster analysis at 

each cell size. The average distances are 24.6 Å (SD = 11.8 Å), 24.9 Å (SD = 14.0 Å), 20.9 Å 
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(SD = 7.7 Å), 20.4 Å (SD = 4.9 Å) and 18.9 Å (SD = 7.6 Å) for the 3-, 5-, 10-, 15-, and 20-Å 

cells, respectively. The average distances and their standard deviations are consistently larger 

for the small cells (3 and 5 Å) than for the large cells (10, 15 and 20 Å). These terminal 

distances relate to the hydrophobic effect, since the distance correlates with the hydrophobic 

SASA. Figure 5B-5G shows representative structures for the different cell sizes indicating this 

relationship. 

 

 

Figure 5. A) Average and standard deviation of the distance between the Cα-atoms of the N- 

and C-terminal residues of Aβ40 for each cell size. B-G) Representative structures from cluster 

analysis of the twenty Charmm22* simulations of each cell size, except F) showing a snapshot 

of the 15-Å cell size with high β-strand occurrence as example of an α-to-β structural transition.
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F. Regional variations in secondary structure 

The experimental NMR structure 2LFM contains 20 lowest energy conformers of Aβ40.48 All 

these conformers possess 10% α-helix (Phe-19 to Glu-22) (Figure 1) and no strand. In addition, 

they also comprise 15% 310 helix (His-13 to Val-18), which are not very stable in water.95 To 

avoid biases from the assignment, we focused our analysis on the most stable elements, i.e. all 

α-helices and β-strands. The percentage of α-helix in the experimental structure 2LFM is 

comparatively similar to the average α-helix for each cell size (Figure 6A), suggesting that our 

structural ensemble is in good accordance with the NMR data in water. Other NMR-derived 

structures of the Aβ monomer in PDB display more helix but they reflect the presence of co-

solvents and micelles that increase the helix character77. Other data, notably coupling constants 

and chemical shifts for the peptide in pure water, also support that the peptide is mainly 

disordered with a small amount of helix and little strand.82,96 In contrast, the strand content 

rises quickly in the dimers and larger oligomers and is very large in the fibrils that form the 

senile plaques of AD54,97.  

Apart from the α-helix in the experimental structure (Phe-19 to Glu-22), we also identified 

three more regions forming helices during the simulations (Figure 6B, left and 

Supplementary Table S30). We divided the residues into four helix-forming regions: Region 

1 covers residues 1-10, region 2 covers residues 11-20, region 3 is from 21-26 and region 4 

covers residues ~27-38. Regions 3 and 4 were also prominent at all cell sizes, particularly 

region 4. Furthermore, as the cell size increased up to 10 Å, region 2 (experimental helix) 

occurred 7 times and region 4 occurred 11 times. Region 1 occurred very rarely at all cell sizes.    

We also divided the residues into three strand regions: 1 (residues 1-10), 2 (residues 11-

20), and 3 (residues 21-40) (Figure 6B, right and Supplementary Table S30). All these 

regions occurred very rarely. In the 15-Å cell, β-strand occurred most frequently (11 times). 

Regions 1, 2 and 3 occurred three, four, and four times, respectively (Figure 6B).  Thus, apart 

from the experimentally determined helix region48,  helix regions 3 and 4 have very high 

tendency to occur as α-helices; these are, interestingly, the regions that are experimentally 

observed in structures such as 1BA4 and other NMR-derived structures in the PDB where the 

water potential has been reduced98. Overall, we conclude that, as summarized by Figure 6, the 

helix and strand contents of all simulations, even when divided into segments of the peptide 

sequence, are in good agreement with the experimental 2LFM conformations and are not 

significantly affected by the cell size. This means that the secondary structure contents are 

similar even in the smaller (3 and 5 Å) and the larger (15 and 20 Å) cell sizes. 
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Figure 6. A) Average percent secondary structure found in each cell size compared with the 

average of 20 conformers of experimental NMR structure 2LFM. B) Analysis of the regions 

forming α-helices and β-strands. Number of times a region forms an α-helix or a β-strand in 

the 20 simulations of each cell size. The secondary structural regions that occurred ~ >20% of 

the analysis time (last 50 ns) of each run were analyzed. 

 

G. Results are not sensitive to variations around physiological temperature 

The hydrophobic effect is related to temperature and manifests as an entropy-driven exposure 

of proteins and peptides as the water network is weakened. We thus hypothesized that the 

temperature could affect the observed exposure. To ensure that our findings are not sensitive 

to reasonable temperature changes near physiological temperature, we performed 10 x 100 ns 

of additional simulations for the second-smallest (5-Å) cell at 320 K, which is 10 K above 

physiological temperature, with the other simulations performed at 300 K, 10 K below body 

temperature, and typical for experimental assays of Aβ. 

We compared this 320-K simulation with the 300-K simulation of the same 5-Å cell 

system (Supplementary Table S20). At 320 K, large variability is seen in all properties to the 

same extent as at 300 K. The increasing temperature in principle causes thermal disorder in the 

water-water interactions which could affect our conclusions, but the variability is similar at 

both temperatures and robustly captured by the averaging of the ensemble properties. Rg was 

insignificantly different at 300 and 320 K: At 320 K, Rg lies between 10.3-12.2 Å, with average 

11.3 Å and SD 0.7 Å. The intra-peptide (average = 20.6, SD = 3.4) and peptide-water hydrogen 

bonds (average = 108.2, SD = 6.3) were insignificantly affected by the higher temperature. 

Most importantly, the increasing temperature had no effect on the hydrophobic SASA in the 

range around physiological temperature (Supplementary Table S20), and thus, our 

observations of a hydrophobic exposure at low water potential is robust against variations in 

temperature in the range relevant to assays and physiological conditions.  
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H. Averaging data for long versus short simulations 

It might be argued that some of the slowest modes in the ensemble, notably the α-to-β 

transitions, occur on longer timescales than studied here, and that they require more time to 

travel up the diffusion barrier; this argument rests on the assumption that disordered peptides 

have slow diffusion barriers for these transitions as commonly seen for compact folded 

proteins19. However, we expect disordered proteins to have much smaller barriers to these 

transitions and thus a shorter time scale than compact folded proteins. In order to investigate 

this, we compared averaging for long versus short MD simulations by performing additionally 

three 1000 ns simulations and comparing these to the twenty 100 ns simulations using the 10-

Å cells. For the long simulations, the data were additionally averaged both over the last 950 ns 

and the last 500 ns to detect any timescale-dependence of the properties and their variations 

(Figure 7).  

One long simulation produced more strand than the average of the 20 100-ns simulations. 

In this simulation, 5.2% and 9.9% strand occurred in the last 950 ns and 500 ns of the 1000 ns, 

indicating a buildup and persistence of strand character (Figure 7A and Supplementary 

Figures S2 and S3). The percent α-helix in this long simulation was comparable to the average 

of the short simulations. 13.9% and 10% α-helix were found during the last 950 ns and 500 ns, 

compared to 8.3% average α-helix (SD = 6.5) in the short simulations. In contrast, the two 

other long simulations exhibited secondary structures very similar to the average of 20 short 

simulations. The percentage of α-helix and β-strand falls in the intervals 5.4−6.4% and 

0.5−2.7% during the last 950 ns and 5.0−7.2% and 0.1−1.2% during the last 500 ns, 

respectively. The amount of strand buildup during the first long simulation is not higher than 

seen in the short simulations, and the variance in the properties is similar.  

From this, we conclude that α-to-β transitions are well-sampled to the same extent by the 

long and short simulations but still require a total simulation time of ~1000 ns to ensure its 

observation. These transitions occur 5-10% of the simulation time, build up to ~10% regardless 

of time scale, and thus have much smaller diffusion barriers than larger folded proteins. This 

shows that the timescale and thus length of MD simulations required depends not only on the 

type of transition but also on its free energy barrier, which can be very small for disordered 

proteins and peptides. In larger compact folded proteins, the secondary structure elements are 

longer and tend to pack in tertiary structure, which stabilizes greatly the secondary structure 

and produces large barriers for structure transitions, in direct contrast to our findings for Aβ.  
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Figure 7. MD simulation results analyzed over 50 ns of the 100 ns runs (20 simulations) and 

over 950 ns and 500 ns of the 1000 ns runs (3 simulations). A) Secondary structure in percent. 

B) Hydrophobic and hydrophilic solvent accessible surface area (Å2). C) Number of intra-

peptide and peptide-water hydrogen bonds. D) Radius of gyration (Å). 

 

The hydrophobic exposure is a much faster event but its prevalence could be biased by 

poorly sampled larger conformational changes. To support that our main conclusions on the 

hydrophobic exposure of Aβ are not dependent on the time scale of simulation, the hydrophobic 

and hydrophilic SASA averaged over the last 950 and 500 ns showed similar values to the 

average of the 20 100 ns simulations (analyzed for the last 50 ns, Figure 7B). For the 950 ns 

and 500 ns averaging, hydrophobic SASA lies between 1490-1571 Å2 and 1531-1622 Å2, and 

the hydrophilic SASA lies between 1705-1899 Å2 and 1736-1956 Å2, respectively. 

We conclude that for intrinsically disordered peptides like Aβ (not for compact proteins in 

general), averaging over longer or many shorter MD simulations makes no significant 

difference because of the small transition barriers. We stress that these conclusions necessarily 

rely on a fraction of the phase space of Aβ. REMD simulations can produce more β-strand99, 

as the high-temperature configurations favor transitions to β-strand in the overall sampling. 

These simulations produce similar high (25% and 22%) strand content for OPLS-2001 and 

Amber99sb-ILDN with strand in the C-terminal99, despite their distinct secondary structure 

preferences in benchmarks100,101, which is evident in conventional MD of Aβ.82 C-terminal β-

strand independent of force field use was also seen in another REMD study of Aβ42.102 It is 

possible than very slow α-β transitions exist, and that these strands are so stable that they prevail 
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with all force fields. Yet all available Aβ monomer NMR structure models 1BA498, 1IYT103, 

2LFM48, 1Z0Q96, and 1AML104 indicate some helix character and very little strand in Aβ, and 

no strand after the turn,105,106 as also supported by the absence of a signal at early times in 

thioflavin T fluorescence studies and other CD and NMR data.48,77,82,96,107 If the peptide is 

oxidized, not properly monomerized, or left for hours in assays, it forms strand96,107, making 

the experimental data used for comparison very important.77 

 

I. Independence of results on choice of force field 

Finally, we tested the sensitivity of our results to the choice of force field by performing 20 

100-ns simulations for four cell sizes (3, 5, 10 and 15 Å cells) using both OPLS3e and 

Amber99sb-ILDN force fields (Figure 8 and Supplementary Tables S31 and S32). We did 

not perform simulations using the larger 20 Å cell, because we observed similar properties 

already for the 10- and 15-Å cells.  

The secondary structure content obtained by the three force fields differed somewhat 

(Figure 8A), although not as much as for some other force fields82: OPLS3e formed the highest 

percentage of α-helix in all four cell sizes, whereas Amber99sb-ILDN produced the least helix. 

The difference in helix content of Charmm22* and OPLS3e was significant (two-tailed t-test) 

for all cells except the 5-Å cell (Supplementary Tables S33-S36). The helix difference of 

Charmm22* and Amber99sb-ILDN was also significant for all cell sizes except the 15-Å cell 

(Supplementary Tables S37-S40), and the OPLS3e produced significantly more helix than 

Amber99sb-ILDN for all four cells (Supplementary Tables S41-S44). As for Charmm22*, 

the β-strand content was small and insignificantly different also with these force fields (Figure 

8A), and the number of intra-peptide and peptide-water hydrogen bonds (Figure 8B) and 

Ramachandran values also showed no significant dependency on cell size (Figure 8C).  

The solvent accessible surface area behaved similarly as when using Charmm22*: The 

hydrophobic SASA became more variable in the small 3-Å and 5-Å cells in particular when 

compared to the 15-Å cells (Figure 8D). The average hydrophobic SASA was again 

comparatively higher for the 3-Å and 5-Å cells using OPLS3e (Supplementary Table S31) or 

Amber99sb-ILDN (Supplementary Table S32). The 3-Å and 5-Å cells displayed similar 

hydrophobic SASA using both OPLS3e and Amber99sb-ILDN, whereas the difference 

between small and large cells was statistically significant (95% confidence; one-tailed t-test; 

Tables S45-S50). The hydrophilic SASA showed a pattern corresponding to the hydrophobic 

SASA (Figure 8D): It was insignificantly different in 3-Å and 5-Å cells but significantly larger 
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than in the 10-Å and 15-Å cells (Tables S51-S56) using both OPLS3e (Table S31) and 

Amber99sb-ILDN (Table S32). Also consistent with Charmm22*, the radius of gyration was 

not affected by cell size using the two alternative force fields (Figure 8E), and again, the Rg 

and hydrophobic SASA weakly correlated, with R2 values between 0.1–0.4 using OPLS3e, and 

0.1–0.6 using Amber99sb-ILDN (Figure 8E and Tables S31 and S32). 

 

Figure 8. Analysis of the MD simulations performed using OPLS3e and Amber99sb-ILDN 

force fields. A) Comparison of secondary structure using Charmm22*, OPLS3e and 
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Amber99sb-ILDN. B) Hydrogen bond analysis. C) Ramachandran analysis. D) Solvent 

accessible surface area. E) Radius of gyration and its correlation with hydrophobic SASA. 

 

In conclusion, despite differences in secondary structure propensity of the force fields, the 

simulations with Amber99sb-ILDN and OPLS3e produced very similar cell-size dependencies 

of the MD-simulated properties as Charmm22*. Accordingly, our distinction between cell-size 

dependent and independent properties is not much affected by the choice of force field, making 

the requirement of only 2-3 layers of water molecules to obtain size-consistent results for Aβ 

robust to the choice of force field. 

 

IV. CONCLUSIONS 

Almost all commonly performed MD simulations of proteins are extremely concentrated 

compared to experimental assay conditions, and in addition to sampling and force field quality, 

the chemical composition may thus be a major issue in MD simulations using typical cell sizes 

of 10 Å. To understand this we studied 15-Å and 20-Å cells in comparison to 10-Å cells for 

the very disordered and highly charged peptide Aβ, which we expect to be particularly sensitive 

to cell-size effects and thus represent a worst-case example of such effects.  

We show here using the structure-balanced force field Charmm22*83 that even for Aβ, the 

cell size from 10 to 20 Å is unimportant for many properties typically studied by MD 

simulations. This includes the radius of gyration, hydrophilic SASA, intra-peptide and peptide-

water hydrogen bonding, and secondary structure. Since Aβ is very disordered, we expect the 

same size-insensitivity to manifest for most other peptides and proteins. By comparing long 

and short simulation and different averaging, and using statistical tests for means, we show that 

our simulations sample all the properties well and thus recover the intrinsic variability of the 

peptide, which is very large, rather than variability due to statistical uncertainty. Our simulated 

structures are in excellent agreement with the NMR-derived conformations in pure water 

reflected by the structure 2LFM.48 

However, we also see that the hydrophobic exposure was significantly larger in small 

cells (3 and 5 Å) where image interactions and only 1-2 water layers are present. In such small 

cells, higher dynamic variability was observed for the hydrophobic exposure and the backbone 

conformations as estimated from the Ramachandran regions. This effect is partly due to 

periodic image interactions and partly to the inability of one water layer to keep the peptide 
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folded. The first effect is technical, the second real, but the effects are not easily separated. The 

observation that small cell effects mainly affect hydrophobic exposure and not any other typical 

property studied by MD is however of interest by itself, regardless of the relative contribution 

of the two effects to this observation. In the large cells, including the cells of 10 Å, the 

hydrophobic effect plays out fully for this peptide, but we expect the critical requirement of 

water layers to increase with the solvent-exposed surface of the protein and thus its size. Small 

cells with only 1-2 layers of water around the peptide significantly impair the water-water 

interactions and consequently, the hydrophobic packing of the peptide.  

Our conclusions are supported by studying also two other force fields, OPLS3e and 

Amber99sb-ILDN, showing that our division of properties into size-dependent and size-

independent are not affected by the choice of the force field, even though the secondary 

structure propensity of the three force fields differs significantly, with Amber99sb-ILDN 

producing the least and OPLS3e the most helix.  

To summarize, the most important findings of our work are that i) Aβ has very small 

barriers for structural transitions such that the peptide is sampled equally well in the explored 

part of the phase space by many short and fewer long simulations; we suggest that this is a 

defining hallmark of intrinsically disordered peptides; ii) most properties of interest are not cell 

size-dependent even for this very disordered, context-dependent peptide, and even when there 

is a possibility of periodic image interaction in small cells; this justifies the common use of 10-

Å cells for simulating proteins; iii) for Aβ, the hydrophobic surface exposure is significantly 

larger in the very small cells (two-tailed t-test, 95% confidence) and is the only property to be 

affected by image interactions in our study; iv) we estimate that only 2-3 layers of water (as 

obtained in the 10-Å cells) are required to enforce the hydrophobic effect on this disordered 

peptide, and thus probably proteins more generally, possibly explaining why MD simulations 

using small simulation cells have been successful in the past. 

 

SUPPORTING MATERIAL 

The supporting information file contains all RMSD plots, RMSF plots and secondary structure 

plots for the simulations, including tables and figures analyzing the statistics of the ensembles. 

The data of secondary structure, radius of gyration, SASA, intra-peptide and peptide-water 

hydrogen bonds and Ramachandran plot analysis are provided as excel sheets in 

“Supplementary Table S20” for Charmm22*, “Supplementary Table S31” for OPLS3e and 

“Supplementary Table S32” for Amber99sb-ILDN potentials. 
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