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Abstract7

Providing patients with the best possible care is the most essential function of any hospital. In an8

increasing number of countries, hospitals are governed by the number of patients they are able to attract9

and the corresponding services they provide for patients. One such service, which is often of significant10

importance for patients, is the option to choose their room type.11

Hospital decision makers would benefit from a strategic method for optimizing the configuration of room12

types among nursing wards by distinguishing between patients who prefer private rooms and those who13

have no preference concerning whether they are assigned to a private or shared room. Such a decision14

support method is currently non-existent, therefore the goal of this study is to provide a methodology for15

hospital management. Specifically, a mixed modeling approach is proposed which evaluates the patient16

flow behavior by applying a Continuous-Time Markov Chain within a heuristic search procedure. This17

procedure recursively improves a configuration of rooms among the wards by sampling from a gradually18

improved interpolation of an objective function.19

Based on patient data obtained from both a Danish and Belgian hospital, the performance and robustness20

of the proposed approach is validated through various numerical experiments, demonstrating that solutions21

within a relative gap of 1% from the optimum are attained in most cases.22

Keywords: Room allocation, Patient flow, Markov chains, Heuristics23

1. Introduction24

Rising public expenditure on health care systems has led many governments to apply budgetary pressure25

on hospitals to rationalize their spending [1]. At the same time, competition in hospital services is employed26

in many countries as a mechanism to motivate hospitals to reduce costs in order to remain competitive [2].27
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Since patients may have freedom-of-choice regarding their hospital admission, hospitals therefore compete1

against one another to attract more patients. Not only do they compete on the basis of the medical services2

they provide, but also with regard to amenities that increase patient comfort during their stay. One such3

service of importance is the option for admitted patients (also referred to as inpatients) to choose their4

preferred room type. Many different room types may be distinguished in nursing wards, varying in capacity5

(examples include ward room, double room and private room) and amenities (in maternity wards some rooms6

may provide a shower or an extra bed for a spouse). There are significant financial incentives for hospitals7

to meet patients’ room type preferences: for example, hospitals in Belgium may charge room supplements8

when meeting private room demands and physicians may even charge honorarium supplements. Hospital9

bills may be up to five times more expensive for private rooms than for shared, if such preferences are met [3].10

However, when a patient does not have such a room preference, but is still admitted to a private room due11

to lack of different cheaper room types, such supplements cannot be charged. A survey in Belgian hospitals12

by Verhelst [4] further shows how preferred room type unavailability may even be a cause for postponing13

admissions. It is therefore of considerable importance for hospital administrators to address these concerns14

by matching the availability of different room types with the respective demand by patients in order to15

maximize revenue.16

This study focuses on the decision problem of hospital administrators who wish to address this issue17

by reallocating existing room infrastructure between different nursing wards belonging to different hospital18

units such as different surgical disciplines. These units may have different patient arrival patterns, length-19

of-stay (LOS) distributions and room preference profiles that, for historical or organizational reasons, do20

not match their currently-allocated infrastructure. Hence, reallocation may be necessary to match current21

patient preferences. Currently, a methodology for finding a suitable reallocation is non-existent.22

To this end, an approach is presented which accounts for the patient flow behavior using a Continuous-23

Time Markov Chain (CTMC) model. This model assesses the allocation of rooms in a heuristic search24

procedure, where the solution is gradually improved by sampling randomly from an interpolation of a25

suitable objective function. Based on hospital data obtained from both a Danish and Belgian hospital, the26

performance of the proposed approach is validated with a range of numerical experiments.27

The remainder of this paper is organized as follows. First, the present work is positioned in the context28

of the relevant literature in Section 1.1. In Section 2, the specific assumptions and problem details of this29

study are elaborated upon. Section 3 presents the proposed solution approach followed by Section 4 which30

applies the approach by way of computational experimentation. Finally, in Section 5 conclusions and future31

research directions are presented.32
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1.1. Literature Review1

The number of operations research methods that specifically address room capacity optimization in2

nursing wards, as opposed to solely considering bed capacity, is limited. Those studies that do consider3

this specific aspect generally concern decision problems at an operational decision level, where such details4

regarding room infrastructure cannot be ignored. Notably, Demeester et al. [5] formulated and studied a pa-5

tient admission scheduling problem that addresses the assignment of admitted patients to beds over a given,6

short-term, planning horizon, considering room type and equipment. The consideration of gender conflicts7

in shared rooms and room type preferences by patients requires explicit modeling of room infrastructure.8

Given that Demeester et al. [5] formulated a challenging combinatorial optimization problem along with9

problem instances. They triggered a series of different studies further investigating algorithm development10

[6–8], different modeling aspects [9–11], and complexity [12]; all of which include the explicit consideration11

of room infrastructure. Most of these studies apply meta-heuristic optimization techniques to deal with12

problems of realistic size. Nevertheless, three studies apply Mixed Integer Linear Programming (MILP) to13

models of reduced size [12], in a dynamic setting [10] (where sub-problems are typically smaller) or combined14

with column generation [8] to improve lower and upper bounds on the sum of the patient-allocation penal-15

ties. Other studies in this area, though not derived from the formulation of Demeester et al. [5], demonstrate16

that considering room infrastructure is necessary for the practical implementation of systems. Bachouch17

et al. [13] presented a hospital bed management problem where patient admissions are scheduled while con-18

sidering no-mixed gender rooms, isolation of contagious patients in single rooms or alone in double rooms,19

and incompatibilities between pathologies. A MILP model is formulated which is subsequently applied to20

different solvers in a computational comparative study. Schmidt et al. [14] also presented a decision support21

model for admission planning and assignment to wards. Their model also explicitly accounts for the avail-22

ability of beds in either private or shared rooms, depending on the planned patients’ preferences. Both an23

exact approach, using a MILP formulation, and heuristic approaches are compared in a computational study.24

25

The application of Markov Chains to model patient flow is an uncommon approach compared to, for26

example, simulation-based modeling methods [15, 16]. Nonetheless, Markov Chains have been successfully27

applied in a variety of different cases in the last few years. Bartolomeo et al. [17] applied a Discrete-Time28

Markov Chain (DTMC) model to assess the re-admission probability of patients. Further, Broyles et al.29

[18] applied a DTMC to predict the number of inpatients, demonstrating how their model attains superior30

predictability compared to a seasonal Autoregressive Integrated Moving Average model.31

Concerning CTMCs, both He et al. [19] and Shao et al. [20] developed a model to assess and identify32

bottlenecks with regard to the colonoscopy screening process and surgical operations in an emergency de-33

partment, respectively. Furthermore, Wang et al. [21] applied a CTMC to model care delivery to patients34

in rooms by modeling the system as a closed network. Lastly, Shaw and Marshall [22] evaluated the LOS35
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for heart-failure patients, demonstrating how the Coxian phase-type distribution is adequate in this regard.1

The focus of all these studies is on modeling patient flow, while none of them utilize their approach to2

optimize the system. Only Andersen et al. [23] model patient hospitalization and relocation to multiple3

wards and employ a heuristic to optimize ward capacity. However, their study only considers capacity on4

an aggregated level (# beds per ward) and does not account for room infrastructure. The present study5

elaborates on Andersen et al. to consider room infrastructure as well.6

1.2. Contribution7

Interestingly, most studies considering room infrastructure availability have done so only at an operational8

decision level. E.g. when admitting patients to wards, one must account for the available room types and9

patients’ preferences. However, in the context of hospital competition, matching infrastructure availability10

to demand is also of strategic importance for maximizing revenue and providing enhanced service to patients.11

Currently, no existing methodology for strategic room/bed (re)allocation considers the aspect of room types.12

This study proposes a CTMC model combined with a heuristic search procedure to address this aspect at the13

strategic decision level, where capacity and infrastructure can be reallocated between hospital units to better14

match individual demand patterns. To our knowledge, this is the first analytical approach that accounts15

for patient arrivals, relocation, and room type preferences; and, furthermore, where room configuration is16

optimized.17

2. Problem Description18

The decision problem studied in this paper involves the allocation of room types to nursing units of19

different medical specialisms. In this setting, the most differentiating characteristic between room types,20

namely being either private (one bed per room) or shared (two or more beds per room), is scrutinized. It21

is assumed that the total availability of private and shared rooms is fixed, but that room types may be22

reassigned between units. Such situations may occur, for example, when different nursing units occupying23

a single, physical area are reorganized or when patient characteristics such as LOS distributions or private24

room preferences have changed, necessitating a reallocation in order to realign available room infrastructure25

with demand.26

Patients are assumed to arrive at the hospital according to a time-homogeneous process where both27

inter-arrival time and LOS are random. Furthermore, patients can be grouped into types such that each28

type prefers admission to a specific nursing ward. However, when capacity is insufficient, patients must29

not be made to wait for a bed, but be relocated to a ward where capacity is available. In addition, a30

certain fraction of the patients prefer admission to a private room, whereas the remaining patients have no31

preference concerning whether their room is private or shared. These assumptions are elaborated upon at32

greater length later in Section 3.2.33
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Formal Definition1

Formally, a hospital setting is considered which features a set of wards W, |W| types of patients, with2

each type preferring admission to a unique ward i ∈ W, and a set of room types R. Let uir ∈ N0 define the3

number of rooms of type r ∈ R that have been allocated to ward i ∈ W and br ∈ N0 define the capacity4

associated with each room type. Further, let set R feature a subset of room types for which br > 1, and a5

private room type where br = 1. Finally, let Nr ∈ N0 define the available number of rooms of type r ∈ R,6

and Mi ∈ N0 define the aggregated capacity of each ward i ∈ W. Then,7

∑
i∈W

uir = Nr ∀r ∈ R (1)

and,8

∑
r∈R

uirbr = Mi ∀i ∈ W (2)

Now, let u define a matrix of the elements uir ∀i ∈ W, r ∈ R, and define:9

• f(u) yields the expected total number of patients relocated to an alternative ward per day, an altern-10

ative ward being defined as a ward having spare capacity.11

• g(u) yields the expected total number of patients who prefer a private room and are correspondingly12

assigned to one.13

Let τ ∈ R>0 denote an upper bound on f(u) ensuring that a substantial number of patients will receive14

their preferred care. The objective of this study is therefore to derive a configuration of the room types, uir,15

that fulfills,16

Maximize g(u) (3)

Subject to f(u) ≤ τ (4)∑
i∈W uir = Nr ∀r ∈ R (5)∑
r∈R uirbr ≥ 1 ∀i ∈ W (6)

uir ∈ N0 ∀i, r ∈ W,R (7)

The aim of formulation (3)-(7) is to attain the maximum expected number of patient-room preference17

matches, subject to a limited number of relocated patients (Constraint 4), a fixed capacity of each room18

type (Constraint 5) and an assignment of minimum one room per ward (Constraint 6).19
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3. Modeling & Solution Approach1

The evaluation of g(u) and f(u) depends on an explicit modeling of the admission process’ related2

queueing system that arises from the random arrival and room occupation of patients in nursing wards. Due3

to the complexity of this queueing system (cf. Section 3.2), optimization problem (3)-(7) cannot be solved4

to optimum without complete enumeration. Therefore, this study proposes a heuristic search procedure. An5

outline of our approach is presented in Figure 1 with references to the sections associated with each model6

component. The Randomized & Interpolated Search (RIS) heuristic applies an iterative procedure to sample7

good solutions from the solution space of (3)-(7), where in each iteration a new solution is selected based8

on an interpolation of scattered samples from the solution space. As we will show later, instead of selecting9

a room configuration, the RIS heuristic only needs to consider the aggregated ward capacity. The structure10

of this approach is detailed in Section 3.1. To evaluate the behavior of the queueing system associated11

with each solution, a time-homogeneous CTMC model proposed by Andersen et al. [23] is employed to12

derive the expected room occupancy. The CTMC model will be presented in Section 3.2. Since the CTMC13

is computationally expensive, Section 3.3 presents a core element of our heuristic search procedure, an14

approximate, fast, surrogate objective function. Finally, given that patient behavior is considered to be15

exclusively dependent upon aggregated ward capacity, the room configuration can be derived with Integer16

Linear Programming (ILP). The precise means by which this is achieved is detailed throughout Section 3.4.17

Lastly, note that an overview of mathematical notation is presented in Table 9 of Appendix A.18

Initialize and evaluate with

surrogate objective function

(Section 3.3)

Interpolate objective value of

samples from solution space

Select sample capacity

based on interpolation

Evaluate CTMC

(Section 3.2)

Derive room configuration

(Section 3.4)

A
d
d

n
ew

sa
m

p
le

Figure 1: Outline of the RIS heuristic with references to the associated sections.
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3.1. Randomized & Interpolated Search (RIS) heuristic1

Consider a given room configuration u and recall capacity constraints (5) and (6). Now, consider the2

solution space U resulting from these constraints, and let Yf (u) and Yg(u) yield estimates of f(u) and3

g(u) based on an interpolation of some known solutions in this space. Let x define the set of these known4

solutions and Z(u) define a probability mass function that corresponds proportionally to Yg(u) and sums5

to unity. Then, in order to approach the configuration of rooms that attains the maximum of g(u), the6

following stepwise procedure is considered:7

1. Select a range of initial solutions for x.8

2. Calculate g(u) and f(u) based on x.9

3. Derive Yf (u) and Yg(u) by interpolating between the known solutions in x.10

4. Derive Z(u) in accordance with Yg(u).11

5. Add a new configuration, u′, to x by sampling from Z(u), constrained by Yf (u) ≤ τ in accordance12

with (4), and calculate g(u′) and f(u′).13

6. If the elapsed time exceeds the fixed time limit then stop; otherwise return to step 3.14

The procedure is initialized by requiring that x contains the |W| extreme points in which all room types15

have been moved to a single ward, respecting lower capacity bound (6), and thus ensuring that all room16

configurations are included in the interpolation. Next, x is expanded and a basis for the interpolation is17

created by sampling uniformly from U .18

By applying this procedure, Yg(u) recursively approaches g(u) in the space constrained by (4)-(7). No-19

tice how the interpolations Yg(u) and Yf (u) are gradually improved based on the solution samples x where20

Yg(u) is employed to focus the search through probability mass function Z(u) and Yf (u) is employed to21

estimate the feasible space.22

23

When the sampling based on Yg(u) is rather widespread, the probability mass is concentrated upon the24

promising regions by performing the conversion Y ′g(u) = Yg(u)β , where β ∈ R≥1, thereby amplifying the25

curvature of the interpolation. However, this still requires an initialization of Yg(u) based on uniformly26

distributed solution-evaluations throughout U . In other words, runtime is potentially wasted in regions that27

are not relevant to the objective. To overcome this, let f̃(u) and g̃(u) define surrogates of functions f(u)28

and g(u) that have similar optima, but shorter evaluation times. Thus, by conducting the initialization29

using the surrogate g̃(u) and then switching to the true objective function, g(u), for the remaining steps,30

the true, and slower, solution-evaluations are only performed in the most promising region of the search31

space.32

Let x̃ define the set of configurations that have been evaluated using the aforementioned surrogate func-33

tion. Then, as the search procedure progresses, the interpolation will be derived on the basis of x̃ as well34
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as the gradually increasing set x. Now, to ensure that x can replace x̃ in a limited number of iterations,1

a proximity tolerance ξ is defined such that if the euclidean distance
√∑

i∈W(Mi − M̃i)2 is smaller than2

or equal to ξ, where Mi and M̃i are the aggregated capacities of an element in x and x̃, respectively, then3

the surrogate solution associated with M̃i is removed from x̃. The final search procedure is documented in4

Algorithm 1. The implications of varying β and ξ are elaborated upon in Section 4.5

6

Algorithm 1 The RIS heuristic.

1: x̃← uniformSampling() . Initialize and evaluate surrogate sampling

2: x← ∅

3: while elapsedT ime < timeLimit do

4: Y ← interpolate(x̃,x)

5: Y ′ ← exponentiate(Y ) . Exponentiate the interpolation

6: Z ← convertToPMF (Y ′)

7: x← addNewSample(Z,x) . Add and evaluate new sample

8: x̃← remove(x, x̃) . Check and remove proximate surrogate samples

9: end while

10: u∗ ← getBest(x)

return u∗

3.2. Evaluating g(u) and f(u)7

Recall the system presented in Section 2, featuring a set of patient types requiring assignment to a set8

of wards, where in case of insufficient capacity patients are either moved to an alternative ward or admitted9

to a location that is not included in the model, i.e. lost from the system. To model this behavior, a CTMC10

approach [23] is employed.11

12

Consider a time-homogeneous CTMC with state space S and state definition s = (w11, w21, · · · , wij , · · · , w|W||W|),13

where wij is the number of type i patients hospitalized in ward j, with i, j ∈ {1, 2, · · · , |W|}. Let f ′j define14

the number of free beds in ward j, so f ′j = Mj −
∑
i∈I wij , where Mj is the aggregated capacity of each15

ward. Additionally, let λi define the arrival rate of patient type i and that all patient arrivals, regardless of16

their type, are generated according to a Poisson process. Moreover, let µi define the service rate of patient17

type i, assuming that inter-service times are exponentially distributed. Furthermore, let p(f ′1, f
′
2, · · · , f ′|W|)ij18

define the fraction of type i patients routed to ward j, governed by the number of free beds in each ward;19

f ′1, f ′2, . . . and f ′|W|.20

8



Let qss∗ define the rate at which the system transitions from a current state s ∈ S to a new state s∗ ∈ S.1

Then,2

qss∗ =



λi if s∗ = (· · · , wii + 1, · · · , f ′i − 1, · · · ) and f ′i > 0 ∀i ∈ I

λip(f
′
i = 0)ij if s∗ = (· · · , wij + 1, · · · , f ′j − 1, · · · ) and f ′i = 0, f ′j > 0 ∀i, j ∈ I, i 6= j

λip(f
′
i = 0, f ′k = 0)ij if s∗ = (· · · , wij + 1, · · · , f ′j − 1, · · · ) and f ′i = 0, f ′k = 0, f ′j > 0 ∀i, j, k ∈ I, i 6= j 6= k

...
...

λip(f
′
i = 0, f ′k = 0, · · · , f ′l = 0)ij if s∗ = (· · · , wij + 1, · · · , f ′j − 1, · · · ) and f ′i = 0, f ′k = 0, · · · , f ′l = 0, f ′j > 0 ∀i, j, k · · · l ∈ I, i 6= j 6= k 6= · · · 6= l

µiwij if s∗ = (· · · , wij − 1, · · · , f ′j + 1, · · · ) and wij > 0 ∀i, j ∈ I

3

4

where all other transition rates qss∗ = 0 for s 6= s∗, and the diagonal elements qss = −
∑
s∗∈S\{s} qss∗ .5

The fraction p(f ′i = 0, f ′k = 0, f ′j > 0, · · · , f ′N > 0)ij is abbreviated p(f ′i = 0, f ′k = 0)ij , the change6

s∗ = (· · · , wij + 1, · · · , f ′j − 1, · · · ) indicates the arrival of patient i to a ward j, and the change s∗ =7

(· · · , wij − 1, · · · , f ′j + 1, · · · ) indicates a corresponding discharge. Let Q define the transition rate matrix8

of rates qss∗ ∀s, s∗ ∈ S. To derive state distribution π, S is reduced by employing the truncation algorithm9

described by Andersen et al. [23] where bounds on the probability mass are used to identify the neglect-10

able subspace of S. The global balance equations πQ = 0 are solved using successive overrelaxation [24,11

p. 311] with a relaxation parameter equal to 1.75. Convergence is measured on the largest relative difference12

between successive iterations, in accordance with Andersen et al. [23].13

14

Let πi(n) define the probability of exactly n ∈ N0 patients being hospitalized in ward i ∈ W; 0 ≤ n ≤Mi.15

πi(n) is consequently a marginal distribution to the state distribution of the CTMC. Recall that all patients16

may be categorized as one of two types: Patients who prefer a private room and patients who have no17

preference concerning whether they are assigned to a shared or private room. Suppose we randomly sample18

an arriving patient. The probability that the patient prefers a private room is ψ ∈ R0≤ψ≤1. Now, consider19

that n patients have been admitted to ward i ∈ W. Let Pi(y
a, yb) define the probability that of those20

n patients, exactly ya patients prefer a private room and yb = n − ya patients have not indicated their21

preference. Then,22

Pi(y
a, yb) = B(ya, n, ψ) · πi(n) (8)

where23

B(ya, n, ψ) =

(
n

ya

)
ψy

a

(1− ψ)y
b

(9)

is the probability mass function of the binomial distribution with n = ya + yb trials, and success probability24

ψ. Further, let ρi(y
a) define the probability that exactly ya beds are occupied by patients who prefer a25

private room, and that the occupied beds can be located in both private and shared rooms. Then,26

9



ρi(y
a) =

Mi−ya∑
yb=0

Pi(y
a, yb) (10)

which from (8) results in:1

ρi(y
a) =

Mi−ya∑
yb=0

(
B(ya, n, ψ) · πi(n)

)
(11)

Function ρi(y
a) is essential to both the definition of f(u) and g(u), as will be demonstrated in what2

follows.3

4

Assume the following ordering of patients as they are hospitalized:5

1. Whenever patients who prefer private rooms are hospitalized, they will always be assigned to a private6

room if one is available.7

2. Patients who have no preference regarding room types, are only assigned to a private room if no shared8

room capacity is available.9

By observing an arbitrary ward i ∈ W, the expected number of patients who prefer a private room and are10

correspondingly assigned to one is
∑ui,private

k=0 (k · ρi(k)) +
∑Mi

k=ui,private+1(ui,private · ρi(k)), resulting in the11

following objective function:12

g(u) =
∑
i∈W

(
ui,private∑
k=0

(k · ρi(k)) +

Mi∑
k=ui,private+1

(ui,private · ρi(k))

)
(12)

where ui,private is the number of private rooms allocated to ward i ∈ W. Notice that g(u) is, in essence,13

independent of the characteristics of the shared room types. Regarding f(u), which ensures an upper bound14

on the number of relocated patients through (4), the overall flow of patients into the hospital is of more15

concern. Consider blocking probability πBi = πi(Mi) of ward i ∈ W, then16

f(u) =
∑
i∈W

λiπ
B
i (13)

denotes the total expected number of patients who are rejected and correspondingly relocated upon arrival.17

Figure 2 depicts the dependencies between the CTMC and Expressions (12) and (13), respectively. Notice18

that the behavior of the system, as evaluated by the CTMC, depends only on the aggregated capacity. This19

feature will be exploited in the search procedure using ILP modeling introduced in Section 3.4.20

10



Mi Evaluate CTMC πi

ρi

uir

g(u)

f(u)

Figure 2: Dependencies in evaluating g(u) and f(u).

3.3. The Surrogate Functions1

Consider the flow of patients into a single ward, as depicted in Figure 3. From this perspective one2

notices that the system approaches an M/M/c/c queueing model as the number of arriving relocated patients3

decreases. That is, a queue where the capacity of the entire system equals the number of servers. For the4

M/M/c/c model,5

π̃i(n) =
(λi/µi)

n/n!∑Mi

k=0(λi/µi)k/k!
(14)

where π̃i(n) is the probability that exactly n ∈ N0 patients are hospitalized in ward i ∈ W [24, p. 434].6

Equation (14) is therefore an approximation of πi(n), which accuracy decreases as more patients are relocated7

within the system. Correspondingly, if all patients are lost from the system on arrival, then Equation (14)8

substitutes for πi(n) exactly. f(u) may therefore be approximated by:9

f̃(u) =
∑
i∈W

λiπ̃
B
i (15)

where π̃Bi = π̃i(Mi). Similarly, in the surrogate for g(u), π̃i(n) is employed to approximate (11) by,10

ρ̃i(y
a) =

Mi−ya∑
yb=0

(
B(ya, n, ψ) · π̃i(n)

)
(16)

which is then used to substitute ρi(y
a) in Equation (12), leading to g̃(u). Notice that when (14) replaces11

πi(n) from the CTMC, the computational effort of setting-up and applying successive over-relaxation is12

avoided which is the proposed approach to the global balance equations, πQ = 0 [23]. As a result, the13

search procedure is scoped rather quickly by creating an initial outline of both f(u) and g(u).14

11



Arriving

patients
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Figure 3: Flow of patients to and from a single ward.

3.4. Sub-Optimal Room Configuration1

Recall the dependencies in deriving functions f(u) and g(u), depicted in Figure 2. We only require the2

aggregated capacity Mi to evaluate the system through the CTMC. Not until then is the room configuration3

u applied to the patient occupancy distribution ρi to derive the objective value g(u). Hence, by assuming4

a fixed aggregated capacity, Mi, the problem of maximizing g(u) reduces to an ILP model.5

6

Let R′ define the set of shared room types. That is, R′ ⊂ R and |R′| = |R| − 1. Further, let set7

Ji = {0, 1, 2, . . . ,Mi} account for the number of beds that can be assigned to private rooms in each ward8

i ∈ W. Additionally, let the decision variable zij ∈ {0, 1} equal 1 whenever ward i ∈ W is assigned j private9

beds, where j ∈ Ji; and otherwise 0. Further, let parameter ωij ∈ R≥0 define the expected number of10

patients who both prefer and are also assigned to private rooms in ward i ∈ W, given that j private rooms11

are available in this ward. That is, following the convention in Equation (12),12

ωij =

j∑
k=0

(
k · ρi(k)

)
+

Mi∑
k=j+1

(
j · ρi(k)

)
(17)

where as before ρi(k) is derived using Equation (11), resulting in the objective function
∑
i∈W

∑
j∈Ji

zijωij ,13

which yields exactly the same result as Equation (12).14

Lastly, let Nprivate define the available number of private rooms, and yir ∈ N0 the number of shared15

room types r ∈ R′ assigned to ward i ∈ W. A feasible room configuration can then derived by employing16

the ILP model:17

12



Maximize
∑
i∈W

∑
j∈Ji

zijωij (18)

Subject to
∑
j∈Ji

zij = 1 ∀i ∈ W (19)∑
j∈Ji

zij · j +
∑
r∈R′ yirbr = Mi ∀i ∈ W (20)∑

i∈W
∑
j∈Ji zij · j ≤ Nprivate (21)∑
i∈W yirbr ≤ Nr ∀r ∈ R′ (22)

zij ∈ {0, 1} ∀i, j ∈ W,Ji (23)

yir ∈ N0 ∀i, r ∈ W,R′ (24)

1

2

Constraints (19)-(22) are defined as follows:3

• (19) ensures that each ward receives a fixed amount of private beds.4

• (20) ensures that the distribution of the aggregated capacity is maintained, keeping the parameter ωij5

valid.6

• Finally, (21) and (22) restrict the maximum occurrence of each room type. Recall that Nr defines the7

total number of room types r ∈ R available to the hospital.8

By evaluating πi(n) and π̃i(n), using the aforementioned CTMC and Equation (14), ILP formulation9

(18)-(24) can be employed to yield the optimum room configuration conditioned by the distribution of the10

aggregated capacity. Therefore, instead of evaluating based on the room configuration directly, this feature11

is exploited in our heuristic search procedure by applying aggregated capacity Mi as the decision variable.12

Recall Algorithm 1, where x and x̃ contain the samples for which the true and surrogate functions13

have been evaluated, respectively. By applying the aggregated capacity to x and x̃, the associated room14

configuration is derived as follows:15

1. Evaluate distributions πi(n) and π̃i(n) as per Sections 3.2 and 3.3.16

2. Calculate f(u) and f̃(u); and derive the sub-optimal room configuration which maximises g(u) and17

g̃(u) by ILP formulation (18)-(24).18

4. Numerical Study19

In this section, the RIS heuristic presented in Section 3 is evaluated in a range of numerical experi-20

ments to assess its performance. These experiments are conducted on hospital data introduced by Andersen21

13



et al. [23], and room infrastructure data from a Belgian hospital. All experiments are implemented in Java,1

including the CTMC from Section 3.2. To derive Yg(u) and Yf (u) natural neighbor interpolation [25] is em-2

ployed using the SibsonInterpolator2 class of the Java Mines Toolkit2. Lastly, the ILP model presented3

in Section 3.4 is solved using IBM ILOG CPLEX 12.7.13.4

5

4.1. Data Description6

The data for our subsequent experiments is based on three different datasets which are obtained from7

the study by Andersen et al. [23]. The data accounts for three different wards and consists of patient arrival8

rates and length of stay distributions; the respective routing probabilities in the system, and lastly the total9

bed capacity. No data was obtained specifically with regard to the number of room types for this case.10

However, data from a Belgian hospital4 suggests that the number of private rooms may easily constitute11

half of the total bed capacity. This proportion will serve as the basis for the three sets. Furthermore, even12

though the presented approach may be generalized to any capacity configuration for the shared room types,13

only a single shared room type consisting of two beds is considered, next to a single private room type (i.e.14

|R| = 2).15

All experiments primarily consider a dataset referred to as the original set, which is based solely on true16

patient data. Two additional sets, high arrival rate and high relocation, are derived from the original data17

by adjusting the arrival rate and routing probability parameters, respectively. These additional sets are18

included to assess the potential changes in patient characteristics. In addition, since no data was obtained19

concerning the proportion of private patients, a value of ψ = 0.2 is assumed, unless otherwise stated.20

21

The parameters associated with each dataset are presented in Tables 1 and 2. Furthermore, the initializ-22

ation of the RIS heuristic includes a minimization of the expected number of relocated patients, f(u) from23

Andersen et al. [23]. Each minimization, denoted as min{f(u)}, is presented in Table 3.24

2Java Mines Toolkit on interpolation and gridding - http://dhale.github.io/jtk/api/edu/mines/jtk/interp/

package-summary.html
3IBM ILOG CPLEX Optimization Studio - https://www.ibm.com/products/ilog-cplex-optimization-studio
4Data supplied by hospital AZ Maria Middelares, based in Gent, Belgium, in the context of iMinds ICON project AORTA

- https://www.imec-int.com/nl/imec-icon/research-portfolio/aorta
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Dataset λ1 λ2 λ3 µ1 µ2 µ3 Total Beds Nprivate Ndouble

Original 5.42 3.96 2.52 0.19 0.19 0.11 74 36 19

High Arrival Rate 6.78 3.96 2.52 0.19 0.19 0.11 74 36 19

High Relocation 5.42 3.96 2.52 0.19 0.19 0.11 74 36 19

Table 1: Rates and capacities associated with each of the three datasets. All rates and the total bed capacity are

obtained from [23], whereas the ratio of private to shared rooms,
Nprivate

Ndouble
is based on data from a Belgian hospital3.

All rates are given in number of patients per day.

Dataset p11 p12 p13 p21 p22 p23 p31 p32 p33

Original - 0.05 0.23 0.10 - 0.27 0.06 0.00 -

High Arrival Rate - 0.05 0.23 0.10 - 0.27 0.06 0.00 -

High Relocation - 0.05 0.95 0.10 - 0.90 0.06 0.00 -

Table 2: The routing probabilities associated with each of the three datasets, respectively. All parameter values and

assumptions concerning patient relocation have been obtained from [23]. Note that p(f ′i = 0)ij is abbreviated pij .

Dataset min{f(u)} M1 M2 M3

Original 1.592 32 24 18

High Arrival Rate 2.354 39 23 12

High Relocation 1.688 33 25 16

Table 3: Each minimization, min{f(u)}, obtained from Andersen et al. [23]. The associated distribution of beds for

each dataset is provided.

4.2. Error of the Surrogate Function1

Prior to evaluating the heuristic search procedure, an assessment of the error of both surrogate functions2

was performed by conducting a full enumeration of the search space. In order to accommodate this, room3

availability was limited to Nprivate = 20 private and Ndouble = 10 shared double rooms for the high arrival4

rate and high relocation datasets. Otherwise, the full availability of rooms for the original dataset was5

employed. The enumeration was conducted using the parameters from all three datasets (Table 1 and 2) on6

both the true functions g(u) and f(u), and surrogate functions g̃(u) and f̃(u).7

Results were evaluated by calculating the error and comparing each functions’ optimum. Table 4 presents8

the euclidean distance between the optima of g(u) and g̃(u). Notice that this is measured on the distribution9

of the aggregated capacity given that this is the primary decision variable. Table 4 includes the relative10

error concerning the optimum of the surrogate function. Lastly, Figure 4 shows the error of the original11
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data, namely g(u) − g̃(u). The figure also illustrates the optima of both the true and surrogate objective1

function.2

3

Recall from Section 3.3 that the surrogate functions are based on M/M/c/c model (14) which does not4

account for the hospitalization of relocated patients. It is therefore expected that the surrogate functions will5

lose accuracy as the number of relocated patients increases. That is, either when general routing probabilities6

are high, or if the wards lack capacity. The latter situation is reflected in Figure 4, showing that the error7

is smaller when the capacity is more evenly distributed, thereby resulting in fewer relocated patients.8

Regarding the routing probabilities, Table 4 demonstrates how the relative error is fairly robust with9

regard to the changes between the original and high relocation datasets. However, the optima have changed10

substantially from a euclidean distance of approximately 1.4 to 20.8 beds. This shows that when a substantial11

number of patients can be relocated within the system, the RIS heuristic has to adapt interpolation Yg(u)12

to objective function g(u) despite an inaccurate surrogate function.13

Dataset
√∑

i∈W(M∗i − M̃∗i )2 (g(ũg)/g̃(ũg))− 1 (f(ũf )/f̃(ũf ))− 1

Original 1.414 0.016 0.092

High Arrival Rate 6.164 0.010 0.050

High Relocation 20.833 0.018 0.053

Table 4: The euclidean distance between the optima M∗i of g(u) and M̃∗i of g̃(u), and the relative errors at the

optima, ũg and ũf , for each surrogate function g̃(u) and f̃(u), respectively.
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Figure 4: The error of surrogate objective function g̃(u) on the original dataset, defined as g(u)− g̃(u), and derived

by enumerating all solutions; showing, additionally, the optimum of g(u) (black) and g̃(u) (gray).
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4.3. Evaluating the RIS Heuristic Parameters1

The implications of adjusting the essential parameters are now explored. That is, the number of initial2

surrogate samples from the search space, the size of the exponent β, and the proximity tolerance ξ. All3

these parameters have been tested sequentially on the original data.4

5

The results from adjusting the initial surrogate sampling is presented in Figure 5, showing the resulting6

interpolated estimate, Yg(u), and the associated runtimes based on 5, 20, 35 and 50 samples from the search7

space. Surrogate sampling is uniformly distributed and it is therefore expected that Yg(u) converges to the8

true function g(u) when the sample size increases. Interestingly, the general shape of g(u) can be determined9

fairly early, as shown in the experiment with only 5 samples.10

By considering the strategic application of the RIS heuristic, we deem that the associated runtimes11

are fairly negligible, and since the apparent optimum does not change substantially after obtaining more12

than 20 samples, we deem that this is an adequate number of samples for our later optimization experiments.13

14
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Figure 5: The result of gradually increasing the number of surrogate samples on the interpolated estimate Yg(u).

Yg(u) does not change substantially upon applying more than 20 samples.

Exponent β was assessed based on values of 1, 8 and 16. In accordance with the RIS heuristic, these1

experiments were conducted by first obtaining 20 uniformly distributed samples, followed by 20 samples2

according to the recursively-updated density function Z(u). The surrogate objective function was again3

employed to conserve the runtime of the experiments. Results are presented in Figure 6, showing that the4

search intensifies around the apparent optimum as a function of β. Notice that the experiment where β = 1,5

corresponding to a complete omission of the conversion, demonstrates the usefulness of this approach as6

the sampling is almost uniformly distributed. In the experiment where β = 8, samples are generally close7

to the optimum, whereas in the last experiment, where β = 16, samples are concentrated on the apparent8

optimum with only a few outliers. Based on these experiments, a value of β = 8 is employed to focus on9

the most promising region of the search space, but still attains some diversification.10

11

Lastly, the effect of adjusting the proximity tolerance, ξ, was assessed using values of 1, 4 and 8. The12

18



experiments were conducted by applying the full RIS heuristic using 20 initial surrogate samples, an exponent1

of β = 8, and an upper bound on the permitted number of relocated patients of τ = 1.9. Each experiment2

was conducted using a runtime of 30 minutes.3

Results of these experiments yielded almost identical performance in each case. This might have been4

caused by the choice of τ , which results in a rather limited sample space. Consequently, the proximity5

tolerance is rather arbitrarily set to ξ = 4 during the subsequent optimization experiments.6
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Figure 6: Interpolation Yg(u) resulting from a gradually increasing exponent, β. Each experiment is conducted by

initializing with 20 uniform surrogate samples, followed by 20 samples based on Z(u) (crosses).

4.4. Applying the RIS Heuristic7

The full RIS heuristic is applied to the data presented in Section 4.1 based on the tests from Section8

4.3. We begin by presenting an example of a single heuristic run, where gradually-obtained solutions are9

compared against the true optimum.10

Overall performance is assessed by way of a number of experiments which compare the heuristic’s solu-11

tions to the true optimum. Since no data was obtained concerning preference for private rooms, proportion12

ψ is investigated using three different levels. Furthermore, the robustness to changes in the patient arrival13

rates and relocation probabilities is of interest. Experiments will therefore be conducted on all three datasets14

(cf. Table 1 to 3).15

4.4.1. A Single Run16

Figure 7 illustrates the progression of the RIS heuristic on the original dataset for a runtime of 6017

minutes and a bound of τ = min{f(u)} · 1.20 = 1.91. During this time 21 iterations were conducted. The18

figure shows the interpolation Yg(u), samples x and x̂, the optimum obtained by enumeration, and finally19

the estimated and true feasible search space defined by τ .20

21
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Figure 7: Progression of the RIS heuristic. The interpolation, Yg(u), samples x (dots) and x̃ (crosses) and the

optimum (triangle) are shown. The true and estimated feasible search space is depicted with dotted and solid line,

respectively.

The heuristic initializes with 20 surrogate samples, as shown in the upper left corner. At this stage, the1

apparent optimum is already close to the true optimum, which is immediately included within the search2

space. The remaining three graphs show the sampled solutions for iteration 5, 10 and 20. Notice that the3

estimated search space initially violates the true search space (in Figure 7, iteration 1 and 5: bottom-left4

solid line - estimated search space - exceeds dotted line - true search space), but then converges to the true5

search space near the optimum. At iteration 20 the estimated search space attains high accuracy near the6

true optimum, which decreases as more capacity is allocated to wards 1 and 2. Notice that samples are7

almost uniformly distributed due to the low slope near the optimum.8

This example demonstrates the advantage of sampling from an interpolation based on a mix of both9

fast surrogate and slower true evaluations to determine the most promising region for an objective func-10

tion of complex structure. The general performance of this approach for different parameter variations is11

20



investigated in the following section.1

4.4.2. Overall Performance2

The overall RIS heuristic performance was assessed in two parts. Firstly, two runs were conducted on3

the original dataset for each of three levels of the private patient proportion ψ = 0.2, 0.5 and 0.7, with a4

fixed runtime of 60 minutes. To properly assess the heuristic solutions, results were compared against the5

true optima obtained by enumerating the search space.6

Furthermore, since robustness regarding changes in the patient characteristics is of particular interest,7

similar runs were conducted for the high arrival rate and high relocation datasets. However, in order to8

determine the optima for these additional tests, the room availability was limited to Nprivate = 20 and9

Ndouble = 10 rooms. Due to the reduction of feasible ward capacity configurations, the relocation bound to10

yield the maximal search space was omitted, and the runtime decreased to 10 minutes.11

12

The results for the original dataset are presented in Table 5, featuring first the heuristic room configur-13

ation for private rooms, ui,private, and shared double rooms ui,double. Next, Table 5 presents the iterations14

corresponding to the number of solution-evaluations conducted using the true objective function, the heur-15

istic objective value, the gap between the best obtained solution and the optimum, and finally the objective16

value for the optimum.17

As expected, capacity is distributed among the wards according to the arrival rate of the three patient18

types. That is, with respect to both private and shared double rooms. By contrast, the fraction of private19

patients arriving, ψ, appears to have little effect on the distribution of private rooms, since the solutions20

are similar across all runs. This is potentially a result of the relative difference between the arrival rates of21

each patient type, which shall be assessed in the last part of this section, where the arrival rate has been22

increased for ward 1.23

In general, the experiments presented in Table 5 yield excellent results, as the relative gap between the24

heuristic and true optimum is consistently below 1%. The reader should notice that these results have been25

obtained after a runtime of 1 hour, whereas the complete enumeration of the search space to determine the26

true optimum finished only after approximately 3 weeks runtime.27

28
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Heuristic Optimal

ψ Rep. u1,pr. u2,pr. u3,pr. u1,do. u2,do. u3,do. Iter. Obj. val. Gap (%) Obj. val.

0.2 1 13 11 12 8 6 5 28 12.68 0.55 12.75

0.2 2 15 10 11 8 5 6 20 12.71 0.31 12.75

0.5 1 15 11 10 8 5 6 23 30.09 0.63 30.28

0.5 2 15 10 11 7 6 6 29 30.18 0.33 30.28

0.7 1 15 10 11 7 6 6 20 35.21 0.06 35.23

0.7 2 14 10 12 8 5 6 27 35.20 0.09 35.23

Table 5: Result of optimizing the room configuration by applying our RIS heuristic. Variables ui,private and ui,double

are abbreviated ui,pr. and ui,do. for all wards i ∈ W. Two runs were conducted for each of the three levels of the

private patient fraction, ψ.

Table 6 provides further results, showing the heuristic solutions for the high arrival rate and high re-1

location datasets. For the high arrival rate, the system is found to be more sensitive to changes in the2

private patient fraction since increasing the fraction results in more private rooms to be allocated to ward3

1. Otherwise, the obtained solutions attain a small relative gap that consistently stays below 1%, showing4

that increasing the number of arriving patients does not affect the search procedure’s performance.5

Next, for a substantially larger number of relocated patients it is expected that more iterations are re-6

quired to adapt the interpolation and obtain useful solutions, due to the lower accuracy of the surrogate7

objective function. Recall how it was previously determined that a substantial distance is present between8

the true and surrogate optima for the high relocation dataset in Section 4.2. The experiments indicate that9

this is only the case for a medium private patient fraction of ψ = 0.5 since the relative gap has increased a10

few percentage points. The other levels remain relatively unchanged, and even slightly improved for ψ = 0.2.11

Thus, these experiments indicate that good solutions are derived for a large number of relocated patients as12

well.13

14

4.5. Validation15

Finally, this section validates the assumption that an improved room configuration leads to better oper-16

ational efficiency for inpatient admissions. An initial, poor quality, room configuration (RC1) is compared17

with an optimized room configuration (RC2, determined as a result of the RIS heuristic) in a day-to-day18

scheduling simulation. The simulation begins from an initial, empty set of wards with given room config-19

uration (either RC1 or RC2). As the simulation progresses, inpatients arrive according to the arrival rates20

determined by Table 1. At the start of each simulated day, patients are assigned to a ward and room by solv-21

ing a simplified version of the reactive ILP model by Vancroonenburg et al. [10]. This ILP model is ‘reactive’22
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Heuristic Optimal

Dataset ψ Rep. u1,pr. u2,pr. u3,pr. u1,do. u2,do. u3,do. Iter. Obj. val. Gap (%) Obj. val.

High Arr. 0.2 1 9 5 6 7 2 1 53 7.57 0.66 7.62

High Arr. 0.2 2 9 5 6 7 2 1 64 7.57 0.66 7.62

High Arr. 0.5 1 9 2 9 5 1 4 74 17.35 0.57 17.45

High Arr. 0.5 2 11 2 7 5 1 4 78 17.36 0.52 17.45

High Arr. 0.7 1 14 1 5 6 1 3 70 19.76 0.05 19.77

High Arr. 0.7 2 12 0 8 5 1 4 83 19.76 0.05 19.77

High Rel. 0.2 1 5 4 11 3 0 7 44 7.70 0.39 7.73

High Rel. 0.2 2 5 3 12 1 1 8 18 7.72 0.13 7.73

High Rel. 0.5 1 2 8 10 1 4 5 3 17.30 2.32 17.71

High Rel. 0.5 2 8 1 1 4 1 5 34 17.45 1.47 17.71

High Rel. 0.7 1 6 0 14 3 1 6 11 19.82 0.15 19.85

High Rel. 0.7 2 1 2 17 2 2 6 2 19.76 0.45 19.85

Table 6: Results of applying our RIS heuristic to the high arrival rate and high relocation datasets. Variables ui,private

and ui,double are abbreviated ui,pr. and ui,do. for all wards i ∈ W. The room availability was limited to Nprivate = 20

and Ndouble = 10 rooms. Due to the limited search space, all runs were conducted without the relocation bound and

a runtime of 10 minutes.

in the sense that it only considers arriving patients on the present (simulated) day. This contrasts with the1

‘anticipative’ ILP model [10] which employs pre-registration information to look-ahead further in the future,2

to consider and pre-assign (known) future arriving patients. The latter model is superior in terms of finding3

high-quality assignments (regarding matching patient preferences, minimizing gender policy violations, etc.).4

However, no such pre-registration information is considered in the scope of the present paper.5

The reactive patient assignment ILP model can be defined as follows. Please note that due to the6

extensive use of mathematical symbols in the paper, this section redefines variables and indices used in the7

previous sections. We refer to Table 10 in Appendix A for a complete overview of the notation relevant to8

this subsection. Let binary decision variable xpr equal 1 if patient p (which either arrived on the current day,9

or is still present from previous admission) is admitted to room r. Let binary decision variable yrd equal 110

if the room is occupied by male patients or 0 by female patients on day d. Let r = ∅ denote a dummy room,11

where xp∅ = 1 indicates a patient being refused (or being relocated to a ward which is not considered in the12

current problem). R denotes the set of rooms available from the wards in W, and br denotes the capacity13

of each room r ∈ R, i.e. in the current dataset br ∈ {1, 2} (private or shared). P denotes the set of patients14

currently arriving for admission or still present after admission on an earlier day in the simulation. ad(p) and15

elos(p) denote the arrival day and expected length of stay (available from Table 1, 1/µ parameter for each16

patient type) in days. D denotes an upper bound on the planning horizon (in days), which is restricted by17
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either the length of the simulation time horizon or the maximum remaining expected length of stay among1

patients p ∈ P . d′ denotes the current day of the simulation, whereas d is used to index all remaining days2

of the planning horizon. Finally, cpr denotes a cost matrix, attributing a perceived penalty of admitting a3

patient p to a room r for one day. The elements cpr, defined for each room (including the dummy room)4

and patient combination, are given by the sum of:5

• wpref, a room preference penalty if the assigned room does not meet the patient’s preference (i.e. a6

shared room when the patient prefers private),7

• (1− pij) ·wreloc, a relocation penalty if the assigned room is not in the preferred ward (refer to Table8

2 for values of pij),9

• w∅, a refusal penalty if the patient is not admitted to any room from wards W, and is left unassigned.10

In this case, the patient is assumed to be admitted elsewhere.11

These weights are set as follows: w∅ = 10000, wreloc = 1000 and wpref = 10.12

Using this notation, the ILP model can be formulated as follows:13

Minimize
∑
p∈P

∑
r∈R

cpr · elos(p) · xpr (25)

Subject to∑
r∈R

xpr + xp∅ = 1 ∀p ∈ P (26)

∑
p∈P :

d<ad(p)+elos(p)

xpr ≤ br ∀r ∈ R, d = d′, . . . , D (27)

∑
p∈P :

d<ad(p)+elos(p)
p=male

xpr ≤ br · yrd ∀r ∈ R, d = d′, . . . , D (28)

∑
p∈P :

d<ad(p)+elos(p)
p=female

xpr ≤ br · (1− yrd) ∀r ∈ R, d = d′, . . . , D (29)

xpr′ = 1 ∀p ∈ P : ad(p) < d′, r′ = AssignedRoom() (30)

xpr ∈ {0, 1} ∀p ∈ P, r ∈ R ∪ ∅ (31)

yrd ∈ {0, 1} ∀r ∈ R, d = d′, . . . , D (32)

The model minimises the total cost penalties incurred by the assigned and admitted patients, weighted14

by their remaining length of stay (Equation (25)). Constraints (26) ensure that all patients are assigned15

to a room or to the dummy room. Constraints (27) ensure the capacity limit of each room for each day of16
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Dataset Room config. Ward 1 Ward 2 Ward 3 Obj. val

# Private # Shared # Private # Shared # Private # Shared

Original RC1 5 5 25 4 6 10 26.1

Original RC2 15 7 10 3 11 6 35.2

High Arr. RC1 5 5 25 4 6 10 26.3

High Arr. RC2 18 8 9 6 9 5 35.5

High Rel. RC1 5 5 25 4 6 10 26.0

High Rel. RC2 14 8 11 6 11 5 35.2

Table 7: Room configurations for each dataset applied in the simulation.

the planning horizon. Constraints (28) and (29) ensure that either male or female patients are assigned to1

a room, i.e. it ensures a gender separation policy for shared rooms. Constraints (30) ensure that patients2

who were already admitted prior to the current simulation day d′ stay assigned to their previously assigned3

room r′. Finally, (31) and (32) define the domains of the decision variables.4

The simulation was run on the three datasets described in Section 4.1. Room configurations RC1 and5

RC2 depend on the dataset, and are constructed as described in Table 7. Furthermore, the fraction of male6

patients among all patients (other patients being female) is considered as an additional parameter (denoted7

by φ) since this fraction may be ward-dependent. The simulation runs over 120 simulation days during8

which arrivals are generated. For each combination of the considered parameters (fraction of male patients,9

dataset and room configuration), we ran 1000 simulation replications.10

The results (averaged over 1000 replications) are summarized in Table 8, showing for each dataset11

and male patient-fraction, the difference between RC1 and RC2 (value larger than 0 if RC2 is better) in12

respectively room preference penalties, patient relocations to other wards, patient refusals, and the global13

objective value as defined by Equation (25) calculated over the simulation horizon of 120 simulation days.14

Finally, the difference is statistically significant by a p-value from the Wilcoxon Rank Sum Test [26, 27].15

Notice that all p-values are indeed smaller than 0.05.16

These results show that RC2, while sometimes having a marginally higher number of patient refusals,17

the penalties of mismatched room preferences (our primary concern) and patient relocations, on average,18

greatly improves over RC1. This validates the assumption that an improved room configuration (i.e. RC219

over RC1) leads to improved operational efficiency for inpatient admissions.20

5. Conclusion21

The ability to choose a private room over a shared room is becoming an increasingly important factor22

for patients to choose a hospital for admission. Being able to meet those requests is of strategic importance23

to hospitals, both in increasing patient comfort and satisfaction but also in generating extra revenue from24

25



Dataset φ Avg. Impr. room pref. Avg. Impr. reloc. Avg. Impr. refusal Avg. Obj. Impr. p-value

(# patient days) (# patient days) (# patient days) (absolute) (%)

Original 0.3 75.08 1716.00 -0.62 1532696.68 26.03 <0.01

Original 0.4 78.93 1714.20 -0.25 1535081.748 26.12 <0.01

Original 0.45 78.94 1716.74 -1.09 1528571.86 26.04 <0.01

Original 0.5 81.15 1713.65 -0.59 1531002.102 26.07 <0.01

Original 0.55 80.63 1715.05 0.58 1543720.948 26.30 <0.01

Original 0.6 81.32 1715.66 -0.47 1533627.837 26.12 <0.01

Original 0.7 76.33 1713.56 0.24 1539232.789 26.16 <0.01

High Arr. 0.3 54.80 2328.58 0.58 2049016.12 22.16 <0.01

High Arr. 0.4 59.52 2325.88 0.55 2046362.37 22.20 <0.01

High Arr. 0.45 57.14 2328.65 -0.98 2033640.76 22.07 <0.01

High Arr. 0.5 56.83 2328.14 -0.22 2040755.74 22.15 <0.01

High Arr. 0.55 58.91 2330.96 -1.86 2026654.69 22.04 <0.01

High Arr. 0.6 57.95 2327.84 -0.31 2039361.02 22.15 <0.01

High Arr. 0.7 57.13 2327.06 -0.10 2041191.40 22.13 <0.01

High Rel. 0.3 70.40 1831.99 0.77 1084299.45 30.30 <0.01

High Rel. 0.4 73.47 1834.95 -0.26 1076126.23 30.19 <0.01

High Rel. 0.45 73.47 1832.93 0.49 1081874.07 30.37 <0.01

High Rel. 0.5 73.86 1834.16 0.43 1081416.84 30.32 <0.01

High Rel. 0.55 73.90 1832.84 0.97 1085754.38 30.50 <0.01

High Rel. 0.6 72.54 1833.36 0.04 1076919.65 30.32 <0.01

High Rel. 0.7 70.64 1831.81 0.90 1085614.61 30.40 <0.01

Table 8: Simulation results (averaged over 1000 replications) for each dataset and male patient fraction, showing

the average improvement (Impr.) for room preference violations, relocated patients, refused patients (all three are

denoted in # mismatched patient days) and the total and relative objective cost (Eq. 25 evaluated over the simulation

horizon) improvement. P-values are all calculated to be below 0.01.
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charging room/honorarium supplements. However, existing infrastructure may not be adequately allocated1

between nursing wards to meet the current demand.2

This study sought to provide hospital decision makers with a strategic tool for improving the allocation3

of room types among hospital wards. More specifically, the aim was to accommodate patients who prefer4

private room assignments, by first assuming a fixed number of room types, and second that these room5

types can be reallocated among the wards.6

The proposed approach is based on a continuous-time Markov chain model that derives the patient oc-7

cupancy distributions, and a heuristic search procedure referred to as Randomized and Interpolated Search8

(RIS) that searches for the best possible room configuration. RIS recursively improves an initial solution9

by sampling from the search space based on a gradually improved interpolation of the objective function.10

The fact that occupancy distributions are fixed for an unchanged aggregated capacity is exploited in order11

to derive the sub-optimal room type configuration using integer linear programming. Consequently, aggreg-12

ated capacity allocations form the primary decision variables for the proposed RIS heuristic to operate on.13

This results in reducing the search space for the RIS heuristic by omitting room type configuration decision14

variables.15

16

Based on data from both a Danish and Belgian hospital, the applicability and effectiveness of the ap-17

proach was demonstrated through various experiments which vary the fraction of patients who prefer private18

hospitalization, the overall arrival rate, and lastly the number of patients relocated within the system. In a19

computational study, it is shown that the RIS heuristic has the potential to derive near-optimal solutions20

that attain relative gaps below 1% within short runtimes which make the method applicable in practice.21

Moreover, it was demonstrated how configuring room resources on a strategic level benefits the day-to-day22

decisions of assigning patients to rooms through simulation.23

24

Finally, the reader should notice that the proposed approach is not only applicable to the specific case25

of optimizing the room configurations in a hospital setup, but to any queueing problem where jobs are26

serviced among different nodes and may prefer a specific, but limited resource. Examples of such similar27

environments vary from manufacturing setups where products are processed at different stations and may28

require a specific tool, to call centers where customers may prefer an operator of a specific skill set.29

The study comprised various experiments, including different parameter variations as well as input data-30

sets that demonstrate the performance and the robustness of the approach. However the analysis was31

restricted to a specific hospital case featuring a fairly limited number of wards. More complex cases should32

be assessed, preferably with a greater number of disposable rooms and room types. Additionally, future33

experiments should consider that patient scheduling is not only constrained by room preferences but also34

gender, and that this mix can be a function of the preferred ward for the patient.35
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A. Symbols & Definitions33

Symbol Definition

W Set of all wards.

R, R′ Set of all room types (R) and shared room types (R′).

u, u′, ũg, ũf , uir Room configuration (u), as a new iteration (u′), surrogate optima (ũg and ũf ),

and as a single element (uir).

br Bed capacity of room type r.

Nr Total number of room type r that are available to the hospital.

29



Mi, M̃i, M
∗
i , M̃∗i Assigned bed capacity of ward i (Mi), as input to a surrogate function (M̃i),

optimal solution (M∗i ), and optimal solution to the surrogate objective function

(M̃∗i ).

f(u), f̃(u) True (f(u)) and surrogate (f̃(u)) expected number of patients relocated per

day.

g(u), g̃(u) True (g(u)) and surrogate (g̃(u)) expected number of patients who prefer and

are assigned to private rooms.

τ Upper bound for function f(u).

U Solution space of model (3)-(7).

Yf (u) Estimate of f(u) based on interpolation.

Yg(u), Y ′g (u) Estimate of obj. function g(u) (Yg(u)) based on interpolation, and the conver-

sion Y ′g (u) = Yg(u)β .

x, x̃ Set of all known true (x) and surrogate (x̃) solutions.

Z(u) Probability mass function used in sampling from the solution space.

β Exponent used in performing the conversion Y ′g (u) = Yg(u)β .

ξ Proximity tolerance used in removing surrogate solutions from x̃.

S, s, s∗ State space (S), current state (s) and new state (s∗) of the CTMC.

wij Number of type i patients hospitalized in ward j.

f ′j Number of free beds in ward j.

λi, µi Arrival and service rate for patients of type i.

p(f ′1, f
′
2, · · · , f ′|W|)ij Fraction of type i patients routed to ward j as function of the number of free

beds.

Q, qss∗ Transition rate matrix (Q) and single transition rates (qss∗).

π, πi(n), π̃i(n), πBi , π̃Bi State distribution of the CTMC (π), ward marginal probability (πi(n)), ward

surrogate marginal probability (π̃i(n)), ward blocking probability (πBi ), and

ward surrogate blocking probability (π̃Bi ).

n Total number of patients in an arbitrary ward.

ψ Fraction of all arriving patients who prefer a private room.

ya, yb Number of hospitalized patients preferring a private room (ya), and number of

patients who do not care whether their room is shared or private (yb).

Pi(y
a, yb) Joint probability of ya and yb for ward i.

B(ya, n, ψ) Probability mass function of the binomial distribution.

ρi(y
a), ρ̃i(y

a) Probability that ya beds are occupied by patients who prefer a private room

(ρi(y
a)), and the associated surrogate probability (ρ̃i(y

a)).

zij Binary variable equalling 1 whenever ward i is assigned j private beds.

ωij Expected number of patients who prefer and are assigned to private rooms in

ward i with j available private rooms.
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Ji Set of all combinations of private beds that can be assigned to ward i.

yir Number of shared rooms of type r assigned to ward i.

Table 9: Mathematical symbols and their associated definitions.

Symbol Definition

xpr Binary decision variable equal to 1 when patient p is assigned to room r.

yrd Binary aid variable equal to 1 if room r is occupied by male patients on day d

of the planning horizon.

d′ Current simulation day.

p Patient index.

r Room index.

∅ Dummy room index.

R Set of rooms available in wards W.

br Bed capacity of room r.

ad(p) Arrival day of patient p.

elos(p) Expected length of stay (in days) of patient p.

D Upper bound on the planning horizon (in days), restricted by the length of the

simulation horizon and the maximum remaining length of stay among patients

currently admitted to the hospital.

cpr Cost-matrix values, attributing a perceived penalty associated with assigning

patient p to room r.

wpref Room preference penalty when the assigned room type does not meet the pa-

tient’s preference.

wreloc Relocation penalty if the assigned room is not in the preferred ward.

w∅ Refusal penalty if a patient is not admitted.

Table 10: Mathematical symbols for the simulation validation ILP model.
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