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1. INTRODUCTION 

1.1. Biodiversity of seas and oceans 

Seas and oceans cover more than 70% of the Earth’s surface. With the average 
depth of approximately 3.2 km, the total volume of marine ecosystems makes 
up 98% of the total inhabitable space on the planet (Speight & Henderson 2010; 
Kaiser et al. 2011). Life started in the oceans and was restricted to that 
environment for hundreds of millions of years and most of the animal phyla 
have stayed there so far (Kaiser et al. 2011). The biodiversity of the sea 
environment is significant: marine ecosystems contain 31 of the 33 phyla of 
animals, with 15 of those occurring only in the seas (Angel 1993; Boeuf 2011). 

Biological diversity as the term ‘biodiversity’ has been accepted and used 
frequently after the Convention of Biological Diversity (CBD) held in Brazil in 
1992 (Kaiser et al. 2011). The CBD emphasizes the conservation and sustainable 
use of biological diversity, which is incredibly important for fulfilling the food, 
health and other needs of the growing world population (UN 1992; UN 2012). 
All the countries that signed the convention are aware of the overall lack of 
information and knowledge regarding biological diversity and the pressing need 
to develop relevant scientific, technical and institutional capacities (UN 2012).  

The general definition of ‘biodiversity’ refers to the variability among living 
organisms from all sources including terrestrial, marine and other aquatic eco-
systems and the ecological complexes of which they are part of: this includes 
diversity within species, between species and of ecosystems (Schmeller et al. 
2018). It was believed that terrestrial diversity could be 25 times more diverse 
than life in the water environments (Briggs 1994), but now the opinions are 
changing. Most of the oceans remain unexplored and completely new classes or 
phyla have been discovered just during the last decades (Kaiser et al. 2011). 
Overall, the underwater biological diversity and ecosystem have been far less 
studied compared with their terrestrial counterparts (Roberts & Hawkins 1999). 
Although coastal geomorphology plays an important role in determining the 
patterns of species distribution (Dutertre et al. 2013), studies that investigate the 
relationship between the coastline geomorphology and marine species distribution 
have rarely been published before (Schembri et al. 2005). Only one single 
previous study that has been carried out on the rocky intertidal shoreline tested 
the connections of the intertidal flora and fauna abundance with the coastal geo-
morphology and proved that shoreline can be used as a substitute for describing 
community composition (Schoch & Dethier 1996). Therefore, it is important to 
detect the spatial patterns of biodiversity along the coastal environmental 
gradients and interactions between the coastal geomorphology and biodiversity. 
Data about the relationships between the benthic biodiversity patterns and 
coastal geomorphology would provide us the opportunity to identify the areas 
with high biodiversity without direct time-consuming, costly and intense mapping 
and analysis of underwater marine habitats. 
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Biodiversity research has mainly focused on taxonomic biodiversity, which 
is usually calculated based on the number of species and on the distribution of 
abundances of species in samples (Cardoso et al. 2015; Snoeijs-Leijonmalm 
2017). Species richness, which measures the number of species in an exact area 
(Gotelli & Colwell 2001; Loreau et al. 2001; Magurran 2004; Worm et al. 2006; 
Kaiser et al. 2011), is one of the most widely used and simplest descriptions of 
biodiversity (Magurran 1988). Biodiversity is commonly divided into alpha (α), 
beta (β) and gamma (γ) diversity, which designate respectively the diversity at 
local, neighbouring and regional scales (Whittaker 1972). Alpha and beta 
diversity are the most studied biodiversity components (Cardoso et al. 2015). 
This thesis focuses on the alpha diversity of marine benthos. 
 
 

1.2. The importance of marine biodiversity 

Biodiversity in general is one of the bases of ecosystem functioning as it is 
critical for maintaining and stabilizing ecosystem processes in changing environ-
ments (Loreau & de Mazancourt 2013; Gamfeldt et al. 2015). The decrease in 
species richness is often used as a general indicator of the decline of ecosystem 
quality (Loreau et al. 2001; Worm et al. 2006; Pereira et al. 2013), and species-
poor systems are expected to be the most vulnerable to external forcing factors 
(Worm et al. 2006; Kaiser et al. 2011). Several studies have shown that high 
biodiversity supports higher ecosystem productivity, greater resilience, or both 
(Stachowicz 2002; Reusch et al. 2005). Biodiversity plays an important role in 
the global nutrient recycling and provides crucial resources and ecosystem 
services to humans (MEA 2005). Marine primary and secondary production 
provide important food sources for millions of people (Peterson & Lubchenco 
1997; Wilson et al. 2005; Beaumont et al. 2007). Besides, marine ecosystems 
regulate the climate and atmosphere through complex processes and assimilate 
wastes (DeGroot et al. 2002; Covich et al. 2004; MEA 2005; Beaumont et al. 
2007). Additionally, coastal ecosystems stabilize the inshore environment and 
protect the shoreline from storms (Jie et al. 2001; Beaumont et al. 2007).  
 

 

1.3. Marine biodiversity under human and  
climate change pressures 

Human activities at the sea and on land have affected oceans both directly and 
indirectly (Myers & Worm 2003; Lotze et al. 2006; Burrows et al. 2011). Nowa-
days, human use of the marine and coastal areas is expanding worldwide, and 
intensively used marine areas such as the Baltic Sea are becoming increasingly 
stressed and impacted by human activities (Korpinen et al. 2012). Such escalating 
pressures to the ecosystem threaten several crucial services for humans. It is 
predicted that changes in ecosystem functioning due to the decrease in species 
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richness are going to increase in the future if humans continue to affect the marine 
environment. Coastal waters, which serve as an interface between land and sea 
environments (Törnroos et al. 2015), are usually most affected by land-based 
activities, for example through pollutants and nutrients runoffs (Syvitski et al. 
2005). 

Besides the direct human influence at local to regional scales, benthic eco-
systems have been also negatively impacted by human-induced climate change 
(Bindoff et al. 2007). Rising greenhouse gas concentrations in the atmosphere 
have led to an increase in global average temperatures by 0.1–0.3 °C per decade 
within the last 30 years (Hansen et al. 2006; Allen et al. 2018), and 20–40% of 
the global human population have experienced over 1.5 °C of warming in at 
least one season (Allen et al. 2018). Most of this extra energy is absorbed by the 
world’s oceans (Hoegh-Guldberg & Bruno 2010). Long-term climate change 
studies in the marine environment are much rarer than terrestrial studies 
(Rosenzweig et al. 2008). However, there is plenty of evidence that climate 
change, particularly temperature rise, has already affected geographic distri-
butions of a wide range of organisms (Hughes 2000; McCarty 2001; IPCC 
2014). Several studies have documented changes in marine ecosystem func-
tioning and productivity and shifts from cold-adapted to warm-adapted 
communities (Atkinson et al. 2004; Richardson & Schoeman 2004). Climate 
change can also have an impact on species reproductive cycles (Coleman & 
Brawley 2005) and their abundances and distribution patterns (Hawkins et al. 
2009; Pimm 2009; Wahl et al. 2011). Climate change is considered to be one of 
the most important factors that determine the present and future biodiversity and 
its distribution patterns (Cheung et al. 2009; Holopainen et al. 2016). However, 
to predict how climate change will affect and change biodiversity in the future, 
we first need to document the present spatial patterns of biodiversity (Botkin et 
al. 2007). High-resolution biodiversity maps are a major tool to detect and 
follow such changes in species richness as they enable testing the hypotheses 
related to scale-specific spatial patterns of biodiversity and their causes (Austin 
2002; Dunstan et al. 2012). 

 
 

1.4. Mapping of biodiversity and species distribution 

With the increasing human population, there is a growing need to manage the 
marine ecosystem sustainably. Data on community structures are mostly 
available for a limited number of research sites in marine environments and 
therefore the existing data on species richness and distribution are insufficient 
for management tasks that need spatially continuous data (McArtur et al. 2010; 
Kaskela et al. 2017). Biodiversity restoration is needed for several ecological, 
applied and aesthetic reasons (Palmer et al. 1997) but it has been hindered by 
the limited knowledge about spatial distribution of species. The lack of such 
knowledge has seriously restricted the capacity to address a variety of eco-
logical questions (Mokany et al. 2011). 
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One of the main problems that policy makers and managers are facing 
nowadays is that a biodiversity change is often detected when effective responses 
are no longer feasible and ecosystem damage is considerable or even irreversible, 
such as when species become extinct (Schmeller et al. 2018). The growing 
concern about the protection and sustainable use of natural resources has been 
realized in several societal activities and policy mechanisms. Distribution maps 
of species and habitats are needed in the process of allocation of marine 
protected areas (MPA; Innes & Koch 1998; Huang et al. 2011). The importance 
of marine habitat mapping is expressed and is part of several European Union 
(EU) policy mechanisms, such as the Habitats Directive (92/43/EEC; EEC 
1992), Marine Strategy Framework Directive (2008/56/EC; EC 2008) and 
Maritime Spatial Planning Directive (2014/89/EU; EU 2014). Spatial data and 
maps of habitats, seabed substrate, species distribution and biodiversity are also 
essential tools in marine monitoring programmes and during environmental 
impact assessments (EIA).  

Describing marine ecosystems can be challenging and ecosystem management 
is often confronted with fragmented information on the spatial distribution of 
marine species and habitats, mainly because the marine environments are more 
difficult to access and to monitor than terrestrial ecosystems (Grassle et al. 
1991; McArthur et al. 2010; Robinson et al. 2011). Generally, the marine 
sampling network is sparse and leaves most of the areas unsampled and with no 
information. There is a lack of knowledge of the relevant spatial scales where 
environmental variability predicts the patterns of diversity in marine 
communities, which is mostly due to the inconsistency of data sources and lack 
of methodology for deriving biodiversity data at multiple spatial scales. When 
using common seabed sampling methods such as grab samplers, trawls, scuba 
diving or underwater videos, only point-wise data about benthos and the 
characteristics of substrate are received. It has been estimated that the proportion 
of unknown habitats on land is 17%, while in the marine environment it has 
been suggested to be around 40% (EC 2007). In addition, it has been estimated 
that only 5% to 10% of the seafloor is mapped with comparable resolution with 
similar studies on land (Wright & Heyman 2008). Spatial data are needed to fill 
in the knowledge gaps of the patterns of marine biodiversity and the related 
ecosystem processes. New methods are a prerequisite for producing such data 
and this thesis aims to advance these methods.  

One of the solutions for deriving spatially continuous estimates of biotic 
variables from sparse sampling networks is the use of mathematical models. A 
mathematical model is used to formalize relationships between abiotic factors 
and biota. Based on these relationships, the model is then used to predict the 
distribution of the biotic variable (e.g. occurrence of a species) in the areas 
where no biological samples have been collected (Elith & Leathwick 2009; 
McArthur et al. 2010). The prerequisites for such a method is the availability of 
in situ biological samples, georeferenced continuous data layers of enviro-
nmental variables (e.g. water depth, salinity, wave exposure etc. in the marine 
environment) and the existence of correlations between the biological variables 
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and the environmental predictor variables (Guisan & Zimmermann 2000; Guisan 
& Thuiller 2005; Guisan et al. 2006). The use of commonly available physical 
data has been shown to be one of the most effective ways of developing large-
scale maps of benthic habitats and biodiversity (Guisan et al. 2006; Lucieer et 
al. 2013; Diesing et al. 2014; Stephens & Diesing 2014). A multitude of 
different mathematical model types have been used in spatial predictions of 
biotic variables. Novel non-parametric algorithms such as boosted regression 
trees (BRT), random forests (RF) and generalized additive models (GAM) have 
gained popularity in the recent decade and have proved to yield higher predictive 
accuracy compared to the more traditional parametric methods like linear 
multiple regression (Gotelli & Colwell 2011; Hasan et al. 2012b).  

Regardless of the development of mathematical methods that can be used to 
predict species distribution or other biotic or habitat parameters in unsampled 
areas, there is still a need for data about the marine environment that can only 
be acquired through in situ sampling or remote sensing. Acoustic methods 
(sonars) have been used to record seabed parameters that can be used as input in 
benthic habitat mapping. Sonars are active hydro-acoustic devices that use 
sound waves to determine water depths. They are also capable of measuring the 
intensity of the reflecting sound waves – the backscatter intensity (ICES 2007). 
The use of sonars in mapping the seabed habitats or biota has emerged only in 
the recent decades. Depth and backscatter intensity can be used together with 
other bathymetry-derived variables such as seabed slope, aspect and roughness 
to map seabed substrate, habitats and biota (Diesing et al. 2014). The use of 
these sonar-based variables together with seabed substrate and epibenthos data 
from in situ seabed sampling (e.g. underwater videos or grab samplers) as input 
data in supervised modelling has produced the most usable and accurate results 
(Rooper & Zimmermann, 2007; Holmes et al. 2008; Stephens & Diesing, 2014). 
In such supervised models, the values of the seabed substrate and biotic variables 
(e.g. coverage of sand, coverage of macroalgal species) are predicted based on 
the values of the sonar-based variables. By enabling the collection of spatially 
continuous seabed data, dedicated sonar surveys have significantly improved 
both the quality (spatial resolution) and the spatial extent of seabed habitat 
mapping products. One of the aims of this thesis is to advance the methods of 
sonar-based mapping of seabed features. 

Regardless of their benefits, sonars cannot be used to cover the whole depth 
gradient because the shallowest near-shore areas are difficult or impossible to 
access with ships that carry the sonar equipment. This problem may be solved 
in the near future by the use of lightweight unmanned remotely operated vessels 
or autonomous underwater vehicles (Ferretti et al. 2017). Currently, there is a 
growing interest in the use of optical remote sensing with air-borne and satellite 
sensors for mapping shallow water biodiversity (Cuevas-Jimenez et al. 2002; 
Herkül et al. 2013). The optical remote sensing technique has the ability to 
record spatially continuous data over large areas within a very short time. 
Similarly to the acoustic remote sensing, optical parameters of the seabed are 
used as proxies for mapping abiotic or biotic features of the seabed in optical 



13 

remote sensing. However, because of the attenuation of optical signals in the 
water column, optical remote sensing methods are limited to shallow waters 
(Brown et al. 2011; Herkül et al. 2013). In the Baltic Sea, satellite and aircraft-
based optical remote sensing methods can be used only in very shallow waters 
because of the high amount of coloured dissolved organic matter that decreases 
the penetration capacity of optical signals (Snoeijs-Leijonmalm & Andrén 
2017).  

As they only are able to measure some acoustic or optical parameters of the 
seabed and not directly the actual seabed substrate types or benthic species, the 
remote sensing methods must always be used together with direct in situ 
sampling of benthos. The conventional benthos sampling has been performed 
by using bottom grab and core samplers on soft sediments and scuba diving on 
hard substrates (Downing 1984). Digital underwater photography and video-
graphy are also widely used nowadays enabling researchers to collect high 
numbers of visual samples in a relatively short time compared to the very time-
consuming collection of physical samples by means of bottom samplers and 
diving. Underwater seafloor photography and videography are often combined 
with sonar scanning (Kostlyev et al. 2001; Rooper & Zimmermann 2007; 
Holmes et al. 2008). 

Only the combination of the previously described methods, i.e. in situ 
sampling and acoustic remote sensing, with mathematical modelling for con-
verting the remotely sensed signal to meaningful seabed substrate and biotic 
variables is the approach that enables one to produce seamless distribution maps 
of seabed habitats, species and species richness. The use of acoustic scanning 
together with in situ sampling is still not widely used, probably due to the 
complexity of converting the acoustic signal to meaningful seabed variables. 
There are no common standards or commercial software available for this task. 
Concerning the Baltic Sea, to date there are only a couple of previous scientific 
studies that use the sonar-based methodology for species or habitat mapping. 
Bučas et al. (2016) tested the use of acoustic technology for mapping benthos: 
echograms of a simple single beam echo sounder were used to visually 
distinguish charophytes and submerged angiosperms in a shallow lagoon. 
However, this study only applied visual expert judgement to distinguish sub-
merged macrophytes from sonar imagery – a method that cannot be applied in 
large study areas and for multiple benthic substrate and biotic features. Another 
published study (Janowski et al. 2018) combined acoustic and ground-truth 
samples data to distinguish and map six different types of habitats in the 
shallow euphotic zone in the southern Baltic Sea.  

Compared to the almost non-existent scientific studies on using acoustic 
scanning for determining seabed habitats and species in the Baltic Sea, the 
distribution modelling of species or habitats is much better represented. 
Previous studies have mapped e.g. biotope types (Schiele et al. 2015; Krost et 
al. 2018), geodiversity correlation with benthic species diversity (Kaskela et al. 
2017), soft- and hard-bottom bivalves (Darr et al. 2014), phytobenthic species 
distribution (Sandman et al. 2008), occurrence (Gogina & Zettler 2010; Šiaulys 
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& Bučas 2012) and biomass of benthic invertebrates (Šiaulys & Bučas 2012), 
benthic habitats (Lindegarth et al. 2014) and have addressed biological 
valuation of habitats (Šiaulys & Bučas, 2015). Bučas et al. (2013) tested the 
prediction capability of several non-linear predictive modelling techniques to 
predict the spatial distribution, abundance and diversity of benthic species in the 
Baltic Sea. Despite several previous benthos modelling studies, there are no 
studies that have produced benthic biodiversity layers.  
 
 

1.5. Objectives 

The thesis aimed to test the relevance and use of different mapping methods of 
the distribution of marine benthic biota, habitats and biodiversity and then to 
apply this new knowledge to generate data and methods to support marine 
environmental management. The specific objectives were to 
• test the predictive ability of different mathematical models to produce 

benthic biodiversity (I), substrate and species distribution (IV) maps. This 
knowledge is needed in order to assess the usability of modelling in future 
mapping studies and to select the model type that produces the most accurate 
results; 

• produce benthic biodiversity (species richness of macrobenthos) maps over 
the whole Estonian sea area (I) and to estimate the potential changes in the 
spatial patterns of benthic biodiversity under future climate conditions (II). 
Benthic biodiversity maps of the Estonian sea area have been lacking so far 
but they are needed in EIA and in the national marine spatial planning; 

• elucidate the relationships between environmental gradients and benthic 
biodiversity by using a wide range of marine abiotic variables (I, II) and 
coastal geomorphology (III). There is a lack of knowledge on the relative 
contribution of different environmental variables in describing the distri-
bution of both benthic flora and fauna at regional scale. The relationship 
between benthic biodiversity and coastal geomorphology has not been 
studied before; 

• advance the application of acoustic scanning (sonar) in mapping seabed 
substrate and biota (IV). Building on previously published methods of sonar-
based mapping and field testing and combining spatial procedures in the 
geographical information system and mathematical modelling, a mapping 
methodology was developed; 

• develop a methodology that enables the aggregation of nature values of the 
ecosystem (habitat-forming benthic macroalgal and invertebrate species, 
benthic species richness, birds and seals) into a single spatial data layer to 
support the processes of marine spatial planning and EIA (V). 
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2. MATERIALS AND METHODS 

2.1. Study area 

The Baltic Sea is a young sea. Its salinity and climate conditions, which are 
comparable with the current conditions, have lasted about 3000 years (Voipio 
1981; Sjörs 1999; Gustafsson & Westman 2002). It is one of the largest 
brackish water seas (412 000 km2) in the world. The Baltic Sea has a narrow 
connection with the North Sea and therefore a limited inflow of saline and 
oxygen rich marine water. Additionally, many rivers are flowing into the 
enclosed basin (Lass & Matthäus 2008; Snoeijs-Leijonmalm & Andrén 2017). 
The surface water salinity and temperature decrease while the influence of the 
winter ice cover increases northwards in the Baltic Sea (Snoeijs-Leijonmalm & 
Andrén 2017). The sea is tideless and characterized by a steep salinity gradient 
(Zettler et al. 2013). The nearly marine salinity conditions in the Kattegat 
(surface water average 20 PSU) are changing to almost limnic in the northern 
and eastern parts of the Baltic Sea (lower than 1 PSU, HELCOM 2009; Zettler 
et al. 2013). Biodiversity patterns in the Baltic Sea follow many ecological 
gradients, with salinity having the strongest influence (Zettler et al. 2013; 
Snoeijs-Leijonmalm & Andrén 2017). As typical for brackish water bodies, the 
number of marine species decreases with the salinity gradient when moving 
towards the eastern and northern parts of the Baltic Sea (Ojaveer et al. 2010). 
Compared to open ocean systems or to most of the fresh water systems, the 
species richness is low in the Baltic Sea (HELCOM 2009). The main reason for 
the low biodiversity is that only a few species are endemic to brackish water 
conditions while truly marine or freshwater species meet their physiological 
limits. This sets geographical distribution boundaries for e.g. the eelgrass 
Zostera marina and is also manifested in the limited body size and slower 
growth rates of marine species (e.g. the bladderwrack Fucus vesiculosus, the 
blue mussel Mytilus trossulus) in the Baltic Sea (Vuorinen et al. 2015).  

The large drainage area of the Baltic Sea is about four times as large (about 
1.7 million km2) as the surface of the sea area (412 000 km2) and is inhabited by 
over 85 million people living in 14 countries (Bonsdorff & Pearsons 1999). 
Additionally, due to the limited water exchange with the ocean (residence time 
about 20 years), the Baltic Sea is strongly affected by both natural and anthro-
pogenic stressors (Bonsdorff 2006; Zettler et al. 2013). The major negative 
impacts on various species and the ecosystem in general come from the 
influence of nutrient input, chemical pollution and overfishing (Snoeijs-
Leijonmalm & Andrén, 2017; HELCOM 2018). The Baltic Sea is also one of 
the densest shipping pressure areas in the world (Ruczyńska et al. 2011). In 
addition to local human impacts, the Baltic Sea is expected to face serious 
environmental changes during the 21st century due to global climate change 
(Holopainen et al. 2016). The changes are predicted to manifest mainly in the 
increase of seawater temperatures, decrease or even disappearance of ice cover 
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(Granskog et al. 2006), decrease in salinity and increase of nutrient input due to 
more intensive rainfalls and runoff from rivers (BACC Author Team 2008). As 
several key species are already living near their physiological limits, rapid 
changes in the environment can cause drastic and irreversible losses of those 
species. A loss of a species may correspond to a loss of an ecosystem function 
because one function is often represented by a single species in the species-poor 
Baltic Sea.  

The material for this study originated in the Estonian marine area (I, II, III, 
IV, V), north-eastern Baltic Sea (Figure 1). The study area included three major 
sub-basins of the Baltic Sea: the Baltic Proper (I, II, IV, V), the Gulf of Finland 
(I, II, III, V) and the Gulf of Riga (I, II, V). All of the sub-basins exhibit strong 
gradients of wave exposure, depth and salinity. The areas situated west from the 
islands of Saaremaa and Hiiumaa are exposed to the open Baltic Proper and 
have a wave fetch of hundreds of kilometres while the inner reaches of the bays 
of the mainland are very sheltered. Salinity exceeds 7 PSU in the westernmost 
study area while it falls to almost 0 PSU in the inner parts of bays with a 
riverine inflow (Snoeijs-Leijonmalm & Andrén 2017).  

Figure 1. Study area (I, II, III, IV, V) and benthic sampling sites (I, II, IV, V). The 
colours of sites represent different sampling methods and/or studies. The red contour 
line marks the modelled area. Areas mapped with sonar are shown with pink contours.  
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2.2. Data 

2.2.1. Benthic data 

The benthos database of the Estonian Marine Institute (EMI), University of 
Tartu, was used for getting the species distribution data in the Estonian sea area 
(I, II, IV, V). Data from 3473 biomass (I, II, V) and 8049 (535 of them in 
article IV) coverage (V) benthic sampling stations (Figure 1) were used. All the 
samples were collected between the years 2005 and 2015. The coverage and 
biomass sampling stations covered a depth range from 0.1 to 193 m. In addition 
to the data from the Estonian study area (Figure 1), biological data layers 
(distribution of the key benthic species, benthic species richness) from the 
southern Finnish marine area were used (V). All the Finnish samples that were 
used to model the distribution data layers for the Finnish sea area were collected 
between the years 2000 and 2016. The analyses with Finnish raw data and 
further modelling were performed by Finnish experts. The Finnish data layers 
were produced using the same methodology that was applied in the Estonian 
study area. The Finnish data layers were further used to produce the environ-
mental vulnerability layers (V). 

Ekman and Van Veen type bottom grab samplers were used for taking 
benthic invertebrate biomass samples on soft sediments (I, II, V). On hard 
surfaces, scuba divers collected all the fauna and flora inside a 0.04 m2 metal 
frame (Kautsky sampler; I, II, V). Sampling and sample analysis followed the 
guidelines developed for the HELCOM COMBINE program (HELCOM 2015).  

In the video-sampling stations (n = 8049; Figure 1), the seabed was filmed 
using a so-called drop-camera, which was let down above the bottom of the sea 
by a cable or with an underwater remotely operated vehicle (IV, V). Both 
systems were equipped with lighting and video recording devices. The video 
recordings of the seabed were georeferenced using a high precision GPS device. 
Videos were analysed by an expert immediately on the sea or later in laboratory. 
Videos were analysed by estimating the average percentage coverage of 
substrate types and the coverage of benthic macrophyte and invertebrate species 
or groups of species along a video recording. 

In biomass samples, zoobenthic organisms were identified to species level, 
except for oligochaetes, nematodes, insect larvae and juveniles of gammarid 
amphipods, corophid amphipods and idoteid isopods (length < 5 mm). Macro-
phytes were also determined to species level with only a few exceptions (I, II, 
V).  

Three macrobenthos biodiversity variables were calculated for each sampling 
site: total species richness (TotalS), zoobenthos species richness (FaunaS) and 
phytobenthos species richness (FloraS; I, II). Species richness was referred to 
as the number of species in a given space (Magurran 2004), a sampling site in 
this study. Regardless of some inevitable deviations in the taxonomic resolution 
(see previous paragraph and I), the term ‘species richness’ was still used to 
express the total number of taxa in a site. The sampling site based species 
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richness estimates were used as an input in spatial modelling to produce 
biodiversity maps across the whole Estonian sea area. TotalS (III, V), FaunaS 
(III) and FloraS (III) layers were used as input layers in other studies for e.g. 
calculating the environmental vulnerability profile for the Gulf of Finland (V) 
or relating coastal geomorphology to marine benthic biodiversity (III).  

 
 

2.2.2. Environmental variables 

Different bathymetrical, hydrodynamic, geological and physical-chemical 
variables were used in the studies as abiotic variables (I, II, V). Altogether 22 
environmental variables were used in the modelling (Table 1). All the variables 
were available as raster layers in a geographical information system (ESRI 
ArcGIS file geodatabase). Four environmental variables were available with 
future scenarios (see next paragraph; II). For each sampling station, the values 
of all environmental variables were queried using the Sample tool in ArcGIS 
Spatial Analyst. Values of environmental variables were also queried for each 
data point in the prediction data set covering the whole study area with a 100 m 
(I, II, V) equispaced rectangular grid. 

Only depth, salinity and temperature were used as abiotic variables when 
predicting the present and future species richness (II). Those three variables 
were chosen because of the availability of future climate scenarios for salinity 
and temperature and because depth is a key abiotic driver of the distribution of 
marine species. The same depth data were used in the present and future 
scenario models as it was presumed that depth does not change significantly 
over time (Suursaar & Kall 2018). 

The salinity and temperature data layers for the current state and the future 
climate scenario were produced with the ECHAM5/RCAO model and are 
readily available from a previous study (Table 1; Meier et al. 2012). The 
coupled physical biogeochemical model used regionalized data from the global 
climate model ECHAM5 (Roeckner et al. 2006) and the three-dimensional 
ocean circulation model, the Rossby Centre Atmosphere Ocean model (RCAO, 
acquired from the Swedish Meteorological and Hydrological Institute; Meier et 
al. 2003). Seasonal means for winter (December to February) and summer (June 
to August) bottom layer salinity and temperature were calculated for the periods 
1978–2007 (present) and for 2070–2099 (future climate scenario A1B; 
Nakićenović et al. 2000). The A1B future scenario is based on an assessment of 
the future developments of economy, demographic change, technology, 
emissions of CO2 and other greenhouse gases and the balance between energy 
sources (Nakićenović et al. 2000). According to the future climate scenario, 
salinity decreased by up to 2.7 PSU and temperature increased by up to 3.5 °C, 
depending on the area (II).  
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Table 1. Georeferenced environmental variables that were used in biodiversity and species 
distribution modelling (I, II, V). 

Abbrevation Variable Pixel 
size 
(m) 

Source 

depth Water depth (I, II, V) 25 1 

depth2 Average water depth in 2000 m radius (I, V) 25 1 

slope Slope of seabed (I, V) 25 1 

slope2 Slope of seabed in 2000 m radius (I, V) 25 1 

salinity Salinity (I, V) 50 2,4 

wave Wave exposure based on simplified wave model (I, V) 25 5 

chl Chlorophyll a content of sea surface based on satellite imagery 
(I, V) 

50 2 

attenuation Water transparency estimated as attenuation coefficient based 
on satellite imagery (I, V) 

100 2 

ice Ice coverage (I, V) 50 6 

tempcold Mean water temperature in cold season (November–April; I, V) 50 3 

tempwarm Mean water temperature in warm season (May–October; I, V) 50 3 

current Current velocity (I, V) 50 3 

orbspeed Orbital speed of water movement at seabed induced by wind 
waves (I, V) 

200 7 

softsed Proportion of soft sediment (I, V) 200 2 

secchi Secchi depth (I, V) 200 2 

ammonium Concentration of ammonium (I, V) 300 3 

nitrate Concentration of nitrates (I, V) 300 3 

phosphate Concentration of phosphates (I, V) 300 3 

 Seasonal means for winter bottom layer salinity, present and 
future (II) 

200 8 

 Seasonal means for summer bottom layer salinity, present and 
future (II) 

200 8 

 Seasonal means for winter bottom layer temperature, present 
and future (II) 

200 8 

 Seasonal means for summer bottom layer temperature, present 
and future (II) 

200 8 

Sources: 
1 – Bathymetric data by the Estonian Maritime Administration 
2 – Databases of the Estonian Marine Institute, University of Tartu 
3 – Hydrographic model developed by the Marine Systems Institute, Tallinn University of Technology 
(Maljutenko & Raudsepp 2014) 
4 – COHERENS ocean circulation model (Bendtsen et al. 2009) 
5 – Simplified wave model based on fetch and wind data (Nikolopoulos & Isæus 2008) 
6 – Finnish Meteorological Institute 
7 – SWAN hydrodynamic model (Suursaar et al. 2014) 
8 – ECHAM5/RCAO model (Meier et al. 2012). 
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The environmental sensitivity index (ESI) classification of Estonian shore types 
(Aps et al. 2016) was used in this study. This classification is based on the 
classification of Estonian geomorphological shore types from Orviku (2010), 
which is modified and ranked according to substrate type and grain size 
according to the persistence of oil and ease of clean-up (NOAA’s ESI scheme; 
NOAA, 2002). The original NOAA ESI type codes are used in the classification 
to which the shore types present in the Gulf of Finland area are assigned 
(Figure 2; III). The classification includes nine geomorphological shore types: 
(1b) artificial shore; (1c) cliff shore (waves are directly reaching the talus); (3a) 
sandy shore; (3b) scarp shore; (5a) cliff shore (wide talus base); (5b) till shore 
(abrasion sloping shore with a protective cover of boulders) or artificial shore 
(boulders and cobbles are used instead of concrete); (6a) gravel–pebble shore; 
(8d) till shore (sheltered); (9a) silty shore. For the detailed information about the 
used coastal types, see article III.  

Figure 2. A – ESI coastal types. B – total benthic species richness (TotalS) as an example. 
C – a zoom-in example of a single segment of ESI coastal type (bold line) and spatial 
scales (III). 
 
Around each type of ESI shore, spatial buffers (hereafter ’scales’) of sizes 125, 
250, 500 and 1000 m were formed in the software ArgGIS (Figure 2; III). 
Mean values of FaunaS, FloraS and TotalS (from I) were calculated in each 
scale and type of shore. 
 
 

2.2.3. Acoustic data 

The sonar study (IV) was carried out in the offshore shallows in western 
Estonia (Figure 3). Some of these areas have been proposed as potential wind 
park areas. For the acoustic measurements, a 240 kHz multibeam sonar Reson 
SeaBat 7101-Flow was used (IV; Figure 3). The Reson SeaBat 7101-Flow 
system consists of a standard 7101 with a motion sensor incorporated inside the 
sonar head for heave, pitch and roll corrections. The Reson SeaBat 7101-Flow 
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has a maximum angular coverage of 150°, but 140° angle was used in this study 
because the outermost beams yield backscatter data of lower quality. The sonar 
system had a dual antenna high-precision positioning system. Vertical sound 
velocity profiles were recorded using a Reson SVP-15T probe with an interval 
of 4 h or after abrupt changes in water depth. The sonar survey was undertaken 
at speeds of about 5 knots. 

Due to the very large study areas and limited resources (time, budget), the 
sonar scanning was performed with an about 50% areal coverage. In addition to 
practical constraints, the 100% coverage of sonar scanning was not necessary to 
fulfil the aims of the study (IV). The post-processing of sonar data was carried 
out using the Reson PDS2000 software. After post-processing the sonar data in 
PDS2000, the data were imported to the geographical information system (GIS) 
software ArcGIS 10.4 in ASCII format, where they were converted into raster 
files with 1 m cell size. Seabed slope was calculated based on the depth raster 
using the Slope tool of the Spatial Analyst extension in ArcGIS. In addition to 
the depth, backscatter and slope rasters, the gray level co-occurrence matrix 
(GLCM) correlation raster based on the backscatter raster was calculated in R 
using the package glcm (Zvoleff 2016). GLCM is a matrix representation of 
how often certain pairs of gray levels (intensity values of the pixels) co-occur in 
an image area derived from a moving window analysis (3 × 3 pixels). GLCM 
correlation was used as a measure of texture in backscatter intensity. 

From the obtained depth, backscatter, slope and backscatter GLCM 
correlation rasters, the following statistics were calculated in a grid of 20 m × 
20 m cells (IV): 
• 5- and 95-percentiles (indicating a value below which a given percentage of 

pixel values of a given cell reside); 
• minimum and maximum (minimum and maximum value of a given cell); 
• standard deviation (STD; standard deviation of pixel values of a given cell); 
• mean (mean pixel values of a given cell). 
 
As the raster cell size of input data was 1 m, the 20 m × 20 m cell resulted in 
400 pixels in each cell. The cells that were situated near the edges of sonar lines 
and contained less than 25% of the pixels were not used in the further analyses. 
The choice of cell size was based on the average object size (e.g. clusters of 
boulders, crevices, patches of sand) that could be visually distinguished in the 
depth and backscatter rasters. The grid size of 20 m was in accordance with the 
spatial extent of underwater video recordings. The statistics of depth, 
backscatter and slope were to be used as independent variables in modelling the 
distribution of seabed substrate and biota.  
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Figure 3. Locations of sonar scanning and sampling stations (IV). 
 
By using acoustic measurements results and the results from benthic sampling 
through underwater video recordings, the following variables were chosen for 
modelling (IV): 
• Substrate type as a factor variable (hard or soft substrate). Substrate was 

classified as hard when the summed coverage of hard substrate types (stones 
> 64 mm, bedrock) exceeded 50%; otherwise, substrate was classified as 
soft. 

• Occurrence of the blue mussel Mytilus trossulus as a factor variable (present 
or absent). 

• Occurrence of hydrozoans as a factor variable (present or absent). 
• Percentage coverage of hard substrate as the summed coverage of hard 

substrate types (stones > 64 mm, bedrock). 
• Percentage coverage of M. trossulus. 
• Percentage coverage of hydrozoans.  
 
Two sets of candidate models (full models and reduced models) were produced 
(IV) separately for each modelled variable (hard substrate, Mytilus, hydrozoans) 
and modelling method (GAM (coverage), RF (coverage and factorial)): 
• Full models included the following predictor variables: means and standard 

deviations of depth, slope, backscatter and backscatter GLCM correlation; 
• Reduced models included only means of depth, slope and backscatter. 
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Mytilus trossulus and hydrozoans were chosen for the modelling as biotic 
variables because most of the study area is aphotic and these macroinvertebrates 
dominate in benthic communities. The proportion of hard and soft substrate 
determined the main habitat characteristics. The classification of soft and hard 
substrate types was based on the Estonian national definitions of the habitat 
types of the European Union’s habitats directive (Estonian Marine Institute 
2014). 

In each of the 535 video sampling sites (Figure 3), the GPS position logs of 
video recordings were imported into ArcGIS (ESRI 2015). In ArcGIS, the 
coordinates of midpoint of each video track were extracted. The extracted 
coordinates of the midpoints were further used as coordinates of the coverage 
estimates of substrate and biota. Rectangular cells of 20 m × 20 m were 
established for each sampling station in a way that the midpoint coordinate of 
the video recording coincided with the centre of the cell. 

 
 

2.3. Mathematical methods 

The following modelling methods were used (I, II, IV, V):  
• generalized additive models (GAM),  
• random forest (RF), 
• boosted regression trees (BRT). 
 
GAM (I, IV) are a semi-parametric extension of generalized linear models that 
enable the user to fit complex non-linear relationships and handle different 
types of error distributions (Hastie & Tibshirani 1990). Because of these 
features, GAM have been one of the most widely used methods for species 
distribution models (Elith et al. 2006). The models were built using penalized 
regression splines as the smoothing function and automatic calculation of 
smoothing parameters. The maximum degree of freedom was set to four for 
each variable to control overfitting (I, IV). 

RF (I, IV) is a machine-learning method that generates a large number of 
regression trees, each calibrated on a bootstrap sample of the original data 
(Breiman et al. 2015). Each crossing is split using a subset of randomly selected 
predictors and the tree is grown to the largest possible extent without pruning. 
For predicting the value of a new data point, the data are run through each of the 
trees in the forest and each tree provides a value. The final model prediction is 
then calculated as the average value over the predictions of all the trees in the 
forest (Breiman et al. 2015). Two parameters must be set in RF models: the 
number of predictor variables to be randomly selected at each node (mtry) and 
the number of trees in a forest (ntree). As suggested by Liaw & Wiener (2002), 
mtry was set to one third of the number of predictor variables. The value of 
ntree was set to 1000 as 500 trees usually yield stable results (Liaw & Wiener 
2002; I, IV). 
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BRT (I, II, V) is an ensemble method that combines the strength of two 
algorithms: regression trees and boosting (Elith et al. 2008). Regression trees 
are good at selecting relevant predictor variables and can model interactions. 
Boosting enables building a large number of trees in a way that each successive 
tree adds small modifications in parts of the model space to fit the data better 
(Friedman et al. 2000). The algorithm keeps adding trees until finding the 
optimal number of trees that minimizes the predictive deviance of a model. The 
predictive performance of BRT has been shown to be superior to most other 
modelling methods (Elith et al. 2006; Revermann et al. 2012). Important 
parameters in building BRT models are learning rate, tree complexity and bag 
fraction (Elith et al. 2008). Learning rate determines the contribution of each 
tree to the growing model, and tree complexity defines the depth of interactions 
allowed in a model. Bag fraction determines the proportion of data to be 
selected randomly at each interaction. Different combinations of these 
parameters may yield variable predictive performance, but generally a lower 
learning rate and inclusion of interactions give better results (Elith et al. 2008). 
For each group of species richness predictions, BRT models with a tree 
complexity of five were built. Such complexity fits a model with up to five-way 
interactions. The learning rates of models were set to 0.005 (I, III, IV) and the 
bag fraction to 0.5, which are the recommended default values (Elith et al. 
2008; I, II, V).  

Modelling was carried out in the statistical software R 3.0.3 (I, IV) or R 
3.3.1 (II, V) (R Core Team 2015): the package randomForest (Breiman et al. 
2015) was used for RF, the package mgcv (Wood 2011) for GAM and the 
packages gbm (Ridgeway 2007) and dismo (Elith & Leathwick 2017) for BRT. 

The models’ predictive performance was assessed by calculating the mean 
absolute error (MAE; I, IV) and correlation (Pearson’s r; I, IV) in the models of 
percentage cover of benthos species and benthic species richness. For that, the 
input data was randomly partitioned into calibration (85% of data) and 
validation (15% of data) datasets. The validation dataset contained data that 
were not included in model calibration. Correlations and MAE were used to 
evaluate prediction accuracy of the candidate models using the validation 
dataset (I, IV). Overall class accuracy (%) and Cohen’s kappa coefficients were 
calculated for factorial models (IV). Kappa values between 0.4 and 0.6 indicate 
moderate agreement, values between 0.6 and 0.8 indicate good, and up to 1 very 
good agreement (Altman 1991). The candidate model with the best predictive 
performance was chosen to produce the final distribution maps.  

Models calibrated on the full dataset (100% of data) were used to calculate 
species richness and species distribution values to each point in the prediction 
dataset that covered the whole study area with a 100 m rectangular equispaced 
grid (I, II, V). The point-wise predictions were then converted to rasters using 
the ArcGIS Point to Raster tool, which resulted in rasters with a 100 m pixel 
size. Additionally to the mathematical validation, the raster layers of predictions 
were visually inspected to identify possible model- or data-driven abnormalities 
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(i.e. unnatural patterns) that may not be directly or fully reflected in mathe-
matical validation. 

The statistical differences in biodiversity variables between different shore 
types and spatial scales were tested using two-way ANOVA with shore type 
and scale as factors. If a statistically significant effect of either factor or an 
interaction term was found, then Tukey’s post-hoc pairwise comparisons were 
performed to find out which factor levels differed from each other. The results 
of the differences between shore types and scales together with Tukey’s post-
hoc analysis were visualized using boxplots (III). 
 
 

2.4. Calculation of marine environmental vulnerability and 
cumulative risk profiles 

Ten important benthic macroalgal and invertebrate, bird and seal species or 
group of species with different ecosystem functions and recovery potentials 
were selected to represent the nature values (NVs) of the ecosystem (V): the 
bladder wrack Fucus vesiculosus, the perennial red seaweed Furcellaria 
lumbricalis, filamentous algae, epibenthic bivalves (Mytilus trossulus, Dreissena 
polymorpha), vascular plants (excluding Zostera marina), eelgrass (Zostera 
marina), charophytes (Chara spp., Tolypella nidifica, Nitella spp.), infaunal 
bivalves (Limecola balthica, Cerastoderma glaucum, Mya areanaria), sea birds 
and seals. The NVs of the study were chosen based on their ecological 
importance (e.g. habitat forming species, top predators) and on the data 
availability. The NVs also included total species richness of benthic macroalgae 
and invertebrates from article I. 

Spatially continuous data of wintering birds of the Estonian sea area, based 
on the aerial mapping and modelling study by Luigujõe & Auniᶇš (2016) were 
used in the calculations of the environmental vulnerability profile (EVP; V). 
Combined information contained the density of benthos feeders, fish feeders, 
gulls and swans in Estonia during the winter season (V; Table 2).  
 
Table 2. Bird species/groups included in the study (V), from the models of Luigujõe & 
Auniᶇš (2016). 

Gulls and swans Fish feeders Benthos feeders 

Cygnus sp. Gavia sp. Aythya fuligula 

Larus sp. Gavia stellate Aythya marila 

Larus argentatus Mergus albellus Bucephala clangula 

Larus canus Mergus merganser Clangula hyemalis 

Larus minutus Mergus serrator Melanitta fusca 

 Phalacrocorax carbo Melanitta nigra 

  Polysticta stelleri 

  Somateria mollissima 
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Two seal species can be found in the sea area around Estonia and Finland: grey 
seal (Halichoerus grypus) and ringed seal (Pusa hispida). The spatial data on 
nationally protected moulting, resting or breeding areas of seals were acquired 
from the Estonian Nature Information System (EELIS 2017) and used in the 
calculation of the EVP and environmental risk profile (ERP; V).  

The EVP was calculated as a sum aggregation of all NVs, which were first 
rescaled between 0 and 1 (by dividing with maximum value) and then weighed 
by a NV-specific sensitivity coefficient (V). The HELCOM Baltic BSPI (HEL-
COM 2017) was used to represent the intensity of cumulative anthropogenic 
pressure at the 1 km × 1 km grid resolution in the study area (V). The BSPI 
contains a multitude of human pressures weighed by their potential impacts on 
the ecosystem. The ERP was a multiplication product of the EVP and BSPI. All 
NVs resolutions were upscaled to 1 km × 1 km grid cells to match the BSPI 
resolution (V).  
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3. RESULTS AND DISCUSSION 

3.1. Performance of the spatial predictive models  
of biodiversity 

All three tested mathematical models that were used to produce benthic 
biodiversity maps showed good predictive accuracy (I). The RF and BRT 
models had similar and higher correlation with validation data and lower MAE 
than those of the GAM (Table 3). The correlations of the RF and BRT models 
were between 0.67 and 0.75 and of the GAM between 0.58 and 0.68. The 
correlation was the highest (0.68 to 0.75) and the MAE (1.72 to 1.99) was the 
lowest in predicting the FloraS across all three models. At the same time, 
FaunaS had the lowest correlations (0.58 to 0.68) and the highest MAE values 
(2.87 to 3.28) across all three models (I).  
 
Table 3. Validation statistics of the candidate models to predict benthic species richness 
(I); r – Pearson correlation coefficient; MAE – mean absolute error. All correlations 
were statistically significant (p < 0.05). 

Biodiversity variable 

RF BRT GAM 

r MAE r MAE r MAE 

FaunaS 0.68 2.87 0.67 2.94 0.58 3.28 

FloraS 0.75 1.72 0.74 1.77 0.68 1.99 

TotalS 0.74 4.08 0.73 4.21 0.65 4.85 

 
In addition to the mathematical evaluation against an independent dataset, 
visual expert assessment was used to evaluate the accuracy of different model 
predictions (I, IV). Visual assessment of the distribution layers of biodiversity 
indicated that all three model algorithms produced realistic spatial patterns of 
species richness that were devoid of severe visually distinguishable abnormalities 
(I). Similarly to the mathematical validation of the models, visual assessment 
also showed that the RF and BRT models were comparable and had steeper 
transitions in species richness values than the GAM (Figure 4). As the RF and 
BRT models predictions were visually very similar but RF showed a slightly 
better result in mathematical evaluation, RF was chosen as the final model to 
produce biodiversity distribution maps across the whole Estonian sea area.  

A wide range of methods have been implemented in species distribution 
modelling (e.g. Guisan & Zimmerman 2000; Elith et al. 2006) and several non-
parametrical models have proved their good predictive performance (Segurado 
& Araujo 2004; Elith et al. 2006; Reiss et al. 2011). In this thesis, two non-
parametrical models, BRT and RF (I, II, IV, V), showed good predictive 
accuracy. The semi-parametric GAM (I, IV) had a relatively lower predictive 
accuracy than the BRT and RF models. Reiss et al. (2011) and Elith et al. (2006) 
showed that non-parametrical methods such as maximum entropy modelling 



28 

(MAXENT), BRT and generalized dissimilarity models can perform better than 
some semi-parametric or parametric models like GAM or generalized linear 
models (GLM). 

Figure 4. Comparison of total species richness (TotalS) in the western part of Saaremaa 
Island, as predicted by different models (I). The numbers represent the species richness 
in the in situ sampling sites. 
 
The correlations between the observed and predicted values were between 0.58 
and 0.75 across all three models (I). Other studies where benthic biotic 
variables have been modelled (e.g. Darr et al. 2014; Šiaulys & Bučas 2015) 
have obtained similar correlations.  

The MAE values varied between 1.72 and 4.85 across all three models (I). 
TotalS had the highest MAE values; this agrees with previously published 
results that MAE increases with higher observed species richness (Steinmann et 
al. 2009). Additionally, the MAE values in this study were comparable with 
studies where the maximum species richness (between 30 and 40 species) was 
similar with this study. The MAE value of 1.88 was shown for predicting 
neophytes species richness (Nobis et al. 2009) and the MAE value of 7.9 
species was detected with predicting total perennial plant species richness 
(Steinmann et al. 2009). Lower MAE values and higher correlations for FloraS 
can be due to the stronger limitation by depth, which causes concrete 
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discontinuity of the floral distribution near the transition zone of the photic and 
aphotic seabed. There is no such concrete cut-off of fauna along the depth 
gradient and this may partly explain the higher MAE and lower correlation of 
FaunaS in the models.  

The modelling accuracy can be increased by the inclusion of a higher 
number of ecologically relevant environmental variables and also by variables 
with higher spatial resolution and data quality. The spatial resolution of the 
variables used in this study was generally in a magnitude of 100 m. However, 
environmental variability in a sub-metre spatial scale can drive micro-habitat 
selection in small-sized invertebrates (Platvoet et al. 2009). Such small-scale 
habitat variability has probably implications on the benthic biodiversity but due 
to practical reasons small-scale (< 1 m) variability can rarely be recorded during 
standard benthos sampling and neither can georeferenced environmental layers 
achieve that high spatial resolution in large spatial extents. 

One of the most important factors that affect the quality of model predictions 
is the sample size of modelling input data (Reiss et al. 2014). Larger sample 
size will potentially cover also a wider range of different environmental 
gradients and therefore give more information for model fitting. In modelling 
studies of this thesis (I, II, IV, V), a relatively large number of data points were 
used. For practical reasons, the geographical distribution of input data points 
was not homogeneous in this study because the data originated in many 
different projects. Usually, a homogeneous and dense sampling grid that covers 
large areas is not achievable in marine benthos studies because of the financial 
and time expenses (McArthur et al. 2010; Huang et al. 2011). In the current 
studies (I, II, III, V), shallow sea areas (photic seabed) were more densely 
sampled than deep areas. However, shallow areas are usually notably more 
heterogeneous and diverse than deeper areas and thus a larger number of 
samples are needed to detect natural patterns of seabed substrate and biota 
(McArthur et al. 2010; Torn et al. 2017). 

 
 

3.2. Spatial patterns of biodiversity and their relations  
to environmental gradients 

Our study was the first study in the Baltic Sea that produced high-resolution 
seamless benthic biodiversity maps (Figure 5; I) over a large spatial extent by 
using extensive georeferenced environmental data layers and biological in situ 
data. The highest benthic biodiversity values were observed and predicted in the 
western archipelago area of western Estonia (Figure 5; I). The general spatial 
patterns of faunal (FaunaS) and floral diversity (FloraS) were similar; however, 
it can be seen that the FloraS pattern was more strongly limited by the depth, 
while the distribution of FaunaS was wider and non-zero values also reached 
the deeper sea areas (I). Such distribution patterns (especially in FloraS) are 
probably mostly connected to the coastal topography of the region. The 
westernmost region of the study area is shallow and with a complex topography 
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(many peninsulas, islands, islets and bays). At the same time, in the Gulf of 
Finland, the extent of shallow coastal water is strongly limited by the steep 
coastal slope. Therefore, the heterogeneous coastal topography and shallow 
western area can offer habitats to a wider range of species than the eastern area. 
Additionally to the larger extent of shallow areas and higher topographic 
complexity, the salinity is also higher in the western than in the eastern study 
area. Regardless of the similarity of the distribution patterns of benthic fauna 
and flora, the hotspots of flora diversity can be mainly found between the 
mainland and Saaremaa and Hiiumaa islands in the Archipelago Sea while the 
hotspots of fauna were mainly situated near eastern coasts of the Baltic Proper 
and the north-eastern coast of the Gulf of Riga.  

Figure 5. Distribution of benthic faunal, floral and total species richness as predicted by 
the RF models (I).  
 
Assessment of the importance of the environmental variables in the models 
showed that water depth (I, II) and seabed sediments (I) were the most 
influential variables in all three mathematical model types (Figure 6; I). Other 
environmental variables were of lower and more equal importance in all 
models. However, temperatures and wave exposure stood out from other 
variables with slightly higher importance for FaunaS and TotalS in the GAM (I). 

Water depth acts as a strong descriptive variable in benthic studies (Gray 
2001; Hill et al. 2014). Depth itself as a measurable parameter does not directly 
affect benthic organisms, but it is strongly correlated with several other 
chemical and physical environmental variables, e.g. light level, salinity, 
temperature, oxygen and wave energy (Olabarria 2006). Several other studies 
have acknowledged the fact that depth is one of the strongest and most 
influential drivers of biodiversity patterns in the sea (Ellingsen et al. 2005; 
Olabarria 2006; Sanders et al. 2007). The results of this study also supported the 
fact as depth was the most influential environmental variable in predicting 
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biodiversity (Figure 6; I). The leading role of depth was especially pronounced 
in the distribution pattern of floral species richness because of the obvious 
limitation of light (Figure 5). Although light is not a very important factor for 
fauna, its distribution was still strongly related to depth. The distribution of 
fauna is strongly limited by the insufficient oxygen levels in the deeper areas of 
the Baltic Sea (Karlson et al. 2002; Villnäs et al. 2013). Because of the lack of 
reliable data, oxygen was not used in the distribution modelling. However, 
owing to the unique environmental conditions of the Baltic Sea (isolation from 
the ocean, high human-induced eutrophication, water stratification) and the fact 
that hypoxia is not usually found above the halocline, depth is also a reliable 
indicator for determining the regular hypoxic environment by the relatively 
stable halocline depths (60–80 m; Väli et al. 2013; Lessin et al. 2014).  

Figure 6. Importance of environmental variables in RF, BRT and GAM models of 
benthic species richness. Higher values indicate higher importance. Model specific 
measures of importance are shown for each model type (I); %MSE – increase of the 
mean squared error when a given variable is randomly permuted. 
 
Regardless of the different main drivers that limit the distribution of FloraS and 
FaunaS, their general predicted distribution patterns were similar at the scale of 
the study area (Figure 5). As one of the reasons, direct dependence of 
herbivorous and other benthic invertebrates on benthic flora has been pointed 
out previously (e.g. Kotta & Orav 2001; Hansen et al. 2011). Benthic macro-
phytes provide food, habitat and shelter for benthic invertebrates and therefore 
support and maintain their diversity (Kautsky et al. 1992; Boström & Bonsdorff 
2000; Herkül et al. 2011).  

The differences in the geographical locations of biodiversity hotspots of 
flora and fauna are probably related to the gradients of wave exposure and 
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salinity. Compared to the western coast of the Baltic Proper, the Archipelago 
Sea has a lower wave exposure and salinity and therefore it is more favourable 
to the vascular plants and charophytes while the salinity (over 5 PSU) is still 
tolerable for marine and brackish water floral species. The westernmost area of 
the Archipelago Sea at the open coast of the Baltic Proper has a too high wave 
exposure and salinity for several charophyte and angiosperm species (Steinhardt 
& Selig 2007; Torn et al. 2015) while the inner bays of the mainland often have 
too low salinity (below 5 PSU) for many brackish water and marine floral 
species. Therefore, the Archipelago Sea hosts the highest macrophyte diversity, 
as it is situated in the middle of important wave exposure and salinity gradients 
and the conditions there are suitable for both marine and brackish water plants, 
but more sheltered bays are also suitable for the freshwater angiosperms and 
charophytes. The fauna hotspots were more strongly related to higher salinity 
and wave exposure than floral hotspots and were therefore found more in the 
open coast of the Baltic Proper and the northern area of the Gulf of Riga. 

The study on the relationships between coastal geomorphology and benthic 
biodiversity (III) showed that there were statistically significant differences in 
the benthic biodiversity values close to different geomorphological shore types 
(Figure 7). There were statistically significant differences (p < 0.05) in all 
biodiversity variables between different ESI shore types and spatial scales but 
the interaction term (ESI × spatial scale) had no effect (Figure 7).  

The highest TotalS values were related with scarp shore (3b) (Figure 7A; 
III) but they did not statistically differ from till shore (sheltered, 8d), gravel–
pebble shore (6a) and cliff shore (1c) where waves are directly reaching the 
talus. The lowest TotalS values occurred in artificial shore (e.g. concrete walls, 
harbour constructions, 1b); this RESI shore type was also statistically signi-
ficantly different from all the other types, except for cliff shore where a sandy 
or mixed gravel beach is often between the talus and the shoreline (5a). The 
patterns of high FaunaS were similar to those of TotalS. FloraS had the highest 
values with till shore (sheltered, 8d), which statistically significantly differed 
from all other types except for scarp shore (3b). FaunaS and FloraS had also the 
lowest diversity values in artificial shore (1b). FaunaS in 1b was statistically 
significantly different from all the other types, except for silty shore (9a) and 
cliff shore (wide talus base, 5a). FloraS in artificial shore (1b) did not 
significantly differ from cliff shore (wide talus base, 5a). TotalS had the highest 
values between the spatial scales of 125 m and 250 m, which did not differ from 
each other (III). Like in TotalS, the highest values of FaunaS were found in the 
two smallest scales. Spatial scales 125 m, 250 m and 500 m did not differ 
statistically from each other in the case of FaunaS. However, all spatial scales 
were statistically significantly different in FloraS (Figure 7B). The clear 
decrease in FloraS along the increasing spatial scale can be explained by the 
increasing depth and decreasing light availability at the seabed. The lowest 
values of all biodiversity variables were found in the spatial scale of 1000 m 
(Figure 7B). The 1000 m scale showed statistically significant difference from 
all the other scales.  
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Figure 7. A – Benthic species richness (horizontal axes) around different shore types 
(vertical axes) and B – benthic biodiversity inside different scales (vertical axes (m)). 
The letters on the right sides of the plots indicate ANOVA post-hoc pairwise 
differences: levels are significantly different if they do not have any letters in common. 
Descriptions of ESI types can be found in Material and Methods and in paper III. 
 
The results of the study indicated that there are connections between different 
shore types and seabed characteristics, which in turn affect the biodiversity 
values (III). The ESI shore type ranking according to their sensitivity to oil 
pollution (higher type number indicates higher sensitivity) did not coincide with 
the ranking of benthic biodiversity. An exception was the ESI type 1b, that had 
the lowest values in all biodiversity variables (Figure 7). However, there were 
also some significant differences in biodiversity values between types 1b and 
1c: while 1b had the lowest biodiversity values in all cases, 1c had one of the 
highest values (Figure 7). Regardless of their similarity in general physical 
properties, 1b is a man-made structure and 1c is a natural cliff shore, so they 
host very different communities (Bulleri & Chapman 2015). These results show 
that regardless of statistical differences ESI sensitivity rankings cannot be 
directly transferred to the biodiversity ranking. 

It has been previously shown that due to extreme storms (Suursaar et al. 
2016) and scarcity of sediments along the Estonian coastline, some of the shore 
types can change their sensitivity class over time (Aps et al. 2014). Therefore, 
the changes in shore types can reflect changes in underwater habitats and related 
changes in biota. The small-scale (a few metres) patchiness of the seabed 
substrate constrains the physical properties of a seabed habitat and the 
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biological communities thereof. At larger scales (100s to 1000s of metres), 
substrate heterogeneity may play an important role in shaping the regional 
biodiversity (Kraan et al. 2009; Kaskela et al. 2017). It has been previously 
shown that more heterogeneous habitats support higher biodiversity (e.g. Herkül 
et al. 2013, Kaskela et al. 2017) as they provide a higher variety of physical 
properties that can in turn support a higher number of species. However, the 
potential effect of patchiness, i.e. variation inside the ESI types, was not 
considered in this study.  

The new knowledge about the relationships between the biodiversity and 
coastal geomorphology can be used by managers and planners if there is a lack 
of information about underwater biodiversity. As this was the first study that 
tried to relate benthic biodiversity to different shore types, there is not enough 
previous information to offer a dedicated ranking of shore types according to 
biodiversity. In addition, the alterations of sensitivity classes of coastal types 
over time through extreme storms and climate change should be studied further 
in the future.  
 
 

3.3. Future changes of biodiversity 

Future decline was predicted for both faunal and floral species richness (Table 4; 
Figure 8; II). Compared to the present species richness, which was the highest 
in the western archipelago, future species richness was predicted to concentrate 
closer to the coast (Figure 8; II). The largest decreases were predicted to take 
place in archipelago areas, but also in the Gulf of Finland. A particularly large 
decline in species richness can be seen in FloraS (Figure 8E; II). It was 
predicted to decrease strongly (Figure 8E) in most of the areas of the photic 
zone. An especially strong decline can be seen in the western part of Estonia  
(–95% to –70%). In a few areas, FloraS was predicted not to change 
considerably or even increase in some sheltered bays. As the salinity will 
decrease in the future, the increase of FloraS in those areas could be due to the 
increasing number of freshwater species.  
 

Table 4. Mean values of FaunaS, FloraS and environmental variables according to the 
predictions for the present (PR) and future (SC) over the whole study area (II). The 
salinity and temperature data were available from a previous study by Meier et al. 2012.  

Modelled variable PR mean SC mean Unit 

FaunaS 5.91 4.00 No. of species 

FloraS 4.27 1.66 No. of species 

Temperature (summer) 13.08 16.17 °C 

Temperature (winter) 2.31 5.61 °C 

Salinity (summer) 5.71 3.87 PSU 

Salinity (winter) 5.78 3.79 PSU 
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Significant negative changes (decrease over 50%) in FaunaS were predicted to 
take place around Hiiumaa Island and at the southwestern coast of the mainland 
(Figure 8F; II). The largest areas of no or minimal change (–20% to +20%) 
were mostly in the offshore areas of the Gulf of Riga and of the Baltic Proper. 
In some offshore areas, but also in some sheltered bays, a future increase of 
FaunaS was predicted. 

Figure 8. Modelled distributions of present (A, B) and future (C, D) FloraS and 
FaunaS. Percentage changes between the present and future species richness are shown 
in E and F (II). 
 
The modelling results indicated a potential significant decline in species 
richness. Decreasing salinity can severely affect several species of marine origin 
that already live near their physiological salinity tolerance limits under present 
climate conditions in the Baltic Sea (II). Among those threatened species are 
e.g. the bladderwrack Fucus vesiculosus, the eelgrass Zostera marina and the 
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blue mussel Mytilus trossulus (Vuorinen et al. 2015). As F. vesiculosus and 
Z. marina are regarded as important habitat-forming species that provide food, 
habitat and shelter for many other species (Schramm 1996), their decline will 
also cause the loss of other faunal or floral species that are dependent on these 
habitat forming species.  

The future seawater temperature increase will probably reduce oxygen 
concentrations and as a result, the coastal areas that are affected by hypoxia will 
widen even more (Vaquer-Sunyer & Duarte 2011). Likewise, increased 
temperatures can also affect negatively the future distribution of cold-favouring 
species and support the distribution of species that prefer warmer temperatures, 
also through a longer vegetation period for flora (Kotta et al. 2014; Kraufvelin 
et al. 2012). Higher temperatures and lower salinity are expected to benefit the 
number of invasive species in the northern Baltic Sea (Holopainen et al. 2016). 
Many invasive species have the ability to out-compete or negatively affect the 
abundance of native species (Leth et al. 2013) and therefore change the 
functioning of the whole ecosystem.  

The present biodiversity maps can help us to make decisions in the near 
future. However, the fact that climate change has already affected the 
distribution of biodiversity (Dulvy et al. 2008) and the process is ongoing has 
made it necessary to study biodiversity also under changing climate conditions 
(II). To address ecological questions and gain the knowledge about the 
connections between biodiversity and physical environmental variables under 
future climate change, high resolution biodiversity maps were modelled (II). 
Such detailed, seamless and forward-looking spatial maps can help to make 
different management decisions and improve the quality of marine biodiversity 
protection. This study was the first one in the northern Baltic Sea that assessed 
the potential changes in the extent and spatial patterns of biodiversity due to 
climate change (II). However, when interpreting and using the predictions, it 
must be kept in mind that the study was only correlative and biotic interactions 
were not taken into consideration.  

 
 

3.4. Acoustic seabed mapping 

A seabed mapping methodology that uses acoustic scanning with multibeam 
sonar, underwater video and mathematical modelling methods was developed. 
In addition to testing the general applicability of the proposed complex of 
techniques, the predictive power of different sonar-based variables and 
modelling algorithms (RF and GAM) was tested (IV).  

In both RF and GAM, the predictions of the coverage of hard substrate and 
Mytilus correlated more strongly with validation data than the predictions of the 
coverage of Hydrozoa (Table 5). The overall accuracies of full and reduced 
models were generally similar in terms of mathematical validation. However, 
the predicted coverage of full models had a slightly higher correlation with 
validation data than that of reduced models. All the correlations in the RF 
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model were slightly higher and all the MAE values significantly lower than in 
GAM. The MAE values were equal between all the modelled variables in 
GAM. In RF the reduced model had lower MAE values than the full model in 
predicting the coverage of Hydrozoa and Mytilus. No notable differences 
between the modelled variables were seen in RF factorial models (Table 5). 
Both the overall accuracy and the Kappa coefficient expressed higher accuracy 
for the reduced model in the prediction of hard substrate and Mytilus. At the 
same time, the full model had higher accuracy than the reduced model in the 
case of predicting the Hydrozoa distribution. In conclusion, the full models 
showed better performance in eight validation statistics and the reduced models 
in seven validation statistics (Table 5; IV). 
 
Table 5. Results of models validation. F– full model, R – reduced model (IV). All r 
values were statistically significant (p < 0.05). 

Modelled 
variables 

RF GAM 

Coverage Factorial Coverage 

Pearson r MAE Kappa 
coefficient 

Overall 
accuracy (%)

Pearson r MAE 

Mytilus F 0.77 11.4 0.48 77.5 0.72 16.5 

Mytlus R 0.73 11.2 0.5 78.75 0.73 16.5 

Hydrozoa F 0.56 4.4 0.56 81.25 0.47 5.3 

Hydrozoa R 0.53 4.2 0.47 78.75 0.45 5.3 

Hard subs. F 0.78 18.2 0.45 80 0.67 32.5 

Hard subs. R 0.69 20.5 0.56 83.75 0.64 32.5 

 
The results of mathematical validation showed that the accuracy of predicting 
substrate and biota using sonar and underwater video data was comparable with 
previous multibeam sonar studies. The overall accuracies of predicting substrate 
and biota were between 78% and 84% and the Kappa coefficient values were 
between 0.45 to 0.56 (Table 6) in the study. In other similar studies that used 
multibeam sonar data for predicting the biota and substrate, overall accuracies 
between 70% and 85% and Kappa coefficient values between 0.5 and 0.75 
(Hasan et al. 2012a,b; Stephens & Diesing 2014) have been reported. The 
prediction accuracies in this study were similar to those in the previous studies 
but even higher predictive accuracy could be anticipated from sonar-based data. 
Several factors could have affected the prediction accuracy: (a) intrinsic 
precision of the GPS devices may cause errors in georeferencing the video 
samples and the sonar data; (b) the chosen cell size of 20 m may have not been 
an optimal size; (c) the small-scale patchiness of benthic features combined 
with the relatively great water depth of the study area decreased the spatial 
resolution of sonar data rendering the correlations between benthic variables 
and sonar variables lower. 
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In addition to the mathematical validation, visual assessment of the model 
predictions was used to evaluate the model predictions (IV). The result showed 
that e.g. the nadir stripe was slightly more pronounced in full models (Figure 9). 
Full models also showed noisier output in some specific places compared to the 
reduced models. Based on the results of mathematical validation and visual 
assessment of models, the reduced model was chosen as the final model.  

 

Figure 9. Examples of predictions of the coverage of Mytilus by RF: A – full and B – 
reduced models at patch 11 (IV). 
 
Taking into account the similarity of the visual assessment of the RF and GAM 
models and the better mathematical validation result of the RF model, RF was 
selected as the final and best model for producing the final map layers of hard 
substrate and Mytilus and Hydrozoa distribution. Visual assessment of the RF 
models demonstrated good agreement between predicted and observed values 
without severe artefacts in case of all model predictions (Figures 9; IV).  

Both mathematical and visual assessment of the predictions was used for 
evaluating the model performances. The use of both evaluation methods is 
needed because mathematical assessment cannot detect errors in areas where 
there are no sampling points; however, the areas between the points may have 
extremely high values or abnormal patterns and these can be detected only by 
visual evaluation of the prediction. Full models showed a slightly better 
accuracy in mathematical validation than the reduced model. At the same time 
full models had a more pronounced nadir striping than the reduced models, 
which was not detectable during mathematical validation. Nadir striping or 
range and angle artefacts have been detected as the most common artefact in 
sonar-based methodology (Preston 2009). Special software that is meant for the 
post-processing of raw sonar data (also used in this study) can correct the data 
to some extent but the effect is not always complete and, depending on the set 
of input data and modelling technique, those artefacts might be amplified in 
model predictions. As the full model included more predictor variables and it is 
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a general rule that higher numbers of input variables in the model predictions 
give also higher correlation between predicted and measured values of the 
dependent variable (Crawley 2007), the higher correlation with validation data 
of the full models was an expected result. 

The evaluation of the importance of different sonar-based variables showed 
that, in general, all the mean values had higher importance than standard 
deviations of the same variables (Figure 10; IV). This indicates that generally 
the magnitude of sonar-based variables is more important than the variation 
inside the cell (IV). Mean depth values had the highest importance in predicting 
the Mytilus coverage. However, in predicting the hard substrate coverage, the 
mean backscatter showed the strongest influence and standard deviation of 
slope was the second most influential variable in the RF full model. The impor-
tance of backscatter in determining the seabed substrate has been highlighted 
also in previous studies (e.g. ICES 2007; Preston 2009; Lucieer et al. 2013). 
Standard deviation of depth was the second most important variable in the 
GAM hard substrate model. The GLCM correlation ranked mean and standard 
deviation of backscatter as the least influential variables (Figure 10). The 
higher influence of standard deviations of the sonar-based variables in substrate 
models can be explained by the topographic characteristics that are related with 
hard substrate. Topographic characteristics that are typical of a high percentage 
of hard substrate in the area are crevices, underwater cliffs, breaks and boulder 
fields. These characteristics have high variation in surface structures and 
therefore the higher variation is also reflected in sonar-based variables. 

 

Figure 10. Importance of sonar-based variables in predicting the coverage of the modelled 
variables (hard substrate, Mytilus, Hydrozoa) in the full models of RF and GAM (II). 
Higher values indicate higher importance. Abbreviations: std – standard deviation, bs – 
backscatter intensity, bs_cor – backscatter GLCM correlation. %MSE – increase of the 
mean squared error when a given variable is randomly permuted. 
 
The general distribution patterns of the three modelled variables were similar 
(Figure 11; IV). Similar patterns of Mytilus and Hydrozoas are probably caused 
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by the fact that they both are related to hard substrate and need it for attachment. 
Additionally, the percentage of the coverage of hard substrate and the distribution 
of Mytilus and Hydrozoa decreased with increasing depth values. Behind that is 
the erosion process in the offshore shallows, during which soft sediments are 
carried away from the area and they accumulate in deeper areas. Therefore, the 
distribution of benthic species is dependent on both substrate and depth (IV).  

The results of sonar-based mapping revealed that most of the study area was 
dominated by soft substrate class (63.6%), hard substrate class was found in 
36.4% of the study area (Figure 11; IV). Mytilus and Hydrozoa were present in 
over 63% of the area, which exceeds largely the presence of hard substrate. As 
the two substrate classes (hard and soft) were distinguished based on the 
dominance of hard or soft substrate types (coverage > 50%), mixtures of those 
two classes were present in both classes and it can be concluded that wide 
substrate classes are not sufficient for describing the distribution patterns of 
epibenthos. Therefore, the substrate maps with the prediction of coverage in 
percentages differentiate the complex natural patterns better than factorial 
prediction. However, factorial presence/absent maps are probably easier to use 
for managers, stakeholders and the general public as they give simplified results 
that can be straightforwardly used in various calculations of areas occupied by 
different seabed habitats and biota. Maps of percentage coverage are more 
precise and are convenient when addressing basic scientific questions, e.g. 
species–environment relationships. 

All benthic suspension feeders, including M. trossulus, are very important 
components in the Baltic Sea ecosystem as they form the link between the 
benthic and pelagic systems, are important food sources for several fish and 
birds and are one of the most important secondary producers on the hard 
substrates (Lauringson et al. 2009). Therefore, similar studies are important to 
gain knowledge about the distribution of Mytilus and to use it in the protection 
and management of sea areas and for answering scientific questions about the 
distribution of Mytilus along environmental gradients and its implications on 
trophic linkages in the marine environment.  

Sonar swaths covered 50% of the study patches (Figure 11; IV). Ideally, the 
coverage with sonar should be 100% of the area and more than 200% to 
insonify the nadir area of previous swaths. Higher spatial coverage of sonar 
swaths increases the quality of maps, but increases also time and monetary 
costs. Due to practical limitations and considering the mapping purposes, very 
high spatial coverage with sonar is not always necessary. In this study, 50% of 
sonar coverage was appropriate to reveal the general patterns of substrate and 
biota that would not have been possible by using only underwater videos data. 
Besides, some of the published studies have even more sparse coverage with 
single beam sonar data (e.g. Freitas et al. 2011; Barrell et al. 2015). However, if 
a full coverage of mapping products is needed, the interpolation of seabed 
variables between sonar lines can give us adequate results to be used e.g. in 
marine spatial planning or environmental management (IV appendix 5).  
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Figure 11. Examples of modelled distribution of hard substrate, Mytilus and Hydrazoa, 
based on the RF reduced model at patch 9 (Figure 3; IV). Numbers/letters indicate 
values of the variables in sampling stations based on underwater video. (A, C and E) – 
predictions of coverage; (B, D and F) – factorial predictions. H stands for hard substrate 
and S for soft substrate in B; 0 stands for absence and 1 for presence of the modelled 
species in D and F. 
 
Studies that combine sonar-based data and supervised machine learning 
methods are rather rare and relatively new in the field of seabed mapping. 
Earlier sonar-based seabed mapping studies have mostly concentrated on 
sediment characterization (e.g. Canepa & Berron 2006; Fonseca et al. 2009; 
Lamarche et al. 2010), but some studies have also focussed on the benthic biota 
(e.g. Hasan et al. 2012a; Bučas et al. 2016). Offshore shallows are ecologically 
valuable areas as they host higher biodiversity than most of the offshore regions 
and are therefore also important feeding areas for fish, birds and seals 
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(Lauringson et al. 2009; Luigujõe & Auniᶇš 2016). At the same time those areas 
are of economic interest as suitable areas for developing offshore wind energy. 
Therefore, seabed mapping studies have very practical implications and the 
inclusion of biota is essential for planning and monitoring different construction 
projects (e.g. offshore wind parks, cables, pipelines) or new MPAs, but also for 
environmental impact assessments. In the Baltic Sea region, this study was the 
first one that used sonar-based data together with supervised mathematical 
modelling with the aim to produce maps of seabed substrate and biota. The 
study also gave the first detailed data and knowledge about the important 
offshore shallow areas that were previously very little studied.  

 
 

3.5. Environmental vulnerability and risk profiles 
The biota is the basis of any sensitivity assessments as the NVs largely define 
the vulnerability of the environment to human pressures. The use of the 
recovery potential of the biota is one of the options to evaluate the vulnerability 
of NVs to human pressures (V). The recovery estimation of the NVs was based 
on the results of a previous project (Aps et al. 2011), experts’ opinions and the 
literature. During the process of recovery estimations relevant life history traits, 
observed time of recoveries and/or (re)colonization capacity of species in the 
Baltic Sea and/or in similar areas were considered (Table 6). The NVs were 
divided into five groups according to their recovery potential (time needed for 
recovery). This was done to provide differentiation between rapidly recovering 
annual filamentous algal species, more slowly recovering perennial algal species, 
benthic fauna and vascular plants and very slowly recovering vertebrates (V). 
 

Table 6. Species and groups of species chosen to represent NVs with their recovery 
classes and coefficient for the further calculations (V). 

Species/group Recovery 
class (years) 

Sensitivity 
coefficient 

Birds >10 5 

Charophytes (Chara spp., Tolypella nidifica) 2–3 2 

Epibenthic bivalves (Mytilus trossulus, Dreissena 
polymorpha) 

3–5 3 

Filamentous algae <2 1 

Fucus vesiculosus 2–3 2 

Furcellaria lumbricalis 5–10 4 

Infaunal bivalves (Limecola balthica, 
Cerastoderma glaucum, Mya areanaria) 

2–3 2 

Seals >10 5 

Vascular plants excl. Zostera marina  3–5 3 

Zostera marina >10 5 

*Higher sensitivity coefficient indicates longer recovery time. 
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The calculation process of EVP and ERP included several steps (see Figure 
12), which were all proceeded in 1 km grid cells (V). The calculation of the 
EVP layer based on the sum aggregation of all NVs and the ERP was performed 
by multiplying EVP and BSPI.  

Benthic species richness was natural logarithm transformed to reduce the 
variation and divided by the maximum logarithmed richness value over all cells 
to make the values vary between 0 and 1. Then, 1 was added to the product of 
the logarithm to eliminate zero values that would render further multiplication 
products zero. As the next step, the probability of the occurrence of each 
benthic NV was multiplied by its respective sensitivity coefficient. After that, 
all multiplication products in a grid cell were averaged. The averaged value was 
multiplied by the transformed benthic species richness. Birds’ and seals’ NVs 
were also multiplied by their respective sensitivity coefficients. The resulting 
benthos, bird and seal products were averaged and then rescaled by dividing 
each value by its maximum value over all cells to make the values vary between 
0 and 1. The product layer of the calculations and rescaling of the distribution of 
NVs and their sensitivities was called EVP-F. Because of the lack of 
comparable data on birds on the Finnish side, it was calculated for Estonian sea 
area only. Due to the lack of comparable data, an alternative index was 
developed that included only benthic NVs (EVP-B) and covered both Estonian 
and Finnish sea areas (V).  

Figure 12. General scheme of the calculations of environmental vulnerability (EVP) 
and risk (ERP) profiles (V). 
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In order to calculate the ERP in the study area, the BSPI was divided by its 
maximum value over all cells to make the values vary between 0 and 1 (V). Then 
the rescaled BSPI was multiplied by the EVP and divided by the maximum 
value of this multiplication term over all grid cells to make the values vary 
between 0 and 1 (Figure 12). The layer was named ERP-F, when the 
calculations were based on the layer EVP-F and in case the calculations were 
based on EVP-B, the index was termed ERP-B (V). 

Two different versions of the EVP and ERP are shown in Figure 13 (V). 
EVP-B had the highest values in the Finnish Archipelago Sea and at the western 
coast of Estonia. In general, coastal areas had higher EVP-B and EVP-F values 
compared with offshore areas. The highest EVP-F values coincided with 
nationally protected moulting, resting or breeding areas of seals in Estonia.  

Figure 13. A – Environmental vulnerability profile (EVP-B) and C – environmental 
risk profile (ERP-B) based on benthic nature values. B – environmental vulnerability 
profile (EVP-F) and D – environmental risk profile (ERP-F) including benthic nature 
values, birds and seals in Estonian marine waters (V). Values vary between 0 and 1, 
where 1 expresses the highest vulnerability or risk. 
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Also ERP-B had the highest values in the Finnish Archipelago Sea and near the 
coast in the western side of the city of Helsinki (Figure 13; V). In the Estonian 
waters, the highest ERP-B values can be found around islands and peninsulas 
and close to the city of Tallinn. Similarly to EVP-F values, the highest ERP-F 
values coincided with nationally protected moulting, resting or breeding areas 
of seals in Estonia (Figure 13). High values were situated also around the city 
of Tallinn and can be found across the western part of the northern coast of 
Estonia.  

There is a lack of practical knowledge on how to determine the sensitivities 
of different species to different human pressures (Villa & McLeod 2002). One 
of the possible solutions can be the use of the expert-based or empirically 
obtained recovery potential of NVs, which can be measured as the time of 
recovery from the disturbance when its effect has passed. Several previous 
studies have also suggested (Hiddink et al. 2007) and used (Ardron et al. 2014; 
Stelzenmüller et al. 2015) the recovery time as a useful parameter to evaluate 
habitat sensitivity. However, more detailed assessment of NVs should be 
carried out through EIA of each concrete project. Nevertheless, the purpose of 
EVP is to provide help for marine spatial planners or as a starting point for 
carrying out pre-selection of construction sites of offshore infrastructure objects 
in EIA.  

The assessment of anthropogenic pressure-specific sensitivity of NVs is a 
very demanding task because different pressures are impacting the biota 
simultaneously and the effects of different pressures do not necessarily cumulate 
in a linear manner. Moreover, the magnitude of the effects of pressures may 
vary along environmental gradients (e.g. salinity, depth, temperature, hydro-
dynamic activity). Due to the scarcity of quantitative data and knowledge about 
these aspects, a simplified approach was used in this study: the BSPI data layer 
(HELCOM 2017), which combines the cumulative intensity and geographical 
distribution of human pressures in the Baltic Sea, was used. The BSPI was 
developed in collaboration by many experts from Baltic Sea countries to 
aggregate the best available scientific and expert knowledge. 
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SUMMARY 

Biodiversity is important for keeping ecosystem functionality, sustainability and 
resistance under changing environmental conditions. It also plays an important 
role in providing several crucial ecosystem services to humans. However, the 
human use of the coastal and marine areas is increasing worldwide and inten-
sively used marine areas are under increasing pressures. On top of local human 
pressures, the global climate change exerts additional pressures on ecosystems 
and the decrease of marine biodiversity has already taken place. Therefore, the 
knowledge about the spatial patterns of biodiversity and their connections with 
environmental gradients is crucial to detect and follow changes in biodiversity 
and to form a well-informed basis for the protection and management of marine 
resources. Spatially seamless biodiversity data would also facilitate advancing 
basic scientific knowledge by enabling testing hypotheses related to scale-
specific spatial patterns of benthic biodiversity and their causes. As benthic 
habitats are difficult, expensive and time-consuming to sample, the data 
coverage in space and time is much sparser compared to terrestrial habitats. 
Moreover, traditional sampling-point-wise fieldwork is not suitable for covering 
extensive sea areas in high detail. Thus, there is a need for methods that would 
enable either filling in the data gaps between sampling sites or the acquisition of 
seamless benthic data. One of the solutions for deriving spatially continuous 
estimates of biotic variables from sparse sampling networks is the use of 
mathematical models. This thesis addressed the mapping of macrobenthic 
biodiversity in the Estonian sea area.  

The distribution of macrobenthic species richness was modelled for the 
present (I) and future climate conditions (II) in the Estonian marine area, NE 
Baltic Sea. An extensive database of macrobenthic samples was used together 
with georeferenced environmental data layers. The predictive performance of 
different models was assessed and the model with the highest prediction 
accuracy was used to produce spatial predictions of total macrobenthic species 
richness, macrozoobenthos species richness and macrophytobenthos species 
richness (I). All the tested mathematical modelling methods (RF, BRT, GAM) 
showed good predictive ability (I, IV). Water depth was the most influential 
environmental variable in all mathematical models (I, II, III, IV). Based on the 
mathematical and visual assessments, RF was chosen as the best model to 
produce biodiversity distribution maps across the whole Estonian sea area (I). 
The highest benthic biodiversity values were detected in the western archipelago 
(I). The set of countrywide benthic biodiversity maps were first of its kind in 
the Baltic Sea 

Comparison of the modelled distribution of benthic biodiversity under 
present (1978–2007) and future (2070–2099) climate conditions showed that the 
increasing temperature and decreasing salinity would probably cause a signi-
ficant decline in benthic floral and faunal species richness (II). The future 
species richness was predicted to concentrate closer to the coast compared to 
the situation prevailing today. 
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The modelled benthic biodiversity layers were further used to test the 
relationships between underwater biodiversity and shore geomorphology (III). 
Statistically significant differences were detected in the benthic biodiversity 
values close to different geomorphological shore types (III). For the first time, 
it was proved that shore geomorphological types reflect the biodiversity of 
macrobenthos and thus the shore types would enable identification of coastal 
biodiversity hotspots in case no data of underwater biota are available (III). The 
highest TotalS and FaunaS values were related to scarp shore (ESI shore type 
3b). FloraS had the highest values with till shores (sheltered; ESI shore type 
8d). TotalS, FaunaS and FloraS had the lowest values in artificial shore (ESI 
type 1b). In general, ESI shore type ranking according to sensitivity to oil 
pollution (higher type number shows higher sensitivity) did not coincide with 
the ranking of benthic biodiversity and therefore ESI sensitivity rankings cannot 
be directly transferred to biodiversity rankings. However, the existence of such 
a relationship between benthic biodiversity and coastal geomorphology forms 
an essential prerequisite for the further use of shore geomorphology as a proxy 
of biodiversity in nature conservation, oil pollution contingency and other 
coastal management applications in word’s regions where detailed information 
of benthic biodiversity is missing.  

A methodology for mapping seabed habitats and biota using acoustic 
scanning, underwater video and mathematical modelling was developed (IV). 
Compared to the traditional point-wise mapping used before, the new sonar- 
and modelling-based methodology enables mapping of seabed substrate and 
biota with significantly higher resolution. Mean depth and mean backscatter 
were the most influential sonar-based variables in modelling the distribution of 
seabed substrate types and epibenthos. Based on visual assessment of the 
modelled distributions of seabed substrates and biota, RF and GAM produced 
similar results, but the mathematical validation showed that RF had higher 
accuracy than GAM. The RF model was chosen to produce the final map layers 
of the distribution of substrate and epibenthos species in the offshore shallows.  

To facilitate the use of biodiversity data (I) and other georeferenced data on 
nature values in marine management, marine environmental vulnerability (EVP) 
and risk profiles (ERP) were developed (V). Spatial distribution data of essential 
marine nature values (habitat-forming benthic macrophyte and invertebrate 
species, benthic species richness, birds and seals) and their recovery potentials 
were aggregated to form a single spatially explicit data layer: the EVP (V). The 
ERP combines the EVP and the HELCOM Baltic Sea Pressure Index (BSPI), 
the latter representing the spatial distribution of intensities of cumulative 
anthropogenic pressures. The ERP identifies areas where environmental risks 
are the highest due to both long recoveries of the biota and high human pressure. 
Additionally to the protected moulting, resting or breeding areas of seals, high 
vulnerability values were detected in the Finnish Archipelago Sea and in the 
western coast of Estonia. High ERP values were located in the Finnish 
Archipelago Sea and near Helsinki in Finland and around islands and peninsulas 
and close to Tallinn in Estonia.  
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The results and knowledge gained in this study have already been imple-
mented in several applied scientific activities. The modelled biodiversity layers 
(I) and distributions of key benthic species (V) are included in the ongoing 
national process of Estonian maritime spatial planning in the framework of 
Maritime Spatial Planning Directive (2014/89/EU) and were also used in 
national reporting to fulfil the obligations set by the EU Habitats Directive 
(92/43/EEC) and Marine Strategy Framework Directive (2008/56/EC). The 
developed methodology of using multibeam sonar, underwater video and 
mathematical modelling for mapping seabed substrate and biota (IV) has been 
applied in several seabed mapping studies. Regardless of the applied scientific 
focus, the thesis also advanced the basic scientific knowledge about the spatial 
patterns of macrobenthic biodiversity and its relations to environmental 
variability, which has not been published before.  
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SUMMARY IN ESTONIAN 

Läänemere kirdeosa põhjaelustiku bioloogiline mitmekesisus: 
kaardistamise metoodikad, ruumilised mustrid ja seosed 

keskkonnamuutujatega 

Bioloogiline mitmekesisus tagab ökosüsteemi jätkusuutliku funktsioneerimise 
ja vastupidavuse muutuvate keskkonnatingimuste suhtes. Lisaks pakub bio-
loogiline mitmekesisus inimesele mitmeid väga olulisi ökosüsteemi teenuseid. 
Merealade ja ranniku kasutamine inimeste poolt on aga muutunud järjest 
intensiivsemaks ning merealad on üha suureneva inimtegevustest tuleneva surve 
all. Lisaks avaldab ökosüsteemile täiendavat survet globaalne kliima soojene-
mine. Lokaalsete inimtegevustest põhjustatud survete ja globaalse kliima 
soojenemise koosmõju tagajärjel on bioloogiline mitmekesisus juba vähenenud.  

Teadmised bioloogilise mitmekesisuse ruumimustrite ja keskkonnagradientide 
omavahelistest seostest on olulised, et registreerida ja jälgida muutusi bioloogi-
lises mitmekesisuses ning luua teadmistepõhine alus mereressursside kaitseks ja 
jätkusuutlikuks majandamiseks. Kõrge eraldusvõimega bioloogilise mitme-
kesisuse ja liikide leviku kaardid annavad olulist informatsiooni merekeskkonna 
kaitse- ja majandamisotsuste jaoks. Põhjaelustiku elupaikadest proovide kogu-
mise keerukuse, rahalise kulukuse ja suure ajakulu tõttu on aga merepõhja 
andmestiku katvus nii ruumis kui ajas palju hõredam võrreldes maapealsete 
elupaikadega. Lisaks ei sobi traditsiooniline proovide kogumisel põhinev väli-
tööde metoodika suure ulatusega merepiirkondade kaardistamiseks ja seetõttu 
on vaja uusi metoodikaid, mis aitaksid saada infot proovipunktide vaheliste 
alade kohta või võimaldaksid katkematut merepõhja ja -elustiku info kogumist  

Käesolevas töös käsitleti makrobentose (suurselgrootud ja -taimed) bio-
loogilise mitmekesisuse kaardistamist Eesti merealal. Kasutades mahukat 
põhjaelustiku andmebaasi koos georefereeritud keskkonnaandmete kihtidega 
modelleeriti põhjaelustiku liigirikkuse ruumilist levikut Eesti mereala praeguste 
(I) ja tuleviku kliimatingimuste alusel (II). Leviku modelleerimine hõlmas ka 
erinevate matemaatiliste modelleerimisalgoritmide ennustusvõime ning erine-
vate keskkonnamuutujate olulisuse hindamist. Erinevate matemaatiliste mudelite 
ennustusvõime hindamise tulemustel valiti välja parima täpsusega algoritm, 
mida kasutati Eesti mereala jaoks makrobentose liigirikkuse ruumilise leviku 
modelleerimiseks (I). Kõik testitud matemaatilised algoritmid olid hea ennustus-
võimega, kuid parimaks osutus juhumetsa (random forest) meetod. Kõige 
olulisemaks keskkonnamuutujaks kõigis testitud matemaatilistes mudelites oli 
sügavus (I, II, III, IV). Kõrgeimad põhjaelustiku bioloogilise mitmekesisuse 
väärtused registreeriti Lääne-Eesti saarestikus (I). Suurselgrootute ja taimede 
üleüldine liigirikkuse muster oli sarnane, kuid taimestiku leviku puhul oli vee 
sügavusel märkimisväärselt suurem mõju. Sügavuse mõju taimestikule on 
peamiselt seotud valgustingimustest sõltuva fotosünteesi läbiviimise võime-
kusega teatud sügavusteni; loomastiku levikumustrites ei mängi sügavus nii 
olulist rolli.  
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Tänapäevase (1978–2007) ja tuleviku (2070–2099) kliimatingimuste prog-
noosi järgi modelleeritud põhjaelustiku liigirikkuse kaartide võrdlemine näitas, 
et tulevikustsenaariumi põhjal ennustatud temperatuuri tõus ning soolsuse 
langus võivad põhjustada Läänemere kirdeosas olulist liigirikkuse vähenemist 
(II). Liigirikkuse vähenemist ennustati nii põhjataimestiku kui -loomastiku 
puhul. Tänapäevase liigirikkuse mustritega võrreldes koondusid tulevikus liigi-
rikkamad alad rohkem ranniku lähedale. Vaatamata üldisele liigirikkuse vähene-
misele, esines vähestes piirkondades (peamiselt rannikulähedased lahesopid) 
liigirikkuse säilimist või mõningast liigirikkuse tõusu. Liigirikkuse tõusu üheks 
põhjuseks võib olla nendes piirkondades mageveeliste liikide liigirikkuse 
suurenemine tulevikus alaneva soolsuse tõttu.  

Erinevate geomorfoloogiliste rannajoonetüüpide lähedal esines statistiliselt 
olulisi erinevusi põhjaelustiku bioloogilise mitmekesisuse väärtustes (III). 
Kõrgeimad summaarse liigirikkuse ja loomastiku liigirikkuse väärtused olid 
seotud astangrannaga. Põhjataimestiku kõrgeimad liigirikkuse väärtused esinesid 
moreenranna korral. Madalaimad liigirikkuse väärtused esinesid nii summaarse 
liigirikkuse, taimestiku kui ka loomastiku liigirikkuse puhul tehisliku ranna 
juures. Üldjoontes ei langenud naftareostuse tundlikkusele vastav rannatüüpide 
järjekord (ESI, environmental sensitivity index) kokku põhjaelustiku liigirikkuse 
väärtuste järjestusega ning ESI tundlikkuse järjekorda ei saa seetõttu otseselt üle 
viia liigirikkuse väärtustele. Leitud erinevused näitavad, et rannajoonetüübid on 
seotud merepõhja bioloogilise mitmekesisusega ning võimaldavad seeläbi 
veealuse informatsiooni puudumisel korral anda rannajoone tüübi põhjal 
hinnanguid põhjaelustiku bioloogilise mitmekesisuse kohta.  

Arendati välja metoodika merepõhja elupaikade ja elustiku kaardistamiseks 
kasutades sonarit, veealuseid videoid ja matemaatilist modelleerimist (IV). 
Metoodika võimaldab seni kasutatud punktipõhise kaardistamisega võrreldes 
märkimisväärselt kõrgema detailsusega merepõhja substraadi ja elustiku leviku 
kaardistamist (IV). Merepõhja substraaditüüpide ja epibentose leviku model-
leerimisel olid kõige olulisemad sonaripõhised muutujad keskmine sügavus ja 
sellele järgnev keskmine tagasihajumine. Modelleeritud substraaditüüpide ja 
elustiku leviku visuaalse hindamise põhjal andsid juhumets (RF) ja üldistatud 
aditiivsed mudelid (GAM) sarnaseid tulemusi, kuid matemaatiline valideeri-
mine näitas RF mudeli suuremat ennustustäpsust.  

Bioloogilise mitmekesisuse (I) ja georefereeritud loodusväärtuste andmete 
kasutamise hõlbustamiseks mere majandamisel (nt mereala ruumiline planeeri-
mine, keskkonnamõju hindamine) töötati välja spetsiaalsed meetodid – mere-
keskkonna tundlikkuse (EVP) ja riski profiilide kaardikihid (ERP, V). Oluliste 
mere loodusväärtuste (elupaiku moodustavad bentilised suurtaimed ja -selg-
rootud, põhjaelustiku liigirikkus, linnud ja hülged) leviku ruumilised andmed ja 
nende taastumispotentsiaalid (arvestades aega, mis kulub häiringust taastu-
miseks) koondati, et moodustada ühtne ruumiline andmekiht – EVP (V). ERP 
kiht ühendab EVP ja HELCOMi Läänemere surveindeksi (BSPI), millest viimane 
hõlmab endas kumulatiivsete antropogeensete survete intensiivsuse ruumilist 
jaotust. ERP määrab kindlaks piirkonnad, kus oht merekeskkonnale on kõrgeim 
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nii elustiku pikaajalise taastumise kui ka kõrge inimtegevustest tuleneva surve 
tõttu. Lisaks kaitse all olevatele hüljeste puhke- või paljunemisaladele tuvastati 
kõrged keskkonna tundlikkuse väärtused veel Saaristomeres ja Eesti lääne-
rannikul. Kõrged ERP väärtused asusid Saaristomeres ja Helsingi lähedal ning 
Eesti saarte ja poolsaarte ümbruses ning Tallinna linna lähedal. 

Käesolevas doktoritöös saadud tulemused ja teadmised on juba 
rakenduslikku kasutust leidnud mitmetes tegevustes nagu keskkonnamõju 
hindamised, Eesti riiklik mereplaneering ja Euroopa Liidu (EL) direktiividest 
lähtuvate kohustuste täitmine. Doktoritöö peamised praktilised ja 
baasteaduslikud järeldused ja kasutusnäited saab kokku võtta järgmiselt: 
• Töö tulemusel loodud üleriigilised põhjaelustiku bioloogilise mitmekesisuse 

kaardid on esimesed Läänemeres (I). Modelleeritud bioloogilise mitme-
kesisuse kihid on kaasatud käimasolevasse Eesti mereala planeerimise 
riiklikku protsessi mereala ruumilise planeerimise direktiivi (2014/89/EU) 
raames. 

• Merepõhja substraadi ja elustiku kaardistamiseks arendatud metoodikat (IV), 
mis põhineb mitmekiirelise sonari, veealuse video ja matemaatilise model-
leerimise kasutamisel, on rakendatud mitmes merepõhja elustiku ja elu-
paikade kaardistamise töös. 

• Põhjaelustiku oluliste liikide ja liigirühmade modelleeritud levikud (V) 
kaasati Eesti mereala ruumilise planeerimise protsessi ning neid kasutati ka 
riiklikus aruandluses, et täita EL elupaikade direktiivi (92/43/EEC) ja 
merestrateegia raamdirektiivi (2008/56/EC) kohustusi. 

• Esmakordselt tõestati, et erinevad ranniku geomorfoloogilised tüübid on 
seotud makrobentose bioloogilise mitmekesisusega ja võimaldavad seega 
veealuse elustiku andmete puudumisel tuvastada rannikumere bioloogilise 
mitmekesisuse tulipunkte (III). 

• Mahukate põhjaelustiku andmebaaside ja suure hulga keskkonnamuutujate 
kasutamine võimaldas välja selgitada erinevate keskkonnagradientide ja 
põhjaelustiku muutujate vaheliste seoste tugevusi ja suundasid (I, III). Liigi-
rikkust mõjutavad enim sügavus ja merepõhja substraat. 
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