
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Dissertations and Theses Collection (Open
Access) Dissertations and Theses

7-2019

Sensitive behavior analysis of android applications on unrooted Sensitive behavior analysis of android applications on unrooted

devices in the wild devices in the wild

Xiaoxiao TANG
Singapore Management University, xxtang.2013@phdis.smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/etd_coll

 Part of the Software Engineering Commons, and the Systems Architecture Commons

Citation Citation
TANG, Xiaoxiao. Sensitive behavior analysis of android applications on unrooted devices in the wild.
(2019). Dissertations and Theses Collection (Open Access).
Available at:Available at: https://ink.library.smu.edu.sg/etd_coll/222

This PhD Dissertation is brought to you for free and open access by the Dissertations and Theses at Institutional
Knowledge at Singapore Management University. It has been accepted for inclusion in Dissertations and Theses
Collection (Open Access) by an authorized administrator of Institutional Knowledge at Singapore Management
University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/etd_coll
https://ink.library.smu.edu.sg/etd_coll
https://ink.library.smu.edu.sg/etd
https://ink.library.smu.edu.sg/etd_coll?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F222&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F222&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F222&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

SENSITIVE BEHAVIOR ANALYSIS OF ANDROID

APPLICATIONS ON UNROOTED DEVICES IN

THE WILD

XIAOXIAO TANG

SINGAPORE MANAGEMENT UNIVERSITY

2019

Sensitive Behavior Analysis of Android Applications

on Unrooted Devices in the Wild

by

Xiaoxiao TANG

Submitted to School of Information Systems in partial fulfillment of the

requirements for the Degree of Doctor of Philosophy in Information Systems

Dissertation Committee:

Debin GAO (Supervisor / Chair)

Associate Professor of Information Systems

Singapore Management University

Robert DENG Huijie (Co-supervisor)

Professor of Information Systems

Singapore Management University

Xuhua DING

Associate Professor of Information Systems

Singapore Management University

Zhenkai LIANG

Associate Professor

National University of Singapore

Singapore Management University

2019

Copyright (2019) Xiaoxiao TANG

“I hereby declare that this thesis / dissertation is my original work and it has

been written by me in its entirety. I have duly acknowledged all the sources of

information which have been used in this thesis / dissertation.

This thesis / dissertation has also not been submitted for any degree in any

university previously.”

—————————–

Xiaoxiao Tang

19 July 2019

Sensitive Behavior Analysis of Android Applications

on Unrooted Devices in the Wild

Xiaoxiao TANG

Abstract

Dynamic analysis is widely used in malware detection, taint analysis, vulnerability

detection, and other areas for enhancing the security of Android. Compared to static

analysis, dynamic analysis is immune to common code obfuscation techniques and

dynamic code loading. Existing dynamic analysis techniques rely on in-lab run-

ning environment (e.g., modified systems, rooted devices, or emulators) and require

automatic input generators to execute the target app. However, these techniques

could be bypassed by anti-analysis techniques that allow apps to hide sensitive be-

havior when an in-lab environment is detected through predefined heuristics (e.g.,

IMEI number of the device is invalid). Meanwhile, current input generators are still

not intelligent enough to invoke adequate app behavior and provide sufficient code

coverage. Therefore, it is an important research direction to investigate dynamic

analysis techniques which enable a more complete execution under real running en-

vironments. This thesis focuses on dynamically analyzing app behavior by using

public APIs and side-channel information, such that the techniques can be deployed

on unrooted devices used by public users.

We first propose an advanced code obfuscation technique to hide small pieces of

sensitive code with a code-reuse technique. This technique can hinder existing static

analysis as well as dynamic analysis based on code-level events, such as API calls

or Dalvik instructions. We implement a semi-automatic tool named AndroidCubo

and show that it protects both Java and native code at a small runtime overhead.

Since relying on code-level event monitoring for revealing underlying app be-

havior can be bypassed by obfuscation and anti-analysis techniques, we propose a

novel technique to dynamically monitoring apps by observing changes to public re-

sources on the device. We propose to observe the resources with public APIs and

virtual file interfaces to monitor sensitive behavior, and then use machine learning

techniques to identify the initiating app of the behavior. We implement a system

named UpDroid which contains a monitor published on Google Play and a server-

side analyzer. UpDroid can be easily deployed on devices used by the public and

successfully monitor sensitive behavior of the app that is being analyzed. This work

is a successful investigation of dynamic analysis on unrooted devices.

To conduct more fine-grained analysis on apps, we propose to use GPU interrupt

timing information to infer the launched app and concrete behavior within a running

app, such as layout switching. We obtain GPU interrupt timing information from a

side channel - /proc/interrupts. We sample the number of the raised GPU

interrupt and get the timing series while an activity occurs on the device to gener-

ate a feature vector for that activity. Then, we use machine learning techniques to

train classification models for the activities. With the models, we are able to iden-

tify different types of app activities, e.g., identify the launched app or disdinguish

the activities within an app. This work further demonstrates the effectiveness of

dynamic analysis on unrooted devices.

Finally, we conduct a simulation study for dynamically analyzing the factors

that would affect the malware spreading on unrooted devices. In this work, we re-

cruit participants to spread out messages, which simulates the malware spreading

messages sent from infected mobile devices, to their friends. Each message con-

tains a malicious-look link to simulate the malware downloading links. When the

participants spread out the messages, we use dynamic analysis to monitor the sta-

tus of their devices and record the infection rate. The results show that spreading

method, relationship, contact frequency would significantly affect the spreading of

malware by analyzing the infection rates of different statuses of the device and the

differences of the spreading messages.

Table of Contents

1 Introduction 1

2 Literature Review 5

2.1 Code Obfuscation Techniques . 5

2.2 Dynamic Analysis on Android . 7

2.3 Side channel and crowd sourcing 8

3 Obfuscation of Sensitive Behavior 10

3.1 Introduction . 10

3.2 Overview . 12

3.3 Turing Complete Gadget Set . 13

3.4 Code Obfuscation . 15

3.4.1 Essential Code Replacement 16

3.4.2 Payload Generation . 18

3.4.3 Code Triggering . 19

3.4.4 Payload Protection . 20

3.5 Implementation and Case Studies 21

3.5.1 Implementation details . 21

3.5.2 Case study: Obfuscating Native Code 23

3.5.3 Case study: Obfuscating Java Code 24

3.5.4 Overhead . 25

3.6 Comparison with other Obfuscation Techniques 25

i

3.6.1 The Experiment . 25

3.6.2 Reverse Engineering Results 26

3.6.3 Discussion . 26

3.6.4 Limitations . 28

3.7 Summary . 28

4 Sensitive Behavior Analysis 29

4.1 Introduction . 29

4.2 Background and Motivation . 30

4.2.1 Resources and Observers 31

4.2.2 Motivation . 32

4.3 System Overview . 34

4.4 Event Monitoring . 35

4.4.1 Content Observer . 35

4.4.2 File Observer . 36

4.4.3 Interrupt Observer . 37

4.4.4 Network Observer . 39

4.5 Initiator Identifying . 39

4.5.1 App Status Monitoring . 39

4.5.2 Data Collecting . 41

4.5.3 Data Pre-processing . 42

4.5.4 Modelling and Precision 43

4.6 Comparison with API hooking . 44

4.6.1 Current State of API hooking 44

4.6.2 Permission Coverage Comparison 45

4.6.3 Event Details Comparison 47

4.6.4 Behavior Outcome Comparison 50

4.7 Capability Analysis . 51

4.7.1 Permission Coverage . 51

ii

4.7.2 Runtime Experiments . 53

4.7.3 Performance . 54

4.7.4 Discussion . 55

4.8 Summary . 56

5 App Analysis with GPU Interrupt Timing Information 57

5.1 Introduction . 57

5.2 Background . 59

5.2.1 Interrupt Mechanism . 59

5.2.2 GPU Interrupts . 60

5.3 Methodology Overview . 62

5.4 Experiments on Android . 63

5.4.1 Experiments Setup . 63

5.4.2 Model Precision . 64

5.4.3 Noise Analysis . 66

5.5 Experiments on Ubuntu . 68

5.5.1 Experiments Setup . 68

5.5.2 Model Precision . 69

5.5.3 Noises Analysis . 72

5.6 Discussion . 73

5.7 Summary . 73

6 Application of Dynamic Analysis in a Malware-Spreading Study 75

6.1 Introduction . 75

6.2 Problem Statement . 77

6.3 Simulation System . 79

6.3.1 Overview . 79

6.3.2 Seemingly malicious Message 80

6.3.3 Status Monitoring . 80

6.4 Simulation Study . 81

iii

6.4.1 Recruitment . 82

6.4.2 Seemingly malicious Message 83

6.4.3 Spreading . 83

6.4.4 Results . 84

6.5 Summary . 88

7 Conclusion 89

iv

List of Figures

3.1 Overview of code-reuse-based obfuscation on Android. 13

3.2 The native code of calling sendTextMessage() with JNI. 17

3.3 Layout of the payload. 19

3.4 Trigger code to be added to source code of the application. 20

3.5 Source code to be hidden and the corresponding gadget sequence. . 23

3.6 Stack layout after loading the payload. 24

3.7 The decompiled code of function calls. 27

4.1 Framework of the sensitive behavior monitoring system - UpDroid. . 34

4.2 Different categories of behavior that UpDroid can monitor 35

4.3 Overview of building the app identification model 40

4.4 The performance of different ranking algorithms in RankLib library. 44

4.5 Dangerous permission (covered by UpDroid) usage 52

4.6 Dangerous permission (not covered by UpDroid) usage of malware . 52

4.7 The runtime analysis results of WhatsApp 53

4.8 Performance of UpDroid evaluated with Antutu Benchmark 54

5.1 GPU interrupt increasing patterns 59

5.2 A sample of the /proc/interrupts file on HUAWEI Nexus 6P 60

5.3 WhatsApp using senarios that are difficult to be distinguished 65

5.4 Heatmap of inferring app on Android 66

5.5 Heatmap of inferring WhatsApp on Android 67

5.6 Heatmap of inferring webpage on Android 67

v

5.7 Precision of inferring app on Android 68

5.8 Heatmap of inferring app on Ubuntu 70

5.9 Heatmap of inferring webpage on Ubuntu 71

5.10 Precision of inferring app on Ubuntu 71

6.1 Malware spreading among mobile devices. 76

6.2 Overview of the system for simulation of malware spreading 79

6.3 Steps for users to customize the messages to be sent out 81

6.4 Number of clicks on the link . 85

6.5 Infection rate of different spreading methods 85

6.6 Infection rate of different relationships 86

6.7 Infection rate of different time . 87

vi

List of Tables

3.1 Number of gadgets found in different gadget sets. 14

3.2 Number of different types of gadgets in our gadget set. 15

3.3 Examples of operations on Android 18

4.1 Existing tools for analyzing sensitive behavior of Android apps . . . 33

4.2 Features for running apps and the process combination rules. 42

4.3 The comparison of dangerous permission. 46

4.4 The comparison of normal permission. 48

4.5 The SMS event details. 49

5.1 The interrupt sources and description of NVIDIA GF119 [41] . . . 61

5.2 Precision of classifiers on Android 64

5.3 Precision of classifiers on Ubuntu 69

vii

Acknowledgments

Throughout the writing of this dissertation, I received a great deal of support and

assistance. First and foremost I would like to thank my PHD supervisor, Dr. Debin

Gao, for his guidance, support, and patience. Dr. Gao’s expertise was invaluable in

the formulating of the research topic and methodology. I really want to thank Dr.

Gao for the advice and support he gave me on the research of dynamic analysis and

the patience he gave when I encountered difficulties in carrying out my work.

I also want to thank my lab-mates in SMU: Yan Lin, Xu Ke, Siqi Ma, Siqi Zhao,

Daoyuan Wu, Ximin Liu, Jiaqi Hong, Jiayun Xu. I learned a lot from the insightful

discussion of the research topic with them and I’m grateful to the generous help

they gave me in my research. In particular, I want to thank Yan Lin for her help in

the projects we cooperated.

I am also grateful to my tutor, Dr. Lujo Bauer, and my colleague, Haley Bui-

Nguyen, during the CMU-LARC exchange program. I want to thank Dr. Bauer for

the insights he gave to me in choosing research topics and Haley for her help in our

cooperation.

At last, I would like to thank my family and friends for their support. I want to

thank my parents, who support every decision I made and are always there when I

need help. I also want to acknowledge my husband, Dr. Yaxiong Xie. I am grateful

to the advice he provides about research, the experiences he shares in paper writing,

and all the help he gives in life. It is because of his love and support that I can finally

get here.

viii

Chapter 1

Introduction

Android has been the most popular mobile system which occupies over 86.8% mar-

ket share in Q3 2018 [38]. Along with the popularity, the Android community also

faces various threats, such as malware [85], pirated apps [83] and so on. One of the

most important mitigation techniques for these threats is the effective and precise

dynamic analysis to reveal the underlying sensitive behavior of apps.

Sensitive behavior is normally represented by APIs protected with permissions.

Previous work [64, 75] traces sensitive APIs to reconstruct the behavior of Android

apps and perform specific analysis, such as malware detection. However, code ob-

fuscation techniques can hinder the analysis based on API tracing. To demonstrate

this point, we present an evaluation on the extent to which code-reuse-based tech-

niques can be applied to obfuscate Android apps. Moreover, we extend code-reuse-

based obfuscation to the Android platform by proposing an obfuscation mechanism

for both Java and native code. Results show that code-reuse-based obfuscation can

prevent analyzers to gain a detailed understanding of the obfuscated app and make

the API tracing based analysis ineffective.

Although dynamic analysis can use other features, (e.g., system call) to recon-

struct sensitive behavior, these techniques require emulators, rooted devices or mod-

ified systems to conduct the analysis. Analyzing under these environments requires

input generation tools [4, 35, 46, 73] to automatically execute the target apps. This

1

fact brings in two limitations for existing dynamic analysis techniques. First, input

generators cannot provide as wide code coverage as humans. Most input generators

can only provide a random series of events, e.g., touching on the screen, to mimic

real users’ behavior. The random behavior generated by these tools can hardly

match the pattern of the real app usage to successfully invoke certain functional-

ities, e.g., registration. Choudhary et al. compared several popular monkey tools

and found that the best statement-level code coverage that these tools can reach is

40% [20]. Bao et al. show that the popular input generators can only reach 30%

API-level code coverage. Meanwhile, anti-analysis techniques [39, 66] allow apps

to recognize the running environment and hide their sensitive behavior accordingly.

For example, apps can detect whether the running environment is emulated based

on the GPS info or IMEI number. Moreover, anti-analysis techniques can choose

to trigger sensitive behavior only under specific circumstances that have no depen-

dencies on program inputs, e.g., after receiving an SMS, at a particular time slot, or

when receiving a remote command [69].

Both the insufficient code coverage of the input generators and the anti-analysis

features of the target apps hinder existing dynamic analysis from invoking the po-

tential behavior of them. Theoretically, to enable large-scale deployment and evade

anti-analysis techniques, the optimal solution is to conduct the analysis on devices

used by the general public. In this thesis, we study to what extent dynamic analysis

can be applied to non-rooted and unmodified devices.

Dynamically analyzing apps’ behavior on such devices is challenging. Previous

tools [10, 14, 24, 63, 64, 77] adopt API tracing, system call tracing and so on, to

infer the underlying behavior of the apps. As low-level information (e.g., API call

or system call) commonly used by previous work is not accessible on non-rooted

devices, these techniques cannot be applied to devices used by the public.

To deal with this problem, we propose a system called UpDroid. Instead of

logging low-level events, we monitor the state changing of different types of public

resources on the target device. The changes convey information about the sensitive

2

behavior of the apps. For example, we can monitor message sending behavior by

detecting the newly added rows of the content provider content://sms. The

changing event corresponds to behavior that has been successfully performed on the

devices, which is different from detecting attempts of actions by tracing API calls.

Unlike existing works which can hook into the apps, monitoring the state

changes of public resources brings another challenge – identifying the apps that

trigger the monitored events. Hence, we use machine learning techniques to build

a ranking model for identifying the app from all the running apps at runtime. With

both the monitoring component and the app identifing moel, UpDroid can monitor

various events on non-rooted devices including making phone calls, accessing the

camera, reading/writing files and so on.

In order to further investigate to what extent we can analyze Android apps on

non-rooted devices, we propose to use side-channel information to infer app behav-

ior with machine learning techniques. The side-channel information we used is the

GPU interrupt timing information from the sampling of the /proc/interrupts

file. Android device has hundreds of interrupts which represent the interaction be-

tween hardware/software devices and CPU. Different behavior results in different

changes to the interrupts. For example, playing video increases the video decoder

interrupt. Hence, the interrupt timing series can be used to feature the application’s

behavior. We propose a prototype for inferring app behavior based on the GPU in-

terrupt timing information. We first use a public API to monitor users’ interaction

with the device to record when an app is launched, since apps are usually launched

by interactions like touching icons on the screen. With interrupt info, we are able

to identify which app launches. Moreover, we are also able to identify the app’s

behavior when it is launched, e.g., whether the app is used to open a camera or

used to browse certain web pages. Experiments show that the activity identification

models can effectively disclose app activities on Android. The precision of identi-

fying the launched app can reach around 90%. The precision of ientifying activities

within an app is higher than 80%. This work shows more possibility of analyzing

3

via non-rooted devices.

Beyond monitoring app behavior on a single device, we find that dynamic anal-

ysis based on non-rooted devices is also effective in analyzing app behavior among

multiple devices. It can capture user interactions and features of the running en-

vironment which are decisive inputs for inter-device app behavior. We conduct

a simulation study for analyzing different factors that would affect the malware

spreading with a dynamic monitor on Android devices. Specifically, we choose the

spreading behavior of malware and aim to analyze different factors from users and

the environment that would affect the spreading among multiple devices. We build

a system to trace malware spreading messages among users’ devices and condcut

the simulation study with the system. The experiments present the possbility of

deploying dynamic analysis on real users’ device for analyzing malware spreading.

The results shows that spreading method, relationship and contact frequency would

significantly affect the spreading of the malware.

4

Chapter 2

Literature Review

We describe related work of our proposed techniques respectively. We first intro-

duce obfuscation techniques for hiding app behavior. Then, we describe existing

work of dynamic analysis on Android. Finally, we introduce side-channel tech-

niques which give insights to dynamic analysis on non-rooted devices.

2.1 Code Obfuscation Techniques

Traditionally, there have been three categories of obfuscation techniques proposed,

including layout obfuscation [17], control-flow transformation [22, 70], and data

obfuscation. Layout obfuscation [17] removes relevant information from the code

without changing its behavior. Control-flow transformation [22, 70] alters the orig-

inal flow of the application. Data obfuscation obfuscates data and data structures

in the application. These techniques are certainly helpful in obfuscating Android

apps; however, they are not specific to the Android platform in the implementation

aspect and are not effective in hiding app behaviors that implemented by sensitive

APIs. The code-resuse based technique we propose is specific for Android platform

and can effectively hide sensitive APIs.

There are also free or commercial obfuscation techniques specifically provided

to Android developers. ProGuard [42] is a free and commonly used one that ob-

5

fuscates the names of classes, fields, and methods. DexGuard [1] is a commercial

optimizer and obfuscator. It provides advanced obfuscation techniques for Android

development, including control-flow obfuscation, class encryption, and so on. Dex-

Protector [2] is another commercial obfuscator that provides code obfuscation as

well as resource obfuscation, such as the Android manifest file. Current obfusca-

tion techniques for Android mainly target at Java code and cannot hide the sensitvie

APIs used for conducting privacy or security-related behavior. The proposed obfus-

cation technique in this thesis can significantly hide the sensitive APIs in both Java

and native code.

Code reuse techniques, including Return-into-lib(c) [52, 65], Return-oriented

programming [13, 61] and Jump-oriented programming [11, 18, 25], are first pro-

posed to exploit vulnerable apps by hijacking their control-flow transfers and con-

structing malicious code dynamically. Among these code-reuse techniques, only a

few of them work on Android system or the ARM architecture. Davi et. al. [25]

proposes a systematic jump-oriented programming technique on the ARM archi-

tecture. The gadget set proposed in this work consists of gadgets ending with BLX

instructions. In this work, we propose to use a different type of gadgets that are

more commonly found in native libraries and apply this technique to code hiding on

Android platform.

Recently, several code-reuse-based obfuscation techniques [44,45,68] have been

proposed. One of the code-reuse-based obfuscation techniques is RopSteg — a

steganography technique on x86 [44]. RopSteg protects binary code on x86 ar-

chitecture, while our code-reuse-based obfuscation on Android platform works for

both Java and native code on Android platform. Another work [68] proposes a mal-

ware named Jekyll which hides malicious code and reconstructs it at runtime. In

this work, we propose a complete system with semi-automatic tools for code obfus-

cation on Android. Our obfuscation mechanism can be used for protection of either

malicious or benign code.

6

2.2 Dynamic Analysis on Android

Various dynamic tools/platforms have been proposed for analyzing underlying be-

havior of Android apps. DroidScope [77], CopperDroid [64], VetDroid [82], Droid-

Box [43] and other tools analyze the API calls, system calls, or other features to

reconstruct app behavior. For example, CopperDroid can reconstruct the apps’ be-

havior, e.g., sending SMS, by observing and dissecting the system calls. These tools

are based on app instrumentation, framework modification or emulator instrumen-

tation. Hence, they are not applicable to the devices used by the general public and

need input generator tools to automatically run the target apps. Our work can also

detect sensitive behavior of Android apps. The advantage is that our work can be

applied to devices used by the general public while these tools have critical require-

ments for either the running environment or the target apps.

Andromaly [60], CrowdDroid [14] and other tools can also run on non-rooted

devices for app analyzing. These tools detect runtime features, e.g., system call logs

and side channel info, of the running apps and use these features to identify whether

the app is benign or not with machine learning techniques. Our work gathers the

running features and uses machine learning techniques to identify the apps that

invoke the captured events. Meanwhile, our work generates fine-grained reports of

apps, while these tools only classify the apps. App Guardian [81] also gathers side

channel info and detects malicious behavior, e.g., on non-rooted devices. However,

the detection is based on specific heuristics and only targets runtime information

gathering attacks. Compared to this paper, the analyzing techniques we propose is

generic for app activities, such as sensitive behavior, app launching and activities

within an app.

BareDroid [51], Ninja [53], Njas [9] and other works provide dynamic analysis

techniques which are resistant to anti-analysis techniques. BareDroid is an analysis

system which uses a phone cloud for the analysis. It needs to customize the devices

in the phone cloud and thus cannot be applied to devices used by the public. Ninja

7

needs to customize the firmware on the Android devices. It is also difficult to be

applied to devices used by the public. Njas provides sandboxing for unmodified

apps on non-rooted devices. It dynamically loads the target app’s APK file to the

sandboxing app’s context for fully accessing the target app’s resources and runtime

state. Njas relies on an app database and needs to obtain the APK file of the target

app at the same version. Njas cannot sandbox the apps which do not have readable

APK files, e.g., the paid apps. Although these analysis systems are transparent

to anti-analysis techniques, they cannot be applied to devices used by the general

public directly. Compared to these systems, UpDroid can be easily deployed on the

users’ devices without any modification to the systems or any requirement on the

target apps.

2.3 Side channel and crowd sourcing

As well as current dynamic analysis techniques, other works also give us inspiration

about the runtime monitoring. The information provided by proc file system is an

important resources for app analyzing. Zhang and Wang [80] inferred keystrokes

by disclosing ESP with /proc/<pid>/stat. Qian et. al. [55] disclosed TCP

sequence numbers from information provide by the /proc/net/ directory. Zhou

et.al. [84] disclosed users’ private information, such as user identities and location,

by analyzing procfs on Android. Diao et al. [28] propose to use the interrupt time

series produced by the touchscreen controller to infer the unlock pattern and fore-

ground app. In this paper, they proposed to use series of the total amount of interrupt

as the feature to infer activities. In this thesis, we specifically choose GPU interrupt

timing information obtained from /proc/interrupts to analyze app activities

on the device without obtaining root permission or modifying the system. In our

work, we specifically choose interrupts generated by GPU, which is the essential

hardware for generating user interfaces in modern systems. MopEye [74] leverages

the VpnService API to monitor the network usage of the apps. UpDroid also

8

uses this technique to detect network activities on the devices.

Analysis of non-rooted devices requires crowdsourcing in deployment. Crowd-

sourcing has been used by different techniques for enhancing mobile security.

DroidNet [56] provides a framework for users to install applications and use crowd-

sourcing to search for expert users for permission control. Droidganger [79] allows

collections of users of the same application to help each other on permission under-

standing by sharing their permission reviews. CrowdDroid [14] is a typical work

that uses crowdsourcing for malware analysis. It uses 20 clients which are real

running devices to run their application and gathering features of applications for

analysis. In this work, the crowdsourcing method we used is similar to crowdsourc-

ing, we recruit participants to run applications as the data collector and use the data

for the analysis.

9

Chapter 3

Obfuscation of Sensitive Behavior

The goal of this chapter is to demonstrate that sensitive behavior analysis based on

tracing API calls can be hindered by obfuscation techniques. This chapter investi-

gates the code resources for code-reuse technique in Android apps and presents that

the code-reuse-based obfuscation is effective for hiding sensitive API calls.

3.1 Introduction

Sensitive API analysis is widely used by researchers to reveal app’s underlying be-

havior. Obfuscation is one of the methods which would make the analysis more

difficult. Traditional Java obfuscation techniques [17, 21, 22] only apply relatively

simple obfuscation schemes, e.g., renaming identifiers and removing debugging in-

formation. Although identifiers of classes and methods are no longer understand-

able after the obfuscation, names of the system APIs and the control flow of the

program still enable reverse engineering to a great extent. Hence, it is still easy to

analyze the sensitive system APIs by either static or dynamic analysis. To hinder

the analysis, one of the possible ways is to obfuscate sensitive APIs by code-reuse

techniques.

Return-Oriented Programming (ROP), which belongs to the bigger family of

code-reuse-based techniques, was recently proposed as an attacking technique to

10

exploit vulnerable programs [11, 13, 18, 25, 61]. It was subsequently used for code

protection [44, 45, 68] and to provide program steganography, e.g., RopSteg [44].

The main idea of code-reuse-based obfuscation is to replace essential code with

small code pieces distributed in the app and to reconstruct the essential code dynam-

ically. These small code pieces, typically ending with return/return-like instructions,

are called gadgets. Then, a payload, which contains addresses of the gadgets and

parameters needed by them, is generated for code reusing. This payload is typically

used to trigger some vulnerability (e.g., buffer overflow) and to invoke the hidden

code by executing the selected gadgets one by one. With this technique, the se-

mantics of the essential code in the original program are hidden in the payload. As

part of the data in an app, payload is safer than the original code under the disclo-

sure of reverse engineering tools. The hidden code can be further protected through

dynamically downloading the payload from a trusted remote server. In addition to

protecting benign code, this technique can also be used for hiding malicious behav-

iors by adversaries.

However, RopSteg and other code-reuse-based techniques cannot be directly

applied to Android applications. First, Android apps are mainly developed in Jave,

while code-reuse-based techniques are based on native binaries typically compiled

from C/C++. Second, Android devices are built on ARM architecture on which

registers are used for parsing function parameters and saving return addresses [59],

as opposed to x86 which is more dependent on the stack.

In this chapter, we present the first evaluation on the extent to which code-reuse-

based techniques can be applied on Android application obfuscation. Moreover, we

propose an effective code-reuse-based obfuscation mechanism for Android apps.

This mechanism helps developers to obfuscate small pieces of sensitive code, in-

cluding both Java and native code. We evaluate gadgets found in binaries of An-

droid apps and calculate the amount of gadgets in several common native libraries

used by Android apps. Results show that 835 gadgets in the C standard library

(libc.so) cover a Turing complete gadget set. We implement this idea in a tool

11

called AndroidCubo (Android Code-reuse Based Obfuscation) and successfully ap-

ply it on real examples to protect both Java and native code with a small overhead.

We show that the security of our obfuscated code is comparable to that obfuscated

with Java reflection.

3.2 Overview

Android app obfuscation focuses on preventing reverse engineering by adversaries.

We assume a threat model in which an adversary reveals essential code in Android

apps with reverse engineering tools, such as Apktool and APKstudio. These tools

help adversaries decompile Android APK and disassemble the resources to Jave or

assembly code. Then, adversaries can tamper the decompiled app and repackage

it to perform malicious behaviors. Obviously, we assume that source code of the

Android app is not available to the adversary.

An effective obfuscation technique has to achieve two goals when targeting An-

droid applications. First, it should protect the compiled essential code from being

reverse engineered to a human understandable format. Second, it should be gen-

erally applicable to any code segments to be hidden on any Android applications.

In the context of code-reuse-based techniques, this means that a Turing complete

gadget set that consists of frequently appeared gadgets is needed.

Fig 3.1 gives an overview of our code-reuse-based technique in obfuscating the

essential code in an Android app. First, the essential code is replaced with a gadget

sequence based on the Turing complete gadget set. The gadget sequence represents

the semantics of the essential code and is also regarded as the code reuse program.

Next, we prepare a payload according to the gadget sequence. After that, a segment

of trigger code is embedded in the app to invoke the protected code at runtime. At

last, when the protected app is running, the payload will be loaded into the memory

of the app and passed to the trigger code for invoking the protected code.

The Turing complete gadget set is a fundamental requirement in this technique

12

Essential code

(Java/native)

Trigger Code

for Code

Reusing

Turing

Complete

Gadget Set

Payload
Protected

Application

Gadget Searching Tool

Gadget 1

Gadget 2

...

Gadget n

Native Code Java Code

Other

Resources

Figure 3.1: An overview of our code-reuse-based obfuscation technique for Android

apps.

for providing enough gadgets to substitute the essential code. In the following sec-

tions, we first present our analysis of gadgets on ARM and then discuss the details

of the code obfuscation mechanism.

3.3 Turing Complete Gadget Set

As we discuss in the earlier section, having a Turing complete gadget set is a neces-

sary condition for a code-reuse-based obfuscation technique to be generally appli-

cable to most Android applications. In this section, we present a Turing complete

gadget set found available for code reuse obfuscation on ARM architecture. We also

analyze the number of available gadgets in each category. We focus our analysis on

Android 4.4 on a Nexus 5 handset. In the following description, Ra-Rd and Rx-Ry

denote different registers of ARM.

Previous studies [25, 26] applied gadgets ending with BLX Ra in their code-

reuse techniques. BLX Ra is an indirect jump instruction whose jump destination

is specified by register Ra. Unlike return instructions, BLX cannot fetch gadget ad-

dresses from memory. Thus, a specific kind of gadget, called update-load-branch

(ULB) gadget, is used to sequentially fetch gadget addresses to registers and chain

13

the gadgets together. However, the ULB gadget is very hard to find in native li-

braries [25]. Besides that, this strategy doubles the length of the gadget sequence,

which makes code-reuse-based obfuscation techniques more complicated and slows

down the program. Hence, we explore the possibility in using another type of gad-

gets that ends with POP {Rx-Ry, PC}. This POP instruction loads an address

from the stack to the program counter register PC directly. It always appears in the

epilogue of a function and is more commonly found in native libraries than the BLX

instruction.

Our gadget searching strategy is to look for basic blocks (instruction sequences

that do not contain branches) ending with a POP {Rx-Ry, PC} instruction to

minimize the effort needed to handle branches in instruction sequences and payload

generation. We implement this strategy into a gadget searching tool in python.

This tool searches for all available gadgets and their relative addresses in native

libraries. It also categorizes the available gadgets to different classes according to

their functionality.

We apply our gadget searching tool on several commonly used native libraries

used by Android apps and compare the number of available gadgets in our gadgets

set with that in the gadget set proposed by Davi et al. [25], see Table 3.1. The re-

sults show that number of gadgets in our gadget set is much larger than that used

by Davi et al. [25]. This is because POP {Rx-Ry, PC} is more frequently used

than BLX Ra in the native libraries. With the larger number of gadgets, the prob-

ability of finding all gadgets needed in the Turing complete gadget set is higher.

Besides that, the more gadgets we find, the more flexibility we have for essential

code replacement.

Table 3.1: Number of gadgets found in different gadget sets.

Native Libraries libc libruntime libunity libvideo libcocos2d

of Gadgets

(Our Gadget Set)

835 2,244 21,483 317 12,913

of Gadgets

(Gadget Set in [25])

77 1,326 10,734 148 6,126

14

Upon our analysis, we realized that gadgets that implement basic operations,

such as memory operations, arithmetic, and logic operations, can be easily found

through searching the corresponding instructions. Other functionality, including

control-flow transfers and function calls, need to be constructed more carefully. We

carefully analyzed the gadget sets found and managed to form a Turing complete

gadget set for converting sensitive code into gadget sequences, see Table 3.2.

Table 3.2: Number of different types of gadgets in our gadget set.

Gadget Functionality libc libruntime libunity libvideo libcocos2d

Load 127 151 2,484 60 1,607

Store 227 161 5,518 77 2,333

Add 20 3 878 23 204

Sub 30 1 78 3 35

Shift 12 8 20 2 689

And 6 8 137 3 60

Or 21 6 274 3 100

Xor 2 2 31 0 22

Unconditional Branch 226 753 12,063 84 3,035

Conditional Branch 28 15 1,107 29 29

Function Call 8 187 865 5 458

The results show that libraries contain sufficient gadgets in each category of the

Turing complete gadget set, with the exception of libvideo where there is no

gadgets to perform xor operation. However, also note that xor could be indirectly

implemented with other logical operators. This shows that many commonly used

libraries are sufficient for providing gadgets for code-reuse obfuscation.

3.4 Code Obfuscation

With the Turing complete gadget set found in various native libraries covering dif-

ferent functionality, we now present details of the obfuscation mechanism for pro-

tecting a piece of essential code in an Android application. The code protection

process, as shown in Figure 4.1, consists of a few steps in 1) replacing the sensitive

code with our gadget sequence; 2) generating code-reuse payload according to the

gadget sequence; and 3) constructing trigger code to invoke the hidden code with

payload in the app.

15

3.4.1 Essential Code Replacement

It is usually straightforward to replace the essential code to be obfuscated with gad-

get sequences. Most code-reuse techniques typically disassemble the essential code

to instruction sequences first, and then substitute them with semantically equiva-

lent gadgets. However, dealing with Android applications makes this process more

complicated as we want to be able to obfuscate both the native and Java code. This

makes our code-reuse-based obfuscation tool different from most existing ones.

For Android apps, native code is always compiled to native libraries (.so file)

by the building module of Android Native Development Kit (NDK). Reverse engi-

neering tools, such as IDAPro, Hopper, or the GNU Project debugger (GDB) can

be used to disassemble the native libraries and to obtain the instruction sequences

for the essential code to be obfuscated. We can then substitute instructions in the

essential code with gadgets in the native binaries of the app. Since most of these

native libraries contain Turing Complete gadget sets as shown in Table 3.2, we will

always be able to perform this substitution successfully.

Dealing with Java code in Android apps is more challenging, since existing

code-reuse techniques only support native code. Although a subset of the language-

independent functionality (e.g., concatenation of strings can be implemented in Java

as + operator and native code as strcat()method) can be implemented in native

code as well, other functionality that uses classes or methods specifically provided

by Java or Android cannot be directly implemented in native code (e.g., enable blue-

tooth can only be implemented in Java as BluetoothAdapter.enable()).

Fortunately, the Java Native Interface (JNI) provides a flexible connection for

the communication between Java and native code [32]. JNI provides several na-

tive methods for accessing object’s field from native code as well as methods

for converting Java classes to native classes, including GetObjectClass(),

GetMethodID() and CallVoidMethod(). These methods allow native code

to use Java class objects and to call Java methods by providing corresponding class

16

names and method names. In addition, JNI also provides methods to convert Java

objects to native variables. For example, GetStringUTFChars() can be used

to convert a Java string to native chars.

Fig 3.2 shows an example of the corresponding native code that can be used to

replace a sensitive Java API sendTextMessage(). In this example, The JNI

function CallVoidMethod() will call the sensitive API in native code after re-

trieving the class and method names.

1 void * sendSMS(JNIEnv *env)

2 {

3 jclass smsclass = env->FindClass("android/telephony/SmsManager");

4 jmethodID get = env->GetStaticMethodID(smsclass, "getDefault", "()

Landroid/telephony/SmsManager;");

5 jobject sms = env->NewObject(smsclass, get);

6 //Obtaining sendTextMessage()

7 jmethodID sendMethod = env->GetMethodID(smsclass, "sendTextMessage",

8 "(Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;Landroid/app/

PendingIntent;Landroid/app/PendingIntent;)V");

9 jstring destAddress = env->NewStringUTF("1234567890"); //Phone number

10 jstring text = env->NewStringUTF("native"); //SMS content

11

12 //Sending SMS with sendTextMessage() in native code

13 env->CallVoidMethod(sms, sendMethod, destAddress, NULL, text, NULL, NULL)

;

14 }

Figure 3.2: The native code of calling sendTextMessage() with JNI.

In addition to the proposed method of implementing Java functionality in na-

tive code via JNI and then subsequently obfuscating the resulting native code,

here we propose another method using shell command. We notice that many Java

operations can be represented with shell commands in Android apps, e.g., read-

ing SMS can be implemented through shell command content query --uri

content://sms. Therefore, we propose to obfuscate Java code by first replac-

ing it with a call to system() with the corresponding shell command, and then

subsequently obfuscating the calling of system() with our code-reuse program.

This method only needs two gadgets — the first one to move the address of the

corresponding command to register R0, and the second to invoke the system call

function. The actual shell command appears as parameters to the system call.

Table 3.3 presents some common behaviors which can be represented by shell

17

commands on Android. These commands are all feasible to be used on normal

Android devices. The available shell commands can be found under the directory

/system/bin in the corresponding Android devices. More complicated opera-

tions can be hidden in shell scripts written with available commands and be invoked

through executing the scripts with system(). These shell commands include sim-

ple ones like file operations, process management, network configuration, as well

as those provided by Android Debug Bridge (ADB) for activity management and

package management.

Table 3.3: Examples of operations on Android and the corresponding shell com-

mands.

Operations Shell Command

Open Messenger am start --user 0 -a

android.intent.action.SENDTO -d

sms:PHONE_NUMBER --es sms_body MESSAGE

Read SMS content query --uri content://sms

Open Dialer am start --user 0

-a android.intent.action.DIAL

-d tel:PHONE_NUMBER

Start Browser am start --user 0 -a

android.intent.action.VIEW -d URL

Create Directory mkdir DIRECTORY_PATH

3.4.2 Payload Generation

The main advantage of code-reuse-based obfuscation tools over other obfuscation

techniques is that the hidden code exists in the form of data rather than instructions.

To achieve this, we need to prepare a payload according to the gadget sequence.

Payload is a segment of memory content that contains semantics of the protected

code and will be used for overwriting control data at runtime. A payload typically

consists of three parts. The first part is the data that will be used to overwrite con-

trol data in memory to redirect control flow to the hidden code. The second part

consists of the parameters and addresses for the gadget sequence which presents the

semantics of the hidden program. The third part is a segment of buffer with data

18

needed by the code reuse program and other padding data. Fig 3.3 is an example of

the payload which has been loaded on the stack.

...

R4

R13(sp)

R14(lr)

...

Address

&Gadget2

...

...

...

...

LDR R0, [R4]
POP {R5,PC}

Data

Addresses and

Parameters

Control data

Stack

Growth

Stack

STR R0,[R5]
POP {R4,PC}

0x1

R5-R12

Figure 3.3: Layout of the payload. The shadowed areas present different parts of

the payload.

This payload is used for the gadget sequence that loads a number 0x1 from

memory and stores it at another address. From bottom to top of the stack, the first

part is the data that overwrites control data jmp_buf which is used to set register

values of the execution environment. In the rewritten jmp_buf, R4 is set to the

address of 0x1 and stack pointer is set to the beginning of the second part of the

payload. The second part contains the parameter needed by the first gadget and the

address of the second gadget. The last part of the payload contains other data — the

number 0x1 to be loaded from memory and stored to the address specified by R5.

To generate the payload, the most essential steps are to store the address of the first

gadget in lr and addresses of following gadgets on the stack. Thus, by changing

sp, the gadgets will be executed in proper order.

3.4.3 Code Triggering

After preparing the payload, extra code needs to be added to the app as an entry point

of the hidden code. This part of the code fetches the payload at runtime and uses

19

it to trigger the code-reuse program. Code-reuse programs are commonly triggered

through overwriting control data, including return addresses, function pointers, and

jump buffer. The overwriting could be based on a set of vulnerable library func-

tions that lack boundary checking, such as gets(), fread(), strcpy(), and

sprintf(). As in some existing work [25], the control data we choose to over-

write is the jmp_buf structure that is used to restore the execution environment in

exception handling. The jmp_buf structure contains data that will be used to set

values of registers which are used for storing parameters and the return address of a

function call. Thus, it is convenient to redirect the control flow through overwriting

jmp_buf structure on ARM.

Fig 3.4 shows an example of overwriting jmp_buf [25]. In this piece of code,

function setjmp() and longjmp() are used to store and restore the execution

context in variable jbuf. Reading data from sFile to buf will overwrite jbuf.

Thus, longjmp() will direct the program execution to somewhere specified by

the overwritten jbuf.

1 typedef struct foo{

2 char buf[JP_BUFSIZE];

3 jmp_buf jbuf;

4 }FOO, *PFOO;

5 PFOO f;

6

7 void * overflow(char * filePath)

8 {

9 int i;

10

11 i = setjmp(f->jbuf);

12 fread(f->buf, 1, BUFSIZE+256, sFile);

13

14 longjmp(f->jbuf, 2);

15

16 }

Figure 3.4: Trigger code to be added to source code of the application.

3.4.4 Payload Protection

Since the semantics of the essential code are hidden in the code-reuse payload, it

is important that our obfuscation tool provides protection on the payload to resist

20

reverse engineering attempts. To protect the payload, we propose three possible

solutions.

• Instead of storing payload as static resources of the Android app, the payload

can be embedded in the resources using information hiding techniques. For

example, the payload can be hidden in a segment of normal code, e.g., as an

image, using steganography techniques [50].

• The payload can exist in an encrypted form of data in the Android app, and

be decrypted at runtime.

• To completely remove the payload from the APK file of the Android app, we

can dynamically download it from a trusted remote server [68]. Dynamically,

the app will request and receive payload from the server based on a reliable

protocol.

In this work, we use the last, and the most secure, method.

3.5 Implementation and Case Studies

We manage to implemente our idea of obfuscating Android application as a tool set,

AndroidCubo. AndroidCubo takes as input the source code of an Android app and

obfuscates selected native and Java code in it. We present some implementation

details and applications of AndroidCubo on an app in this section. Experiments

were performed on a Nexus 5 running Android 4.4.

3.5.1 Implementation details

Code-reuse programming is complicated since it involves a lot of low level opera-

tions on memory and registers. We implement AndroidCubo as a tool set for helping

Android app developers to obfuscate sensitive code with our code-reuse technique.

21

It contains a source code template to be inserted into the Android source code and

a payload maintainer to execute on a trusted server.

The source code template contains a Java class named ObfuscateUtil and

a C program named Hiding. The class ObfuscateUtil provides native in-

terfaces for calling native methods in Hiding. It also implements network com-

munication with the trusted server which maintains the payload for the code-reuse

program. The Hiding program has a method named trigger() that uses the

payload (received from communication with the trusted server) to trigger the obfus-

cated code.

This source code template can be directly added to the Android project for ob-

fuscating a segment of sensitive code. The only additional code a developer has to

add is for preparing parameters if they are obfuscating API calls. To use this tem-

plate for obfuscating multiple segments of sensitive code, the user needs to add trig-

ger methods in Hiding and the corresponding interfaces in ObfuscateUtil.

The payload maintainer on the server side has two parts. The first part is a

payload generator that works in the following manner.

• Native code obfuscation Our gadget searching tool lists available gadgets

and their relative addresses for the developer to construct the gadget sequence.

The developer can also use other existing tools, e.g. ROPgadget [57] or

Q [58], to develop their code reuse program.

• Java code obfuscation through shell commands The generator automati-

cally generates the payload with a command provided by the user.

• Java API obfuscation The developer specifies the addresses of the API and

the corresponding parameters and our generator outputs the payload.

The second part is a program for sending payload to the app. This program is

developed with PHP with which the server will handle the request of payload from

the app, trigger the payload generator, and then send the payload over to the app.

22

3.5.2 Case study: Obfuscating Native Code

To demonstrate AndroidCubo in obfuscating native code, we hide a simple compar-

ison algorithm as shown Fig 3.5(a)(b). This algorithm obtains and stores the larger

one of the two input numbers. As described in Section 3.4, this simple algorithm

needs to be converted to a sequence of gadgets first. AndroidCubo first executes

the gadget searching tool and finds available gadgets and their relative addresses,

and then generates a sequence of gadgets to substitute the original code as shown

in Fig 3.5(c). In this sequence, gadgets 1-3 are used to load the first operand to

register R9. Gadgets 4-6 are used to load the second operand to register R3. The

last conditional gadget is used to find and store the larger number.

int max(int num1, int numb2)
{

int max = num1>num2?numb1:numb2;
return max;

}

ldr r2, [r11, #-16]
ldr r3, [r11, #-20]
cmp r2, r3
ble 0x74fadf40 <max(int, int)+44>
ldr r3, [r11, #-16]
b 0x74fadf44 <max(int, int)+48>
ldr r3, [r11, #-20]
str r3, [r11, #-8]
ld r3, [r11, #-8]

ldr r0, [r4]
pop {r3-r6, pc}
str r0, [r4, #0x14]
pop {r4, pc}
pop {r4-r11, pc}
ldr r0, [r4]
pop {r4-r6, pc}
str r0, [r4, #0x14]
pop {r4, pc}
pop {r3-r5, pc}
cmp r9, r3
ite hs
strhs.w r9, [r5, #0x20]
strlo r3, [r5, #0x20}
add sp, #0x14
pop.w {r4-r11, pc}

1.

2.

3.
4.

5.

6.
7.

(a) Original C code
(c) Gadget Sequence

(b) Original Assembly

Figure 3.5: Source code to be hidden and the corresponding gadget sequence. (a)

Original C code; (b) Original assembly code; (c) Gadget sequence.

AndroidCubo then generates the payload based on the gadget sequence. In par-

ticular, the first part of the payload is the data used to overwrite the control data

jmp_buf. jmp_buf directs the stack pointer to the beginning of the second part

— the addresses and parameters of the gadgets. LR is then set to the address of the

first gadget. The last part of the payload is a buffer containing junk data.

We recompile the Android app with outputs from AndroidCubo and execute the

app with the corresponding payload. After executing the app and loading the pay-

load to the stack, longjmp() successfully executes with the prepared jmp_buf,

23

...

R4

R5-R12

R13(sp)

R14(lr)

�✁✂ ✄☎✆✆ ✝user 0

PACKAGE_✞✟✠✡☛

...

&system()

&Gadget2

...

...

...

...

MOV R0, R4
POP {R4,PC}

Data

Addresses and

Parameters

Control data

Stack

Growth

Stack

system()

BLX R4
POP {R3-R5,PC}

Figure 3.6: Stack layout after loading the payload.

and the gadget pointed to by LR executes followed by other gadgets prepared in the

payload.

3.5.3 Case study: Obfuscating Java Code

We use another example to demonstrate using AndroidCubo to obfuscate Java code.

In this example, we hide the Java code that kills a background process.

The operation of killing a background process is typically implemented by

obtaining an ActivityManager object and killing the process by calling the

method killBackgroungProcess() in Java. AndroidCubo hides this Java

code through a shell command am kill --user 0 PACKAGE NAME with two

gadgets. The first gadget MOV R0, R4; POP {R4, PC} is used to prepare the

shell command as a parameter for system(). The second gadget is a function

call gadget BLX R4; POP {R3-R5, PC} to invoke the shell command. Fig 3.6

presents a view of the stack after our app loads the payload generated by Android-

Cubo to overwrite a buffer.

From bottom to top of the stack, the three shadowed areas present the corre-

sponding parts of the payload. The first part is the overwriting of control data

24

jmp buf. In jmp buf, register LR is set to the address of the first gadget. Func-

tion pointer SP is set to the beginning of the second part of the payload. Register

R4 is set to the address of the command that will be assigned to R0 as the parameter

of system(). The second part is the gadget addresses and parameters. The most

essential data on this part is the address of system() and the address of the second

gadget. The last part includes the padding data and the command string needed by

system().

3.5.4 Overhead

In our experiments in applying AndroidCubo to the Android apps, it introduces

around 150 LOC to native part and around 250 LOC to Java part of the Android

application.

3.6 Comparison with other Obfuscation Techniques

There have been existing obfuscation techniques proposed, and in this section, we

conduct a comparative test on sensitive API obfuscation among our code-reuse-

based method and other techniques, including control-flow obfuscation and Java-

reflection-based obfuscation. Control-flow obfuscation techniques typically hide

or protect the selected code by branching or looping garbage code. Java-reflection-

based techniques typically hide sensitive API calls by using Java reflection to access

the APIs through their names. We use these techniques to obfuscate an open source

application named OverFlow. The sensitive API that we target to obfuscate is

sendTextMessage().

3.6.1 The Experiment

We obfuscate the target app with all three techniques and then build the signed

APK file. We use Apktool [72], dex2jar [3], and JD-GUI [29] to reverse engineer

25

the APk files obtained to see how much information of the sensitive API can be

reconstructed. Apktool is used to unpack the APK file and obtain the dex file.

dex2jar converts the dex file to jar files which contain the byte code of the app.

After obtaining the jar file, we extract the class files in the jar and use JD-GUI to

reverse engineer class files to readable Java code. The above constitutes the most

commonly used methods for reverse engineering Android apps.

3.6.2 Reverse Engineering Results

Fig. 3.7 presents the reverse engineering output for the un-obfuscated app

(Fig. 3.7(a)) and apps obfuscated by the three different techniques (Fig. 3.7(b)-(d)).

Although the control flow recovered in Fig. 3.7(b) seems opaque, it is easy to

spot out the sensitive API call from the byte code at line 9. This shows that the

control-flow obfuscation manages to introduce confusion in terms of how control

transfers, but it fails to hide the existence of Java API call. From Fig. 3.7(c),

we can also easily figure out the name of the API from the first parameter of

getMethod().

Fig. 3.7(d), on the other hand, substitutes the sensitive API call with a native

function call whose functionality cannot be inferred from the name. That said, one

could further analyze the native function CallVoidMethod() to see if it contains

any hints of the API function to be called. We use IDAPro to reverse engineer the na-

tive function CallVoidMethod(), and find that the string sendTextMessage

and (Ljava/lang/String;...)V can be recovered from the binaries.

3.6.3 Discussion

In our experiments of obfuscating the Android app with different obfuscation meth-

ods, AndroidCubo presents better security in hiding the sensitive API call from

reverse engineering tools. At a high level, its idea is similar to Java-Reflection-

based techniques in that both techniques replace the original Java call with another

26

1 private void sendMessage(String paramString1, String paramString2)

2 {

3 try

4 {

5 SmsManager.getDefault().sendTextMessage(paramString1, null,

paramString2, null, null);

6 return;

7 }

8 catch (Exception paramString1) { ... }

9 }

(a) Decompiled code of un-obfuscated sendTextMessage()

1

2 131: goto -7 -> 124

3 134: aload 4

4 136: aload_1

5 137: aconst_null

6 138: aload_2

7 139: aconst_null

8 140: aconst_null

9 141: invokevirtual 105 android/telephony/SmsManager:sendTextMessage

...

10 144: return

11 145: astore_1

12 146: aload 5

13 148: astore_2

14

(b) Decompiled code of function call obfuscated by control-flow obfus-

cation

1 private void sendMessage(String paramString1, String paramString2)

2 {

3 try

4 {

5 SmsManager localSmsManager = SmsManager.getDefault();

6 localSmsManager.getClass().getMethod("sendTextMessage", new

Class[] { String.class, String.class, String.class,

PendingIntent.class, PendingIntent.class }).invoke(

localSmsManager, new Object[] { paramString1, null, paramString2

, null, null });

7 return;

8 }

9 catch (Exception paramString1) { ... }

10 }

(c) Decompiled code of function call obfuscated by Java Reflection

1 private void sendMessage(String paramString1, String paramString2)

2 {

3 try

4 {

5 nativeMethod(paramString1, null, paramString2, null, null);

6 return;

7 }

8 catch (Exception paramString1) { ... }

9 }

(d) Decompiled code of function call obfuscated by AndroidCubo

Figure 3.7: The decompiled code of calling sendTextMessage() and the decompiled

code from obfuscated calling.

27

method call, and both techniques specify the underlying method to be called via a

string. However, the replacement in Java-Reflection-based techniques is still a Java

method call, which is relatively easy to analyze; on the other hand, AndroidCubo

uses a replacement of native calls that are more difficult to analyze. Coupled with

other string obfuscation techniques, we argue that AndroidCubo presents higher

resilience in obfuscation compared to Java-Reflection-based techniques.

3.6.4 Limitations

Although applying our code-reuse-based obfuscation technique is feasible, there

are a couple of limitations that are worth noting. First, AndroidCubo, in its current

form, is a semi-automatic tool. Piecing together gadgets and writing long code-

reuse programs are still a complicated process that requires the developer’s atten-

tion and help. Second, applying code-reuse techniques for good, e.g., in obfuscating

program logic, runs into the risk of being prohibited by code-reuse protection mech-

anisms. That side, current Android systems have no protection mechanisms to resist

code-reuse programs, and many advanced techniques [16, 27, 31, 62] are powerful

enough to bypass most protection mechanisms.

3.7 Summary

In this chapter, we present a code-reuse-based technique for protecting Android ap-

plications. This technique enhances the concealment of both Java and native code

in Android apps through hiding essential code. Our evaluation shows that the lim-

ited binary resources in Android apps are sufficient for applying code-reuse-based

obfuscations. We further implement AndroidCubo semi-automate the process of

obfuscating essential code. Examples present that it is practical to protect applica-

tions with AndroidCubo. This work is done and published on ICISC 2016. Since

obfuscation is effective in bypassing the analysis of code-level features, the next

chapters present our efforts on analysis of apps without code-level features.

28

Chapter 4

Sensitive Behavior Analysis

This chapter demonstrates the feasibility of dynamic analysis on non-rooted An-

droid devices used by the public which does not rely on code level features that

can be concealed by obfuscation techniques. It proposes a system called UpDroid

for analyzing sensitive app behavior on non-rooted devices. The results show that

UpDroid can detect various sensitive behavior with small runtime overhead.

4.1 Introduction

Existing dynamic analysis based on tracing low-level information (e.g., API calls or

system calls) requires emulators or modified systems. Hence, these techniques need

input generators to conduct the analysis. However, input generators cannot provide

as wide code coverage as humans. Previous research shows the best statement-level

code coverage that the popular input generators can reach is 40% [20], and best API-

level code coverage is 30%. Meanwhile, anti-analysis techniques [39,66] allow apps

to recognize the running environment and hide their sensitive behavior accordingly.

In this chapter, we propose to dynamically analyze Android applications on non-

rooted devices used by the public to gain better code coverage and real running

environment.

In this chapter, we propose a system called UpDroid which works on non-rooted

29

devices without system modification. Instead of logging low-level events, we moni-

tor the state changing of different types of public resources on the target device. The

changes convey information about the sensitive behavior of the apps. For example,

we can monitor message sending behavior by detecting the newly added rows of

the content provider content://sms. The changing event corresponds to be-

havior that has been successfully performed on the devices, which is different from

detecting attempts of actions through tracing API calls. Since Android provides the

public APIs for third-party applications to monitor the resources, UpDroid does not

require rooting the device or modifying the system.

Unlike existing works which can hook into the apps, monitoring the state

changes of public resources brings another challenge – identifying the apps that

trigger the monitored events. Hence, we use machine learning techniques to build a

model for identifying the apps at runtime.

UpDroid can monitor various events including making phone calls, accessing

the camera, reading/writing files and so on. It achieves around 80% precision in

identifying the apps that trigger the observed events. We compare UpDroid with the

traditional API hooking methods to study how far UpDroid can go in covering dif-

ferent types of behavior and how it is different from the traditional hooking method.

Experimental results demonstrate that the events UpDroid can capture cover 15 out

of 26 dangerous permissions, while API hooking covers 21. The permissions cov-

ered by UpDroid contain the popular ones used by both malware and benign apps.

From tests on several popular apps, we observe that UpDroid detects the result-

based events and API hooking misses some because of the incompleteness of the

sensitive API list.

4.2 Background and Motivation

In this section, we introduce some background information for this work and present

the current state of sensitive behavior monitoring on Android to motivate this work.

30

4.2.1 Resources and Observers

Android has mature security protection mechanisms based on its permission model

and the security features inherited from the Linux kernel. Guarded by these mech-

anisms, third-party apps have limited access to the static and runtime resources of

the device. Normally, only with legal permission declaring and requesting an app

could access the protected resources and perform sensitive behavior.

We propose to monitor state changing of four categories of resources which are

normally available for third-party apps to detect the sensitive behavior.

Content Provider Content provider is an app component provided by Android for

managing access to a structured set of data. It is often used to store users’ personal

information, such as SMS, call logs, contact information and so on [33]. Content

provider encapsulates the data and provides mechanisms for security. With proper

permission, third-party apps can access the content providers that are open to exter-

nal apps. Various functionalities are implemented with content providers, e.g., the

default app for sending and receiving SMS uses content provider to store the SMS

logs. Android provides the ContentObserver API for receiving callbacks of

changes to a content provider to monitor the content provider events. For example,

a malware named HongTouTou uses this API to monitor the SMS content provider

and delete particular SMS according to the changes [78].

External Storage The file system of Android inherits that of the Linux kernel.

The files are protected with read/write/execute permission for each user. There-

fore, on non-rooted devices, we can only monitor the files or directories which

are readable to third-party apps. For example, we cannot monitor system files

under /data/ directory, since the external apps don’t have the read permis-

sion. External storage (known as the /sdcard directory) is a platform-specific

file system module on Android, which is public to third-party apps. To access

external storage, apps always need permission READ EXTERNAL STORAGE or

31

WRITE EXTERNAL STORAGE. In this work, we focus on monitoring external

storage directory. Previous works use FileObserver to notify the file system

changes [37].

Interrupt Statistics The logs of the interrupts raised to the kernel are also read-

able to third-party apps through a virtual file interface – /proc/interrupts.

With this interface, users can obtain information about how many interrupts have

been received by the CPU since booting. Previous work [28] uses this interface to

infer user’s sensitive information, e.g., unlock pattern. We can use this interface to

observe the use of different resources on the device, e.g., the camera, the Bluetooth,

the NFC and so on. More details can be found in Section 4.4.

Network Network is another kind of resource for users to access during runtime.

With INTERNET or ACCESS NETWORK STATE permission, apps can obtain the

connection state, open URLs, or send/receive TCP/UDP packets. To monitor the

network activities, previous work MopEye [74] leverages VpnService API to

intercept all traffic initiated from apps on the devices. This API is designed for app

developers to build VPN apps.

Although we can observe these resources to represent sensitive events on the

device, identifying the apps that trigger the events is still a mystery. We integrate

these observers to build a monitor for capturing the sensitive events on the devices

and use machine learning techniques to identify the initiator of them.

4.2.2 Motivation

Table 4.1 lists existing works about dynamic analysis of sensitive behavior. We can

observe that they need to use API calls, system calls, and other low-level events to

reveal the underlying behavior of the target apps. For example, CopperDroid [64]

observes and dissects the system calls made by an app to reconstruct the behavior,

e.g., file operations. A majority of these works are based on in-lab running envi-

32

ronment, including VM (Virtual Machine)-based emulators, modified OS/Android

internals, and rooted devices.

Table 4.1: Existing tools for analyzing sensitive behavior of Android apps

Tool Platform Features

DroidScope [77] QEMU based Emulator
API call, system call, Dalvik

instruction and so on.

CopperDroid [64] QEMU based emulator
API constructed from system

call

VetDroid [82] Modified system API call

M. Karami et al. [40]
Any platform with

instrumented App
System call

DroidBox [43] Modified system API call

Relying on the in-lab running environment, previous work requires input gen-

eration tools [35, 46] to automatically run the target apps. However, the event se-

ries generated by these tools cannot match the logic of mobile apps which is usu-

ally complicated, e.g., most apps require registration following strict commands.

Choudhary et al. present that the maximum coverage of popular input generator

tools is only 40% even with sufficient time for running the apps [20]. Our intu-

ition is that humans may be more successful in invoking the relevant functionalities

of apps, and thus can achieve better code coverage with enough time and a large

number of users. On another hand, app developers, especially those who design

malware, would not prevent their apps’ behavior from being triggered under real

execution environments. Hence, deploying dynamic analysis to public users for

crowdsourcing solves the code coverage problem.

Besides the coverage problem, running on emulators cannot analyze some envi-

ronment sensitive apps. Petsas et al. [54] proposed a range of techniques to evade

dynamic analysis in the emulated Android environment. With these techniques,

apps can bypass the analysis of the tools, e.g., CopperDroid and DroidScope.

In this chapter, we introduce our dynamic analysis system named UpDroid. It

gathers data from users’ daily running traces and generates sensitive behavior re-

ports for the apps.

33

4.3 System Overview

Figure 4.1 shows the framework of UpDroid, which consists of two major compo-

nents: the monitoring module on the users’ devices and the analysis module on the

server side.

We place two monitors on Android devices to monitor sensitive behavior (e.g.,

accessing the camera) and collect runtime status (e.g., CPU usage) of running apps.

The data collected by both monitors is logged with time stamps. The event monitor

detects changes to resources which can be accessed by third-party apps, e.g., the file

system, to reveal the apps’ behavior. We choose to use these changes to represent

the sensitive behavior as low-level events are not accessible on non-rooted devices.

However, we cannot identify the initiating app for the detected events without

penetrating to apps or the systems. Hence, in the analysis module, we build an app

identification model with machine learning techniques to distinguish the initiating

app from all running apps. We use learning to rank to train the model with data

from real users as presented in Section 4.5. We take sensitive events and the corre-

sponding runtime status of the apps as inputs to identify the initiating apps for the

monitored events and generate behavior reports for the apps. In the following two

sections, we will present the technical details of the event monitoring and how we

identify the initiating app for each event.

Public Devices

Server

Model Builder

App Identification

Model

Runtime Analyzer

Runtime Info

Monitor

Events

Runtime Info

Behavior

Report

Event Monitor

Content

Observer

File

Observer

Network

Observer

Interrupt

Observer

Figure 4.1: Framework of the sensitive behavior monitoring system - UpDroid.

34

4.4 Event Monitoring

This section describes how UpDroid monitors sensitive events without penetrating

to either the apps or the Android internals on non-rooted phones. To reveal the

behavior of the apps, UpDroid passively captures the events triggered by sensitive

behavior. Figure 4.2 presents four types of sensitive behavior that can be monitored

by UpDroid. The behavior is categorized by the resources, e.g., the file system,

it manipulates. For example, accessing the camera raises a particular interrupt, so

it belongs to the interrupt-based behavior. We use different methods to monitor

different categories of behavior.

Content Provider

Modifying

SMS

Phone Call

Calendar Event

Contact Info

Others

App Behaviors

Network

Connection

TCP Connection

UDP Connection

Interrupt-based

Behaviors

Camera Accessing

NFC Accessing

Others

Bluetooth

Accessing

Wifi Accessing

Location

Accessing

File Operations

Open

Write

Read

Others

Figure 4.2: Different categories of behavior that UpDroid can monitor

4.4.1 Content Observer

UpDroid uses the ContentObserver API to capture the behavior that changes

content providers. The method registerContentObserver(Uri uri,

boolean notifyForDescendants, ContentObserver observer)

is used to register a content observer with the corresponding URI, e.g.,

content://sms for observing SMS content. When an event is detected,

35

the onChange() method will be triggered. The ContentObserver only

reports whether a content provider is changed, but not what has been changed.

Hence, we log the monitored content provider and compare the updated provider

with that at a previous timestamp after receiving a change notification, in order to

get detailed information for inferring the apps’ behavior. For example, row adding

of SMS content provider with entry type=0 represents sending out an SMS, and

row adding with entry type=1 represents receiving an SMS. The entries for each

row also provide information, such as when the SMS is sent and the recipient of

the SMS. To find all observable content providers, we use PackageManager to

list all providers which can be accessed by external apps. For each provider, we

query the corresponding database to find all table names which is also used as the

path prefixes of the URIs of providers. From Android 6.0.1, we find 21 system

provided content providers. Axplorer [7] can also identify the system content

providers that are protected by permissions, but it does not filter out the ones that

can only be accessed by the system apps. Theoretically, UpDroid can monitor all

content providers with the required permissions. However, due to the overhead of

logging and comparing the content providers, UpDroid only observes four of the

most common and significant content providers, including SMS, call log, contacts

and calendar events.

4.4.2 File Observer

To monitor events related to the file system, UpDroid uses FileObserver API

to monitor the files and directories on the external storage. This API is provided

by Android to capture changes to a single file or a directory. Event masks (e.g.,

CREATE, DELETE and MODIFY) are used to specify what kind of operation has

been performed on the monitored file or directory. A complete list of the event

masks can be found in Android API reference [34]. The onEvent() method will

be triggered when an event to the file or directory is observed. Since this API

36

only supports single file or directory monitoring, we recursively traverse the mon-

itored directory and register file observer for each file or directory under it. Simi-

lar to ContentObserver, FileObserver only reports the events but not the

changing content. For example, FileObserver does not report how the file is

modified when it captures a MODIFY event. Backing up the target directory is a

possible solution to get detailed information about the events, but this may bring

in too much space and runtime overhead. Hence, UpDroid only observes different

types of events to the files in the external storage and ignores the detailed changes

to them.

4.4.3 Interrupt Observer

A novel method we propose for observing events is to sample the interrupts and

monitor the changes of interrupt numbers. Android inherits the interrupt mecha-

nism of Linux. Interrupt represents the situation where CPU interrupts the running

program to handle a request raised by an external hardware device. When the de-

vices (e.g., camera, Bluetooth and temperature sensor) detect physical events, they

raise interrupt requests. Then, the programmable interrupt controller (PIC) will pro-

cess these requests and send them to the CPU. The CPU will finally respond to the

interrupt requests.

Each specific interrupt will be registered to the system with a unique Interrupt

Request Line (IRQ) number, through which devices can pass the interrupt to the

processor. The virtual file /proc/interrupts provides the interrupt request

lines claimed by the devices. Each line shows the unique IRQ number, the number

of interrupts handled by each CPU, the PIC, and the device name.

To identify the events from the number of interrupts, we sample the

/proc/interrupts file each 100ms and compare it with the previous sam-

pling. Since most hardware devices have a corresponding IRQ line, we can infer

the running status of hardware through monitoring the changes to the numbers of

37

the interrupts. The increases of the interrupts represent the sensitive behaviors. For

example, accessing the camera increases the number of interrupt number 83 on

Nexus 6P. Using Bluetooth to send a file to another device will increase interrupt

503 continuously for a period. In UpDroid, we choose to monitor the following five

common devices: camera, GPS, Bluetooth, NFC, and video decoder.

Most device names shown in /proc/interrupts are coded with the hard-

ware model names or abbreviations, thus are difficult to identify. For example, on

HUAWEI Nexus 6P, pn548 is the interrupt name of NFC and atmel_mxt_ts

is for the touchscreen. Moreover, there are different IRQ lines with the same de-

vice name. For example, IRQ numbers 83 to 86 have the same device name csid,

but only number 83 represents the camera device interrupt. Hence, the interrupt to

hardware device mapping relies on the model names of the hardware devices which

are difficult to obtain automatically.

Each mobile device has its own mapping between interrupts and hardware de-

vices. Hence, we need to test the hardware devices and analyze the interrupt sam-

pling to identify the interrupt mapping for each device model. We first analyzed

several devices we already have, such as Nexus 6 and Nexus 6P. To cover other de-

vices, we conduct a user study (named interrupt study) to obtain the mappings for

them. Each UpDroid user needs to finish this study to get the interrupt mapping.

The users need to perform certain operations to test the hardware devices on the

phones. Some of the hardware devices can be tested automatically with proper pro-

gramming. For example, we write a program to open the camera and take photos

automatically. The others require the users’ manual tests since the permission of

these devices are very strict. For instance, NFC can only be manually turned on/off

by the user for security consideration of Android. While the user is performing the

tasks, the monitoring app samples the interrupts. By observing the changing pattern

of the interrupts, we can identify the one that corresponds to the hardware devices.

For each hardware, we need five traces for manually identifying the interrupt pat-

terns. From the recruited participants, we have identified interrupts for 19 Android

38

devices.

4.4.4 Network Observer

UpDroid monitors the networking behavior through VpnService API, which

leverages the TUN virtual network device to capture the TCP and UDP packets sent

by the apps. In this work, we leverage MopEye’s technique to identify the package

initiators through the proc file /proc/net/tcp6|tcp|udp|udp6 [74].

4.5 Initiator Identifying

The monitoring techniques presented in the previous section are not able to iden-

tify the app that triggers the detected event since the APIs used by the monitors are

designed for observing the resources. Although MopEye [74] provides an intelli-

gent solution for app identification on network events, it is not applicable to other

events, e.g., interrupt-based events. Hence, UpDroid leverages a machine learning

technique, learning to rank, to build an app identification model which is generic

for all events. This model takes the detected event and the runtime information of

the running apps as input, and ranks all the running apps to find out which is the one

that initiates the detected event.

The overview of the model learning is presented in Figure 4.3. To get the

ground truth for the model learning, we recruit Android users as the inspectors to

identify the apps that trigger the detected events. After pre-processing the data from

the inspectors and the monitors, we use the learning to rank technique to train the

identification model with the feature vectors.

4.5.1 App Status Monitoring

The runtime info monitor on the device collects information (e.g., CPU usage) about

the running apps. We use the information as the feature of each app to infer whether

39

Server

Off-line Model Learning

In-lab Devices

Model Training with

Learning to Rank

App Identification Model

Event Monitor

Content

Observer

File

Observer

Network

Observer

Interrupt

Observer

Runtime Info

Monitor

Data Pre-processor

Data Filter

Map Generator

Process Combination

Feature ExtractionEvents

Runtime

Info

Feature Vectors

Inspectors

App Labeling

Figure 4.3: Overview of building the app identification model

it is the one that invokes the detected event. UpDroid uses the ps command to

obtain the runtime information of the apps. It leverages the /proc/stat and

/proc/$PID/stat interfaces to provide processes’ runtime status, such as CPU

usage, NICE value, virtual memory usage and so on. It allows third-party apps to

access other processes’ runtime info on most Android devices. We obtain the result

from ps command from the monitoring app each 100ms. This time interval ensures

both the quality of the data and the performance of the device.

One problem with using ps command is that the runtime status is for processes

while identifying the process for a detected event is nearly impossible for users.

For each occurred event, normal users can easily select the correct app that invokes

the event, but can hardly tell which process without any knowledge about the app

implementation. In this case, we consider app rather than process as the initiator

of the detected events. We integrate the runtime status from processes from one

app and get the ground truth of the initiators from the inspectors. More details of

integrating runtime info from different processes can be found in Section 4.5.3.

40

4.5.2 Data Collecting

We collect the data for building the app identification model from the monitors

presented in Section 4.4 and Section 4.5.1. The data contains the events and the

runtime information of each app when an event occurs. The missing part is the

ground truth that which one among all the running apps invokes the detected event.

To get the ground truth, we recruit Android users to help to collect the data and label

the app in real-time.

We gather three types of information from the inspectors’ devices - the events,

the runtime info, and the initiating apps selected by the inspectors.

We conduct a user study (named initiator study)1 to collect and label the data. In

this study, each participant will be asked to install our monitoring app published on

Google Play and help to identify the apps at runtime. The monitor will capture the

events and log the runtime app info. It would raise notifications to the participants

(or inspectors) when it captures an event on the device. For each event, we provide

the event type, the event content and the time when the event is captured to the

participant. The participant responds to the notification and chooses the app that

invokes the event based on the provided info. To check the integrity of the data, we

propose the following policies to verify the participants’ responses:

1. The selected app should be on the list of the running apps.

2. The selected app should have the permission for the detected event, e.g., the

app chosen for a camera event needs to be granted with the CAMERA permis-

sion.

3. The selection should be finished within ten mins after the notification, to make

sure the user selects with a fresh memory.

We have recruited ten users since November 2017 to participate in the initiator

study for data collection and labeling. The participants are Android phone users

1Both the interrupt study and the initiator study have been approved by IRB in May 2017

41

above 18 years old. Participants install the inspecting app on their own devices

and identify initiators for at least 20 detected events. During the study, participants

need to have at least ten apps they commonly use installed on their devices. We

use the above policies to filter the responses from these participants. In total, we

have collected 300 events with initiator identified. The initiators of these events

correspond to 40 popular apps, e.g., Instagram and WhatsApp.

4.5.3 Data Pre-processing

From the monitors and the inspectors, we obtain the raw data for the analysis, in-

cluding the detected events, runtime information of apps and the app identified by

the inspectors. To get the labeled data, we pre-process the raw data in three steps.

First, we obtain runtime app info which can represent the running apps’ status

for each detected event. We choose the nearest samples of runtime info before and

after each detected event based on the timing info. Hence, for each event, we know

the apps’ current state and how it changes after the event occurs.

Table 4.2: Features for running apps and the process combination rules.

Feature Description Type Combination Rule

VSIZE Size of virtual memory used Integer average

RSS Resident set size Integer average

CPU CPU usage Integer average

SCHED Schedule of the process Integer average

PRIO Priority Integer average

NICE Nice value Integer average

PCY Background/Foreground Info Binary or

PC Status of processes Binary or

UID Whether the app is system app Bool none

Then, we combine runtime info from different processes of an app.

As mentioned in Section 4.5.1, we collect the apps’ runtime information by ps

command which provides information about each running process, while app is the

analysis target. Hence, we combine the runtime information of different processes

from the same app.

42

Table 4.2 shows the features we collected for each app and how they are com-

bined from different processes. We use the difference in runtime information before

and after the event as the feature vectors.

Here is an example of extracting feature f1 for an app. App a has two processes:

p1 and p2. Event e is observed at time t. The process sampling provides the nearest

process info logs at time t1 and t2, while t1 6 t 6 t2. The f1 value of p1 is v1 at t1

and v2 at t2. The f1 value of p2 is u1 at t1 and u2 at t2. Hence, the processed feature

f1 of a for e is:

f1a = AV G(v2− v1, u2− u1)

Lastly, we identify the app that triggers it from the users’ responses and label all

running apps. For each event, we label “1” if an app is selected for it and label “0”

if it is not selected.

4.5.4 Modelling and Precision

The machine learning technique we use for identifying the app is learning to

rank [15]. Our scenario is a ranking problem, where we need to select an app that

has the highest possibility of invoking the event among a list of running apps.

We use RankLib [23], a library that contains several popular ranking algorithms,

for the modeling and testing. The model built by RankLib is generic for all apps

and all events.

We randomly pick two-thirds of the data samples as the training data and the rest

as the testing data. We tried all of the eight algorithms in RankLib with different

configurations and compared their performance. Figure 4.4 presents the precision,

the percentage of events the initiator of which can be successfully identified, of the

models built by different ranking algorithms. With the LambdaMART algorithm,

the precision of UpDroid can reach 80%, and the false alarm (the situation where the

app ranked first does not cause the event) rate is around 20%. From our observation,

43

Figure 4.4: The performance of different ranking algorithms in RankLib library.

in one data sample, different apps may have the same ranking score, and this brings

in a lot of false alarms. Hence, we list the apps with top1, top2 or top 3 ranking

scores to see whether they contain the one selected by the inspectors. The precision

comparison of the eight algorithms is presented in Figure 4.4.

4.6 Comparison with API hooking

Various tools [43, 64, 82] analyze sensitive APIs to reveal the underlying behavior

of the target apps. For example, sendTextMessage() reveals the behavior of

sending SMS. These tools log the APIs called by an app and record their parame-

ters and return values by hooking all sensitive APIs, which typically requires root

permission or modification to Android internals. In this section, we present the com-

parison between UpDroid and the API hooking method on capturing the sensitive

behavior.

4.6.1 Current State of API hooking

To analyze sensitive behaviors through API hooking, we need a list of sensitive

APIs and the permissions they require to define the behavior. Sensitive API refers

to the API protected by certain permission. Since 2011, researchers have stud-

44

ied to extract the list of sensitive APIs from Android source code [6, 7, 12, 30].

From existing works, static analysis, including code analysis and annotation anal-

ysis, is believed to be the most efficient and effective method. However, from our

investigation, none of the current methods can provide a complete list of the sen-

sitive APIs. The popular tool Axplorer [7] provides an accurate list of the An-

droid APIs in the Android framework source code, but it misses the analysis of

Java APIs and the APIs whose permission checking is in native code. Some pop-

ular sensitive APIs, such as android.hardware.camera2.CameraMana-

ger.openCamera(), are not in the list. DPSPEC [12] analyzes the annotation

of Android source code to identify sensitive APIs. However, it only focuses on the

APIs protected by dangerous permissions and needs manual identification to obtain

the list. Another work, android-a2p [30], is also based on annotation analysis. It is

released on GitHub and is accurate but not complete. In order to cover more APIs

for capturing a complete list of sensitive behaviors, we combine the lists from these

three works in the comparison.

API hooking is also effective in capturing accessing sensitive content providers

and passing sensitive Intent. DPSPEC and Pscout [6] list the content providers

and intents which need dangerous permissions. We also include these sensitive

components in our comparison.

In this work, we use an open source tool named EagleEye [49] which is built on

the Xposed framework [76] to hook the sensitive APIs and the APIs for accessing

content providers and sending intents on a rooted device.

4.6.2 Permission Coverage Comparison

To see how far UpDroid can go in covering different categories of events, we ana-

lyze the permission coverage of UpDroid and that of API hooking (including hook-

ing sensitive APIs, content providers, and Intents). We use 26 dangerous permis-

sions and 44 normal permissions crawled from Google’s official documentation for

45

Table 4.3: The comparison of dangerous permission coverage between API hooking

and UpDroid. In this table, ✗stands for none of the permissions in this categorize is

covered and ✓stands for all are covered.

Permission
API Hooking

UpDroid
Sensitive API Content Provider Intent

ACCESS COARSE LOCATION ✓ ✗ ✓ ✓

ACCESS FINE LOCATION ✓ ✗ ✓ ✓

ADD VOICEMAIL ✗ ✓ ✗ ✓

ANSWER PHONE CALLS ✗ ✗ ✗ ✓

BODY SENSORS ✗ ✗ ✗ ✗

CALL PHONE ✓ ✗ ✓ ✓

CAMERA ✓ ✗ ✓ ✓

GET ACCOUNTS ✓ ✗ ✗ ✗

PROCESS OUTGOING CALLS ✗ ✗ ✓ ✓

READ CALENDAR ✗ ✓ ✗ ✗

READ CALL LOG ✗ ✓ ✗ ✗

READ CONTACTS ✓ ✓ ✗ ✗

READ EXTERNAL STORAGE ✓ ✓ ✗ ✓

READ PHONE NUMBERS ✗ ✗ ✗ ✗

READ PHONE STATE ✓ ✗ ✓ ✗

READ SMS ✓ ✓ ✗ ✗

RECEIVE MMS ✓ ✗ ✓ ✓

RECEIVE SMS ✗ ✓ ✓ ✓

RECEIVE WAP PUSH ✗ ✗ ✗ ✗

RECORD AUDIO ✗ ✗ ✗ ✗

SEND SMS ✓ ✓ ✓ ✓

USE SIP ✓ ✗ ✗ ✗

WRITE CALENDAR ✗ ✓ ✗ ✓

WRITE CALL LOG ✗ ✓ ✗ ✓

WRITE CONTACTS ✗ ✓ ✓ ✓

WRITE EXTERNAL STORAGE ✓ ✓ ✗ ✓

Total ✓ 21/26 15/26

the comparison. If any sensitive API in the list uses certain permission, we consider

that API hooking covers this permission. Also, if UpDroid can capture one kind of

behavior which is protected by a permission, we consider that UpDroid covers this

permission. This comparison may have inaccuracy since neither sensitive API nor

UpDroid cover all the cases that a permission is used. However, this analysis still

gives us a hint about what kind of behavior UpDroid and API hooking can capture.

The comparison of dangerous permission coverage is presented in Table 4.3.

The list of sensitive API/Content Provider/Intent we obtain from previous works

covers 21/26 dangerous permissions, while UpDroid covers 15/26. And 14 permis-

sions can be covered by both methods. As presented in Table 4.3, most of the ones

46

that cannot be captured by UpDroid are about reading data, e.g., READ CALENDAR

and READ_PHONE_NUMBERS. This is because UpDroid focuses on the behavior

that changes the state of resources on the device while reading normally does not

cause any change to them. The comparison of normal permission coverage can be

found in Table 4.4.

4.6.3 Event Details Comparison

API hooking can provide details about each event or behavior based on the parame-

ters and return value of an API, while UpDroid has a different method of providing

detailed information for each event. We present the difference of monitoring each

category of events as follows.

Content Provider:

While observing content providers, the events come from the changes to the

providers. The detailed information of the events can be obtained from changes to

the rows in the provider’s table.

In the case of SMS activities, API hooking logs the sendTextMessage()

API in apps, while UpDroid observes the content://sms content provider. Ta-

ble 4.5 shows the information we can obtain from API hooking and content ob-

serving. Hooking APIs can get more low-level information, such as the Intent for

sending this SMS. UpDroid can get more general information, such as when the

SMS request is generated and when the SMS is successfully sent out.

Interrupt:

The monitoring based on interrupt sampling observes events from the changing

of the number of the corresponding interrupt. It tells whether an event occurs and

when it occurs through the changing pattern. Take Bluetooth interrupt as an exam-

ple. Tracing API android.bluetooth.BluetoothAdapter.enable()

can detect turning on of the Bluetooth on the devices. On the other hand, UpDroid

observes it through recognizing a steep increase of the interrupt. Using Bluetooth

47

Table 4.4: The comparison of normal permission coverage between API hooking

and UpDroid. In this table, ✗stands for none of the permissions in this categorize is

covered and ✓stands for all are covered.

Permission
API Hooking

UpDroid
Sensitive API Content Provider Intent

ACCESS LOCATION

EXTRA COMMANDS
✓ ✗ ✗ ✓

ACCESS NETWORK STATE ✓ ✗ ✗ ✗

ACCESS NOTIFICATION POLICY ✗ ✗ ✗ ✗

ACCESS WIFI STATE ✓ ✗ ✗ ✗

BLUETOOTH ✓ ✗ ✓ ✓

BLUETOOTH ADMIN ✓ ✗ ✓ ✓

BROADCAST STICKY ✓ ✗ ✗ ✗

CHANGE NETWORK STATE ✓ ✗ ✗ ✗

CHANGE WIFI

MULTICAST STATE
✗ ✗ ✗ ✗

CHANGE WIFI STATE ✗ ✗ ✗ ✗

DISABLE KEYGUARD ✓ ✗ ✗ ✗

EXPAND STATUS BAR ✗ ✗ ✗ ✗

GET PACKAGE SIZE ✓ ✗ ✗ ✗

INSTALL SHORTCUT ✗ ✗ ✓ ✗

INTERNET ✓ ✓ ✗ ✓

KILL BACKGROUND PROCESSES ✓ ✗ ✗ ✗

MANAGE OWN CALLS ✗ ✗ ✗ ✗

MODIFY AUDIO SETTINGS ✓ ✗ ✗ ✗

NFC ✓ ✗ ✓ ✓

READ SYNC SETTINGS ✓ ✓ ✗ ✗

READ SYNC STATS ✓ ✗ ✗ ✗

RECEIVE BOOT COMPLETED ✓ ✗ ✓ ✗

REORDER TASKS ✓ ✗ ✗ ✗

REQUEST COMPANION

RUN IN BACKGROUND
✗ ✗ ✗ ✗

REQUEST COMPANION USE

DATA IN BACKGROUND
✗ ✗ ✗ ✗

REQUEST DELETE PACKAGES ✗ ✗ ✗ ✗

SET ALARM ✗ ✗ ✓ ✗

SET WALLPAPER ✓ ✗ ✗ ✗

SET WALLPAPER HINTS ✓ ✗ ✗ ✗

SIGNAL PERSISTENT

PROCESSES
✗ ✗ ✗ ✗

TRANSMIT IR ✓ ✗ ✗ ✗

USE FINGERPRINT ✓ ✗ ✗ ✗

VIBRATE ✓ ✗ ✗ ✗

WAKE LOCK ✓ ✗ ✗ ✗

WRITE SYNC SETTINGS ✓ ✗ ✗ ✗

Total ✓ 26/35 5/26

48

Table 4.5: The SMS event details provided by API Hooking and the content ob-

server of UpDroid

Info API Content Provider

Destination Address ✓ ✓

Source Address ✓ ✓

Message Text ✓ ✓

Sent Intent ✓ ✗

Delivery Intent ✓ ✗

Date Initiate ✓ ✓

Date Sent ✗ ✓

Person ✗ ✓

continuously (e.g., sharing files) will be represented by a continuous slow increase.

External Storage:

As presented in Section 4.4, the information we can log from the file observers

contains the file operation and the path of the file in external storage. To log

the changes to the files, we need to back up the target files and make a com-

parison. To decrease the overhead, we choose only to record the operations and

the paths. Existing API hooking method can hook file operation APIs, such as

java.io.writer.write(String s). It tells not only which operation is

performed, but also the related content, e.g., the content that is written to a file.

Network:

In the case of network activities, UpDroid provides lower level information than

API hooking, e.g., a TCP packet is sent by UID 10080 from 10.0.8.1:38175

to a server at 74.125.24.95:443. No higher level information, e.g., whether

the packet is sent for loading a webpage, will be provided. The parameters and

the type of the API imply the behavior of the app and the detailed information re-

lated to the behavior. It allows identifying different operations from the called API,

e.g., android.webkit.WebView.load(String URL) represents loading

a URL to a WebView.

49

4.6.4 Behavior Outcome Comparison

API hooking logs each attempt at using an API and needs further analysis to find out

whether the called API is successfully invoked or not. Even with further analysis,

it still misses the results of some app behavior. Contrarily, the four types of events

reported by UpDroid represent the behavior that had successfully been performed.

This is because it monitors the changes to public resources that will be manipulated

by the apps’ behavior. Here we compare the differences between UpDroid and API

hooking in revealing the outcome of an attempt at performing a certain operation.

API hooking can use several ways to determine whether an API call is

successfully called. The first and most apparent one is to check the return value.

For example, android.Bluetooth.BluetoothAdapter.enable()

returns boolean -“true to indicate adapter startup has begun, or false on immediate

error”. The second way is to check the exceptions thrown by the API. For

example, if sendTexMessage throws IllegalArgumentException,

the message is not successfully sent because of empty destination address or

text. Another more complicated method is to hook the callbacks as stated

in the parameters. For example, android.hardware.camera2.Cam-

eraManager.openCamera(String cameraId, CameraDevice.St-

ateCallback callback, Handler handler) has a parameter named

callback. The callback will be invoked once the camera starts. For some other APIs,

the callback is an intent which will be invoked after the API is successfully called.

Comparing to the prior two methods, checking whether the API call succeeds or

not through the third method needs more advanced API hooking techniques. These

techniques should be able to obtain the callback from the API’s parameter, hook it

and determine whether the callback is invoked due to the API call. Hence, we only

consider the first two methods in our analysis of the sensitive APIs.

From our analysis of the sensitive APIs, 154 out of the 400 do not have any

implication about the result of the API call. And among the 154, there are 29

50

which use the permissions that can be covered by UpDroid. Among these 29,

there are 14 that UpDroid conveniently reveals the outcome of the attempts. The

rest is the APIs that do not change public resources on the devices. For ex-

ample, android.net.ConnectivityManager.requestNetwork() re-

quests network but does not send out packages, so the behavior cannot be detected

by UpDroid. UpDroid can determine whether the behavior of the app changes the

resources, but it cannot determine which API is used to trigger an event. UpDroid

places more emphasis on the result of the app’s behavior, while API hooking em-

phasizes more on the attempt of the app’s behavior.

4.7 Capability Analysis

In this section, we evaluate the capabilities of UpDroid by analyzing its permis-

sion coverage and testing it on several popular apps. We also present the runtime

performance of UpDroid evaluated with a popular benchmark app.

4.7.1 Permission Coverage

To evaluate whether UpDroid can detect the sensitive behavior that requires com-

monly used permissions, we analyze the permission usage of both malicious and be-

nign apps. We analyze 2000+ malware samples (chosen from 72 malware families)

provided by Android Malware Dataset Project [71] and 3000+ apps downloaded

from the top chart of Google Play. For each permission, we count the number of

apps that declare the permission in the manifest to find out the popular permissions

used by malicious and benign apps. The dangerous permission usage is shown in

Figure 4.5 and Figure 4.6. As presented, the permissions from WRITE CONTACTS

to ANSWER PHONE CALLS can be covered by UpDroid. The results show that Up-

Droid covers the widely used permissions. And it cannot cover the ones for reading

private data or the phone states which will not cause any state changing of the ob-

servable resources on the device.

51

Figure 4.5: Dangerous permission usage (covered by UpDroid) of malware samples

from AMD and benign apps from GooglePlay

Figure 4.6: Dangerous permission (not covered by UpDroid) usage of malware

samples from AMD and benign apps from GooglePlay

52

4.7.2 Runtime Experiments

To evaluate how UpDroid performs at runtime for capturing sensitive behavior, we

test it on several popular apps, including a communication app WhatsApp, a social

networking app Facebook, and an online shopping app Lazada. These apps have

more sensitive behavior than most of the malware. We manually run the apps for five

minutes while using UpDroid and API hooking to detect the sensitive behavior. We

find that UpDroid successfully captures sensitive behavior, such as sending SMS,

accessing the camera, opening Bluetooth and so on.

0 1 2 3 4 5

BLUETOOTH

CAMERA

FILE OPERATIONS

NETWORK ACTIVITIES

U
p

D
ro

id

0 1 2 3 4 5

Time (mins)

BLUETOOTH
READ_PHONE_STATE

CAMERA

WAKE_LOCK

READ_EXTERNAL_STORAGE

A
P

I
H

o
o

k
in

g

Figure 4.7: The runtime analysis results of WhatsApp from UpDroid and API hook-

ing

Specifically, we present the experiment on WhatsApp which uses various per-

missions and compare the results (as shown in Figure 4.7) of UpDroid and API

hooking. The upper figure presents the behavior captured by UpDroid, and the

lower one presents the permission usage detected by API Hooking. The upper fig-

ure shows that UpDroid detects Bluetooth events, camera events, file operations

and network activities of WhatsApp. Compared to API hooking, UpDroid detects

the events which manipulate public resources on Android. For network events, Up-

Droid detects the packages sent out or received, while API hooking reports access to

the network state. Although API hooking can also detect internet usage, no internet

activity is found due to the incompleteness of the sensitive API lists. This also hap-

pens on the Bluetooth activities and file operations. As shown in Figure 4.7, using

53

Bluetooth is monitored by UpDroid at the fifth minutes, but it is not observed by API

hooking. UpDroid captures multiple file system operations which are not detected

by API hooking. It also shows that UpDroid cannot detect the read permissions like

READ PHONE STATE and WAKE LOCK.

4.7.3 Performance

Figure 4.8: Performance of UpDroid evaluated with Antutu Benchmark

To evaluate the runtime overhead of UpDroid, we run the monitoring module of

UpDroid on Nexus 6P with Qualcomm Snapdragon 810 processor and 3GB RAM.

We install ten popular apps on the device and keep three of them running in the

background. We use one of the most popular benchmarks, Antutu Benchmark, to

grade the device with and without UpDroid running on it. The result is presented

in Figure 4.8. The y-axis is the score graded by Antutu. The higher the score is,

the faster the CPU runs. In total, UpDroid decreases the benchmark score by 15%.

The overhead mainly comes from the high sampling rate of the interrupt numbers

and the frequent use of ps command. There is a trade-off between the accuracy and

the performance. The evaluation is conducted with a device released in September

2015. We believe that the overhead can be decreased on more powerful phones.

54

4.7.4 Discussion

In this section, we discuss how UpDroid can avoid anti-analysis techniques and the

possibility of using UpDroid as an attack technique. We also present the limitations

of UpDroid.

UpDroid is a dynamic analysis system which is transparent to malware. The

monitoring module of UpDroid is implemented with the APIs widely used by

app developers (e.g., ContentObserver and VPNService). The anti-analysis

techniques are difficult to evade UpDroid. Among all the APIs, VPNService is

technically detectable but cannot be used by malware as an indicator, because VPN

is widely used by mobile users who need a secure and private network. It is also

quite popular among Chinese users for accessing blocked websites. Instead of de-

tecting APIs commonly used by normal apps, malware tends to use heuristics which

imply the running environment is under analysis (e.g., invalid IMEI number and ab-

normal GPS info). On the other hand, it would be an advantage when all malware

stops its malicious behavior after detecting UpDroid on the users’ devices.

UpDroid is designed for analyzing the underlying app behavior, but the tech-

niques used can also be applied to maliciously monitor the users. The monitoring

technique that uses /proc/interrupts can be applied to side-channel attacks,

which monitor sensitive behavior on the device without any permission needed.

The app identification model also starts a study to break the process isolation on

Android.

The limitation of UpDroid is that it requires access to /proc file system which

is protected by critical SELinux policies since Android 7. From Android 7, the ps

command cannot access the process info of other processes. Hence, we need to

identify other runtime info, e.g., time for launching the other apps, as the feature of

each app in the future. Android 8 prevents third-party apps to access /proc/in-

terrupts. Hence, UpDroid may not be significantly effective on devices with

Android 8 but still works on a larger proportion of devices with prior Android ver-

55

sions. AppBrain shows that the market share of Android SDK versions prior to 8.0

is 95.4% in April 2018 [5].

4.8 Summary

In this chapter, we present our efforts on the dynamic analysis of app behavior

under unmodified and non-rooted devices. We propose UpDroid - a system for

dynamically monitoring Android apps’ sensitive behavior. It uses different APIs

to monitor Android system at runtime and leverages learning to rank technique to

identify the initiator of the detected behavior. We use the permission coverage, the

runtime experiments and the comparison with the traditional API hooking method

to demonstrate the capabilities of UpDroid. The results show that UpDroid can

detect sensitive behavior that manipulates the resources of the devices and identify

the apps that trigger the behavior. This work is done and published in Wisec 2018.

56

Chapter 5

App Analysis with GPU Interrupt

Timing Information

Among the interfaces which can provide app runtime information on non-rooted

devices, proc file system provides an accessible channel with large amount of re-

sources for app analysis. This chapter aims to further investigate the possibility

of app behavior analysis on non-rooted devices with information provided by proc

file systems. We present a side-channel-based method for analyzing app activities

without rooting or modifying the systems from the attackers’ point of view.

5.1 Introduction

Linux and Linux-based systems are widely used on servers, desktops, and mobile

platforms. They provide a proc file system (procf) as interfaces for obtaining in-

formation about processes and other system information. However, the information

disclosed by procf is often used by side-channel attacks [19], such as inferring

keystrokes [80], TCP sequence numbers [55], and user identities [84]. Among the

resources from procf, /proc/interrupts provides the statistics of both hard-

ware and software interrupts raised to the CPU which can be used to inferring hard-

ware events on the device. In this chapter, we investigate the possibility of build-

57

ing the connection between software-level information and the interrupts statistics.

Specifically, we investigate whether GPU interrupts can be used to infer app activi-

ties on computer devices.

Since the introduction of Xerox Alto in 1973, graphical user interface (GUI) be-

comes more and more popular, and is now becoming indispensable in modern com-

puter devices. Even for Linux on which command line interface can fulfill all the

tasks, GUI is necessary to fasten the user’s work. Moreover, mobile systems based

on Linux are heavily dependent on user interfaces. The display of GUI presents

viewable activities on the devices which reflects users’ interaction with the device.

GPU plays an important role in creating images as output through display devices,

during which interrupts will be generated by GPU to interact with the CPU.

GPU interrupts are often used to signal completion of graphics commands, ver-

tical blanking events, or reporting errors [48]. During displaying frames, different

sequences of GPU interrupts will be generated and the pattern of GPU interrupt tim-

ing series can be used to identify the content of the display. Figure 5.1 presents the

GPU interrupt timing series of launching WeChat and Instagram on Nexus 6. In this

figure, the y-axis presents the number of interrupts raised by GPU in every 50ms.

Our observation shows that different activities (e.g., different apps to be launched

in this example) correspond to different patterns of the GPU interrupt timing se-

ries. Based on this observation, we conduct side-channel attacks for inferring app

activities.

We choose Android and Ubuntu, two of the most popular Linux-based systems,

as the target platform to conduct side-channel attacks. The attacks include inferring

launched app and inferring activities within apps, such as identifying the webpages

opened. The core idea of the attacks is to classify the interrupt timing series with

machine learning techniques. We implemented the attacks on both Android and

Ubuntu for identifying different activities with different models. Results show that

the proposed side-channel attacks are highly effecitive on both Android and Ubuntu.

Evaluation of the identifying models shows that the classification precision of the

58

Figure 5.1: GPU interrupt increasing patterns while launching WeChat and Insta-

gram on Nexus 6

launched app on Android and Ubuntu can reach 90% with less than 1 second sam-

pling of the GPU interrupts. The classification for activities within an app can reach

80% with less than 2 seconds sampling. The experimental results show that GPU in-

terrupt timing information can be used to infer app behavior with high precision and

the side-channel attack we propose is highly effective on both Android and Ubuntu.

5.2 Background

In this section, we introduce background information for this work including the

interrupt mechanism and GPU interrupt on Linux/Linux-based platform.

5.2.1 Interrupt Mechanism

On Linux/Linux-based platform, an interrupt is a signal emitted by hardware or

software to CPU for suspending the current activities and processing specific event

through the corresponding interrupt handler. The interrupt mechanism allows CPU

to work with multiple hardware devices and enables the kernel to handle external

events in time. During the initialization of a hardware device driver, the correspond-

ing interrupt handler will be registered to the kernel. Upon receiving an interrupt,

59

the interrupt handler will perform specific actions to process the events. For exam-

ple, when the keyboard device raises an interrupt to CPU, the CPU will stop the

current activity and store the current context to read the inputs from the keyboard.

After that, the CPU will load the stored context and resume the previous activity.

Figure 5.2: A sample of the /proc/interrupts file on HUAWEI Nexus 6P

On the Linux operating system or systems based on the Linux kernel, the num-

bers of interrupts raised by different external hardware devices or software can

be obtained through a virtual file interface - /proc/interrupts. Figure 5.2

presents a sample of the /proc/interrupts file on Nexus 6, a device based

on Android system. As presented in this figure, the first column is the IRQ (Inter-

rupt Request Line) number for each hardware or software interrupt. The following

eight columns are the numbers of interrupts raised to different CPUs. The remain-

ing columns show the interrupt controller names, e.g., GIC (General Interrupt Con-

troller) and the device names, e.g., arch_timer. On Linux and other Linux-based

systems, the /proc/interrupts has a similar structure.

5.2.2 GPU Interrupts

GPU is a hardware device which handles graphics computing and displaying. Nor-

mally, GPU will raise interrupts for signaling completion of graphics commands,

60

Table 5.1: The interrupt sources and description of NVIDIA GF119 [41]

Interrupt Source Description

NVKM ENGINE DISP the display engine

NVKM ENGINE MSPDEC the picture decoder

NVKM ENGINE MSVLD the variable length decoder

NVKM ENGINE GR the memory copying, 2d and 3d rendering engine

NVKM ENGINE FIFO the command submission to execution engine

NVKM ENGINE CE1(0) the copy engine

NVKM ENGINE MSPPP the video post-processor

NVKM SUBDEV IBUS the intelligent BUS utility system

NVKM SUBDEV BUS the bus controller

NVKM SUBDEV FB the memory controller and arbiter

NVKM SUBDEV LTC the LT controller

NVKM SUBDEV PMU the power management unit

NVKM SUBDEV GPIO the general purpose Input/Output controller

NVKM SUBDEV I2C the i2c bus controller

NVKM SUBDEV TIMER the GPU timer

NVKM SUBDEV THERM the thermal sensor and clock throttling circuitry

vertical blanking, hotplugging and so on [?]. For example, table 5.1 presents the

interrupt sources of NVIDIA GF119. By instrumenting the interrupt handler in

nouveau driver, we found that the interrupts are mainly raised by the display en-

gine, command submission to execution engine and the timer. The interrupts raised

by the display engine are the vertical blanking signals when the displaying of a

picture is completed. The number of interrupts raised by the display engine is the

vertical refresh rate of the monitor. The command submission to execution engine

(FIFO) gathers processing commands from the command buffers prepared by the

host and delivers them to the memory copying and rendering engine in an orderly

manner [41]. The interrupts raised by FIFO engine are the signals for command

completion.

The /proc/interrupts file provides information about kinds of software

and hardware interrupts. The software interrupts include interrupts raised by indi-

rect calls, cache errors and other low-level behaviors of the system. The hardware

interrupts include interrupts raised by different devices, such as bus, camera, blue-

tooth and GPU. Among all the interrupts, GPU is the component that would be used

61

by nearly all behavior on devices with GUI. It will be used in the displaying of the

screen changes. The number of GPU interrupts represents the communication be-

tween CPU and GPU while the monitor or touch screen displays picture frames.

Different app behavior leads to a different sequence of frames displayed, and the

GPU interrupt number would be side-channel information for inferring app behav-

ior. Hence, we propose to use the timing series of GPU interrupts as the feature of

different activity. The assumption of this chapter is that different user activity leads

to different screen displaying. In this chapter, we propose to infer app behaviors on

the device by sampling the number of GPU interrupt in /proc/interrupts file

and evaluate the precision this method can reach to support our assumption.

5.3 Methodology Overview

To disclose app activities without root permission or modified system, we log the

increased number of interrupts raised by GPU when the behavior occurs and use the

timing series of the GPU interrupt as a feature of the activity.

We implement a monitoring app to sample the number of the GPU interrupt

raised. The application contains two main services. The first service runs in the

background to read /proc/interrupts file and record the number of interrupts

raised by GPU every 50ms. The second service records the most important user

interactions related to app activities with the devices (e.g., touches on the screen).

The timing of the interactions is used as the timestamps of the beginning of the

activities. On Android, we record the touches on the screen by creating a one-pixel

alert window on top of any other app. Third party apps are allowed to do so with

permission SYSTEM_ALERT_WINDOW [67]. Although this method cannot provide

either position or duration of the clicks, the timing information is enough for us to

trigger interrupt sampling when a click is observed. On Ubuntu, we use the python

library named pymouse to log the mouse clicks. As presented in Figure 5.1, different

app activities correspond to different timing series patterns.

62

The methodology of inferring the activities is using use machine learning tech-

niques to build models for classifying interrupt timing series. We collect labeled

data and train classification models for different scenarios, such as inferring the

launched app. The tool we use for model training is Weka [36], which contains the

most popular classifiers. The next section presents the experiments we conducted

on Android and Ubuntu and the details about model building and evaluating.

5.4 Experiments on Android

In order to evaluate the feasibility of using GPU interrupt timing information to

identify app behavior, we conduct three experiments on a Nexus 6 device.

5.4.1 Experiments Setup

The first experiment is for inferring the launched apps on Android. In this ex-

periment, we download the top 20 apps on Google Play in September 2018 (see

Figure 5.4 for the names of the apps). We use scripts to automatically launch each

app 100 times. While clicking the app icon, the interrupt sampling begins and lasts

for 5 seconds. The sampling rate is 20Hz which means we log the GPU interrupt

amount with 50ms. Each time an app is launched, we will log the interrupt amount

100 times. In total, we will get a vector with 100 reading.

The second experiment is for inferring activities within an app. We choose

WhatsApp as the test app and select 20 most popular activities in it. Each activity

will start by a button clicking and will lead to the specific screen change. We auto-

matically conduct those activities and log the interrupt at 20Hz for 5 seconds when

the clicking happens. The maximum vector length is also 100 in this experiment.

The third experiment is for inferring the opened webpage with Chrome on An-

droid. We choose eight popular webpages (see Figure 5.6 for the names of the

webpages). Each webpage is loaded for 100 times with scripts and the interrupt is

also logged at 20Hz for 5 seconds. For each webpage loading activity, we get a

63

vector at a length of 100.

For each experiment, we use Weka [36], a tool for classification and clustering,

to classify different activities. We use 10 folder cross-validation to test the precision

the classification can reach. The results are presented in the following section.

5.4.2 Model Precision

We select eight popular classifiers on Weka and classify the interrupt timing series

in 5 seconds for the two kinds of activities (inferring the launched app and activities

of WhatsApp). The length of the feature vectors is 100. Table 5.2 presents the

classification precision for each classifier with 10 folder cross-validation. The best

precision we can get for identifying the app launched is 92.70%, and 82.12% for

identifying WhatsApp scenarios. Among these classifiers, BayesNet provides the

best precision for identifying the launched app. RandomCommittee provides the

best precision for identifying WhatsApp scenarios.

Table 5.2: Precision of different classifiers for inferring app activities on Android

Classfier
Precision (%)

App Launching WhatsApp Scenario

Bagging 84.33 76.44

BayesNet 92.70 81.00

IB1 81.03 71.99

J48 75.36 73.96

LibSVM 59.53 70.01

NativeBayes 87.78 64.54

RandomCommittee 92.04 82.12

RandomTree 71.35 70.21

From the precision results, we can find that the precision of identifying the

launched app is higher than inferring WhatsApp activities. To find out the rea-

sons, we draw the heatmaps of the classification results for both experiments with

the classifiers which provide the best precision. Figure 5.4 presents the heatmap of

classifying launched app on Android. Generally, the precision is above 90% except

for SHAREit. By observing the app launching process of SHAREit, we find that

64

SHAREit starts with a dynamic advertisement which leads to an unstable pattern of

GPU interrupt timing series. Figure 5.5 presents the heatmap of classifying What-

sApp activities. We find that WhatsAppSenario 1 and WhatsAppSenario 2 are diffi-

cult to be differentiated. This also happens for WhatsAppSenario 15, WhatsAppSe-

nario 16, WhatsAppSenario 18 and WhatsAppSenario 20. By observing these sce-

narios, we found that the scenarios which are difficult to be differentiated have a

similar layout. For example, WhatsAppSenario 15 to WhatsAppSenario 20 are the

activities led by clicking the menu in WhatsApp. Most of them have a similar lay-

out and style. Hence, the GPU interrupt timing patterns are similar for them, as

presented in Figure 5.3

Figure 5.3: WhatsApp using senarios that are difficult to be distinguished

We also presented the heatmap for classification results of inferring the loaded

webpage on Android in Figure 5.6. The classification can reach 90% precision.

The imprecision implies the similarity between webpages (e.g., baidu.com and

wikipedia.org have indistinguishable instances).

We also use these two classifiers to evaluate how the time period affects the

precision for inferring the activities. The results are presented in Figure 5.7. As

presented in this figure, we can find that the smallest time period of sampling for

reaching 80% precision of inferring the launched app is 2 seconds, while for infer-

ring layout changes within WhatsApp is 1 second. This difference comes from the

fact that launching an app is slower than changing a layout within WhatsApp on the

experimental device.

65

!
"
#
$
%&

'(
)&
%*
+%
,

-%
."
/
0
0
1

23
45
(
1

67
8
9
25
&

:+
%(
);
%&
"

<
5#
$
%&

=
"
&-
;5>

6?
"
(
)"
(
)

@
9
A6
.%
(
(
"
+

<
B:
+%
(
)C
0
+&

!
$
%&
)8
C
C

4%
3%
D
%

6$
0
C
"
"

<
"
))
%(
*"
+

E
+%
/
-0
0
D

:5
1:
0
1

E
+%
/

$
5F
8
C
C

G
H
6A
I
%B
;%
$
F

!"#$%&%'(

JK L L L M L L L L L L L L L L L L L L L !"#$%&

L JN L L L L L L L L L M M L L L L L L L '()&%*+%,

O L JO L L M M L L L L L M L L L L L O L -%."/001

O L L JO L O L L M L L L L L L L M L M L 2345(1

K P Q N PR L S L Q M M L L S L L J Q L O 678925&

L L L L L RN K O L L L L L L L L L L P L :+%();%&"

L L L L L S RJ N L L L L L L L L L L M L <5#$%&

L L L L L L S JQ L L L L L L L L L L L L ="&-;5>

L L L L L L O L JN L M L L L L L L L L L 6?"()"()

L L L L L L L L L JK L L L L L L L L L M @9A6.%(("+

M L L M L L L L L L JK L L L L L L L L L <B:+%()C0+&

L L M L L L M L M L L JN L L L L L L L L !$%&)8CC

L L L L L M M L S L L L JM L L L L M M L 4%3%D%

L L L L L L L M L L L L L JR L L L L L L 6$0C""

L L L L L L L L L L L M L L JK L L L M L <"))%(*"+

L L L L L L L L L L L L L L M JR L L L L E+%/-00D

L L L L O L L L L L L L L L L L JS L M L :51:01

S L L L L L L M O L L M M L L L L RJ M M E+%/

L L L L L J Q R L L L L L L M L L L KQ M $5F8CC

O L M L L L L M L M L L L L L M L L L JS GH6AI%B;%$F

8T*U)*+,-.

)-+//.

/)+),.

01+0-.

)2+)3.

)-+)0.

)/+)/.

)0+)/.

)-+)0.

)*+/-.

)/+)).

)0+)/.

)/+)).

45
!
!
46
78
&&
%9
%#
:

5$;<8745!!4=8<($>#:

)/+)/.

)0+)-.

)*+)2.

)*+)2.

3/+3/.

/-+/0.

/)+),.

)-+)3.

Figure 5.4: Heatmap for classification results of inferring the launched app on An-

droid

5.4.3 Noise Analysis

In order to find out the strength of the trained models, we conduct an experiment

in which running apps in the background are added as the noises to test the mod-

els. We start three popular apps (Chrome, Facebook and WhatsApp) and keep them

running in the background. At the same time, Android also has its system apps

and services running (e.g., nfc and bluetooth services). In total, there are 31 run-

ning processes and 12 running applications (including the google services) which

are launched automatically. Meanwhile, we automatically launch WeChat and In-

stagram for 100 times to obtaining the timing series of GPU interrupt. We choose

these two apps since WeChat has similar layout each time it is launched, while In-

stagram has different layout based on whether there is new post. The precision of

identifying WeChat is 83.00% and 72.00% for identifying Instagram. The precision

results shows that background apps slightly reduce the precision of the identifica-

66

!
"#
$%
&'
'(
)*
+#
,-.
/0

!
"#
$%
&'
'(
)*
+#
,-.
/1

!
"#
$%
&'
'(
)*
+#
,-.
/2

!
"#
$%
&'
'(
)*
+#
,-.
/3

!
"#
$%
&'
'(
)*
+#
,-.
/4

!
"#
$%
&'
'(
)*
+#
,-.
/5

!
"#
$%
&'
'(
)*
+#
,-.
/6

!
"#
$%
&'
'(
)*
+#
,-.
/7

!
"#
$%
&'
'(
)*
+#
,-.
/8

!
"#
$%
&'
'(
)*
+#
,-.
/0
9

!
"#
$%
&'
'(
)*
+#
,-.
/0
0

!
"#
$%
&'
'(
)*
+#
,-.
/0
1

!
"#
$%
&'
'(
)*
+#
,-.
/0
2

!
"#
$%
&'
'(
)*
+#
,-.
/0
3

!
"#
$%
&'
'(
)*
+#
,-.
/0
4

!
"#
$%
&'
'(
)*
+#
,-.
/0
5

!
"#
$%
&'
'(
)*
+#
,-.
/0
6

!
"#
$%
&'
'(
)*
+#
,-.
/0
7

!
"#
$%
&'
'(
)*
+#
,-.
/0
8

!
"#
$%
&'
'(
)*
+#
,-.
/1
9

!"#$%&%'(

87 9 9 9 9 9 9 9 0 9 9 9 9 9 9 9 9 9 9 9 !"#$%&''()*+#,-./0

9 59 28 9 9 9 9 9 9 9 9 9 9 9 9 9 9 0 9 9 !"#$%&''()*+#,-./1

9 22 55 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 !"#$%&''()*+#,-./2

9 9 9 85 9 9 9 9 9 9 9 9 9 9 9 9 1 9 9 9 !"#$%&''()*+#,-./3

9 9 9 9 87 9 9 9 9 9 0 9 9 9 9 9 9 9 9 9 !"#$%&''()*+#,-./4

9 9 9 9 1 85 9 9 9 9 9 9 9 9 9 9 9 9 9 9 !"#$%&''()*+#,-./5

0 9 9 9 9 9 83 9 9 0 9 9 1 9 9 9 9 9 9 9 !"#$%&''()*+#,-./6

9 9 9 9 9 9 9 88 9 9 9 9 9 9 9 9 9 9 9 9 !"#$%&''()*+#,-./7

1 9 9 9 9 9 9 9 85 9 9 9 9 9 9 9 9 9 0 9 !"#$%&''()*+#,-./8

0 9 9 9 9 9 9 9 0 86 9 9 0 9 9 9 9 9 9 9 !"#$%&''()*+#,-./09

9 9 9 9 9 9 9 9 9 9 87 9 9 9 9 9 9 9 9 9 !"#$%&''()*+#,-./00

9 9 9 9 9 9 9 9 9 9 0 88 9 9 9 9 9 9 9 9 !"#$%&''()*+#,-./01

9 9 9 9 9 0 9 9 9 9 9 9 88 9 9 9 9 9 9 9 !"#$%&''()*+#,-./02

9 9 9 9 9 9 9 9 9 9 9 9 9 88 9 9 9 9 9 9 !"#$%&''()*+#,-./03

9 9 9 9 9 9 9 9 9 9 9 9 9 9 23 01 2 14 9 14 !"#$%&''()*+#,-./04

9 9 9 0 9 9 9 9 9 9 9 9 9 9 16 23 5 10 9 09 !"#$%&''()*+#,-./05

0 9 9 9 9 9 9 9 9 9 9 0 9 9 9 1 84 9 9 9 !"#$%&''()*+#,-./06

9 9 9 0 9 9 9 9 9 9 9 9 9 9 17 19 9 24 9 04 !"#$%&''()*+#,-./07

0 9 9 9 0 9 9 9 0 9 9 9 9 0 9 9 9 9 84 9 !"#$%&''()*+#,-./08

9 9 9 0 9 9 9 9 9 9 9 9 9 9 14 03 1 07 9 22 !"#$%&''()*+#,-./19

&:;<)*+,,-.$/0123451/&.!!36$#(1"%'"37$$0""#8

4
5
1
/&
.
!
!
36
$#
(
1
"%
'
"3
9
21
&&
%:
%#
8

;<+;=-

==+=<-

=>+>>-

;<+;=-

;?+;*-

;=+;<-

@,+@,-

A>>+>>-

;;+>>-

A>>+>>-

A>>+>>-

;)+;;-

;<+>>-

;;+>>-

;)+;;-

@?+,)-

;?+;=-

,,+@>-

;?+;=-

@,+@,-

Figure 5.5: Heatmap for classification results of inferring the WhatsApp activities

on Android

!"
"
!#
$
%&
"
'

("
)
*)
+
$
%&
"
'

,-
&$
+
"
"
.%
&"
'

+
-/
0
)
%&
"
'

1
/.
/2
$
0
/-
%"
3!

4
4
%&
"
'

*-
"
+
-"
%&
"
'

(-
5
"
"
%&
"
'

!"#$%&%'(

66 7 7 7 8 7 7 7 !""!#$%&"'

7 69 8 : 7 7 7 7 (")*)+$%&"'

7 ; <6 = : 7 8 7 ,-&$+"".%&"'

7 7 = 6; : 7 7 7 +-/0)%&"'

7 7 8 < <> 9 7 7 1/./2$0/-%"3!

7 8 7 7 9 67 7 : 44%&"'

7 : 7 8 7 8 6? 7 *-"+-"%&"'

7 7 7 7 9 : 7 68 (-5""%&"'

@A!%)*+,-.

)/+00.

1$234567#894:#6;9#(#<

7
#
8
9
4
:
#
6=
54
&&
%>
%#
<

))+00.

)?+00.

-)+00.

),+00.

-@+00.

)0+00.

)A+00.

Figure 5.6: Heatmap for classification results of inferring the loaded webpage on

Android

67

Figure 5.7: The precision of inferring app activities using different lengths of inter-

rupt timing series on Android

tion models. To increasing the strength of the models, a possible solution would be

adding background noises to the training set to simulating the real-world app using

scenario.

5.5 Experiments on Ubuntu

We also conducted similar experiments on Ubuntu which are inferring the launched

app and the opened webpage. The platform for this experiment is an Acer desk-

top device with Intel(R) Core(TM) i5-4590 CPU @ 3.30GHz and NVIDIA GPU

GF119.

5.5.1 Experiments Setup

The first experiment is for inferring the launched apps on Ubuntu. In this experi-

ment, we download 20 popular apps on Ubuntu, such as LibreOffice, vlc, Firefox

and so on (see Figure 5.8 for the names of the apps). We use scripts to automatically

launch each app 100 times. On Linux, it is easy to use the command line to launch

apps, so we don’t record the user interactions with the device. We log the timestamp

of launching each app with the command line and log the interrupt amount every

68

50ms. Each time an app is launched, we will log the interrupt amount 100 times. In

total, we will get a vector of the timing series for each app launching activity with a

length of 100.

The second experiment is for inferring opening different webpages through

chrome. We choose several popular webpages, such as Google, Facebook and so

on. Interrupt amount is also logged every 50ms and 100 times for each webpage

loading activity. In this experiment, each webpage will be automatically loaded for

100 times with Chrome.

For each experiment, we also use Weka [36] to classify different activities and

use 10 folder cross-validation to test the precision the classification can reach. The

results are presented in the following section.

5.5.2 Model Precision

Table 5.3: Precision of inferring app launching on Ubuntu using different classifiers

Classfier
Precision (%)

App Launching Webpage Loading

Bagging 95.400 83.125

BayesNet 88.800 73.125

IB1 97.650 83.125

J48 96.150 80.000

LibSVM 31.750 22.125

NativeBayes 93.050 72.250

RandomCommittee 97.000 84.625

RandomTree 94.900 79.500

We use the same eight popular classifiers with Weka to classify the labeled tim-

ing series and use 10 folder cross-validation to evaluate the models. The results for

inferring launched app and loaded webpage are presented in Table 5.3. The classifi-

cation in this table uses feature vectors with a length of 100. The best precision for

identifying the app launched is 97.00% and 84.625% for identifying the webpage

opened. Similar to mobile, inferring app launching activities has higher precision

than inferring loading different webpages in the same browser.

69

We also present the heatmap of classifying app launching and webpage loading

activities in Figure 5.8 and Figure 5.9. As presented in Figure 5.8, all Ubuntu ap-

plications can be well classified with feature vectors in length of 100. Figure 5.9

shows that webpages loaded by the same browser can be classified with reasonable

precision. Among the webpages, google.com, baidu.com, and wikipedia.org are not

that well differentiated, since the layout similarity of them is higher than other web-

pages. Comparing to webpage identification on Android, the precision on Ubuntu

is relatively lower. The reason is that the amount of information is similar on mo-

bile and desktop, but desktop has a much larger screen size. The similarity of the

displayed images is higher on desktop. Hence, the differentiation is more difficult

on desktop.

!"
#$

%&
'
(
")
*(

+,
-(
+.
/

*,
$
0

",1
-(
.
++
,!
(

0
,'
*,
2

34
2
#0
%,
!

%5
)
2
'
(
-1
,-
'

#%
-,
"

#)
'
#!
,%
4

1
-#
6(

!"
(
$
(
2
%,
2
(

!.
-(
1
,-
'

*(
#-
4

,2
&3
!#
0
(

&'
(
2
",6
(

&-
,%
#

2
(
.
+(
%!
5

2
.
%(
0
#'
7
7

6"
!

!"#$%&%'(

89 : ; : : ; : : : : : : : : : : : : : : !"#$%&

; 8< ; : : ; : : : : : ; : : : : : : : : '(")*(

: ; 8< : : ; : : : : : : : : : ; : : ; : +,-(+./

: : : 89 : : ; : : : : : : : ; : : : : : *,$0

: : : : 8< : : : : : ; ; : : : : : : : = ",1-(.++,!(

; : : : ; 8; : : ; ; : : = : : : : : = ; 0,'*,2

: : : : : : 88 : : : : : : : : : ; : : : 342#0%,!

: : : : : : : 89 : : : : : : : : : : = : %5)2'(-1,-'

: : : : : : : : >> : : : : : : : : : : : #%-,"

: : : : : : : : ; 89 : : : : : : : ; : : #)'#!,%4

: ? : : : : : : : : 8@ : : : : : : ; : ; 1-#6(

: : : : : : : : : : : 88 : : : : : : : ; !"($(2%,2(

: : : : : ? : : : : : : 8A : : : : : : : !.-(1,-'

: : : : : : ; : : : : : : 88 : : : : : : *(#-4

: : : : : : ; : : : : : : : 88 : : : : : ,2&3!#0(

: : ; : : : : = : : : : : : : 8A : : : : &'(2",6(

: : : : : = : : : : : : : ; : : 8A : : : &-,%#

: : : : : : : : : ; : : : : : : : 89 ; : 2(.+(%!5

; : : : ; : : : : : ; : : : : ? : ; 8? : 2.%(0#'77

: : : : : : : : : : : = : : : : : : = 8< 6"!

B6*C)*+,,-

).+,,-

/
0
0
12
34
&&
%5
%#
6

))+,,-

))+,,-

)*+,,-

)*+,,-

)7+,,-

)8+,,-

)7+,,-

9,,+,,-

)7+,,-

):+,,-

))+,,-

)*+,,-

/$;<431/001=4<($>#6

)7+,,-

).+,,-

).+,,-

)7+,,-

).+,,-

)9+,,-

))+,,-

Figure 5.8: Heatmap for classification results of inferring the launched app on

Ubuntu

We also use these two classifiers to evaluate how the time period affects the

precision for inferring the activities. The results are presented in Figure 5.10. As

presented in this figure, we can find that the smallest time period of sampling for

70

!"
"
!#
$
%&
"
'

("
)
*)
+
$
%&
"
'

,-
&$
+
"
"
.%
&"
'

+
-/
0
)
%&
"
'

1
/.
/2
$
0
/-
%"
3!

4
4
%&
"
'

*-
"
+
-"
%&
"
'

(-
5
"
"
%&
"
'

!"#$%&%'(

66 7 7 89 : ; 7 8 !""!#$%&"'

7 <8 8 7 7 = 7 > (")*)+$%&"'

7 ; <8 ; > 8 8 7 ,-&$+"".%&"'

8> 7 = :< 8; 8 7 7 +-/0)%&"'

9 7 9 8; 6? 8 8 7 1/./2$0/-%"3!

; 9 8 7 7 <; 8 7 44%&"'

7 7 9 8 ; 7 ?< 9 *-"+-"%&"'

8 > 7 7 8 8 9 <7 (-5""%&"'

@A!%)*+,-.

)/+00.

/0+00.

1
#
2
3
4
5
#
67
84
&&
%9
%#
:

;$<=4861#2345#6>3#(#:

??+00.

/@+00.

/@+00.

,/+00.

?)+00.

/A+00.

Figure 5.9: Heatmap for classification results of inferring the loaded webpage on

Ubuntu

Figure 5.10: The precision of inferring app activities using different lengths of in-

terrupt timing series on Ubuntu

71

reaching 95% precision of inferring the launched app is 0.5 seconds, while reach-

ing about 80% precision for inferring webpage loading is 1.5 second. This differ-

ence implies that launching applications splashing differently from the very begin-

ning while loading webpages with the same browser splashes differently after the

browser is opened.

There are several main differences of experimental results on Android and

Ubuntu. First of all, app identifying precision on Ubuntu is higher than Android.

On Android, the best precision is 92.70% while 97.65% on Ubuntu. The reasons

are that Android, as less powerful devices, is weak in handling high rate sampling

which may bring in noises and GPU interrupts on Android may not provide as

much information as desktop. Second, the precision webpage loading identification

on Android is higher than Ubuntu. This is because the relative information contains

in the content of frames displayed is less on Ubuntu.

5.5.3 Noises Analysis

Different from the mobile platform, GUIs at multiple applications are usually dis-

played simultaneously on the screen of a Linux system. For example, users may

open more than one application at the same time and the layouts of different apps

may overlap. In order to find out the strength of the classification model for resisting

noises from background applications, we conduct an experiment in which the target

application is launched while there are background applications running with visi-

ble windows on the desktop. The first scenario corresponds to a webpage is opened

and the launched app will overlap the layout of the background webpage. Another

scenario is a video playing in the background while the app is launched. With IB1

classifier, the precision of identifying the launched app with a webpage in the back-

ground is 66.00%. The precision of identifying launched app with a video playing

in the background is lower than 10%. The results show that static background app

has smaller effects on the precision of the model, while dynamic background app

72

will disable the attacks.

5.6 Discussion

In this section, we discuss the strength and weakness points of the proposed side-

channel attack.

The proposed side-channel attacks can effectively disclose app activities on

Linux and Linux-based systems without access large amount of information. This is

important as it is more and more difficult to access other processes’ information, es-

pecially on Android. By analyzing the launched app and the activities within apps,

we can detect the user behavior on the devices. The attacks have low overheads. We

don’t need to modify the system, obtain root permission or hook the target applica-

tions. We only need to start a small logging program on the target devices without

any permission. This is feasible with phishing or repacking techniques and difficult

to be detected.

However, the proposed attacks have several weaknesses. First, it is not feasible

on devices which do not allow third-party apps to access /proc/interrupts

file. However, there are still a considerable amount of systems provide accesses

to this file. Second, the attack is sensitive to noises from background applications

which hardly use GPU and generates interrupts. In the future, we would like to

investigate how to reduce noises generated by background applications. Third, the

built models are specific for different platforms and scenarios. The GPU interrupt

mechanisms are different for different types of GPU and drivers. Hence, the attacks

need a training procedure to build models for the target platform.

5.7 Summary

In this chapter, we aim to use GPU interrupt timing information to infer app activi-

ties on Linux and Linux-based systems. We use the timing series of GPU interrupt

73

to feature the app activities and classify the features to identify the activities with

machine learning techniques. With this method, we can effectively identify app ac-

tivities. It can be used in both inferring the launched app and the activities in an

application. We conduct experiments on Android and Ubuntu. The results show

that the identification models have high precision and are effective with static back-

ground noises.

74

Chapter 6

Application of Dynamic Analysis in a

Malware-Spreading Study

This chapter demonstrates that dynamic analysis under non-rooted running environ-

ment enables analysis of malware spreading. This chapter proposes to simulate a

malware-spreading environment under real running environment and analyze dif-

ferent factors that would affect the malware spreading.

6.1 Introduction

Smartphone has gained tremendous adoption and becomes more and more neces-

sary in our daily lives since its inception in 1973. According to GSMA real-time

intelligence data, there are now over 8.98 Billion mobile connections worldwide,

which surpasses the current world population of 7.69 Billion implied by UN digital

analyst estimates [8]. Unfortunately, the popularity of smartphone makes it one of

the most popular platforms targeted by attackers. Malware is one of the most se-

rious threats on mobile platforms, especially on Android, the most popular mobile

system (with more than 85% market sharing [38]).

Malware authors aggressively add different features to upgrade the severity of

the malware. For example, they may use dynamic code loading, Java-reflection,

75

encryption, and obfuscation to avoid detection by dynamic analysis [47]. A new

feature that shows up on modern malware recently is that it may try to infect de-

vices by spreading through mobile networks (e.g., SMS or social networks). The

propagation of malware can scale up the attacks to get millions of people being

infected. Normally, a malware will access the contact on the device and send mali-

cious content (e.g., malicious links or videos) to the contacts. If the contacts receive

and click the malicious content, the malware will automatically be installed on their

devices to conduct malicious behavior, such as stealing private information.

To spread out, phishing has been one of the most popular spreading methods

adopted by Android malware. As reported by authorities, devices can easily get

infected when users click malicious links in SMS, instant messages or emails:

1. “Android Banking Trojan MoqHao Spreading via SMS Phishing in South Ko-

rea” McAfee Aug, 2017

2. “Android Mazar malware that can wipe phones spread via SMS” BBC Feb,

2016

3. “A clever WhatsApp scam could trick you into spreading a virus to friend”

buzz.ie May, 2017

Figure 6.1: Malware spreading among mobile devices.

76

Figure 6.1 presents how malware spreads among different devices. Normally, an

infected device would try to send malicious messages to the victim device. Malware

is able to get the address of the victim devices by scanning the contact list of the

mobile user. It typically sends messages exhaustively to any address it can obtain.

The spreading message will contain malicious links or media files. By clicking

the links or downloading the files, the victim device will automatically download

malware from the hosting site and get infected.

To analyze how different factors would affect the spreading of malware, we

propose a simulation study for analyzing malware spreading among mobile users.

The proposed dynamic analysis techniques work on non-rooted devices in the wild

which require deployment on real users devices. This study demonstrates the feasi-

bility of applying dynamic analysis to real users devices for analyzing. We dynam-

ically monitor different factors (e.g., time and location) when the message spreads

out and record the recipient’s response on the message. To demonstrate the effec-

tiveness of dynamic analysis on crowd-sourcing, we conduct a user study with real

users on the simulation system we build. We recruit 48 participants to spread out

seemingly malicious messages to their contacts. The seemingly malicious message

contains a URL to simulate the malicious malware spreading messages. However,

the webpage that the URL leads the user to is totally harmless. With a provided

app, participants can customize the factors about the messages (e.g., the method for

sending the message, the time when the messages are sent out, and the content of the

message). By analyzing the messages sent out by the participants and the responses

from the receiver, we emphasize the factors that would affect malware spreading

with instant messaging.

6.2 Problem Statement

In this study, we hope to identify under which circumstance a victim would be more

likely to get infected by a malicious message. We conduct a user study to simulate

77

the malware spreading via a seemingly malicious message that contains a phishing

link but without any harmless content. Participants in the user study are required to

send seemingly malicious messages to their contacts. The link leads the user to a

webpage for recording users’ reactions without any harmful content. We will record

whether the link is clicked by the contact of the participant to represent whether the

malware successfully spreads.

We hope to use this study to analyze how different factors would affect the

malware spreading, e.g., whether using WhatsApp will reach higher spreading rate

compare to other messaging tools. We take several factors that would affect the

spreading into consideration. While the malware spreads among mobile users, it

usually steals the users’ contact lists and sends messages to them. From the aspect

of the recipient, the relationship and interaction frequency with the sender determine

their trust degree on the received messages. If the messages are sent by a familiar

person, they may start to read the content of the messages. Otherwise, there is

a high possibility that the recipient may ignore the message. The other factors

determine whether the user would be suspicious about the message. If the messages

are received in abnormal time via a channel rarely used for their conversation, they

would be more suspicious on it. The content of the message also matters since they

would chat more frequently on specific topics. An abnormal slang may also raise

the recipient’s suspicion. We also consider the location of the recipient when they

click the URL to see whether they would be more suspicious about the messages in

specific locations. For example, if they are at the same location, the recipient may

ask about the message to avoid infection. We choose these factors and classify each

of them as follows:

1. Relationship between message sender and receiver: Friend / Family Member

/ Acquaintance / Stranger / Colleague

2. Frequency of interaction between sender and receiver: Daily / Weekly /

Monthly / Rarely

78

3. Time of sending the messages: Weekday / Weekend

4. Method of the spreading: SMS / Facebook / WeChat / WhatsApp / Gmail

5. Wording of the message: Personalized / Impersonalized

6. Location of the receiver

6.3 Simulation System

In this section, we present the design of the system we build for simulating malware

spreading among multiple users.

6.3.1 Overview

Figure 6.2 presents the overview of the system. The server is a secure server in

SMU for managing users and different resources. The mobile client is a third-party

application we developed to deploy monitoring and message customization on the

users’ devices. During runtime, the mobile client helps users to send out seemingly

malicious messages to their contacts. The responses from recipients of the messages

will be recorded by our server. We also conduct a post-survey on the recipients to

obtain their feedback on the study. The feedback is also stored on the server.

Figure 6.2: Overview of the system for simulation of malware spreading

79

6.3.2 Seemingly malicious Message

The main goal of this system is to help users send out seemingly malicious mes-

sages and record responses from the recipients. We present the constitution of the

seemingly malicious messages and how to send it out with our mobile client in this

section.

To simulate the malware spreading messages, the message sent out from the

client contains two parts - description of offers (e.g., coupon of restaurants) and a

corresponding URL link. A sample message as follows:

Hi, I am planning for Phuket, do you wanna join? Just checked flights are really

cheap: www.singaporeblogzone.com/blog?s_id=8&r_id=2

In the resource repository on the server, we have ten sample messages for the

users to choose from. These messages contain different topics of offers, such as

anti-virus tools and flight deals. The user can also customize the message to include

his own slang. The URL link leads the users to a website managed by our server.

We embed id of both the sender and the recipient in the link to identify them when

the link is clicked.

Figure 6.3 presents the steps for users to customize the seemingly malicious

messages after choosing the recipients. First of all, the users should choose the

main topic of messages from the ten templates stored on the server. Then, they

should decide whether to customize the message to include their own slang. Fi-

nally, they need to choose the methods for sending out messages. We include What-

sApp, Gmail, WeChat and Facebook messages as the spreading methods. SMS is

an additional method in case the recipient does not use WhatsApp.

6.3.3 Status Monitoring

In order to find out the factors that would affect the success rate of malware spread-

ing, we monitor the status of the users’ devices when the message is sent out.

Mainly, we consider five factors on the users’ devices. The first factor is the re-

80

Figure 6.3: Steps for users to customize the messages to be sent out

lationship between the sender and the recipient. We also evaluate their familiarity

with contact frequencies, e.g., contact every day or once a week. Before sending

out messages, the sender needs to choose their familiarity with the recipient. The

second factor is the time when the message is sent out. The user can choose when to

send out the messages and the client app will record it. The third one is the method

of sending messages. We provide different choices of the spreading methods for

users and record their selection at runtime. We include popular social network mes-

saging tools, such as Gmail, Facebook, WhatsApp, and WeChat. The fourth one is

the topic of the message and whether it is customized by the user. The last one is the

location of the recipient when the message is clicked. We record the IP addresses

of the recipients’ devices when they click the links.

6.4 Simulation Study

With the proposed simulation system, we conduct a user study to simulate malware

spreading and record user reactions to the malicious messages. This study has been

approved by SMU IRB under approval number IRB-17-109-A135(1217). With the

approval, we have conducted user study among students and staffs in SMU and their

contacts.

81

6.4.1 Recruitment

In this study, we recruit two groups of participants from Singapore. The first group

(Group A) of participants are those who send out the malware spreading message.

The other group (Group B) of participants are the message recipients. We recruit

students and staffs from Singapore Management University (SMU) as Group A par-

ticipants. Group B participants are recruited through invitation links sent by Group

A since only Group A can reach their contacts and send messages to them following

the data privacy protection policies.

The recruitment is conducted via both online and physical advertisement to

SMU community, including emails, printed posters, and so on. The advertisement

will explain the goal, procedure, and compensation to the potential participants.

The one who is interested in this study can scan the QR code in the advertisements

to download our app named SecAware and register the study with it. In the in-

formed consent, participants in Group A are aware of the whole story of this study.

After successful registration, they can send invitation links to their contacts to re-

cruit Group B participants. The invitation link will lead the potential participants

to a webpage which explains that they would receive several messages. However,

we don’t provide the information about the whole study to them, since we need to

record their real actions to the messages.

The study started from June 1 2019 and lasted for five weeks. In the first two

weeks, we recruit participants and encourage them to invite their contacts to join

the study. In the third and fourth weeks, participants start to send messages to their

contacts and research team will also send the messages. The last week, participants

need to finish the post-survey. After that, we will pay them according to their con-

tribution to this study. They would receive cash, Starbucks e-gift card, and chances

of winning an iPhone XR as compensation. The lucky draw will be held in August

2019. Only with Group A’s contacts successfully registered the study as Group B,

both groups of participants can get compensation.

82

6.4.2 Seemingly malicious Message

The message to be sent to Group B during the user study (not the invitation message)

contains two parts - description of offers (e.g., discount coupon of restaurants) and

a corresponding URL link. The only information embedded in this link is the ID of

Group A and ID of Group B. These IDs are numeric, assigned by our app and do

not contain any personal information.

Group A can then modify the message (except the link) to make it personalized

to the specific contact recipient (i.e. Group A can edit the message to include his

own slang which he generally uses while having a conversation with different con-

tacts). However, we will provide topics to Group A based on which he can frame

his own message. The topics are the same as the deals on the webpage that the URL

points to (contents of which are described in the next paragraph). For example, a

sample message is: Hey, check out these 5 best dining deals. https://.... On the

webpage, there would be similar deal ads. The research team will communicate

to Group A that Group A should not modify the message in a way that will seem

offensive to Group B and generally the message should be in good taste.

6.4.3 Spreading

Group A can start to send messages to Group B after Group B registers the study

for one week. We choose one week as the period to refresh Group B’s memory

according to the Ebbinghaus curve. Ebbinghaus curve shows that memory retention

is 25% after one week. Group A will first choose a participant in Group B invited

by him/her and specify their relationship and contact frequency. After this, Group

A can customize the message and start to send the message out.

In order to find out the difference between sending the spreading message by

acquaintance or strangers, we send the message twice to the same participant in

Group B by both the Group A participant and the research team (unknown number

to Group B). Before sending out messages, group A can choose to send the message

83

first or let the research team send the message first. After one week, the other entity

will send the same message again to the chosen Group B participant.

6.4.4 Results

We have implemented the dynamic analysis system including the app for group A

to customize and send messages and the server application for logging reactions in

group B. In total, we have recruited 48 participants from SMU as Group A, 90 of

their contacts registered the study as Group B. During the study, 144 messages have

been sent to 84 participants in Group B. Among these messages, 91 are sent by par-

ticipants in Group A and 53 are sent by the research team. If the recipient clicks the

seemingly malicious URL in the message, we call this recipient “infected”. In total,

22 participants in Group B get “infected” in this simulation of malware spreading.

We analyze details of the messages and clicks on the links in the seemingly mali-

cious messages and present the results as follows.

Figure 6.4 presents the times of clicks on the seemingly malicious URL and the

corresponding numbers of contacts (e.g., eight participants clicked the URL for one

time). Some of the “infected” participants click the link in the seemingly malicious

message for once. However, there are a considerable number of participants who

would click the link. From the survey on the participants, they are deceived by the

messages and would like to figure out the content on the webpage, so they click

the links for many times to see whether there is something wrong on the network

or webpage. This presents that participants who click the link for multiple times

would be vulnerable to the phishing messages.

First, we analyze the infection rate with different message sending methods

which are a simulation of the method of malware spreading. Figure 6.5 presents

the number of infected participants from different spreading methods, including

Facebook, Gmail, SMS, WhatsApp, and WeChat. During this study, we do not have

samples of message sending via Facebook. Among the other methods, we found

84

Figure 6.4: The number of participants who clicked the URL in the seemingly ma-

licious message for different times

that WeChat and WhatsApp have a higher infection rate during malware spreading.

It seems people are more vigilant to email and SMS. This may due to the popularity

of phishing attacks via email and SMS.

Figure 6.5: The number of infected participants from different spreading methods

Second, we analyze the infection rate of participants who have a different re-

lationship with the message sender. In order to find out whether people would be

infected by messages sent by strangers, we also send messages to the participants

from the research team. Figure 6.6 presents how relationship between the sender

and the recipient would affect the infection rate. From this figure, we can find that

participants with family, friend and colleague relationships are more likely to be in-

fected. They are more vigilant to messages sent by their acquaintances or strangers.

85

Sending the messages by research team shows whether the participants would get

educated in this study. Among the messages to the 84 participants in Group B, only

1 get infected for the second time. This shows that lots of participants would get

educated in this study, which means few people would get infected by the malware

spreading messages for twice. We also analyze the contact frequency between the

sender and recipient. In our dataset, more than 85% are marked as contacted every

day by Group A, and only seven are labeled as frequently contacted. A possible

reason is that some pairs of participants have close and reliable relationships but

may not contact via messages frequently. This often happens among colleagues,

families, and close friends.

Figure 6.6: The number of infected participants who have a different relationship

with the sender

Third, we analyze the number of clicks on the seemingly malicious URL in

the messages received by the participants in different time periods as presented in

Figure 6.7. From this figure, participants react to the messages more actively at

noon and in the afternoon. They are more likely to be infected at noon and in the

afternoon. The first possible reason is that people may be not that active in reading

and replying messages in the morning and at night. Another reason is that the

participants’ vigilance falls at noon and in the afternoon. For estimated duration

between the message receiving and the URL clicking, it takes shorter than 5 mins

for nine participants, shorter than 2 hours for eleven, and longer than 5 hours for the

86

other two. This means most of the participants would get infected by the message

in 2 hours, otherwise, they would ignore the message.

Figure 6.7: The number of participants who are infected in different time

We have also recorded the IP addresses of the infected participants for identi-

fying whether location would affect the infection rate. Due to the inaccuracy of

location inferring via IP address, we can only get a very general address (e.g., cen-

tral of Singapore) of the participant who clicks the seemingly malicious URL. As

the server is also located in SMU, we can also identify those who get infected are

using SMU network or not. In total, we have recorded 30 distinct IP addresses while

the URLs are clicked. Seven IP addresses are from SMU; the others are from differ-

ent part of Singapore. This implies that people are more likely to be infected when

they are using their personal network access rather than network from their school

or company. Among the messages sent out, only 3 are sent from SMU campus and

none of them gets “infected” participants in Group B. For the messages sent from

other places, it is difficult to identify the location. Hence, the current data is not

sufficient to provide clues about whether the pair of participants are in the same

location would affect the infection rate or not.

Among the 144 messages sent out, 42 of them are customized by the sender.

And, 10 (out of 22) of the clicks are on the URL in the customized messages. The

87

infection rate of customized messages is 23.80% and the infection rate of the default

messages is 15.71%. Customized messages lead to slightly higher infection rate.

This shows the participants are more vulnerable to customized messages which are

more likely to be edited by their contacts.

In summary, we would have the following results corresponding to the questions

raised in Section 6.2:

1. More reliable relationship between message sender and receiver (family and

colleague) would increase the success rate of the spreading.

2. Higher frequency of interaction between sender and receiver corresponds to a

higher success rate.

3. During noon and afternoon, people may be more likely to be infected by

malware spreading messages.

4. WeChat, WhatsApp and SMS are the methods which lead to a higher suc-

cess rate in the spreading. From the post-survey conducted by the receivers,

similar messages would be more likely to be found in WhatsApp messages.

5. Customized messages which are personalized by the sender leads to a higher

success rate in malware spreading.

6.5 Summary

In this chapter, we aim to analyze how external environment and human-related

factors affect malware spreading. We simulate a popular malware spreading method

with which malware spreads among mobile users via instant messages. We conduct

a user study to simulate the spreading and collect the data to record the external

factors as well as users’ responses to the malware spreading messages. We find

that spreading method, relationship, and contact frequency significantly affect the

spreading of malware via instant messages.

88

Chapter 7

Conclusion

App analysis on non-rooted devices in the wild is a more and more important re-

search problem, since security mechanisms are introduced by Android to prevent

accessing other apps’ runtime information. In this thesis, we address the importance

of this problem and propose solutions of dynamic analysis on non-rooted devices

without system modification or app instrumentation.

We first present a code-reuse-based technique for protecting Android applica-

tions which enhances the concealment of both Java and native code in Android apps

through hiding essential code. Our evaluation shows that the limited binary re-

sources in Android apps are sufficient for applying code-reuse-based obfuscations.

We further implement AndroidCubo semi-automate the process of obfuscating es-

sential code. Examples present that it is practical to protect applications with An-

droidCubo.

Then, we present our efforts on the dynamic analysis of app behavior under

unmodified and non-rooted devices. We propose UpDroid - a system for dynami-

cally monitoring Android apps’ sensitive behavior. It uses different APIs to moni-

tor Android system at runtime and leverages learning to rank technique to identify

the initiator of the detected behavior. We use the permission coverage, the run-

time experiments and the comparison with the traditional API hooking method to

demonstrate the capabilities of UpDroid. The results show that UpDroid can de-

89

tect sensitive behavior that manipulates the resources of the devices and identify the

apps that trigger the behavior.

We also propose to use GPU interrupt timing information to infer app activi-

ties on Linux and Linux-based systems. We use the timing series of GPU interrupt

to feature the app activities and classify the features to identify the activities with

machine learning techniques. With this method, we can effectively identify app ac-

tivities. It can be used in both inferring the launched app and the activities in an

application. We conduct experiments on Android and Ubuntu. The results show

that the identification models have high precision and are effective with static back-

ground noises.

Finally, we analyze how external environment and human-related factors affect

malware spreading. We simulate a popular malware spreading method with which

malware spreads among mobile users via instant messages. We conduct a user study

to simulate the spreading and collect the data to record the external factors as well

as users’ responses to the malware spreading messages.

90

Bibliography

[1] Dexguard. https://www.guardsquare.com/dexguard.

[2] Dexguard. https://dexprotector.com/.

[3] B. Alll and C. Tumbleson. Dex2jar: Tools to work with android. dex and java. class

files.

[4] S. Anand, M. Naik, M. J. Harrold, and H. Yang. Automated concolic testing of smart-

phone apps. In Proceedings of the ACM SIGSOFT 20th International Symposium on

the Foundations of Software Engineering (FSE ’12), page 59. ACM, 2012.

[5] AppBrain. Top android sdk versions, 2018.

[6] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie. Pscout: analyzing the android per-

mission specification. In Proceedings of the 2012 ACM conference on Computer and

communications security (CCS ’12), pages 217–228. ACM, 2012.

[7] M. Backes, S. Bugiel, E. Derr, P. McDaniel, D. Octeau, and S. Weisgerber. On demys-

tifying the android application framework: Re-visiting android permission specifica-

tion analysis. In Proceedings of 25th USENIX Security Symposium (USENIX Security

’16), pages 1101–1118. USENIX Association, 2016.

[8] bankmycell. How many people have phones in the world?

https://www.bankmycell.com/.

[9] A. Bianchi, Y. Fratantonio, C. Kruegel, and G. Vigna. Njas: Sandboxing unmodified

applications in non-rooted devices running stock android. In Proceedings of the 5th

Annual ACM CCS Workshop on Security and Privacy in Smartphones and Mobile

Devices (SPSM ’15), pages 27–38. ACM, 2015.

[10] T. Bläsing, L. Batyuk, A.-D. Schmidt, S. A. Camtepe, and S. Albayrak. An android

application sandbox system for suspicious software detection. In Proceedings of the

5th International Conference on Malicious and Unwanted Software (MALWARE ’10),

pages 55–62. IEEE, 2010.

[11] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang. Jump-oriented programming: a new

class of code-reuse attack. In Proc. ACM ASIACCS, 2011.

[12] D. Bogdanas. Dperm: Assisting the migration of android apps to runtime permissions.

arXiv preprint arXiv:1706.05042, 2017.

[13] E. Buchanan, R. Roemer, H. Shacham, and S. Savage. When good instructions go

bad: generalizing return-oriented programming to risc. In Proc. ACM CCS, 2008.

91

https://www.guardsquare.com/dexguard
https://dexprotector.com/
https://www.bankmycell.com/

[14] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani. Crowdroid: behavior-based malware

detection system for android. In Proceedings of the 1st ACM workshop on Security and

privacy in smartphones and mobile devices (SPSM ’11), pages 15–26. ACM, 2011.

[15] Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li. Learning to rank: from pairwise

approach to listwise approach. In Proceedings of the 24th international conference on

Machine learning (ICML ’07), pages 129–136. ACM, 2007.

[16] N. Carlini and D. Wagner. Rop is still dangerous: Breaking modern defenses. In

USENIX Security Symposium, 2014.

[17] J.-T. Chan and W. Yang. Advanced obfuscation techniques for java bytecode. Journal

of Systems and Software, 71(1):1–10, 2004.

[18] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham, and M. Winandy.

Return-oriented programming without returns. In Proc. ACM CCS, 2010.

[19] Q. A. Chen, Z. Qian, and Z. M. Mao. Peeking into your app without actually see-

ing it:{UI} state inference and novel android attacks. In 23rd {USENIX} Security

Symposium ({USENIX} Security 14), pages 1037–1052, 2014.

[20] S. R. Choudhary, A. Gorla, and A. Orso. Automated test input generation for android:

Are we there yet? In Proceedings of the 30th IEEE/ACM International Conference on

Automated Software Engineering (ASE ’15), pages 429–440. IEEE, 2015.

[21] C. Collberg, C. Thomborson, and D. Low. A taxonomy of obfuscating transforma-

tions. Technical report, Department of Computer Science, The University of Auck-

land, New Zealand, 1997.

[22] C. Collberg, C. Thomborson, and D. Low. Manufacturing cheap, resilient, and stealthy

opaque constructs. In Proceedings of the 25th ACM SIGPLAN-SIGACT symposium on

Principles of programming languages, pages 184–196. ACM, 1998.

[23] V. Dang. Ranklib. 2013.

[24] S. K. Dash, G. Suarez-Tangil, S. Khan, K. Tam, M. Ahmadi, J. Kinder, and L. Cav-

allaro. Droidscribe: Classifying android malware based on runtime behavior. Mobile

Security Technologies (MoST 2016), 7148:1–12, 2016.

[25] L. Davi, A. Dmitrienko, A.-R. Sadeghi, and M. Winandy. Return-oriented program-

ming without returns on arm. System Security Lab-Ruhr University Bochum, Tech.

Rep, 2010.

[26] L. Davi, A. Dmitrienko, A.-R. Sadeghi, and M. Winandy. Privilege escalation attacks

on android. In Information Security. Springer, 2011.

[27] L. Davi, D. Lehmann, A.-R. Sadeghi, and F. Monrose. Stitching the gadgets: On

the ineffectiveness of coarse-grained control-flow integrity protection. In USENIX

Security Symposium, 2014.

[28] W. Diao, X. Liu, Z. Li, and K. Zhang. No pardon for the interruption: New inference

attacks on android through interrupt timing analysis. In Proceedings of the 2016 IEEE

Symposium on Security and Privacy (S&P ’16), pages 414–432. IEEE, 2016.

[29] E. Dupuy. Jd-gui: Yet another fast java decompiler. URL http://java. decompiler. free.

fr/? q= jdgui/accessed March, 2012.

92

[30] fgwei. Android api to permission mapping extractor, 2017.

[31] E. Göktaş, E. Athanasopoulos, M. Polychronakis, H. Bos, and G. Portokalidis. Size

does matter: Why using gadget-chain length to prevent code-reuse attacks is hard. In

23rd USENIX Security Symposium, San Diego, CA, pages 417–432, 2014.

[32] Google. Jni tips. http://developer.android.com/.

[33] Google. Application security, 2017.

[34] Google. Fileobserver, 2017.

[35] Google. Ui/application exerciser monkey, 2017.

[36] G. Holmes, A. Donkin, and I. H. Witten. Weka: A machine learning workbench. 1994.

[37] H. Huang, K. Chen, C. Ren, P. Liu, S. Zhu, and D. Wu. Towards discovering and

understanding unexpected hazards in tailoring antivirus software for android. In Pro-

ceedings of the 10th ACM SIGSAC Symposium on Information, Computer and Com-

munications Security (AsiaCCS ’15), pages 7–18. ACM, 2015.

[38] I. D. C. (IDC). Smartphone market share, 2018.

[39] Y. Jing, Z. Zhao, G.-J. Ahn, and H. Hu. Morpheus: automatically generating heuristics

to detect android emulators. In Proceedings of the 30th Annual Computer Security

Applications Conference (ACSAC ’14), pages 216–225. ACM, 2014.

[40] M. Karami, M. Elsabagh, P. Najafiborazjani, and A. Stavrou. Behavioral analysis of

android applications using automated instrumentation. In Proceedings of the 2013

IEEE 7th International Conference on Software Security and Reliability-Companion

(SERE-C ’13), pages 182–187. IEEE, 2013.

[41] M. Koscielnicki. Nvidia hardware documentation, 2019.

[42] E. Lafortune et al. Proguard. http://proguard.sourceforge.net.

[43] P. Lantz, A. Desnos, and K. Yang. Droidbox: Android application sandbox, 2017.

[44] K. Lu, S. Xiong, and D. Gao. Ropsteg: program steganography with return oriented

programming. In Proc. ACM CODASPY, 2014.

[45] H. Ma, K. Lu, X. Ma, H. Zhang, C. Jia, and D. Gao. Software watermarking using

return-oriented programming. 2015.

[46] A. Machiry, R. Tahiliani, and M. Naik. Dynodroid: An input generation system for

android apps. In Proceedings of the 9th Joint Meeting on Foundations of Software

Engineering (ESEC/FSE ’13), pages 224–234. ACM, 2013.

[47] A. Mahboubi, S. Camtepe, and H. Morarji. A study on formal methods to generalize

heterogeneous mobile malware propagation and their impacts. IEEE Access, 5:27740–

27756, 2017.

[48] S. Marchesin. Linux graphics drivers: an introduction. 2012.

[49] MindMac. Android eagleeye, 2016.

[50] T. Morkel, J. H. Eloff, and M. S. Olivier. An overview of image steganography. In

ISSA, 2005.

93

http://developer.android.com/
http://proguard.sourceforge.net

[51] S. Mutti, Y. Fratantonio, A. Bianchi, L. Invernizzi, J. Corbetta, D. Kirat, C. Kruegel,

and G. Vigna. Baredroid: Large-scale analysis of android apps on real devices. In

Proceedings of the 31th Annual Computer Security Applications Conference (ACSAC

’15), pages 71–80. ACM, 2015.

[52] Nergal. The advanced return-into-lib(c) exploits (pax case study). Phrack magazine,

4(58), 1996.

[53] Z. Ning and F. Zhang. Ninja: Towards transparent tracing and debugging on arm.

In Proceedings of 26th USENIX Security Symposium (USENIX Security ’17), pages

33–49. USENIX Association, 2017.

[54] T. Petsas, G. Voyatzis, E. Athanasopoulos, M. Polychronakis, and S. Ioannidis. Rage

against the virtual machine: hindering dynamic analysis of android malware. In Pro-

ceedings of the 7th European Workshop on System Security (EuroSec ’14), pages 5:1–

5:6. ACM, 2014.

[55] Z. Qian, Z. M. Mao, and Y. Xie. Collaborative tcp sequence number inference attack:

how to crack sequence number under a second. In Proceedings of the 2012 ACM

conference on Computer and communications security, pages 593–604. ACM, 2012.

[56] B. Rashidi, C. Fung, A. Nguyen, T. Vu, and E. Bertino. Android user privacy pre-

serving through crowdsourcing. IEEE Transactions on Information Forensics and

Security, 13(3):773–787, 2017.

[57] J. Salwan and A. Wirth. Ropgadget, 2012.

[58] E. J. Schwartz, T. Avgerinos, and D. Brumley. Q: Exploit hardening made easy. In

USENIX Security Symposium, pages 25–41, 2011.

[59] D. Seal. ARM architecture reference manual. Pearson Education, 2001.

[60] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, and Y. Weiss. ”andromaly”: a behav-

ioral malware detection framework for android devices. Journal of Intelligent Infor-

mation Systems, 38(1):161–190, 2012.

[61] H. Shacham. The geometry of innocent flesh on the bone: Return-into-libc without

function calls (on the x86). In Proc. ACM CCS, 2007.

[62] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and A.-R. Sadeghi.

Just-in-time code reuse: On the effectiveness of fine-grained address space layout

randomization. In Proc. IEEE Symposium on Security and Privacy. IEEE, 2013.

[63] M. Spreitzenbarth, F. Freiling, F. Echtler, T. Schreck, and J. Hoffmann. Mobile-

sandbox: having a deeper look into android applications. In Proceedings of the 28th

Annual ACM Symposium on Applied Computing (SAC ’13), pages 1808–1815. ACM,

2013.

[64] K. Tam, S. J. Khan, A. Fattori, and L. Cavallaro. Copperdroid: Automatic reconstruc-

tion of android malware behaviors. In Proceedings of the 22nd Annual Network and

Distributed System Security Symposium (NDSS ’15), 2015.

[65] M. Tran, M. Etheridge, T. Bletsch, X. Jiang, V. Freeh, and P. Ning. On the expres-

siveness of return-into-libc attacks. In Recent Advances in Intrusion Detection, pages

121–141. Springer, 2011.

94

[66] T. Vidas and N. Christin. Evading android runtime analysis via sandbox detection.

In Proceedings of the 9th ACM SIGSAC Symposium on Information, Computer and

Communications Security (AsiaCCS ’14), pages 447–458. ACM, 2014.

[67] D. Y. Wang, S. Savage, and G. M. Voelker. Cloak and dagger: dynamics of web search

cloaking. In Proceedings of the 18th ACM conference on Computer and communica-

tions security, pages 477–490. ACM, 2011.

[68] T. Wang, K. Lu, L. Lu, S. Chung, and W. Lee. Jekyll on ios: When benign apps

become evil. In Proc. Usenix Security, 2013.

[69] X. Wang, S. Zhu, D. Zhou, and Y. Yang. Droid-antirm: Taming control flow anti-

analysis to support automated dynamic analysis of android malware. In Proceedings

of the 33rd Annual Computer Security Applications Conference (ACSAC ’17), pages

350–361. ACM, 2017.

[70] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin. Binary stirring: Self-randomizing

instruction addresses of legacy x86 binary code. In Proc. ACM CCS, 2012.

[71] F. Wei, Y. Li, S. Roy, X. Ou, and W. Zhou. Deep ground truth analysis of current an-

droid malware. In International Conference on Detection of Intrusions and Malware,

and Vulnerability Assessment (DIMVA ’17), pages 252–276. Springer, 2017.

[72] R. Winsniewski. Apktool: A tool for reverse engineering android apk files.

http://ibotpeaches.github.io/Apktool/.

[73] M. Y. Wong and D. Lie. Intellidroid: A targeted input generator for the dynamic anal-

ysis of android malware. In Proceedings of the 23nd Annual Network and Distributed

System Security Symposium (NDSS ’16), 2016.

[74] D. Wu, R. K. C. Chang, W. Li, E. K. T. Cheng, and D. Gao. Mopeye: Opportunistic

monitoring of per-app mobile network performance. In 2017 USENIX Annual Techni-

cal Conference (USENIX ATC 17), pages 445–457, Santa Clara, CA, 2017. USENIX

Association.

[75] D.-J. Wu, C.-H. Mao, T.-E. Wei, H.-M. Lee, and K.-P. Wu. Droidmat: Android mal-

ware detection through manifest and api calls tracing. In Information Security (Asia

JCIS), 2012 Seventh Asia Joint Conference on, pages 62–69. IEEE, 2012.

[76] Xposed. Welcome to the xposed module repository!, 2017.

[77] L.-K. Yan and H. Yin. Droidscope: Seamlessly reconstructing the os and dalvik se-

mantic views for dynamic android malware analysis. In Proceedings of 21th USENIX

Security Symposium (USENIX Security ’12), pages 569–584. USENIX Association,

2012.

[78] C. Yang, Z. Xu, G. Gu, V. Yegneswaran, and P. Porras. Droidminer: Automated min-

ing and characterization of fine-grained malicious behaviors in android applications.

In Proceedings of the 2014 European symposium on research in computer security

(ESORICS ’14), pages 163–182. Springer, 2014.

[79] L. Yang, N. Boushehrinejadmoradi, P. Roy, V. Ganapathy, and L. Iftode. Short paper:

enhancing users’ comprehension of android permissions. In Proceedings of the second

ACM workshop on Security and privacy in smartphones and mobile devices, pages

21–26. ACM, 2012.

95

http://ibotpeaches.github.io/Apktool/

[80] K. Zhang and X. Wang. Peeping tom in the neighborhood: Keystroke eavesdropping

on multi-user systems. In USENIX Security Symposium, volume 20, page 23, 2009.

[81] N. Zhang, K. Yuan, M. Naveed, X. Zhou, and X. Wang. Leave me alone: App-level

protection against runtime information gathering on android. In Proceedings of the

2015 IEEE Symposium on Security and Privacy (S&P ’15), pages 915–930. IEEE,

2015.

[82] Y. Zhang, M. Yang, B. Xu, Z. Yang, G. Gu, P. Ning, X. S. Wang, and B. Zang. Vetting

undesirable behaviors in android apps with permission use analysis. In Proceedings

of the 2013 ACM SIGSAC conference on Computer & communications security (CCS

’13), pages 611–622. ACM, 2013.

[83] W. Zhou, X. Zhang, and X. Jiang. Appink: watermarking android apps for repackag-

ing deterrence. In Proceedings of the 8th ACM SIGSAC Symposium on Information,

Computer and Communications Security (AsiaCCS ’13), pages 1–12. ACM, 2013.

[84] X. Zhou, S. Demetriou, D. He, M. Naveed, X. Pan, X. Wang, C. A. Gunter, and

K. Nahrstedt. Identity, location, disease and more: Inferring your secrets from android

public resources. In Proceedings of the 2013 ACM SIGSAC conference on Computer

& communications security, pages 1017–1028. ACM, 2013.

[85] Y. Zhou and X. Jiang. Dissecting android malware: Characterization and evolution. In

Proceedings of the 2012 IEEE Symposium on Security and Privacy (S&P ’12), pages

95–109. IEEE, 2012.

96

	Sensitive behavior analysis of android applications on unrooted devices in the wild
	Citation

	Introduction
	Literature Review
	Code Obfuscation Techniques
	Dynamic Analysis on Android
	Side channel and crowd sourcing

	Obfuscation of Sensitive Behavior
	Introduction
	Overview
	Turing Complete Gadget Set
	Code Obfuscation
	Essential Code Replacement
	Payload Generation
	Code Triggering
	Payload Protection

	Implementation and Case Studies
	Implementation details
	Case study: Obfuscating Native Code
	Case study: Obfuscating Java Code
	Overhead

	Comparison with other Obfuscation Techniques
	The Experiment
	Reverse Engineering Results
	Discussion
	Limitations

	Summary

	Sensitive Behavior Analysis
	Introduction
	Background and Motivation
	Resources and Observers
	Motivation

	System Overview
	Event Monitoring
	Content Observer
	File Observer
	Interrupt Observer
	Network Observer

	 Initiator Identifying
	App Status Monitoring
	Data Collecting
	Data Pre-processing
	Modelling and Precision

	Comparison with API hooking
	Current State of API hooking
	Permission Coverage Comparison
	Event Details Comparison
	Behavior Outcome Comparison

	Capability Analysis
	Permission Coverage
	Runtime Experiments
	Performance
	Discussion

	Summary

	App Analysis with GPU Interrupt Timing Information
	Introduction
	Background
	Interrupt Mechanism
	GPU Interrupts

	Methodology Overview
	Experiments on Android
	Experiments Setup
	Model Precision
	Noise Analysis

	Experiments on Ubuntu
	Experiments Setup
	Model Precision
	Noises Analysis

	Discussion
	Summary

	Application of Dynamic Analysis in a Malware-Spreading Study
	Introduction
	Problem Statement
	Simulation System
	Overview
	Seemingly malicious Message
	Status Monitoring

	Simulation Study
	Recruitment
	Seemingly malicious Message
	Spreading
	Results

	Summary

	Conclusion

