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A new topological descriptor for water 
network structure
Lee Steinberg1 , John Russo2  and Jeremy Frey1* 

Abstract 

Bulk water molecular dynamics simulations based on a series of atomistic water potentials (TIP3P, TIP4P/Ew, SPC/E and 
OPC) are compared using new techniques from the field of topological data analysis. The topological invariants (the 
different degrees of homology) derived from each simulation frame are used to create a series of persistence dia-
grams from the atomic positions. These are averaged over the simulation time using the persistence image formalism, 
before being normalised by their total magnitude (the L1 norm) to ensure a size independent descriptor (L1NPI). We 
demonstrate that the L1NPI formalism is suitable for the analysis of systems where the number of molecules varies by 
at least a factor of 10. Using standard machine learning techniques, a basic linear SVM, it is shown that differences in 
water models are able to be isolated to different degrees of homology. In particular, whereas first degree homology is 
able to distinguish between all atomistic potentials studied, OPC is the only potential that differs in its second degree 
homology. The L1 normalised persistence images are then used in the comparison of a series of Stillinger–Weber 
potential simulations to the atomistic potentials and the effects of changing the strength of three-body interactions 
on the structures is easily evident in L1NPI space, with a reduction in variance of structures as interaction strength 
increases being the most obvious result. Furthermore, there is a clear tracking in L1NPI space of the λ parameter. The 
L1NPI formalism presents a useful new technique for the analysis of water and other materials. It is approximately 
size-independent, and has been shown to contain information as to real structures in the system. We finally present a 
perspective on the use of L1NPIs and other persistent homology techniques as a descriptor for water solubility.
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Introduction
The water network problem
Understanding the structure and dynamics of water net-
works is an important task in a wide variety of fields. This 
is due to the anomalous behaviour of water, such as the 
well-known density maximum. Further, these anoma-
lies have been shown to play important roles in physi-
cal, chemical, and biological processes [1, 2]. There have 
therefore been many studies of simulated water systems, 
often looking at radial distribution functions [3] or spa-
tial distribution functions [4]. In particular, the tetrahe-
dral nature of local water has been investigated [5, 6].

This has led to a plethora of computational techniques 
for understanding water network structure. In general, 
these can be split into categories such as coordination 
number studies [3, 7–9] and graph-theoretical stud-
ies [10–13]. Both of these categories have drawbacks, 
namely the difficulty in interpreting data beyond nearest 
neighbours, and the requirement for a connectivity heu-
ristic respectively.

Mathematical techniques drawn from topology look 
highly suitable to make progress in the analysis of con-
nectivity. In particular, persistent homology is a recent 
development in mathematics, in the field of topological 
data analysis, and creates a multiscale representation of 
an arbitrary point cloud [14]. This is achieved by convert-
ing this point cloud into a filtration of topological struc-
tures, and observing how topological invariants change 
in this filtration. Persistence has found many uses in 
chemistry, mainly in proteins [15–22], but also as a small 
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molecule descriptor [23, 24] or a descriptor for the analy-
sis of crystal structures and other materials [25–30]. Fur-
thermore, persistent homology has recently been applied 
to understanding water networks [31] however these 
methods did not take into account the dynamic nature of 
such systems.

In this work, we develop the ideas discussed in [31] and 
by the use of persistence images [32] are able to develop 
what we term l1-normalised persistence images (L1NPIs) 
which take into account the dynamic nature of the 
molecular dynamics simulations. These descriptors are 
size-agnostic, meaning they can be used between systems 
with vastly different numbers of water molecules, and are 
well-suited for machine learning techniques. We apply 
this technique to a range of atomistic water models and 
a coarse-grained Stillinger–Weber (SW) potential [33], 
and using this technique are able to not only distinguish 
between these models, but relate these differences to the 
underlying water network. We lastly present a perspec-
tive as to how this technique can be used to understand 
the solute–solvent interaction, as well as potential chal-
lenges and pitfalls.

Theory
Rather than present the fundamentals of persistent 
homology (see references [34–37] for introductions to 
the field), we will instead present a ‘greatest hits’, where 
we will aim to give the reader a basic understand-
ing, while paying little attention to the man behind the 
curtain.

Persistent homology
In mathematics, homology is the general method of 
counting ‘holes’ in a space. Persistent homology is an 
extension developed to understand the holes in a data set. 
Consider the sampling process, as is illustrated in Fig. 1 
individual observations are taken from some arbitrary 
space, and observed in some low-dimensional projection. 
We seek to understand the structure of the original space 
from its sampled points. However, the sampled points 
themselves have a topology which is trivial, there are 
npoints connected components, and nothing else. To see a 
more interesting topology, we must ‘join up’ the points in 
some way. There are obviously a wide range of potential 
methods for this. In this work, we use the Vietoris–Rips 
(VR) complex. The VR complex requires a single param-
eter δ, and is defined on a data set S as follows:

Definition 1 For every pair of points in (x, y) in S, if 
d(x, y)<, we draw a line between x and y. If every pair in 
a triplet (quartet, etc.) is connected, we draw the triangle 
(tetrahedron, etc.) between them.

An example data set and its associated VR complex 
can be seen in Fig. 2. The VR complex is relatively easy 
to compute, as it requires knowledge only about pairs 
of points. Given a VR complex, we can study its topol-
ogy. As mentioned, homology is the method of ‘counting 
holes’ in a space. Mathematically, we calculate the Betti 
numbers βn of the space. For a given n a description of βn 
as well as the values for a sphere and torus, can be found 
in Table 1. 

The final ingredient of persistent homology is the 
‘persistence’. One may ask—What is the best value of to 
define a VR complex on a data set? Persistent homol-
ogy answers: all of them. By considering how the topol-
ogy of the VR complex changes as we go through a range 
of δ, we hope to gain understanding as the structure of 
the underlying set of points. Any hole born at t must be 
filled in by some t ′ . Therefore, we represent the persistent 
homology of a set of points by considering when topolog-
ical features are born and when they die, in a persistence 
diagram.

For a regular hexagon, with nearest neighbour dis-
tance of d (Fig.  3), the persistence diagram can be seen 
in Fig.  4. At δ = 0 , we have 6 separate connected com-
ponents. However, when δ = d these components merge 
to form a single component—5 (zeroth degree) compo-
nents born at 0 die at d. Furthermore, in this merging, a 
loop (first degree component) is born. This loop persists 
until δ =

√
3d where now next-nearest neighbours join. 

This loop now dies, and the VR complex has the topol-
ogy of a sphere. The sphere lives until δ = 2d , where 
next-next-nearest neighbours join, filling in the sphere. 

Fig. 1 The sampling process. An illustration of the sampling process. 
A high-dimensional space (top) is sampled to the low-dimensional 
space (bottom)
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An animation, demonstrating the various stages of the 
persistence diagram, can be found at [38]. All persistent 
homology calculations in this work were performed using 
the Gudhi library in Python [39]. 

Persistence images
For this work, we will be trying to understand simulated 
water networks through the lens of persistent homol-
ogy. Rather than comparing descriptors computed from 

single frames of simulation, which would be susceptible 
to noise, we would like to use a notion of average per-
sistence. However, the persistence diagram is not well-
suited to such a task (for more details we direct the reader 
to [40], particularly Fig. 3 therein). Therefore, there have 
been many attempts to construct vector representations 
of persistence diagrams that can have statistical tech-
niques applied to them, including persistence landscapes 
[40, 41], kernel embeddings [42], and persistence images 
[32]. In this work, we use the persistence image, which 
transforms a single persistence diagram into a literal 
grayscale image. Furthermore, calculating the average of 
a set of images is as simple as finding the average value 
for each pixel. Lastly, persistence images are relatively 
simple to interpret, as they look similar to the persistence 
diagram.

The procedure of transforming a persistence diagram 
to a persistence image is as follows:

1. Select a single degree of homology
2. Transform each point of this degree from (b, d) to 

(b, p), where p = d − b

3. For each point (b, p), define the function:

4. Multiply each function g
(

x, y
)

 by φ
(

x, y
)

 , where 
φ(x, 0) = 0. This is done for stability reasons, and is 
discussed in more detail in [32]

5. Integrate g
(

x, y
)

φ
(

x, y
)

 , over a collection of pixels
6. The persistence image I is this discretisation of 

g
(
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)

φ
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)

g
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�

=
1

2πσ 2
exp
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Fig. 2 An example Vietoris–Rips complex. The Vietoris–Rips complex 
for the black dots, with parameter δ. Shaded circles are used to 
represent the distance used in the construction of the complex, and 
do not actually appear in the complex

Table 1 Description of different Betti numbers βn and their 
associated values for a sphere and torus

βn Description Sphere Torus

0 Connected components 1 1

1 (Non-contractible) loops 0 2

2 Voids 1 1

Fig. 3 A hexagon

Fig. 4 Persistence diagram of the regular hexagon. Black, red, and 
blue points represent zeroth, first and second degree homology 
respectively
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For a noisy circular data set (Fig. 5) the persistence dia-
gram and 1st degree persistence image can be seen in 
Figs. 6 and 7 respectively. The persistence images in this 
work were computed using an in-house code, but can 
be calculated using libraries such as persim in Python. 
All persistence images in this code were calculated on a 
50 × 50 grid of pixels.

Simulation details
A brief summary is given here for the molecular dynam-
ics simulations and for more information about simula-
tion details, please refer to the Additional file 1.

Atomistic potentials
The potentials used in this study are the commonly used 
TIP3P [43] and TIP4P/Ew [44] potentials, the SPC/E 
potential [45], and the more recent OPC potential. All of 
these potentials are fixed, therefore their dynamics are 

determined entirely by their intermolecular forces. Of 
these potentials, TIP3P and SPC/E are 3-site potentials, 
whereas TIP4P/Ew and OPC are both 4-site potentials. 
Table 2 contains details as to the parameters used for all 
the potentials. All simulations were performed using the 
AMBER 16 package [46]. Simulations were performed 
at a wide range of temperatures, at 1 atm pressure. This 
work only analyses the simulations performed at 300 K.

The Stillinger–Weber potential
In contrast, the SW potential is a coarse-grained poten-
tial. Originally parameterised for Silicon in 1983 [33] the 
SW potential has been shown to be incredibly versatile, 
as can be seen from its general functional form [47]:

It is clear that the λ parameter allows the tuning of the 
relative strength of the 3-body interaction. The 2-body 
interaction models a steep repulsion at short distances, as 
well as a potential well:

Whereas the 3-body interaction can be considered to 
be an intermolecular bond stretch, as a harmonic spring 
as well as a distance factor:

U =
∑

i,j

U2

(

rij

)

+ �

∑

i,j,k

U3

(

rij , r jk
)

U2(r) = Aǫ
[

B
(σ

r

)p
−

(σ

r

)q]

exp

(

σ

r − aσ

)

U3

(

rij , rik
)

= ǫ[cosijk − cos0]2 × exp

(

σ

rij − aσ

)

× exp

(

σ

rik − aσ

)

Fig. 5 A noisy circular data set

Fig. 6 Noisy circle persistence diagram. The 2nd degree features 
have not been calculated for this example

Fig. 7 (First degree) persistence image for the noisy circle. The 
expected long-lived feature is present, but not visible as this 
corresponds to only one feature, as opposed to the thousands 
present at the maximum intensity
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In this work, we use the parameters A = 7.049556277, 
B  = 0.6022245584, p = 4, q = 0, cos θ0 = 1

3 , γ = 1.2, and 
a = 1.8. All simulations of the SW potential were per-
formed at the ambient temperature and pressure corre-
sponding to the melting temperature at that particular λ.

Persistent homology procedure for water 
simulations
Persistent homology
Given a single frame of a simulation, we use the loca-
tions of the oxygen atoms as our point cloud. This leads 
to a substantially quicker computation time, as we are 
reducing the number of points in our system by 2/3. This 
decision also makes sense from a theoretical perspec-
tive, namely that it is the tetrahedral nature of the oxygen 
lattice which is of interest, and including the hydrogen 
atoms as equal in the persistent homology would likely 
‘wash out’ this information, and instead simply capture 
the persistent of densely sampled Euclidean 3-space. We 
note that this procedure is much simpler than the ele-
ment specific persistent homology of Cang and Wei [16] 
and the multiparameter persistence of PHoS developed by 
Keller, Lesnick and Willke [48]. However, the relative sim-
plicity of our systems compared to the drug-like biomol-
ecules used in their work allows us to use such a simple 
procedure. Furthermore, our procedure naturally extends 

to the coarse-grained SW potential. For each degree of 
homology separately, we calculate the persistent homol-
ogy for every frame of simulation, before converting each 
persistence diagram into a persistence image.

L1‑normalised persistence images
One of the fundamental properties of a potential descrip-
tor for water structure is that it is size-independent. 
Provided two systems are large enough such that bulk 
behaviour dominates, we would like to be unable to 
separate two systems of different sizes using the struc-
tural descriptor. This is a problem for persistent homol-
ogy, where the number of persistent features is clearly 
dependent on the number of points in the system. In per-
sistence images, this property is the integral of the image. 
We therefore define the  L1-normalised persistence image 
(L1NPI) as:

where I[i, j] is the value of the persistence image at the 
pixel with index [i, j]. The most significant consequence 
of this definition is that the mean LINPI is not equal to 

L1NPI[i, j] =
I[i, j]

∑

i,j I[i.j]

Table 2 The parameters of the various water models used in this study, and their physical meaning

θLJ and ǫLJ are Lennard-Jones parameters for non-bonded interactions. The parameters for the SW potential are found in the main text

Model q/e l/Å z/Å θLJ/ ° σLJ/Å ǫLJ/kJmol
−1 natom

TIP3P 0.4170 0.9572 N/A 104.52 3.15061 0.636 4287

TIP4P/Ew 0.5242 0.9572 0.1250 104.52 3.16345 0.681 4254

SPC/E 0.4238 1.0000 N/A 109.47 3.16600 0.890 4287

OPC 0.6971 0.8724 0.1594 103.60 3.16655 0.89036 4302

SW – – – – – – 512
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the  L1-normalised mean persistence image. We do not 
explore this discrepancy in our work.

Comparison to other techniques
The radial distribution function (RDF) is a standard 
tool when analysing simulations of materials, such as 
the water networks discussed in this work. The RDF 
describes the relative density of water molecules as a 
function of distance, and allows the discovery of solva-
tion shells. The RDF has previously been used to com-
pare different water models such as in [3], where it was 
shown that the slight differences in Lennard-Jones and 
Coulombic terms led to pronounced changes in density 
of second-nearest neighbours. An extension of the RDF, 
the spatial distribution function (SDF) was developed, 
which does not integrate out the angular distribu-
tion in the manner of the RDF. The SDF, when applied 
to SPC/E water, led to the discussion of two different 
motifs, a temperature independent tetrahedral water, 
and a non-tetrahedral structure that appeared to vary 
with temperature [4].

Persistent homology is a more complex and rich tool for 
analysing these structures. Rather than simply studying the 
relative positions of pairs of water molecules, the simplicial 
complex required in persistent homology contains infor-
mation about groups of water molecules. For example, 
the presence of the triangle abc in the simplicial complex 
requires all pairs ab, ac, bc, to be within a particular dis-
tance of each other. This leads to information that can be 
related to the RDF—the nearest neighbour distance can be 
estimated using zeroth-degree homology—but also infor-
mation that is not so easily extracted from either the RDF 
or SDF—such as the presence of rings of water structures.

Results and discussion
Comparison of persistence images and L1NPIs
To demonstrate the usefulness of the L1NPI versus the 
standard persistence image, we investigate the per-
formance of a linear SVM classifier on systems of the 
same potential, with different numbers of water mol-
ecules. Firstly, the L1NPI matrix is flattened into a 
high-dimensional vector in R2500 . A size-independent 
descriptor would perform badly on this classification 
task, as it would not be able to distinguish between the 
only difference in the systems. We present the confu-
sion matrices for these classifiers for both the first 
degree persistence images and L1NPIs for simulations 
of TIP3P water at 300K with varying numbers of water 
atoms in the system in Figs.  8 and 9 respectively. It is 
clear that the standard persistence image SVM per-
forms well in this classification task, and that it can 
distinguish between systems based on the number of 

water molecules present. However, the L1NPI performs 
much worse at this task, and can be seen to be essen-
tially randomly guessing between 3 classes. 

To explain the performance of these classifiers, we have 
performed PCA on the persistence image and L1NPI 
spaces, with the two-dimensional projections in Figs.  10 
and 11 respectively. Clearly, the persistence images form 
a trend with the number of water molecules in the system, 
which is far less prominent in the L1NPI. We can con-
clude from this that the L1NPI is much more size inde-
pendent than the standard persistence image. However, 
this is not a total size-independence, as there is likely to 
always be some finite-size effect in persistent homology.

Fig. 8 Confusion matrix for linear SVM on persistence images. Classes 
are defined as the number of water molecules removed from the 
system, with class 0 containing 4287 water molecules

Fig. 9 Confusion matrix for linear SVM classifier on L1NPIs. Classes 
defined analogously to Fig. 8
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Comparison of atomistic potentials
The SVM classifier formalism can also be used to analyse 
differences between the atomistic potentials. We would 
expect any differences to be subtle here, as they are ostensi-
bly modelling the same system. The confusion matrices for 
first and second degree homology at 300 K for these sys-
tems can be seen in Figs. 12 and 13 respectively. First degree 
homology is able to correctly classify different atomistic 
potentials with 98.7% accuracy. In contrast, second degree 
homology performs with 60.6% accuracy. Interestingly, this 
accuracy is not consistent amongst the potentials studied. 
In particular, OPC is correctly classified 99.4% of the time, 
whereas TIP4P-Ew has only 34% accuracy.

We are able to analyse these systems further using prin-
cipal component analysis (PCA). We project the L1NPI 
vectors onto the first two principal components of the 
system, which can be seen in Figs. 14 and 15 for first and 
second degree L1NPIs respectively. Firstly, we can state 
that the major differences in structure are clearly com-
ing from first degree homology. This is reflected in the 
greater separations of potentials in first degree homology. 
Furthermore, we recover the well-known fact that TIP4P/
Ew and SPC/E are more similar than TIP3P.

Using PCA, it is immediately apparent that OPC can 
be distinguished in second degree homology, whereas 
the other potentials studied cannot. Using the discovered 

Fig. 10 PCA of first degree persistence image space for different 
numbers of water molecules in TIP3P. Classes are defined by the 
number of waters removed from the system, where 0 refers to a 
system with 4287 water molecules

Fig. 11 PCA of first degree L1NPI space for different numbers of 
water molecules in TIP3P. Classes defined analogously to Fig. 10—
PCA of first degree persistence image space for different numbers 
of water molecules in TIP3P. Classes are defined by the number of 
waters removed from the system, where 0 refers to a system with 
4287 water molecules

Fig. 12 First degree L1NPI confusion matrix. The 1st degree L1NPI 
confusion matrix for a linear SVM classifier on different atomistic 
models

Fig. 13 Second degree L1NPI confusion matrix. The 2nd degree 
L1NPI confusion matrix for a linear SVM classifier on different 
atomistic models
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coefficients of the SVM classifier, we are able to recover 
the L1NPI-like image that represents the separating 
hyperplane (such an image is L1NPI-like as pixels are 
allowed to take negative values, unlike in a L1NPI. It is 
the absolute value of the pixels in the separating hyper-
plane image that corresponds to their importance to the 
classifier). For OPC, this hyperplane image can be seen 
in Fig. 16. It is clear that the distinguishing characteris-
tics for OPC is the presence of more points of low persis-
tence, with a lack of points of high persistence.

Comparison of series of Stillinger–Weber potentials
As the SW simulations derive from a series of related 
potentials differing in one main parameter we can inves-
tigate how the topological analysis is related to this 
parameter. A series of simulations for the Stillinger–
Weber potential were performed at different values of the 
λ parameter. The projection of L1NPI space onto its first 
two principal components can be seen in Figs. 17 and 18 

Fig. 14 First degree L1NPI principal components. Projection onto the 
first two principal components for first degree L1NPI space

Fig. 15 Second degree L1NPI principal components. Projection onto 
the first two principal components for second degree L1NPI space

Fig. 16 Separating hyperplane for OPC. The separating hyperplane 
for distinguishing OPC from other atomistic models, in second 
degree homology

Fig. 17 Principal components for SW potential first degree L1NPI 
space. The projection of the first degree L1NPI space onto its first two 
principal components, for a range of λ in the SW potential

Fig. 18 Principal components for SW potential second degree L1NPI 
space. The projection of the second degree L1NPI space onto its first 
two principal components, for a range λ of in the SW potential
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for first and second degree homology respectively. Firstly, 
we note that the differences in L1NPI space are much 
more pronounced with the value of λ changing than pre-
viously shown for the different atomistic water potentials. 
This is expected, as the different atomistic potentials are 
ostensibly modelling the same system, whereas the SW 
potential has been derived to simulate vastly different 
systems depending on λ. We also see the same behaviour 
that differences are more pronounced in first than sec-
ond degree homology. This can be explained by the fol-
lowing argument. In a relatively dense point cloud, such 
as the ones being studied in this work, it is a reasonable 
first approximation to associate the nearest-neighbour 
distance to the birth value of first degree homology, next-
nearest neighbour distance to the death value of first 
degree homology, and the birth value of second degree 
homology, and so on. It is clear that as we look at interac-
tions beyond nearest neighbour, interactions become less 
directional, and the distribution of distances becomes 
wider [49]. This is reflected in an increase of similarity of 
persistence. 

It is also interesting to note that the distribution of 
points in L1NPI space narrows as λ increases. This 
suggests a reduction in the variance of the persis-
tent homology. As λ increases, the relative strength of 
the three-body interaction defined in the SW poten-
tial increases. This leads to a reduction in the variance 
of next-nearest neighbour distances, which is then 
reflected in the persistence.

Comparison of atomistic and Stillinger–Weber potentials
Lastly, we will present a comparison between the atom-
istic and SW potentials using the L1NPI formalism. Fig-
ures 19 and 20 show the first two principal components 

of first and second degree L1NPI space for a selection of 
values of λ and the previously used atomistic potentials. 
In both degrees, it is clear that the atomistic potentials do 
not lie on the same line as the SW potential simulations, 
and as mentioned before they are closer to each other 
than variations in λ. Again, this suggests that the differ-
ences in atomistic potential lead to more subtle changes 
in structure than altering λ, and the differences in struc-
ture between atomistic potentials are not the same as the 
differences in structure in SW potential simulations.

We note that in first degree homology, the atomistic 
potential simulations are closest to the value of λ = 23.15. 
This is the value of λ that is considered to lead to water-
like structures, as it reproduces the density profile of 
water on a range of temperatures. Interestingly, this is not 
the case in second degree homology, where the L1NPI 
descriptor suggests that the atomistic systems are more 
similar to λ = 23.95, with OPC being closest to λ = 23.15. 
This separation of degrees of homology is a useful prop-
erty of the L1NPI analysis, where we are able to say that 
although the atomistic structures have the same ‘loops’ 
of the SW structures, they do not match the ‘holes’, with 
OPC being the closest.

We finally return to the size-independent nature of our 
L1NPI descriptor. Whereas the atomistic potentials have in 
excess of 4000 water molecules, the simulations of the SW 
potential have 512. However, the L1NPI descriptor can be 
used to compare such systems, irrespective of system size. 
We do note that there is one consequence of size in the 
L1NPI formalism, which can be seen in the PCA images. 
Namely, systems with more molecules lead to a tighter 
distribution of points in L1NPI space. Considering a sin-
gle frame of a simulation, we note that more molecules 
will lead to more points in the persistence diagram, which 

Fig. 19 Principal components for first degree L1NPI space. The 
projection of the first degree L1NPI space onto its first two principal 
components for both a range of λ in the SW potential and a range of 
atomistic potentials

Fig. 20 Principal components for second degree L1NPI space. 
The projection of the second degree L1NPI space onto its first two 
principal components for both a range of λ in the SW potential and a 
range of atomistic potentials
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will become more ‘filled in’. This implies that the individual 
persistence diagrams (and therefore images and L1NPIs) 
will be more similar to each other in simulations with a 
larger number of particles. Therefore, the L1NPI descrip-
tor is not entirely size-independent, although it is far more 
size independent than other persistence representations.

Conclusion
We have derived a new descriptor for water network struc-
ture, using topological data analysis. By applying persistent 
homology, the study of holes in data, to the point cloud 
defined by oxygen atom coordinates, we are able to gain 
insight as to what distinguishes various structures created 
by different intermolecular potentials. Whereas more com-
monly used techniques, such as persistence landscapes [40] 
are unable to be used on systems of widely varying sizes, we 
have shown that our technique, the  L1-normalised persis-
tence image (L1NPI) is relatively size-independent.

We first applied the L1NPI formalism to four com-
monly used atomistic potentials: TIP3P, TIP4P/Ew, 
SPC/E and OPC. We were able to determine that first 
degree homology (i.e. loops) were enough to distinguish 
between these potentials, even with a relatively sim-
ple linear support vector machine. In contrast, second 
degree homology (holes) was only able to distinguish 
between OPC and the other models. We consider this to 
be a consequence OPC’s rather unique parameterisation 
technique. We are also able to show that TIP4P/Ew and 
SPC/E are more similar than the other atomistic models, 
purely based on their proximity in L1NPI space.

We then investigated a series of Stillinger–Weber 
potentials. By tuning the parameter λ, the relative 
strength of the three-body interaction can be altered. The 
L1NPI formalism showed that differences in structure 
caused by changing λ are much more pronounced than 
those found in the atomistic potentials. Furthermore, we 
were able to relate properties such as nearest neighbour 
distances to observations in L1NPI space.

We finally compared the atomistic systems to the Still-
inger–Weber potential series. We noticed that in first 
degree homology, the atomistic structures are closest to 
the widely accepted value of λ = 23.15. In contrast, sec-
ond degree homology suggests that the structures are 
closer to slightly higher values of λ, with OPC being 
closest to 23.15. Furthermore, by comparing systems of 
widely different sizes (512 vs. 4000 water molecules), we 
show that the L1NPI formalism is size-independent.

It would be interesting to study generalisations of the 
persistence image to other means, rather than simply the 
L1 norm, as a method of future work. The use of general-
ised mean-based descriptors is well established, such as 
in [50, 51], and we feel that different means could be able 
to account for other discrepancies than system size.

We conclude by discussing the application of the L1NPI 
formalism to the solubility problem, Although it is widely 
accepted that there is a need to produce better models (as 
evidenced by the ‘Solubility Challenge’ [52, 53]) models 
are still unable to accurately predict water solubility [53]. 
We feel that a large amount of research is invested in pro-
ducing models with more complex designs. This, coupled 
with the lack of high-quality solubility data, leads to over-
fitted models, as well as poor interpretability. However, 
the L1NPI formalism could be applied to solute–solvent 
systems, and in particular differences in L1NPIs could be 
related to perturbations of the water network. We plan to 
expand upon this problem further in a future publication.

Additional file

Additional file 1. Python programs for computation of persistence.
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