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Efficiency gains in 5G softwarised radio
access networks
Nikolaos Gkatzios1, Markos Anastasopoulos2*, Anna Tzanakaki1,2 and Dimitra Simeonidou2

Abstract

This paper proposes the concept of compute resource disaggregation in centralized softwarised radio access networks.
This approach allows individual allocation of processing functions to different servers depending on the nature and
volume of their processing requirements. The benefits of the proposed approach are evaluated through experiments
analyzing the baseband unit (BBU) processing requirements of LTE PHY using an open source suite for wireless systems
and a purposely developed multistage linear programming modeling framework. To address the high computational
complexity of integer linear programming (ILP), limiting real-time services, a heuristic algorithm was also developed.
Our results show that when using the proposed approach, the overall system power consumption is reduced by 40%
under high loading scenarios compared to the traditional solution where all BBU functions are hosted in the same
physical servers. The heuristic results achieve relatively good agreement with the ILP results (the gap is less than 5%),
particularly for low and high loading conditions. At the same time, the heuristic requires less than 0.3 s to identify the
optimal allocation policy.

Keywords: RAN, BBU, Softwarized radio, Compute disaggregation, Multistage linear programming

1 Introduction
The increase of mobile traffic predicted in 5G networks
as well as the wireless access technology densification
and advancements proposed to address this introduces
very stringent requirements in the radio access networks
(RANs). Traditionally distributed RAN solutions, where
baseband units (BBUs) and radio units (RUs) are co-
located, suffer several limitations. To overcome these
limitations, cloud radio access networks (C-RANs) have
been proposed. In C-RAN, distributed remote radio
heads (RRHs) are connected to a BBU pool, the central
unit (CU), through high bandwidth transport links
known as fronthaul (FH). The CU can be hosted in data
centers (DCs) comprising general purpose processors
(GPPs) that can be accessed through FH services sup-
ported by the transport network of the 5G infrastructure
[1]. The interface between RUs and CU is standardized
through the Common Public Radio Interface (CPRI).
In this environment, it is very important to identify the

optimal allocation of BBU functions to the appropriate
servers hosted by the CU, as it is expected to give

significant efficiency gains (such as power consumption).
To the best of the authors’ knowledge, up to date, this is
performed without taking into consideration the details
and specificities of the individual processing functions that
BBUs entail. To take advantage of appropriate mapping of
processing functions to suitable available compute re-
sources within the CU, we have proposed the concept of
compute resource disaggregation [2]. This approach
allows the individual allocation of processing functions,
associated with a specific FH service, to different servers
depending on the nature and volume of their processing
requirements. To date, several studies have focused on
optimal BBU placement through 5G network topology de-
sign [3] and the optimal optical network design serving
5G transport network requirements [4]. For a survey on
C-RAN architectures and technologies used, the reader is
referred to [5]. In addition, work on identifying optimal
BBU functional split options over integrated wireless/op-
tical 5G infrastructures has been reported in [1, 6–12].
Specifically, in [12], the authors investigate various func-
tional split architectures and connectivity options between
the RRHs and the BBU with the objective to reduce the
associated FH bandwidth requirements. However, most of
these studies are focusing on the inter-DC network design
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problem supporting C-RAN services while little attention
has been given on the intra-DC domain. Given that the
operation of future C-RAN networks will be supported by
virtualized BBU that will operate in a combination of gen-
eral and specific purpose servers [1, 4], it is necessary to
analyze the specificities and characteristics of the individ-
ual processing functions forming the BBU service chain
(SC). One of the first studies on the topic has been re-
ported in [13] where a closed-form approximation of the
energy consumed at the base stations (BSs) has been de-
veloped, where based on the type of BSs (macro, pico,
femto), the consumed power at the ASICs supporting
BBU processing is estimated. However, the performance
of virtualized BBUs running of general purpose processors
(i.e, × 86) has not been considered.
In order to respond to this observation, in the present

study, we rely on an implementation of the LTE protocol
stack, namely WiBench [14]. WiBench is an open source
kernel suite for benchmarking wireless systems available
at [15]. Using this platform, the BBU processing require-
ment of individual LTE PHY are analyzed for various
wireless access requirements and traffic load scenarios.
Once the construction elements of the BBU SC have
been analyzed, a multistage integer linear programming
(ILP) modeling framework was developed able to assign
the construction elements of the BBU chain to the suit-
able servers hosted by the CU. In the majority of the
existing LTE PHY implementation, the whole BBU SC
runs on a single physical machine. Typical example in-
cludes WiBench, [16], the “All-in-one OpenAirInterface”
[17], and srsLTE [18]. A cloud-based architecture sup-
porting the C-RAN paradigm is reported in [19] where
the multiside/standard baseband unit (MSS-BBU) is in-
troduced that provides radio control, user processing
(UP), and cell processing functionalities. In the present
study, these models are referred to as softwarized BBUs
(SW-BBU). In [19], the only function that is virtualized
(and possibly relocated) is the UP. UP comprises layer 3,
layer 2, and part of PHY layer functions. In addition, this
paper presents an architecture where multiple RRHs are
connected to a baseband processing pool (MSS-BBU).
Different MSS-BBUs, in different locations, are intercon-
nected with each other. A Decentralized Cloud Control-
ler (DCC) is connected to every MSS-BBU, and it
manages the load balancing inside the MSS-BBU (intra)
and between different MSS-BBUs (inter).
The present study is differentiated from [19] in several

ways. First, we consider a heterogeneous DC system
comprising GPPs able to process the BBU functions. To
achieve this, an energy efficient resource allocation
scheme is proposed that assigns the BBU functions to
the appropriate server. The output of our experiments
was used as a realistic input to our ILP model in order
to evaluate the energy consumption requirements of the

compute resources for the proposed and the traditional
SW-BBU approach. As the proposed approach is based
on the concept of disaggregation, we refer to it as the
disaggregated SW-BBU (DSW-BBU) approach. ILP’s re-
sults show that the proposed DSW-BBU approach can
provide significant benefits in terms of energy consump-
tion and as such operational expenditure associated with
the BBU functions.
To address the computational complexity of the ILP, a

heuristic algorithm was also developed, with the aim to
also assign the construction elements of the BBU chain
to the suitable servers hosted by the CU with minimum
power consumption. The comparison of the numerical
results produced by the different approaches (i.e. ILP
and heuristic) confirms that the heuristic approach per-
forms similarly with the ILP for low and high loading
conditions. The rest of the paper is organized as follows.
In Section 2, the problem formulation and the system
model are presented. Section 3 describes the LTE PHY
uplink benchmarking framework, the multistage ILP
model, and the heuristic which were developed address-
ing the optimal BBU functions’ placement. The numer-
ical results of the ILP and the heuristic are presented
and analyzed in Section 4. Finally, conclusions are drawn
in Section 5.

2 Problem statement
We consider a generic 5G C-RAN where the processing
requirements of a set R of R RRHs are supported by a
set of compute resources located at the CU. Compute
resources comprise a set S of S GPPs with individual
processors of processing capacity Cs and performance
per watt (measured in instructions per second—IPS) Ps.
Servers are interconnected in accordance to a simple
tree structure shown in Fig. 1 and are responsible to
provide the required processing power for the support
of FH services. This is achieved through the execution
of baseband signal processing-related tasks required for
the operation of RRHs. The compute requirements for
baseband processing for RU r; r∈R, can be calculated as
the sum of all contributing computing elements respon-
sible to perform the required functions, including single
carrier-frequency division multiple access (SC-FDMA)
demodulation (cr1), subcarrier demapper (cr2), frequency
domain equalizer (cr3), transform decoder (cr4), constel-
lation demapper (cr5), descrambler (cr6), rate matcher
(cr7), and turbo decoder (cr8). As shown in Fig. 1, these
functions need to be executed in a specific order.
The main objective of this work is to identify the opti-

mal GPP server where each function can be allocated so
that the total power consumption at the DC can be min-
imized satisfying, at the same time, the strict quality of
service (QoS) constraints imposed by the CPRI protocol.
To achieve this, we initially calculate the actual
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processing requirements of each baseband processing
function, in terms of total instructions, under various
wireless access system configurations. These calculations
are carried out using WiBench, an open source software
implementation of the LTE protocol stack [14]. The pro-
cessing requirements of each function are then used as
input to a multistage ILP-based optimization framework
that is able to assign each baseband subtask to the suit-
able GPP in an energy efficient manner. Although the
problem of BBU placement has been studied by several
authors [3, 4, 11, 20], the vast majority of these consider
the BBU chain as a whole, without considering the spec-
ificities of its individual construction elements. In this
study, however, it is shown that by (i) disaggregating the
softwarized BBU into a set of smaller subtasks, (ii) ana-
lyzing in depth the computational requirements of each
subtask, and (iii) allocating these subtasks to suitable
GPPs as appropriate, significant benefits in terms of the
operation efficiency of future 5G systems can be
achieved. This study extends the state-of-the-art through
the following:

� An extensive set of experiments used to characterize
the processing requirements of the baseband
functions as a function of the operational
parameters of the wireless access network. These
experiments led to the extraction of simple
mathematical relations that can be used by network
designers and operators to optimally allocate and
size DC networks under various 5G network
operational conditions.

� The development of an energy-aware multistage
ILP-based optimization framework able to assign the
BBU subtasks to a heterogeneous set of GPP ele-
ments reducing the DC power consumption by 20%.

� The development of a heuristic algorithm, with low
computation complexity, able to route in real time
the input BBU traffic in a heterogeneous set of GPP
elements inside a DC.

3 Methods/experimentals
3.1 Benchmarking framework
3.1.1 Experimental platform description
For our experiments, we used WiBench, an open source
suite for benchmarking wireless systems, and Intel’s
VTune Amplifier 2018 [21], a performance profiler for
software performance analysis. WiBench provides vari-
ous signal processing kernels. These kernels are config-
urable and can be used to build applications to model
wireless protocols. The LTE PHY uplink that was used
for the experiments was provided by the WiBench suite,
and VTune was used to profile the LTE application. A
summary of the BBU processing functions is presented
below. This includes the following:

� The single carrier-frequency diversity multiple ac-
cess that is a precoded orthogonal frequency diver-
sity multiplexing (OFDM). It is preferred compared
to OFDM, for the uplink transmission, as it is less
susceptible to frequency offsets and has a lower
peak-to-average power ratio. The SC-FDMA

Fig. 1 Centralized processing of softwarised RAN functions on a data center hosting a different type of servers
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demodulation function removes the cyclic prefix
(CP) and performs N-point fast Fourier transform
(FFT).

� The subcarrier demapper that extracts the data and
the reference symbols from the subframes.

� The frequency domain equalizer that estimates the
channel state information (CSI) by the received pilot
signal through the least square estimation algorithm.
It computes the channel coefficients, with the help
of CSI, and equalizes the received data using a zero-
forcing MIMO detector in the frequency domain as
an equalizer.

� The transform decoder that performs M-point in-
verse fast Fourier transfer (IFFT).

� The constellation demapper that receives the signal
and extracts the binary stream by generating
logarithmic likelihood ratios (LLR).

� The descrambler that descrambles the input
sequence.

� The rate matcher that separates the input stream
into N streams, deinterleaves each code stream, and
removes the redundant bits. For our experiments,
one information bit is encoded into three
transmitted bits, so N was constantly set to 3.

� The turbo decoder that takes soft information for
each code, in our case LLR, and applies iteratively
the soft-input soft-output (SISO) algorithm. The
turbo decoder consists of two SISO decoders that
perform the trellis traversal algorithm and one inter-
leaver/deinterleaver. Higher number of iterations
achieves an improved error correction performance,
at the expense of higher computation cost. To ad-
dress this issue, for the conducted experiments, 5 it-
erations were used [14].

3.1.2 Quantifying processing requirements of BBU functions
To increase the statistical validity of the results pro-
duced by the profiler, a thorough investigation between
different numbers of subframes processing was con-
ducted which resulted in setting the number of sub-
frames to 1000. The set of experiments carried out was
aiming at exploring the behavior of each processing
function for different configurations of the LTE PHY up-
link system. Figure 2 presents the dependence of the in-
structions performed on the data rate for different
modulation schemes, when processing 1000 subframes
by each function.
Taking into consideration the variance of the measure-

ments, we can conclude that all functions present a linear
dependence with the data rate. On the other hand, the in-
fluence of the modulation scheme, on the instructions
number, differs for each function. More specifically, we
observe that the modulation scheme does not affect the
instruction number for SC-FDMA demodulation,

subcarrier demapper, equalizer, and transform decoder.
For the constellation demapper, an exponential depend-
ence of the modulation scheme is observed, while the rate
matcher and the turbo decoder exhibit linear dependence.
We observe that the turbo decoder performs a higher

number of instructions, especially as the data rate in-
creases, while the constellation demapper, the rate
matcher, and the equalizer perform fewer instructions.
This means that the turbo decoder, involving 1 to 4 or-
ders of magnitude higher instructions compared to other
functions, determines by large the total number of in-
structions needed to process a subframe and how this
number depends on the data rate and the modulation
scheme. Below are the linear expressions that fit the
turbo decoder (Eq. (1)) and the total instructions (Eq.
(2)) behavior.

Instructions millionð Þ ¼ 13747
� data rate Mbpsð Þ ð1Þ

Instructions millionð Þ ¼ 14575
� data rate Mbpsð Þ ð2Þ

3.2 Optional placement of softwarized RAN functions
Once the computational requirements cri, i = 1,… , 8, of
the dissagregated RAN functions for RU r∈R have been
determined (Fig. 2), a multistage ILP modeling frame-
work able to assign the construction elements of the
BBU chain to the suitable servers is proposed. During
stage 1, the first function of all fronthaul flows in the
service chain (i.e., function SC-FDMA demodulation)
reaching the CU will be assigned to servers s ∈ S (Fig. 3).
This is achieved by minimizing the total compute re-
source power consumption, approximated through the
following cost function:

f 1 x1ð Þ ¼
X

s∈S
Es

X
r∈R

xrs1cr1
� �

ð3Þ

In Eq. (3), the summation
P

r∈Rxrs1cr1 captures the
total processing load of all cr1 functions processed at ser-
ver s, xrs1 is a binary decision variable indicating whether
function cr1 of RU r∈R is processed at server s or not,
x1 is a vector containing all first stage decision variables
xrs1, and Es is the power consumption model of server s.
Now let QR1 be a set of paths for the FH flow of RU r

; r∈R interconnecting the ingress node to server s, zrq be
the network capacity allocated to path q∈QR1 for flow r,
and hr1 be the transport network bandwidth require-
ments of function cr1. hr1 can be directly estimated using
the analysis [22]. Equation (3) should be minimized sub-
ject to a set of network and processing demand con-
straints described through the following set of equations:
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X
s∈S

xrs1 ¼ 1; ∀r∈R ð4Þ
X

r∈Rxrs1cr1≤Cs1; ∀s∈S ð5Þ
X

s∈S

X
q∈QR1

xrs1zrq ¼ hr1; ∀r∈R ð6Þ
X

r∈R
X

s∈S

X
q∈QR1

δrqezrq≤Ce1; ∀e∈E ð7Þ

Constraint (4) limits the number of servers where cr1
type of functions can be processed to one, and Eq. (5)
indicates that the total number of tasks that can be
assigned to server s, s ∈ S cannot exceed its available
processing capacity Cs1 at stage 1, while Eqs. (6) and (7)
introduce network demand and capacity constraints,

respectively. In Eq. (7), δrqe is a binary coefficient taking
values equal to 1 if e belongs to path q ∈QR1 realizing
demand cr1 at server s and Ce1 is the available capacity
of network link e at stage 1. After the solution of the
first stage optimization problem, the remaining server
and network capacity that can be used for the subse-
quent functions in the chain will be equal to:

Cs1−
X

r∈R
xrs1cr1 ¼ Cs2 ð8:1Þ

Ce1−
X

r∈R
X

s∈S

X
q∈QR1

δrqezrq ¼ Ce2 ð8:2Þ

The decision variables xrs2 of the second stage
optimization problem responsible to forward (through a
set of candidate paths q∈QR2 ) and allocate the second

a b c

d e f

g h i

Fig. 2 Instructions per signal processing function under various data rates for a SC-FDMA demodulation, b subcarrier demapper, c equalizer, d transform
decoder, e demodulation, f descrambler, g rate matcher, h turbo decoder, and i total instructions
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function of the FH service chain (cr2≡ subcarrier demap-
per) to the optimal server s for processing depend on
the results of the first stage problem. Typical example
includes the lists of paths QR2 that can be used to for-
ward the output of the first function in the chain to the
subsequent one (i.e., cr1 to cr2). This set depends on the
decisions taken by the first stage problem regarding the
servers where cr1 functions can be placed. Other exam-
ples include the available capacity at the servers and net-
work links. All this unknown information captured
through data vectors ξt, t = 2, . . , 8, is revealed gradually
as we proceed deeper in the processing of the service
chain. The optimal compute resource assignment prob-
lem in disaggregated RAN environments can be solved
through the minimization of the following nested cost
function:

min
x1∈X1

f 1ðx1Þ þ E½ inf
x2∈X2ðx1 ;ξ2Þ

f 2ðx2;ξ2Þ þ E½⋯
þ E½ inf

x8∈X 8ðx7 ;ξ8Þ
f 8ðx8;ξ8Þ��� ð9Þ

where extending Eq. (3) f tðxt;ξtÞ ¼
P

s∈SEsð
P

r∈Rxrstcrt Þ;
ξt = (Cst,Cet, hrt, zrq, ) and based on Eqs. (4)–(8) X t , t = 2,
. . , 8, can be described through the following constrains:

X t≔ xt :
X

s∈S
xrst ¼ 1;

n
ð10:1Þ

X
r∈R

xrstcrt ≤Cst ; ð10:2Þ
X

s∈S

X
q∈QRt

xrstzrq ¼ hrt; ð10:3Þ
X

r∈R
X

s∈S

X
q∈QRt

δrqezrq≤Cet ; ð10:4Þ

Cst−1−
X

r∈R
xrst−1crt−1 ¼ Cst ð10:5Þ

Cet−1−
X

r∈R
X

s∈S

X
q∈QRt−1

δrqezrq ¼ Cet

o
ð10:6Þ

The multistage linear programming model Eqs. (3)–(9)
can be decomposed into simpler subproblems using the
duality theory [23]. After relaxing constraint (10.5), the
Lagrangian function of Eq. (9) at stage t can be written
in the following form:

Lt xt;ξt
� � ¼ f t xt;ξt

� �þQtþ1 xt;ξt
� �

þ
XS
s¼1

πΤ
st Cst−1−

X
r∈R

xrst−1crt−1−Cst

� �
ð11:1Þ

where

Qtþ1ðxt;ξtÞ :¼E½Qtþ1ðxt;ξtþ1Þjξt � ð11:2Þ
with

Qt xt−1;ξt
� � ¼ inf

x2∈X2 x1 ;ξ2ð Þ
f t xt;ξt
� �þQtþ1 xt;ξt

� �
: Cst−1−

X
r∈R

xrst−1crt−1 ¼ Cst

h i
ð11:3Þ

The dual function is

Dt πstð Þ ¼ inf
xt

Lt xt;ξt
� �

¼ − sup
xt

XS
s¼1

πΤ
stCst− f t xt;ξt

� �þQtþ1 xt;ξt
� �� �( )

þ
XS
s¼1

πΤ
st Cst−1−

X
r∈R

xrst−1crt−1
� �

ð12Þ

and the dual problem can be stated as

max
πst

Dt πstð Þ ð13Þ

Subject to Eqs. (10.1)–(10.4) and Eq. (10.6).

Fig. 3 Multistage optimization of disaggregated RAN functions
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Given that Eqs. (9) and (13) are convex problems, the
duality gap between the original and the relaxed prob-
lem is zero [23].

3.3 Heuristic for optimal BBU placement description
Although the ILP model discussed in the previous sub-
section can be effectively used to identify the optimal
placement of BBU functions within the data center, it
suffers high computational complexity, thus making it
unsuitable for real-time system deployments. To address
this issue, a heuristic algorithm with low computational
complexity is proposed that tries to identify the optimal
compute resources required to support the most energy
efficient processing of the BBU service chain within the
data center.
To limit the complexity of the heuristic, we have de-

fined 2 sets of functions (1st and 2nd set of functions) to

which the 8 different BBU functions can be mapped (Fig.
4). To satisfy the requirements of the BBU service chain,
the order of the various functions is always maintained
within and across the 2 sets of functions defined. The
first set comprises SC-FDMA, subcarrier demapper, fre-
quency domain equalizer, transform decoder, and con-
stellation demapper functions, while the second includes
descramble, rate matcher, and turbo decoder functions.
As shown in [24], the proposed grouping policy has been
selected as it requires a relatively small amount of net-
work resources for the interconnection of the first with
the second set of functions while the computational re-
quirements of the 2nd set are still very high.
The main objective of the heuristic is to allocate an in-

put BBU service chain to the most energy efficient
servers that have sufficient capacity to process it. The in-
put service can be split and allocated to a set of servers,

Fig. 4 Reduction of complexity through the grouping of BBU functions

Fig. 5 Heuristic for BBU assignment problem
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in case that splitting the service across servers is a more
energy efficient option. A more detailed description re-
garding the server allocation process is provided in
Fig. 5.
In our analysis, we were aiming at always serving the

input traffic, independent of the volume of incoming
data to be processed, satisfying at the same time, the
time constraints associated with the service. Therefore,
we are considering the ratio of the number of instruc-
tions required for the 2nd set of functions to be per-
formed, over the number of instructions of the 1st set of
functions. As it was also the case for the ILP analysis,
four different types of servers randomly placed inside
the DC racks are considered. These servers can be clas-
sified according to their energy efficiency, with type 1
server to be the most energy efficient, while type 4 the
least energy efficient server. The technical specifications
of which are provided in Table 1. Considering this as-
sumption, we calculate the ratios of the capacity of the
larger type of server (type 4 server, least energy efficient)
over the capacities of the rest of the servers (type 1, type
2, and type 3). In addition, based on these ratios and the
time constraints associated with the service (in total < 1
ms per subframe), we were able to define a set of thresh-
olds that can be used to identify whether an incoming
service can be split between the larger type server and
any other of the smaller available type of servers.
For the specific functional split and the set of servers

considered in this study, the numerical values of the
thresholds we have identified are as follows: (a) 68% of
type 4 server processing capacity if the 1st set of func-
tions is allocated to server type 1, (b) 69% of type 4 ser-
ver processing capacity if the 1st set of functions is
allocated to server type 2, and (c) 70% of type 4 server
processing capacity if the 1st set of functions is allocated
to server type 3. It should be noted that in our calcula-
tions, suitable processing margins of the order of 2%
have been allowed.

4 Results and discussion
4.1 Evaluation scenario
To quantify the benefits of the proposed softwarized RAN
approach, the simple DC network topology of Fig. 1 is con-
sidered. This topology comprises 6 racks, each one packed
with 48 servers. Connectivity between racks is provided
with the switching solution provided in [25]. In the

numerical calculations, we consider four types of servers,
randomly placed inside the racks. The technical specifica-
tions of these servers are provided in Table 1, while their
power consumption follows the linear stepwise function de-
scribed in [26]. For the wireless access, we consider the top-
ology described in [1] in which the served area is covered
by a set of RRHs which forward their FH flows to the DCs
for processing. Given that this study focuses on the compu-
tational aspects of the FH flows, we make the rational as-
sumption that the transport network does not act as a
bottleneck and, at the same time, it has sufficient capacity
to transfer all flows to the DCs for processing.

4.2 ILP numerical results
Figure 6 compares the performance of the proposed
optimization scheme (denoted DSW-BBU) in terms of
power consumption with the traditional SW-BBU as a
function of the served traffic. As expected, the power con-
sumption at the DCs increases with the wireless access
load. However, the DSW-BBU offers much better perform-
ance due to its increased ability to mix and match compute
and network resources, leading to improved utilization of
the servers and to higher energy efficiency. Specifically, nu-
merical results show that when using the proposed ap-
proach, the overall system power consumption is reduced
by 40% under high loading scenarios (from 50 to 30 kW)

Table 1 Technical specifications of the servers used in the numerical evaluations

Server type Computer/device Servers Chips Cores Threads GOPS Power (watt) GOPS/watt Idle (watt)

S0 SuperMicro X11DPi-N(T) SMC X11 2× Intel Xeon Platinum 8160 2 48 96 1071.37 360 2.98 53.40

S1 SuperMicro X11DPG-QT 2× Intel Xeon Gold 6140 2 36 72 888.52 336 2.64 52.40

S2 SuperMicro X10Dai SMC X10 2× Intel Xeon E5–2683 v4 2 32 64 700.94 288 2.43 81.00

S3 Sugon I908-G20 8× Intel Xeon E7–8860 v3 8 128 256 2510.56 1344 1.87 269.00

Fig. 6 DC power consumption for the traditional softwarised BBU
(SW-BBB) and the disaggregated SW-BBU (DSW-BBU) as a function of
the total wireless access traffic
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compared to the traditional solution where all BBU func-
tions are hosted in the same physical servers.

4.3 Heuristic for optimal BBU placement numerical results
To evaluate the performance of the proposed heuristic,
we have calculated the total power consumption of the
compute resources required to support the set of ser-
vices assumed in Section 4.1 and compare it with the re-
sults produced through the ILP approach also described
in the previous subsection.
The total power consumption of the compute re-

sources as a function of the total wireless access traffic
load is shown in Fig. 7 for both the heuristic and ILP
approaches. Relatively good agreement between the
heuristic and ILP approaches is achieved particularly for
low and high loading conditions. In these areas, both
schemes allocate the BBU functions in the same ma-
chines, and therefore, the optimality gap is less than 5%.
In Fig. 7, fluctuations of the DC power consumption

values calculated by the heuristic can be observed. This is
due to that the heuristic approach taken based on the
greedy approach introduces resource fragmentation de-
pending on the input traffic statistics and sequence, which

Fig. 7 Comparison between the ILP model and the heuristic algorithm

a

b

c

Fig. 8 a Wireless access demands as a function of time. b Evolution of power consumption over time. c Number of active servers supporting
BBU processing
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is not an issue in the case of ILP identifying globally opti-
mal solutions for all traffic demands at once.
The impact of traffic variation on the number and type of

servers that are employed to accommodate the relevant
BBU requirements is presented in Fig. 8a–c. Specifically,
the evolution of the wireless access demands as a function
of time for the measurements described in [27] is shown in
Fig. 8a. These wireless access requirements are then
mapped to BBU processing requirements using the analysis
presented in Section 3.1. Once the processing requirements
have been determined, the BBU SCs are constructed and
mapped to the suitable server. A snapshot of the overall
DC power consumption as a function of time for the traffic
load shown in Fig. 8a is provided in Fig. 8b. As expected,
under peak hours, the DC power consumption increases
due to the activation of additional servers that are necessary
for the processing of the very high BBU demands, whereas
under off-peak hours, the power consumption is mini-
mized. This is also verified in Fig. 8c where the evolution of
the number of active servers supporting BBU processing as
a function of time is illustrated. An interesting observation
is that under high loading scenarios, not only additional
DC servers of the same type are activated (“S0”) but also
servers which are less efficient (“S3”).
Finally, the execution time of the heuristic scheme as a

function of the number of BBU SCs that need to be con-
structed is shown in Fig. 9. We observe the execution time
ranges from 0.18 s when a small number of SC is created
up to 0.23 s under high traffic scenarios.

5 Conclusions
This paper focused on the concept of compute resource
disaggregation in centralized softwarised RANs to allow
the individual allocation of processing functions to

different servers depending on the nature and volume of
their processing requirements. Our experimental results
have shown that from the whole BBU service chain, the
turbo decoder, constellation demapper, rate matcher, and
frequency domain equalizer functions introduce much
higher demands, at the LTE PHY uplink, in terms of
computational resources (approximately 90% for very
high data rates). For these functions, the number of in-
structions executed has a linear dependence of the data
rate and by extending the whole LTE PHY uplink pre-
sents the same dependence from the data rate. Since the
baseband processing workload can be split into several
functions, the overall system performance can be opti-
mized, in our case in terms of overall power consump-
tion by appropriate allocation of each function to a
suitable server. This was performed using a purposely
developed multistage ILP optimization framework, in
the scenario of a heterogeneous DC, which can lead to
better utilization of the servers and to higher energy effi-
ciency. Specifically, the overall system power consump-
tion is reduced by 40% under high loading scenarios
compared to the traditional solution where all BBU
functions are hosted in the same physical servers. A
heuristic was also developed to address the computation
complexity associated with the ILP approach, demon-
strating good performance when compared with the ILP
results (the gap was less than 5%), particularly for low
and high loading conditions.
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