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The Meta Distribution of the SIR In Linear
Motorway VANETS

Konstantinos Koufos and Carl P. Dettmann

Abstract—The meta distribution of the signal-to-interference- for the network elements, and averages the performance indi
ratio (SIR) is an important performance indicator for wire-  cator (mostly outage probability) over all network stat8k [
less networks because, for ergodic point processes, it debes  Tnq ayerage does not represent well the reliability of each
the fraction of scheduled links that achieve certain reliallity, . . . ; - R
conditionally on the point process. In this paper, we calcuite !nd|V|duaI link, when the standard deviation (of the mdm’_a _
the moments of the meta distribution in vehicular ad hoc IS comparable to the mean. Because of that, the meta distribu
networks (VANETSs) along high-speed motorways. Due to the tion of the Signal-to-Interference Ratio (SIR) has beerendy
high speeds, the drivers maintain large safety distances,nd proposed to assess the distribution of the outage probabili
the Poisson point process (PPP) becomes a poor deploymelﬂEonditioned on the realization of the point process [9]. §hu

model. Because of that, we model the distribution of inter-ghicle far. th ta distributi f biool lul d het
distance equal to the sum of a constant hardcore distance and 'af» (€ Meta distribution ot bipolar, cellular and hetebgous

an exponentially distributed random variable. We design a ovel Wireless networks has been investigated [10], [11].

discretization model for the locations of vehicles which can be  The spatial distribution of vehicles requires a model fa& th
used to approximate well the meta distribution of the SIR dueto  rpad infrastructure and another for the locations of velsicl
the hardcore process. We validate the model against synthet ., jtionally on the roads. The Manhattan Poisson linegssc

motorway traces. On the other hand, the PPP overestimates , . . . )
significantly the coefficient-of-variation of the meta distibution (with horizontal and vertical layout of streets) and thes8on

due to the hardcore process, and its predictions fail. In addion, line process (for streets with random orientation) are popu
we show that the calculation of the meta distribution become lar in urban vehicular communication studies. For anadytic
especially meaningful in the upper tail of the SIR distribution.  tractability, they are coupled with one-dimensional (1D)
Index Terms—Headway distance models, probability generat- Poisson Point Process (PPP) for the locations of vehictemal
ing functional, reduced Palm measure, synthetic mobility taces. the streets. The resulting point process is commonly rederr
to as a Cox process in the plane. The study in [12] shows
that the distribution of interference level is discontinsoat
l. INTRODUCTION the intersections, the study in [13] brings up the trade-off
etween the intensities of streets and vehicles in the egeer
robability (or probability of successful reception) ofeth
typical receiver, and the study in [14] enhances the model
of [13] assuming both vehicular and macro-base stations.
gﬂnpler models for the road network, e.g., two orthogonal

The long-term vision of having vehicles communicating
with each other for improving traffic flow, enabling autonthte
driving, etc. is not far from reality [1]. The first standazdtion
actions started in 1999, once the Federal Communicati

Commission in U.S. allocated 75 MHz of spectrum in th ; ; ; T
treets in [15] and a grid of roads in [16], highlight the fdwit
5.9 GHz band for dedicated short-range communication [ sin [19] ar sin [16], highlig

In 2008, the European Commission set aside 30 MHz f re coverage probability of the typical receiver becomeselo

o . . ear intersections, because there, the generated imtecter
cooperative intelligent transport systems. Since Zomt“bh' fﬁ)m both horizontal and vertical streets is significant.
nology amendment IEEE 802.11p has been the basis for worl A 1D setup should suffice for the modeling of a motorway.
wide PHY/MAC layer standards supporting Vehicle-to-Vedic ; - . C g '

2 o and it allows incorporating very realistic deployment misde
(V2V) communication in the 5.9 GHz band. In addition, th P g very ploy

VoV icati il b d under th brell ipto connectivity studies without interference [17]. Ifeth
communication will be secured under the umbrefia ading is also neglected, more network properties can be
cellular LTE networks [3].

. nalytically evaluated, e.g., expected number of condecte
h Ths perforrtwwange IOf Vtery.cﬂa; a(.j hotc;]netwotrlﬁ (VA%ETS lusters [18]. In this paper, we are interested in V2V commu-
as been extensively studied during the past three decagision ynder the impact of interference and fading. In],[19
using measurements and simulations, see for instance [4

5 d th f herein. Unf v, both h odified Matern hardcore type-Il process is considered fo
[5] and t € reterences therein. heh ortunate_ y, bot _m_ess the intensity of concurrent interferers per lane, and trezaye
lack scalability. Recently, analytical tools, like spatmoint

61 h b loved ; ok insiqhos | multi-hop packet transmission time is calculated. In [20§
processes [6], have been employed to gain quick insig D Matern type-Il process is enhanced with discrete marks

thi sys;em perfortmar:\ cet_[7]. The ctlassmal analysis Oft,wiml g}e%deling non-saturated data traffic, and the transmission s
Networks using stochastic geometry assumes a spatial MoGes propability is evaluated. In [21], it is shown that with

K. Koufos and C.P. Dettmann are with the School of Math/OW transmission probability, the outage due to 1D Berrioull

ematics, University of Bristol, BS8 1TW, Bristol, UKJ{K.Koufos, lattice converges to that due to a PPP of equal intensity.
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they calculate the average of the performance indicator. To for increasing SIR threshold, while all other parameters
the best of our knowledge, the meta distribution of the SIR  remain fixed. As a result, the calculation of the meta
in VANETs has so far been studied only in [22]. Assuming  distribution becomes particularly meaningful in the upper
a regular grid of roads and 1D PPPs for the vehicles, this tail of the SIR CDF.

(Simulation—based) StUdy indicates that the meta diginhu In Section II, we present the system model and the dis-
is bimodal. Intuitively, the V2V communication in line-of- cretized approximation to the hardcore process. In Setipn
sight experiences much higher reliability than that over afe calculate the PGFL for the discretization model and in
intersection, making the performance of a randomly sefectgection IV its meta distribution. In Section V, we devise
link either extremely reliable or totally unreliable. simple approximations for the first two moments of the meta

Unlike the urban scenario in [22], we would like to shedjstribution. In Section VI, we validate the models aganest

some light on the meta distribution of the SIR along motofraces. Finally, in Section VII, we summarize the main firgin
ways. Natura”y, the drivers maintain |arge Safety dismCand outline relevant tOpiCS for future work.

in motorways, and the PPP may not model accurately the
locations of vehicles [23]. In order to maintain some degree
analytical tractability while introducing more realistieploy- ) ) i
ment, we have adopted the shifted-exponential distriufge W€ consider 1D point process of vehiclés, where the
the inter-vehicle distance in [23]-[25]. This distributidias Nter-vehicle distance follows the shifted-exponentiab¥a-
roots in transportation research [26], and it has also bsed y bility D|str|but|on. Function (P_DF). The shlft_ is denoted by
to model accidents for vehicles on the same lane [27]. Mofe> 0 @nd describes the minimum safety distance from the
complex headway models like the log-normal distribution fo/€hicle ahead plus the average size of a vehicle. The pagamet
multi-lane traffic in [28] are difficult to analyze. The Proba®f the exponential part is denoted hy> 0 and describes
bility Generating Functional (PGFL) of shifted-exponentpr 1€ random part of inter-vehicle spacing depending on the
hardcore) point process required to calculate the momentsdVer's reaction time, speed, different sizes for the ukefs
the meta distribution is unknown. In order to approximate ttEtC- The intensity of vehicles 8™ =c+u™", or A= 1z,
outage probability, we calculated the moments of interfeee We cond!tlon on th_e Iocatlo_n _of a transmitter a'F the origin.
under Palm (and reduced Palm) measure with respect ton.rT.ﬂ”'e receiver assqmated to it is the nearest vehicle ahe_ad, a
the shift (or hardcore distance) in [23]-[25]. Then, we st dlst{_:mced, see Flg_. la. We assu_me that only the vehlc_:les
suitable distributions for the interference level. Whilsist Pehind the transmitter generate interference. Other leshic
approach gave good predictions for the outage probabiliey d™MaY also mterfgre due to_ antenna backlobes ra@qﬂonhwtt
to the hardcore process, it is not straightforward to extengwould not dominate the interference level, and it is cuﬂy_ant
to calculate meta distributions. neglected. Hereafter, the proceBs denotes the points with
Instead of pursuing interference modeling, we will dedlon-negative coordinate, see Fig. la.
directly with the PGFL of the hardcore point process. Unfert  The probability to find a vehicle at=r >0 follows from
nately, the bounds using first-order factorial moment esjan the Pair Correlation Function (PCR){*) (r) =32, P (r),
for Gibbs processes with conditional Papangelou intensity

Il. SYSTEM MODEL

k. i
see [29, Thereom 1], are not tight in the upper tail of the o) =4 %,re(kx, (k+1)c) )
SIR Cumulative Distribution Function (CDF). In order to k =1 .

0, otherwise

approximate the PGFL, we will split the contributions into
near- and far-field. For the far-field, we model the intenferet >1 andT'(j)=(j—1)! [30, equation (32)].

with a PPP. For the near-field, we discretize the lane intoThe transmit power level is normalized to unity. The
intervals equal to the hardcore distance, and we allow dittance-based pathloss follows power-law!, with exponent
most one vehicle per interval. Let us call this modiie »>2. The fading power level is independent and identically
discretization model. The main contributions of this paper aredistributed (i.i.d.) over different links, following thexpo-

« Using the discretization model, we devise accurate apential PDF with mean unity. Each interferer is active with
proximations for the conditional PGFL and the metarobability ¢, independently of the activity of others.
distribution of the SIR due to the hardcore point process. We will now describe our novaliscretization model which
Furthermore, we illustrate that the hardcore process (awidl be used to approximate the CDF and the meta distribution
subsequently the discretization model) approximate welf the SIR due to the hardcore process. The model splits the
the meta distribution generated from synthetic motorwagterferers into near- and far-field depending on their tioces,
traces [4], [5], while the conventional PPP fails. see Fig. 1b. The separation threshold is denotedRbyrhe

« We show that introducing hardcore distance, while keefscations of vehicles for: > R are approximated by a PPP
ing the intensity of vehicles fixed, reduces the Coefficien, of intensity A\, because these vehicles do not dominate the
of-Variation (CoV) of the meta distribution. As a re-interference statistics. On the other hand, the approxigat
sult, the conventional PPP predicts larger disparity idistribution for the near-field interferers considers sarhithe
the performance of different links along the motorwayjeployment contraints introduced By.: Firstly, we discretize
and it incurs large errors in the estimation of the methe line segment € [¢, R] into intervals of lengthc, where
distribution generated from the traces. R = K¢, K € N;. Secondly, taking into account that the

« We show that the CoV of the meta distribution increasesinimum distance separation between successive vehgles i



(2 X Traffic direction
|
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(a) Deployment model (hardcore point process) (b) Discretization model

Fig. 1. (a) The vehicles are modeled as identical impenletrdisks of diameter. Their antenna is placed at the right side of the disk. A tratier (black
disk) is conditioned at the origin and paired with the reeeithollow disk) atz = —d. The vehicles behind the transmitter (red disks) generg&@ference
at the receiver, while the rest (blue disks) do not. All vé&#gcmove rightwards but the interferers are assumed in tiséiyeo half-axis to simplify the
expressions. (b) The line segment = < R is discretized with interval equal ta The vehicles are modeled by dimensionless points locatédrmly inside
the discretization intervals. Far> R the locations of vehicles are approximated by PPP.

¢, we allow at most one vehicle inside each interval. Wetheres=s(0)=0d", and the RV, describe the activity of
assume that whether an interval contains a vehicle or nottliee £-th vehicle with probabilitys.

independent of other intervals. Even though this approtiona The RVs¢; are i.i.d. Bernoulli, and thus

may not satisfy the hardcore constraint for all vehiclesyilk —1

suffice to approximate well the PGFL of the point processPout(9)=1—E{ II (1—€+€(1+8($k+d)_”) )} (4)
®. for realistic parameter settings. Furthermore, while the €@ No}

PDF of the location of a vehicle inside thieth interval,  The expectation in (4) should be taken over the locations of
(kc, (k+1) c), is available from the PCF, we approximate it bynterferers and transmitter. The product is a RV describing
the uniform distributiorU, k€ {1,2,..., K—1}, toreduce the the probability of successful reception conditioned on the
computational complexity at the cost of small accuracy.losgocations. Its distribution is essentially the meta disttion

Let us denote byP;. the Bernoulli-distributed Random of the SIR, as we will discuss in the next section.
Variable (RV) with parametep;,, equal to the probability that  After splitting the contributions to the PGFL into near- and

the k-th interval contains a vehicle. The parametgrcan be far-field terms, and using the discretization model, we have
calculated as the integral of the PCF withike, (k+1) ¢]. For

instance, fork=1, we haveplff pe Hr=adr=1—e Pout(e)%1_E{ka,eUkGn(xk)}E{kaeq>pr(xk)}; (5)

For largek, the following simplification might be of use
g g P 9 where G, (zx) = 1 — Epr +Epr(1+ s(zp +d) =)~ for the

(k“)c( 2) near-field and3y (zy) = 1—£+E(1+s(xp+d)~7) ! for the far-
Pr = /k pi (r)dr field. For the near-field we have scaled the acti¢itywith the
probability thek-th interval contains a vehicle. This is valid
because the RV#,, are independent of each other andégpf

c

FU) The expectation over the far-field is straightforward to
é cuk L CH (k+1)\ _ v 3) compute from the PGFL of PPP with(tR 00).
1+cu 14cp

i B{IL,c0,Grton)} o (3¢~ —oa). @
wherel (a, z) = [~ £~ dt is the incomplete Gamma function, Rid 51T
(a) follows after substituting equation (1) and inter-chamginwhere the integral can be expressed in terms of the hyperge-
the order of integration and summation, af#) uses that for ometric, F; function [32, p. 556].
large the functiont(v) = H-4=2)) s negligible for small ~ The expectation for the near-field, =E{[T,, c;,Gn(x)}
z and ramps up to unity after some poing. Therefore we requires to average over a uniform distribution for the tmra
may approximate the surﬁ: "_,t(j) by the integral of a unit of a vehicle inside each interval. After bringing the exjagion

pulse between: and k. Without introducing much error in operator inside the product we have

the calculatlon of the integral, we defing to be the point K1
wheret(xzg) = 5. In order to approximate;,, we know that Jp = H / (1 Epr+ 5—n) da (7)
lim r(r”(”f =1 [31] We use this property and solve foj = I+s (z+ak)
x—00 K
cp (k—xo) or 930*1_1% in the first term andcof% in _ B Epk B
the second, and the result follows. 8 1£[1 L=ept o (n+1) (Farr) = flar) ) (®)
[1l. A PPROXIMATING THE CONDITIONAL PGFLOF ®, whereay, =d+ck, f(ar)=a]t o F (1,7’;1,”227%) andpy,
Under i.id. Rayleigh fading, the outage probability’S 9\ven in (2).
Pout(0) =P (SIR<6) is, see also [8, Theorem 1], After substituting (6) and (8) into (5), and average over
the link distanced, we get an approximation for the outage
Pout(0) =1—E 1 } probability due to the hardcore proceBs. We will compare

1+&ks(0) (wp+d) ™" the discretization model with a few other models. The firs on

€D No}



uses a PPP with intensity in (¢, o) for the interferers and
a shifted-exponential PDF for the link distance. Hereafter

T T
— Simulations

. . o 09 B odel
will refer to it as model M1. The outage probability is o Discretization mode
- ~ sde e
—u(r—ec 7H = — Model A
o= oo e 2w @ g S g
c c+r S—f—l‘” 0.6 e

The second model, model M2, assumes exponential PDF
for the inter-vehicle distances. This is the model used & th
literature for linear VANETSs. The outage probability is

Probability of outage
o o
S (5]

o
w

O g ooz Mdz

0 10 e ot ‘ ‘ ‘
_ b)) pip _oF(1,0-4 21 —9) (10) %0 -10 0 10 20 30 40
=5 Y0 = @t SIR.©

Equation (10) is independent of the intensity. Thigig 2 simulated probability of outage due to a hardcorenpgrocess
agrees with the outage probability in the downlink of PPP. with A =0.025m™',c =16 m and approximations. Pathloss exponent

; limi : ; n=23, 105 simulation runs. In the discretization modet,,,;,, ~ 500 m for
interference-limited cellular networks with nearest bststion 2%, see (15). We sef = 512 m, of K — 32 units. In each simulation

association [8, Eq. (14)]. The third model M3 uses a nor&-ﬁ: () We generate samples from the shifted-exponentisiribution to
homogeneous PPP with intensjzisf') (z),2>0 and a shifted- cover a linear segment & km behind the transmitter. (i) We generate the

; ; ; iistransmitter-receiver link distanegaccording to the same distribution, and (iii)
exponential PDF for the link distance. The outage proldarblllwe generate exponentially-distributed fading and Betirdidtributed activity

follows from the PGFL of PPP. samples for all vehicles. The transmitter is assumed to Wwayal active.
Pout (6)

B > CespPa—d)da\ oy The calculation ofE'°{Z} involves the PCF in (1) which
= 1 _/CeXp<_/T g pe dr- (1) has a complicated form. Due to the fact th&? () > pere

for z>¢ 1, the mean interference can be bounded as
In order to calculate (11), we use the exact value of the

PCEF for distance separation up4e, and the approximation E'{T} :g/OO/OET.JFT/)fnp(z) (z) pe= 1= dgdr

p?) () ~ \ for (z—d) > 4c. This approximation is valid for e Je

Ac < 1, because the correlation starts to vanish beyond that >€/OO,U€_MC (r+c)t™" e =0y (13)

distance, see [24, Fig. 3]. Also\¢ < % is reasonable for - n—1

motorways [23, Fig. 8 and Fig. 9]. Finally, another approx- —ie‘wr@—n 24c)

imation, model M4, yielding a closed-form expression uses a n—1 ’ '

PPP of intensity\ in (0, co) for the interferers and a shifted- \ya \would like to find the minimun®, denoted byR*, sat-

exponential PDF for the link. isfying E'{Z},. 5 < ¢E"{Z}. SinceE"°{Z},. , decreases
Mgy _ 2o aR(11-L2 1 g) 5 in R, we may use the bound in (13) instead®f{Z}. After

out0) =1— b(0) = (€0) " T(1+puc)(n—1)" (12) cancelling out common terms, we end up with

8—5(9)”0
b(0)+1 ’

The discretization model is a tight approximation to the . (AR - 4 r 14
simulations due to the hardcore procdss see Fig. 2. The i) (2=n, n(c+R)) < I— e (2=n,2uc). (14)

approximations in (9) and (11) perform slightly worse. The

accuracy of (12) is poor, unless the transmission proliglisli ;

low. This corroborates the fact that the PPP is inadequateffo PUe 1o the fact thati? is expected to be much larger
1 we expand the Gamma function of the left-hand

model interference in motorway VANETS, even if the distancté_1an B - R
distribution of the transmitter-receiver link is tuned tooi Sid€ 1;0_rJargwR>>1 c.)btfaunmg.:e*f(ﬁ )F(Q_”W(C.JFR)) =
small headways. Finally, the model M2 in (10) predicts oWt ) !, After substituting this in the left-hand side of (14),
outage for hight, because it allows unrealistically high linkWe g€t a boundiz,;, on the threshold/ > Ry > R,
gains with high probability for the useful link. satisfying the constrainE *{Z},. , < qE{Z}, where

In order to set the separation threshadk] we constrain ] L
the mean interference beyot| E°{Z}_ _ ., to be less than Rypin = — <L p(2n72M6)> _ (15)
q% of the total mean interferendg'{Z}. For ¢ < 1, R is AN
expected to be large, and the me&f{Z}  , can be well-  |etus assume that we increase the intensity of the hardcore
approximated using a PPP of intensity After averaging the process and at the same time we impose stronger thinning,
term ;2% (d+R)' " over the link distancel we get keeping constant the intensity of retained transmittag¢s
Under this transformation, the hardcore process converges

The above inequality cannot be solved in closed-form w.r.t.

BT}, p m o [ (4 R) e
n—1J. 1The minimum value op(?) (z) for = > ¢ occurs at: = 2¢, see equation (1)
and [24, Fig. 3] for an illustration. This bound on the PCF dhds on the

Mt ein
= n—1 ettt F(2_777 H (C+R)) : mean interference is not tight for very regular point preess e.g.\c > %



distribution to a PPP [10]. Simply thinning the process main Using the discretization model, the contribution to the
tains some degree of correlation. Nevertheless, it is abtar moment)M, from the near-field can be written as
assume that the strongly thinned process generates ireteck 1 b
statistics similar to those of the thinned PPP. In other word M, ., :IE{ H < > }
K ) . . . ’ x, €Uy ]_+S§kpk (Qj‘k+d>_n
a PPP with intensity\ in (¢,00) predicts more accurately

b
the interference field due to the process of equal intensity :IE{ H (1_ 3 ) }
for smaller¢ [21], e.g., compare the accuracy of model M1 4, €U, 1+5P (zr+d) ") )

fqr §=01 and ¢ = 0.5 in Eig. 2. Next, we show that the Taking the average w.r.t. the Bernoulli RV, yields
discretization model is consistent with this property.

b
Lemma 1. For low activity £ such that \{ (R—¢) < 1 and M, = E{H (1 pk+pk<1§+ %) )} (17)
Ac< 1, the outage probability due to the discretization model A I+ s(zy+d)

converges to that of a PPP given in (9) for all thresholds 6. Note that)M; ,, = J,,, see (7). Next, we generalize Lemma 1
for b>1.

Proof. For small¢, equation (7) can be approximated as

K-1 ¢ K-1
Pk Esda (a)
J,L:”l——i,m”l
( c 05+(I+ak)’) (

. Lemma 2. For low activity ¢ such that A\éb(R—c) < 1 and
_/ Ags da )n) A< 1, Mymexp(—Ae 1511 (1 -£5) dx) ve.

k=1 o\ Jo st(rta - i
, P P Proof. Firstly, we take the expectation ovey, for each term
® 1— /C Asdr (o) exp[— Z/C Asdw of the product in (17) obtaining
w0 s+(z+ay)" =0 s+(z+ay)" K-1 1 re £ b
Ritd My = 1— 1—/(17>dz . (18
@ exp [—A¢ de[ . " U b cJo s+(z+ay)" (18)
c+d s+ =1

Secondly, we follow exactly the same steps as in the proof of

The approximation ir(a) follows from p,~ AcVk. This is Lemma 1. After substituting; ~ \c Vk in M, ,, the sufficient
valid for largek, see (3), and it can also be valid for small condition for the lemma to hold is
under the condition\c < 1. For instancep; =1 — e TN = P 1 re €s b
Ac+o(A2¢?). The inequality in(b) is the Weierstrass product )\cz <1—/ (1777) d:c)
inequality [[,(1—y;) > 1—",us, v: € [0,1], and (¢) follows =t Jo st(z+a)
from the ex alniiova—”ml —z,z—0. These approximations )\CZK_I (17(1 _ §>b) (%b) Ae (K —1)¢b
hold for S, [i—252 2 = < N (K—1)c= A (R—c) < 1. )\gb(Rkjlc><<17

=1J0 s+ (z+ar)"
We get(d), which+i(chchke) expression for the PGFL of a PPP

in (¢, R), after adding up thg K —1) integral terms. After where(a) holdsVs, and(b) is true for{b <1 which is met
multiplying the above simplification fog,, with the far-field under the conditiom\éb (R—c) < 1 for A(R—c) > 1, i.e,,
term in (6), we end up with the desired result. 0 more than a single vehicle (on average) in the near-fidld.

IN&

The numerical calculation of (18) can be simplified using
IV. THE META DISTRIBUTION OF THESIRFOR @, binomial expansion in the integrand yielding

The meta distribution of the SIR is the PDF of the prob- A b /b hap ) —h(an.j)
ability of successful reception, ;f9), conditioned on the Mb,nH<1pk+ka<j) e >7 (19)
spatial realization, i.e., fixed but unknown locations fbet k=1 3=0 —¢)
vehicles. R(#) = P(SIR>0|®.). The conditional probability N an .1 o+l al
is computed over fast fading and ALOHA, see (4). whereh(ay, 7) =2 F (3’5’7’*_5)'
The contributionM;, ; = E Hwke%Gf(xk)b}' uses the

-1
Py (6) = Hwk@c\{o}(l—f—kf (1+5 (xg —i—d)’”) ) . (16) PGFL of PPP, see [33, App. A].

b
Due to the ergodicity of the point proceds, the PDF of the My, s =exp <>\/>O 1— (1 £s ) d:c)
R+d

RV P,(6) is equivalent to the spatial distribution of the prob- s+

ability of successful reception given a realization of thoénp ® /b j dx (20)
process. The complementary CDEP,(0)>u),u € [0, 1], eXp<)‘Z <j> (=€) ﬁ (SJFT)J)’
indicates in each realization df., the fraction of scheduled J=1 &,_/

links that experience an SIR higher th@mnvith probability at F

leastu. The calculation of the PDF is not easy, but for the _ (R4d)tin 11l -
moments we may follow [10, Appendix]. Theth moment, Where (J"i)*) 2 (3_5’3"7_5+1’_8(R+d) '

The moment\,, is calculated by multiplying (19) with (20)
before averaging over the shifted-exponential distrdvutior
the link distance. The integration becomes computatignall

-1y demanding for highb hence, we will calculate only the
My :E{ ka@c\{o}(l_@rf (1+5(mk+d) n) ) } first two moments, and match them to a Beta PRE) =

My (0) = M,, is computed by raising (16) to thieth power
and taking its expectation ovey, andd
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Fig. 3. The simulated meta distribution of the SIR for a hardcprocess Fig. 4. The meta distribution of the SIR for a hardcore precsigh activity
with intensity A = 0.025m~!, ¢ = 16m and¢ = 0.5 (black lines), and the £=0.1. See the caption of Fig. 3 for other parameter settings aptheation
Beta approximations using the discretization model (bhes) and the models of line styles. The black dashed lines correspond to a Bepmoajmation
M1 (solid red lines) and M2 (dashed red lines). The simuftetiare generated using the simulated mean and variance due to the hardcocegzoThis is to
using 10* spatial configurations with0* realizations of fading and activity illustrate that for low activity and large thresholdsthe Beta approximation
per configuration. See the caption of Fig. 2 for other paramsettings. may not be very accurate at the tail. In the inset, we illtstthat for threshold
20 dB, a generalized Beta PDF with two parameters (green dalihe)
g(z)=aBz"1 (1—22)°~1, gives a marginal improvemegt, 1and with three
1 a—1(1_ \B—1 _ T()I(B) parameters (green solid liney(z) = %zae—l (1—2%)""", matching
Bﬁfﬁéz (1 Z) & s> 0 Whe.re Ra, ) = D(atB) *  also the skewness, gives almost a pérel‘gtz)t fit. The penalty ipaboth cases
The Beta approximation has been widely adopted for meta diSme numerical iterative calculation of their parameters

tributions [10], [11]. Its parameters afie= Z(mid—mi)—ms)

mo

mi(1—m)?

and f = mi—1+ ===, wherem; = My .My ; and | emma 3. For Ac< 1, the CoV of the meta distribution for the

ma =My, My j—mj. [10, Sec. II-F]. discretization model as & — 0, 6 — oo such that £ =T, where
We will also approximate the meta distribution due to thg - ¢ s congtant, converges to v where y=\TLH
models M1 and M2. In Fig. 2, we saw that the model M3 V u(pt2v) K

involves much more complicated integration than M1 withowRroof. For ¢ — 0, the condition\éb (R—c) < 1,b € {1,2}
obvious benefits. The model M4 improves the prediction &s satisfied for realistic\, ¢, R. In addition A\c < 1 hence,
compared to M2 but not as much as M1. For the model Mhe assumptions in Lemma 2 hold. Therefore the moments
the moments\/, are calculated after substitutid=c in (20) M, M> due to the discretization model can be approximated
and averaging overe *("=¢) r > ¢. For the model M2 the using the model M1. The first moment due to M1, see (9), is
moments are computed after substitutiRg= 0 in (20) and o0

M1 _/ €_A€

c

oo _orflda

averaging ovete ", > 0. For all models we will apply the crr DR e =R dp, (21)
method of moments with Beta approximation.

The simulated meta distribution due to the hardcore proces
and the various approximations are depicted in Fig. 3. The fiP )
point to remark is that M2 can be very unreliable, especially;oc  gy74, (@) (rov 1_ =" S p—
for large thresholds— it significantly overestimates both fc;z Br a7 fc*’”(CJ(rT)l M":ﬁ) de 2»1/;-9197“ v dr
moments, see also Fig. 2. Correcting M2 using M1 already =7 0" — (c+r)+ = og5— & Jmgr 07 —(c+7),
brings a major improvement, which can be enhanced furthgrere (4) follows from expanding the fraction (up to first-
using the discretization model. Reading from the figure, M@rder) for smallz < 6'/77 in the first term, and large > 6/
predicts that70% of scheduled links achieve a SIR 0fdB  , the second term.

with probability at least).8 while, the other models predict  agier substituting the above approximation in (21), and
very accurately the correct fractios8% of links. Another carrying out the integration w.r.t, we end up with
remark from Fig. 3 is that for low thresholds the CoV of

4:or larged, the integral w.r.tz in (21) accepts the following
proximation.

. . . . ) —vic 2 1
the meta distribution decreases, which means that moseof th 17, ~ ¢ K = ¢ (772+1 0 _ 1) . (22
scheduled links will experience about the same reliabilitye pt =
meta distribution for activityt =0.1 is depicted in Fig. 4. Similarly, for the second moment we get
My o e2AcE—AE e pe 2

V. PROPERTIES OF THE META DISTRIBUTION

ptvg . (23)
" D@ —T) 1) :

vy = 2A§("§j} o — 1) —AgQ(M o7 —
In this section we study the behaviour of the moments )
M, M, and the CoV of the meta distribution w.r.t. the activity After substitutingd» =T¢~! in v, 1, and taking the limit
and the SIR threshold. In addition, we devise low-compjexiof M, M, for £ —0, we get

approximations for these terms, which turn out to be much peve pe2ve

more accurate than the predictions using the model M2. Jin My = P Jim M, = P

(24)



TABLE |
THE DISCRETIZATION MODEL, THE MODEL M1, AND THE .
APPROXIMATIONS(22), (23)PREDICT WELL THE MOMENTSM 1, M5 AND
THE COV OF THE META DISTRIBUTION DUE TO THE SIMULATED 09
HARDCORE PROCESSTHE MODEL M2 FAILS IN THE ESTIMATION OF
CoV. EACH TERM IS ROUNDED AT THE FIFTH DECIMAL DIGIT. £ =102, 08
6 =103, SEE THE CAPTION OFFIG. 3 FOR OTHER PARAMETER SETTINGS

¢ Simulations
X Discretization model
O Model M1
Lemma 3
— — —Lemma 3, limit

2

.M

1

0.7

My Mo CoV

Discretization model 0.89968 | 0.81293 | 0.06580
Model M1 0.90050 | 0.81456 | 0.06729 Y
Lemma 3, (22) and (23) 0.89698 | 0.80846 | 0.06954 05
Model M2 0.90015 0.81891 0.10322 | | e

Simulations hardcore 0.89811 | 0.81010 | 0.06579 04p

Moments M
o

0.3

10
Finally, writing the CoV as, /4% —1, and substituting the Activity &

. . . 1 . .
limits from (24) yields the desired result. The limits dedem Fig. 5. The momentsy . Mp for pairs (€,0) satistying T = £01/7 = 0.5.

¢, 6 through the productd’/”, while the approximations (22) The discretization model, the model M1 and the approximati®2) and (23)
and (23) depend also individually an O in Lemma 3 estimate accurately the moments due to the sietlilzrdcore
process. The model M2 fails. See the caption of Fig. 3 for rofa@ameters.

In order to illustrate the usefulness of Lemma 3, let us

assume early penetration of VANETS, with activity=10-2.
Let us also consider a high-rate data communicatioh-a80 1
dB, yieldingT'=0.1 for n=3. The numerical calculation of ogf B
the moments\/;, My and the CoV using various models are 08l
presented in Table I. The model M1 is a good approximation
to the discretization model because the activity is low. The
approximations (22) and (23) follow closely the results due

, CoV
o
~

2
o
o

¢ Simulations

.M

~ 05} X Discretization model SRR
to M1, because the threshold is large. In addition, the z wal |° t":;’::"sl ..
limit (¢ — 0) for the CoV in Lemma 3 works well yielding, e | emmesame |
ﬁ = 0.070. Neglecting the hardcore distance, i.e., =7 L ModelM2 | i
p(p+2v 020 1
u=Xand ——X—— =0.112 incurs large error, because the | oot
VAA+2v) 0o ¥ 5
link gain experiences much higher variability fo=0 than o ‘
for ¢ = 16, while X is fixed. In Fig. 5, it is illustrated that 10’ 1’ 10’

) ) . o Threshold 6
the approximations in (22) and (23) are good also for realist

activity values, e.g., up t6=0.2. For{=0.5 we obtainf=1 Fig. 6. The moments\/;, M> and the CoV for activity¢ = 0.05 and large
for T=0.5, and the approximations in (22), (23) break down_hresholdse. The_ discretization mode_l, the model_ M1 and the approxima-
The limit ofthe CoV in Lemma 3 increases imand thus in 1972 (22), (29 gve ver goud predcions o e simibesicore proces
6, while £ is kept constant, see Fig. 6 for an illustration. Thigy 91/27 for large 6. See the caption of Fig. 3 for other parameter settings.
is also evident by visual inspection from Fig. 3, where the
variance of the meta distribution is much less for 1 than
for 6 = 100. The large CoVs mean that the average succdsemma 4. For ¢ < 1, the CoV of the meta distribution for
probability 1/, does not represent well the performance d¢he discretization model is approximated by \/ﬁ where
different links across a snapshot of the network. Furtheemo . _ (n+1)x ¢
Lemma 3 indicates that for low and decreasing actigity 0, - 2=
while keeping constand/; by increasingd, the variance of Proof. For smalld, equation (21) can be approximated as
the conditional success probability across the networksdoe

and t=£0 < 1 is a positive constant.

not become zero. This is in accordance with [10, Corollary 7] My = [ e A & 0T o mp(r—o) gy

for cellular networks with random activity. In Fig. 5, for :fcf’o e*i%r”(ﬂrc)l’"ue—u('r—c)dr_

My ~ 0.566 and activity ¢ — 0, the standard deviation of

the conditional success probability converge§ t6. Finally, ~ For small 6, we getu > 2%, which means that the

according to (24), fom > 2 and6 > 1, My, M, increase for term e #" dominates the integrand. In addition, the main
increasing) but the CoV decreases. Intuitively, higher pathlosgontribution to the integral is given by the vicinity of
means that links scheduled at the same time are betteradolddecause of that, we can expand the tefhtr-+c)'~” around
from each other, and the fraction of links achieving certain Without introducing much error. After expanding up to the

reliability should increase, see also Fig. 8 and Fig. 9. first order and carrying out the integration, we end up with
Next, we present approximations faf,, M, and CoV for e

0 < 1. For smalld, the model M1 approximates well the My ~ e Me—*. (25)

discretization model even for large activity, see Fig. 2 and prv

Fig. 3 for example illustrations. Similarly, the approximation oft/, for § < 1, keeping only
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Fig. 7. The momentd/;, M for activity £ =0.5 and small threshold&. The Fig. 10. Meta distributions for the 1200-th snapshot fromtonway M40,
discretization model and the model M1 predict well the seted moments May 7 2010, busy hour, left lane, considering interferengamf all three
due to the hardcore process. The approximations (25), (B&) letter lanes. For lane separatidm and antenna beamwidi; we haverg~50m
predictions than M2. The CoV (see the inset) is approxirgapebportional for the middle lane an@ry =~ 100 m for the right lane. For the right lane,
to 6 for small 9, see Lemma 4. See the caption of Fig. 3 for other parameterge assume a PPP beyofd, for all three models with\, ~20.0205 m—1.
For the middle lane we assume PPP beyopdor the models M1 and M2
with \,, ~ 0.0186 m~!. For the discretization model we estimakg, ~
0.0193m~1, ¢, £9.86 M, and K ,,, = 14 for ¢=2%. n=4, see the caption

the leading-order term w.r., is of Fig. 9 for other parameter settings and mapping of linéestyo models.

(26)

simulator is the location of vehicles, i.e., lane and hartab
position over a road segment of 10 km with one second
granularity. In [23] we have analyzed these traces using+the

The approximations (25) and (26) depend &nand 6
only through their product. After substituting (25), (26)Xa

./%1%71, the result of the lemma follows. O and the Ripley’s K-function [34, Ch. 2.8]. We have illustdt

L ) ) . _that the PPP cannot capture the distribution of inter-uehic
The approximations (25), (26) are validated in Fig. Tysiances, because it permits unrealistically small dista
Summing up, according to Lemma 3, if we reduce the activityiy, high probability. The PPP becomes more problematic for
by 10 dB, we can increase the threshaldby 10 dB 10 ¢ |eft jane because due to the high speeds over there, the
maintain the same probability of succel for Iargc_ae and drivers maintain large safety distances. We have illustrétat
¢ — 0. According to Lemma 4, for low, we can increase y, envelope of the J-function for the fitted hardcore preces

the threshold only byl0 dB. For instance, in Fig. 2, the g, "can capture the J-function of the real snapshot, see [23,
probability of outage at-10 dB is0.014 with activity §=0.5. g IV] for a detailed description of the fitting method.

The same outage with activity = 0.1, occurs around-3 In the current paper, we use the fitted paramefess to
dB confirming (25). Note also that according to (26), the tngssess which mopdepl (&iscretization M1 ar?d M2) can better
pairs (¢, 6) € {(0.5,—10dB), (0.1, —3dB) } result in the same '

second momeni/, too. On the other hand, the probabilitypre.dICt the simulated outage probgb|l|ty and the meta idistr
. : - C bution of snapshots. We see in Fig. 8 that for the left lane
of outage atl0 dB is 0.45 with activity ¢ = 0.5 in Fig. 2, . L
) . - of the selected snapshot¢ ~ 0.3, the discretization model
while with activity ¢ = 0.1 the same outage occurs 2t.5

dB, instead of31 dB predicted by (24). This is because (24 %ﬁ?:rl{/(l)zn?r?chhri C;?d?;rM:’efrzri:c'g:lyh;?rsla;%; t:arel?;cr)il?s,
is valid for ¢ —0, and (22) should be used instead. Finally, yarg - Figher sp 9

the CoVs calculated in the Lemmas decrease. imhile the c~0.4 in Fig. 9, makes clear the benefit of discretization.
intensity \ is fixed. This is clear after writing 'the CoV as 1he extension of the discretization model to multiple lanes

vt , wherev o (1— Ac), see Fig. 6 and the inset in'S straightforward by discretizing with lane-specific paster

;/_1+2wr1 ) c. Due to directionality, only vehicles behind some distance
ig. 7 for the comparison between M2 and the Lemmas. ./ from the receiver may contribute to other-lane interfeggnc

see [23, Section VI]. The interference originated from othe
VI. VALIDATION WITH REAL TRACES lanes does not require to constrain the location of any of

Thanks to [4], [5], there are publicly available traces fof€ Points of the processes. We just add a reference point
three-lane unidirectional motorway traffic. In order to geate (the receiver) at the origin. The separation threshold be_tW
them, the studies have collected per-lane measurements ei¢a’- and far-field interferers for other lanes is easier to
second about the number of passing vehicles and their speiculate. Starting fromfy,;” r=dr < q [, r~"dr, we have
using induction loops at a measurement location outsid&>(1/q)"—* r¢. The results are available in Fig. 10. Summing
Madrid in Spain. The measurements have been used to caf; Fig. 8 — Fig. 10 highlight the discretization model as a
brate a simulator modeling micro-mobility features likeda reasonable choice for modeling the outage probability glon
changing pattern, velocity distributions etc. The outputhe motorway VANETS.
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Fig. 8. (a) The simulated probability of outage using reatér and the approximations using the discretization madwl, the models M1 and M2. For
the discretization model and M1, the (fitted) shifted-exguial PDF has\ ~ 0.0205 m~! and ¢ ~ 14.82m, yielding Ac ~ 0.3037. For M2, the (fitted)
exponential PDF has ~ 0.0195m~!. For g = 2%, we get R, ~ 442m from (15), and we calculatéd = (%] =30 and R = Kc~ 445m. 10°
simulations. The approximation (22) in Lemma 3 for larges#iiolds is accurate fér> 10, and the approximation (25) in Lemma 4 for small threshods i
accurate for < 0.5. (b)-(c) The simulated meta distribution and the approxioms using the same models)* spatial configurations anti0? realizations
of fading and activity per configuration. The approximasigi22) and (23) coupled with the Beta approximation are depitor large threshold8 =10 and
6=100. For 6 =1, we used the approximations (25) and (26), which are notratelbecause Lemma 4 assumes smiad 1. Activity £ =0.5. We have
selected the 1000-th snapshot from motorway M40, May 7 2BW6y hour [4], [5]. The empirical CDF of inter-vehicle distes, obtained from the trace,
is used to simulate the locations of interferers and theuliiek distance.
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Fig. 9. Fitting the models to the simulations using the 1#98napshot from motorway M40, May 7 2010, busy hour [4], [r the discretization model
and the model M1 we use the estimatesz0.0203 m—!, c~19.76 m, resulting toAc~0.4017. For the model M2 we estimat®~0.0191 m~—!. See the
caption of Fig. 8 for explanation of the legend and other peter settings.

VII. CONCLUSIONS would be useful for network planning, because it provides th

system designer with better prediction of the distributadn
In high-speed motorways the vehicles maintain large safedjtage probabilities than that obtained with a PPP.

distances from the vehicle ahead. Because of that, a shiftedWe have shown that for increasing SIR thresholds the
exponential PDF captures the distribution of headway desta disparity in the success probability across different dink
along a lane much better than the PPP. In order to approximaiereases. This means that the upper tail of the SIR CDF,
the PGFL of the shifted-exponential (or hardcore) process, calculated as an average over all spatial realizationss doe
used a shifted-exponential PDF for the link distance calipleepresent accurately the outage probability along a smpsh
with a guard zone (equal to the hardcore distance) behind tfethe motorway. As a result, the calculation of the meta
transmitter. This model predicts the moments of the SIR mudrstribution becomes useful. We have also shown that the
better than the PPP. Nevertheless, for regular deploymem®P predicts much higher disparity than that observed with
and/or large SIR threshold and transmission probability, real traces, because it allows more variability in the link
starts to lose some of its power. Because of that, we have déstance. Another important conclusion is that the mean and
vised a discretized deployment for the near-field. This isemothe variance of the meta distribution in the low SIR depend
tailored to the hardcore constraints, hence it approximatenly on the product of transmission probability and SIR
better the PGFL of the hardcore process. The discretizatitmeshold. Therefore lowering the activity by dB allows
model coupled with the Beta PDF for the meta distributiomcreasing the operation threshold bydB with little effect
can capture the statistics of the outage probability alolzgna on the meta distribution. This is, however, not the case for
of the motorway. This has been validated against syntheliigh SIR thresholds. Regarding future work, it would be good
traces generated from real vehicular data, considering ats see the calculation of the meta distribution also for the
interference due to multiple lanes. The discretization ehodrate statistics. In addition, it would be interesting todstu



the joint distribution of the SIR over multiple slots, which

Some preliminary analysis about the temporal statistics
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