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The Meta Distribution of the SIR in Linear
Motorway VANETs
Konstantinos Koufos and Carl P. Dettmann

Abstract—The meta distribution of the signal-to-interference-
ratio (SIR) is an important performance indicator for wire-
less networks because, for ergodic point processes, it describes
the fraction of scheduled links that achieve certain reliability,
conditionally on the point process. In this paper, we calculate
the moments of the meta distribution in vehicular ad hoc
networks (VANETs) along high-speed motorways. Due to the
high speeds, the drivers maintain large safety distances, and
the Poisson point process (PPP) becomes a poor deployment
model. Because of that, we model the distribution of inter-vehicle
distance equal to the sum of a constant hardcore distance and
an exponentially distributed random variable. We design a novel
discretization model for the locations of vehicles which can be
used to approximate well the meta distribution of the SIR dueto
the hardcore process. We validate the model against synthetic
motorway traces. On the other hand, the PPP overestimates
significantly the coefficient-of-variation of the meta distribution
due to the hardcore process, and its predictions fail. In addition,
we show that the calculation of the meta distribution becomes
especially meaningful in the upper tail of the SIR distribution.

Index Terms—Headway distance models, probability generat-
ing functional, reduced Palm measure, synthetic mobility traces.

I. I NTRODUCTION

The long-term vision of having vehicles communicating
with each other for improving traffic flow, enabling automated
driving, etc. is not far from reality [1]. The first standardization
actions started in 1999, once the Federal Communication
Commission in U.S. allocated 75 MHz of spectrum in the
5.9 GHz band for dedicated short-range communication [2].
In 2008, the European Commission set aside 30 MHz for
cooperative intelligent transport systems. Since 2010, the tech-
nology amendment IEEE 802.11p has been the basis for world-
wide PHY/MAC layer standards supporting Vehicle-to-Vehicle
(V2V) communication in the 5.9 GHz band. In addition, the
V2V communication will be secured under the umbrella of
cellular LTE networks [3].

The performance of Vehicular ad hoc networks (VANETs)
has been extensively studied during the past three decades
using measurements and simulations, see for instance [4],
[5] and the references therein. Unfortunately, both methods
lack scalability. Recently, analytical tools, like spatial point
processes [6], have been employed to gain quick insights into
the system performance [7]. The classical analysis of wireless
networks using stochastic geometry assumes a spatial model
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for the network elements, and averages the performance indi-
cator (mostly outage probability) over all network states [8].
The average does not represent well the reliability of each
individual link, when the standard deviation (of the indicator)
is comparable to the mean. Because of that, the meta distribu-
tion of the Signal-to-Interference Ratio (SIR) has been recently
proposed to assess the distribution of the outage probability,
conditioned on the realization of the point process [9]. Thus
far, the meta distribution of bipolar, cellular and heterogeneous
wireless networks has been investigated [10], [11].

The spatial distribution of vehicles requires a model for the
road infrastructure and another for the locations of vehicles
conditionally on the roads. The Manhattan Poisson line process
(with horizontal and vertical layout of streets) and the Poisson
line process (for streets with random orientation) are popu-
lar in urban vehicular communication studies. For analytical
tractability, they are coupled with one-dimensional (1D)
Poisson Point Process (PPP) for the locations of vehicles along
the streets. The resulting point process is commonly referred
to as a Cox process in the plane. The study in [12] shows
that the distribution of interference level is discontinuous at
the intersections, the study in [13] brings up the trade-off
between the intensities of streets and vehicles in the coverage
probability (or probability of successful reception) of the
typical receiver, and the study in [14] enhances the model
of [13] assuming both vehicular and macro-base stations.
Simpler models for the road network, e.g., two orthogonal
streets in [15] and a grid of roads in [16], highlight the factthat
the coverage probability of the typical receiver becomes lower
near intersections, because there, the generated interference
from both horizontal and vertical streets is significant.

A 1D setup should suffice for the modeling of a motorway,
and it allows incorporating very realistic deployment models
into connectivity studies without interference [17]. If the
fading is also neglected, more network properties can be
analytically evaluated, e.g., expected number of connected
clusters [18]. In this paper, we are interested in V2V commu-
nication under the impact of interference and fading. In [19],
a modified Matèrn hardcore type-II process is considered for
the intensity of concurrent interferers per lane, and the average
multi-hop packet transmission time is calculated. In [20],the
1D Matèrn type-II process is enhanced with discrete marks
modeling non-saturated data traffic, and the transmission suc-
cess probability is evaluated. In [21], it is shown that with
low transmission probability, the outage due to 1D Bernoulli
lattice converges to that due to a PPP of equal intensity.

While the studies [19]–[21] are pertinent to motorways
and incorporate higher layer features (multi-hop transmission,
queueing and application to automotive radars respectively),
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they calculate the average of the performance indicator. To
the best of our knowledge, the meta distribution of the SIR
in VANETs has so far been studied only in [22]. Assuming
a regular grid of roads and 1D PPPs for the vehicles, this
(simulation-based) study indicates that the meta distribution
is bimodal. Intuitively, the V2V communication in line-of-
sight experiences much higher reliability than that over an
intersection, making the performance of a randomly selected
link either extremely reliable or totally unreliable.

Unlike the urban scenario in [22], we would like to shed
some light on the meta distribution of the SIR along motor-
ways. Naturally, the drivers maintain large safety distances
in motorways, and the PPP may not model accurately the
locations of vehicles [23]. In order to maintain some degreeof
analytical tractability while introducing more realisticdeploy-
ment, we have adopted the shifted-exponential distribution for
the inter-vehicle distance in [23]–[25]. This distribution has
roots in transportation research [26], and it has also been used
to model accidents for vehicles on the same lane [27]. More
complex headway models like the log-normal distribution for
multi-lane traffic in [28] are difficult to analyze. The Proba-
bility Generating Functional (PGFL) of shifted-exponential (or
hardcore) point process required to calculate the moments of
the meta distribution is unknown. In order to approximate the
outage probability, we calculated the moments of interference
under Palm (and reduced Palm) measure with respect to (w.r.t.)
the shift (or hardcore distance) in [23]–[25]. Then, we selected
suitable distributions for the interference level. While this
approach gave good predictions for the outage probability due
to the hardcore process, it is not straightforward to extendit
to calculate meta distributions.

Instead of pursuing interference modeling, we will deal
directly with the PGFL of the hardcore point process. Unfortu-
nately, the bounds using first-order factorial moment expansion
for Gibbs processes with conditional Papangelou intensity,
see [29, Thereom 1], are not tight in the upper tail of the
SIR Cumulative Distribution Function (CDF). In order to
approximate the PGFL, we will split the contributions into
near- and far-field. For the far-field, we model the interferers
with a PPP. For the near-field, we discretize the lane into
intervals equal to the hardcore distance, and we allow at
most one vehicle per interval. Let us call this model,the
discretization model. The main contributions of this paper are:

• Using the discretization model, we devise accurate ap-
proximations for the conditional PGFL and the meta
distribution of the SIR due to the hardcore point process.
Furthermore, we illustrate that the hardcore process (and
subsequently the discretization model) approximate well
the meta distribution generated from synthetic motorway
traces [4], [5], while the conventional PPP fails.

• We show that introducing hardcore distance, while keep-
ing the intensity of vehicles fixed, reduces the Coefficient-
of-Variation (CoV) of the meta distribution. As a re-
sult, the conventional PPP predicts larger disparity in
the performance of different links along the motorway,
and it incurs large errors in the estimation of the meta
distribution generated from the traces.

• We show that the CoV of the meta distribution increases

for increasing SIR threshold, while all other parameters
remain fixed. As a result, the calculation of the meta
distribution becomes particularly meaningful in the upper
tail of the SIR CDF.

In Section II, we present the system model and the dis-
cretized approximation to the hardcore process. In SectionIII,
we calculate the PGFL for the discretization model and in
Section IV its meta distribution. In Section V, we devise
simple approximations for the first two moments of the meta
distribution. In Section VI, we validate the models againstreal
traces. Finally, in Section VII, we summarize the main findings
and outline relevant topics for future work.

II. SYSTEM MODEL

We consider 1D point process of vehiclesΦc, where the
inter-vehicle distance follows the shifted-exponential Proba-
bility Distribution Function (PDF). The shift is denoted by
c > 0 and describes the minimum safety distance from the
vehicle ahead plus the average size of a vehicle. The parameter
of the exponential part is denoted byµ > 0 and describes
the random part of inter-vehicle spacing depending on the
driver’s reaction time, speed, different sizes for the vehicles
etc. The intensity of vehicles isλ−1 = c+µ−1, or λ= µ

1+µc .
We condition on the location of a transmitter at the origin.
The receiver associated to it is the nearest vehicle ahead, at
distanced, see Fig. 1a. We assume that only the vehicles
behind the transmitter generate interference. Other vehicles
may also interfere due to antenna backlobes radiation, but this
would not dominate the interference level, and it is currently
neglected. Hereafter, the processΦc denotes the points with
non-negative coordinate, see Fig. 1a.

The probability to find a vehicle atx= r> 0 follows from
the Pair Correlation Function (PCF),ρ(2)(r)=

∑∞
k=1 ρ

(2)
k (r),

ρ
(2)
k (r)=

{ k∑

j=1

µj(r−jc)j−1

Γ(j)eµ(r−jc) , r∈(kc, (k+1)c)

0, otherwise,
(1)

k≥1 andΓ(j)=(j−1)! [30, equation (32)].
The transmit power level is normalized to unity. The

distance-based pathloss follows power-law,r−η, with exponent
η > 2. The fading power level is independent and identically
distributed (i.i.d.) over different links, following the expo-
nential PDF with mean unity. Each interferer is active with
probability ξ, independently of the activity of others.

We will now describe our noveldiscretization model which
will be used to approximate the CDF and the meta distribution
of the SIR due to the hardcore process. The model splits the
interferers into near- and far-field depending on their locations,
see Fig. 1b. The separation threshold is denoted byR. The
locations of vehicles forx > R are approximated by a PPP
Φp of intensityλ, because these vehicles do not dominate the
interference statistics. On the other hand, the approximating
distribution for the near-field interferers considers someof the
deployment contraints introduced byΦc: Firstly, we discretize
the line segmentx ∈ [c, R] into intervals of lengthc, where
R = Kc,K ∈ N+. Secondly, taking into account that the
minimum distance separation between successive vehicles is
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Fig. 1. (a) The vehicles are modeled as identical impenetrable disks of diameterc. Their antenna is placed at the right side of the disk. A transmitter (black
disk) is conditioned at the origin and paired with the receiver (hollow disk) atx=−d. The vehicles behind the transmitter (red disks) generate interference
at the receiver, while the rest (blue disks) do not. All vehicles move rightwards but the interferers are assumed in the positive half-axis to simplify the
expressions. (b) The line segmentc≤x≤R is discretized with interval equal toc. The vehicles are modeled by dimensionless points located uniformly inside
the discretization intervals. Forx>R the locations of vehicles are approximated by PPP.

c, we allow at most one vehicle inside each interval. We
assume that whether an interval contains a vehicle or not is
independent of other intervals. Even though this approximation
may not satisfy the hardcore constraint for all vehicles, itwill
suffice to approximate well the PGFL of the point process
Φc for realistic parameter settings. Furthermore, while the
PDF of the location of a vehicle inside thek-th interval,
(kc, (k+1) c), is available from the PCF, we approximate it by
the uniform distributionUk k∈{1, 2, . . . ,K−1}, to reduce the
computational complexity at the cost of small accuracy loss.

Let us denote byPk the Bernoulli-distributed Random
Variable (RV) with parameterpk, equal to the probability that
the k-th interval contains a vehicle. The parameterpk can be
calculated as the integral of the PCF within[kc, (k+1) c]. For
instance, fork=1, we havep1=

∫ 2c

c µe−µ(r−c)dr=1−e−cµ.
For largek, the following simplification might be of use

pk =

∫ (k+1)c

kc

ρ
(2)
k (r) dr

(a)
=

k∑

j=1

Γ (j, cµ (k−j))− Γ (j, cµ (k+1−j))

Γ (j)
(2)

(b)
≈
(

k− cµk

1+cµ

)

−
(

k− cµ (k+1)

1+cµ

)

= λc, (3)

whereΓ(a, x)=
∫∞

x
ta−1

et dt is the incomplete Gamma function,
(a) follows after substituting equation (1) and inter-changing
the order of integration and summation, and(b) uses that for
largek the functiont(x)= Γ(x,cµ(k−x))

Γ(x) is negligible for small
x and ramps up to unity after some pointx0. Therefore we
may approximate the sum

∑k
j=1t(j) by the integral of a unit

pulse betweenx0 and k. Without introducing much error in
the calculation of the integral, we definex0 to be the point
wheret(x0) =

1
2 . In order to approximatex0, we know that

lim
x→∞

Γ(x,x)
Γ(x) = 1

2 [31]. We use this property and solve forx0=

cµ (k−x0) or x0=
cµk
1+cµ in the first term andx0=

cµ(k+1)
1+cµ in

the second, and the result follows.

III. A PPROXIMATING THE CONDITIONAL PGFL OFΦc

Under i.i.d. Rayleigh fading, the outage probability,
Pout(θ)=P (SIR≤θ) is, see also [8, Theorem 1],

Pout(θ)=1−E

{ ∏

xk∈Φc\{o}

1

1+ξks(θ) (xk+d)
−η

}

,

wheres≡s(θ)=θdη, and the RVsξk describe the activity of
the k-th vehicle with probabilityξ.
The RVsξk are i.i.d. Bernoulli, and thus

Pout(θ)=1−E

{ ∏

xk∈Φc\{o}

(

1−ξ + ξ
(

1+s (xk+d)
−η
)−1 )}

. (4)

The expectation in (4) should be taken over the locations of
interferers and transmitter. The product is a RV describing
the probability of successful reception conditioned on the
locations. Its distribution is essentially the meta distribution
of the SIR, as we will discuss in the next section.

After splitting the contributions to the PGFL into near- and
far-field terms, and using the discretization model, we have

Pout(θ)≈1−E
{∏

xk∈Uk
Gn(xk)

}
E

{
∏

xk∈Φp
Gf (xk)

}

, (5)

whereGn(xk) = 1 − ξpk + ξpk(1+ s(xk + d)−η)−1 for the
near-field andGf (xk)=1−ξ+ξ(1+s(xk+d)

−η)−1 for the far-
field. For the near-field we have scaled the activityξ with the
probability thek-th interval contains a vehicle. This is valid
because the RVsPk are independent of each other and ofξk.

The expectation over the far-field is straightforward to
compute from the PGFL of PPP within(R,∞).

E

{
∏

xk∈Φp
Gf (xk)

}

=exp

(

−λξ

∫ ∞

R+d

s

s+xη
dx

)

, (6)

where the integral can be expressed in terms of the hyperge-
ometric2F1 function [32, p. 556].

The expectation for the near-field,Jn=E
{∏

xk∈Uk
Gn(xk)

}

requires to average over a uniform distribution for the location
of a vehicle inside each interval. After bringing the expectation
operator inside the product we have

Jn =

K−1∏

k=1

1

c

∫ c

0

(

1−ξpk+
ξpk

1+s (x+ak)
−η

)

dx (7)

=

K−1∏

k=1

(

1−ξpk+
ξpk

cs (η+1)
(f(ak+1)− f(ak))

)

, (8)

whereak=d+ck, f(ak)=aη+1
k 2F1

(

1,η+1
η ,η+2

η ;
aη

k

−s

)

andpk
is given in (2).

After substituting (6) and (8) into (5), and average over
the link distanced, we get an approximation for the outage
probability due to the hardcore processΦc. We will compare
the discretization model with a few other models. The first one
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uses a PPP with intensityλ in (c,∞) for the interferers and
a shifted-exponential PDF for the link distance. Hereafter, we
will refer to it as model M1. The outage probability is

PM1
out(θ) = 1−

∫ ∞

c

exp

(

−λξ

∫ ∞

c+r

s dx

s+xη

)

µe−µ(r−c)dr. (9)

The second model, model M2, assumes exponential PDF
for the inter-vehicle distances. This is the model used in the
literature for linear VANETs. The outage probability is

PM2
out(θ) = 1−

∫ ∞

0

e
−λξ

∫
∞

r
θrηx−ηdx

1+θrηx−η λe−λrdr

= b(θ)
b(θ)+1 , b(θ)=

2F1(1,1−1
η
,2−1

η
,−θ)

(ξθ)−1(η−1)
.

(10)

Equation (10) is independent of the intensity. This
agrees with the outage probability in the downlink of PPP
interference-limited cellular networks with nearest basestation
association [8, Eq. (14)]. The third model M3 uses a non-
homogeneous PPP with intensityρ(2)(x) , x≥0 and a shifted-
exponential PDF for the link distance. The outage probability
follows from the PGFL of PPP.

PM3
out(θ)

= 1 −
∫ ∞

c

exp

(

−
∫ ∞

r

ξsρ(2)(x−d) dx

s+xη

)

µe−µ(r−c)dr. (11)

In order to calculate (11), we use the exact value of the
PCF for distance separation up to4c, and the approximation
ρ(2)(x)≈ λ for (x−d)> 4c. This approximation is valid for
λc ≤ 1

2 , because the correlation starts to vanish beyond that
distance, see [24, Fig. 3]. Also,λc ≤ 1

2 is reasonable for
motorways [23, Fig. 8 and Fig. 9]. Finally, another approx-
imation, model M4, yielding a closed-form expression uses a
PPP of intensityλ in (0,∞) for the interferers and a shifted-
exponential PDF for the link.

PM4
out(θ) = 1− e−b̃(θ)µc

b̃(θ)+1
, b̃(θ)=

2F1(1,1−1
η
,2−1

η
,−θ)

(ξθ)−1(1+µc)(η−1)
. (12)

The discretization model is a tight approximation to the
simulations due to the hardcore processΦc, see Fig. 2. The
approximations in (9) and (11) perform slightly worse. The
accuracy of (12) is poor, unless the transmission probability is
low. This corroborates the fact that the PPP is inadequate to
model interference in motorway VANETs, even if the distance
distribution of the transmitter-receiver link is tuned to avoid
small headways. Finally, the model M2 in (10) predicts low
outage for highθ, because it allows unrealistically high link
gains with high probability for the useful link.

In order to set the separation thresholdR, we constrain
the mean interference beyondR, E!o{I}x>R, to be less than
q% of the total mean interferenceE!o{I}. For q ≪ 1, R is
expected to be large, and the meanE

!o{I}x>R can be well-
approximated using a PPP of intensityλ. After averaging the
term λξ

η−1 (d+R)
1−η over the link distanced we get

E
!o{I}x>R ≈ λξ

η − 1

∫ ∞

c

(r+R)1−η µe−µ(r−c)dr

=
λξµη−1

η − 1
eµ(c+R) Γ(2−η, µ (c+R)) .
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Fig. 2. Simulated probability of outage due to a hardcore point process
Φc with λ = 0.025m−1, c = 16 m and approximations. Pathloss exponent
η=3, 106 simulation runs. In the discretization model,Rmin ≈ 500 m for
q=2%, see (15). We setR=512 m, or K =32 units. In each simulation
run: (i) We generate samples from the shifted-exponential distribution to
cover a linear segment of25 km behind the transmitter. (ii) We generate the
transmitter-receiver link distanced according to the same distribution, and (iii)
we generate exponentially-distributed fading and Bernoulli-distributed activity
samples for all vehicles. The transmitter is assumed to be always active.

The calculation ofE!o{I} involves the PCF in (1) which
has a complicated form. Due to the fact thatρ(2)(x)≥µe−µc

for x≥c 1, the mean interference can be bounded as

E
!o{I} = ξ

∫ ∞

c

∫ ∞

c

(r+x)
−η
ρ(2)(x)µe−µ(r−c)dxdr

≥ ξ

∫ ∞

c

µe−µc (r+c)
1−η

η − 1
µe−µ(r−c)dr

=
ξµη

η − 1
eµc Γ(2−η, 2µc) .

(13)

We would like to find the minimumR, denoted byR∗, sat-
isfying E

!o{I}x>R ≤ qE!o{I}. SinceE!o{I}x>R decreases
in R, we may use the bound in (13) instead ofE

!o{I}. After
cancelling out common terms, we end up with

min
R>R∗

{

eµ(c+R)Γ(2−η, µ (c+R))≤ q

1−λc
Γ(2−η, 2µc)

}

. (14)

The above inequality cannot be solved in closed-form w.r.t.
R. Due to the fact thatR is expected to be much larger
than µ−1, we expand the Gamma function of the left-hand
side for largeµR≫1 obtaining:eµ(c+R) Γ(2−η, µ (c+R)) ≤
(µR)

1−η. After substituting this in the left-hand side of (14),
we get a boundRmin on the threshold,R ≥ Rmin ≥ R∗,
satisfying the constraintE!o{I}x>R ≤ qE!o{I}, where

Rmin =
1

µ

(
q

1−λc
Γ(2−η, 2µc)

) 1
1−η

. (15)

Let us assume that we increase the intensity of the hardcore
process and at the same time we impose stronger thinning,
keeping constant the intensity of retained transmittersλξ.
Under this transformation, the hardcore process convergesin

1The minimum value ofρ(2)(x) for x≥c occurs atx=2c, see equation (1)
and [24, Fig. 3] for an illustration. This bound on the PCF andthus on the
mean interference is not tight for very regular point processes, e.g.,λc> 1

2
.
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distribution to a PPP [10]. Simply thinning the process main-
tains some degree of correlation. Nevertheless, it is natural to
assume that the strongly thinned process generates interference
statistics similar to those of the thinned PPP. In other words,
a PPP with intensityλ in (c,∞) predicts more accurately
the interference field due to the processΦc of equal intensity
for smallerξ [21], e.g., compare the accuracy of model M1
for ξ = 0.1 and ξ = 0.5 in Fig. 2. Next, we show that the
discretization model is consistent with this property.

Lemma 1. For low activity ξ such that λξ (R−c)≪ 1 and
λc≪1, the outage probability due to the discretization model
converges to that of a PPP given in (9) for all thresholds θ.

Proof. For smallξ, equation (7) can be approximated as

Jn =

K−1∏

k=1

(

1− pk
c

∫ c

0

ξs dx

s+(x+ak)
η

)
(a)
≈

K−1∏

k=1

(

1−
∫ c

0

λξs dx

s+(x+ak)
η

)

(b)

' 1−
K−1∑

k=1

∫ c

0

λξs dx

s+(x+ak)
η

(c)
≈ exp

(

−
K−1∑

k=1

∫ c

0

λξs dx

s+(x+ak)
η

)

(d)
= exp

(

−λξ

∫ R+d

c+d

s dx

s+xη

)

.

The approximation in(a) follows from pk≈λc ∀k. This is
valid for largek, see (3), and it can also be valid for smallk

under the conditionλc≪ 1. For instance,p1=1− e−
λc

1−λc =
λc+o

(
λ2c2

)
. The inequality in(b) is the Weierstrass product

inequality
∏

i(1−yi)≥ 1−
∑

iyi, yi ∈ [0, 1], and (c) follows
from the expansione−x≈1−x, x→0. These approximations
hold for

∑K−1
k=1

∫ c

0
λξs dx

s+(x+ak)
η ≤ λξ (K−1) c = λξ (R−c) ≪ 1.

We get(d), which is the expression for the PGFL of a PPP
in (c, R), after adding up the(K−1) integral terms. After
multiplying the above simplification forJn with the far-field
term in (6), we end up with the desired result.

IV. T HE META DISTRIBUTION OF THESIR FORΦc

The meta distribution of the SIR is the PDF of the prob-
ability of successful reception, Ps(θ), conditioned on the
spatial realization, i.e., fixed but unknown locations for the
vehicles. Ps(θ) = P(SIR>θ|Φc). The conditional probability
is computed over fast fading and ALOHA, see (4).

Ps(θ) =
∏

xk∈Φc\{o}

(

1−ξ+ξ
(

1+s (xk+d)−η
)−1
)

. (16)

Due to the ergodicity of the point processΦc, the PDF of the
RV Ps(θ) is equivalent to the spatial distribution of the prob-
ability of successful reception given a realization of the point
process. The complementary CDFP(Ps(θ)>u) , u ∈ [0, 1],
indicates in each realization ofΦc, the fraction of scheduled
links that experience an SIR higher thanθ with probability at
leastu. The calculation of the PDF is not easy, but for the
moments we may follow [10, Appendix]. Theb-th moment,
Mb(θ)≡Mb, is computed by raising (16) to theb-th power
and taking its expectation overxk andd

Mb =E

{∏

xk∈Φc\{o}

(

1−ξ+ξ
(

1+s (xk+d)
−η
)−1
)b }

.

Using the discretization model, the contribution to the
momentMb from the near-field can be written as

Mb,n=E

{∏

xk∈Uk

(
1

1+sξkPk (xk+d)−η

)b}

=E

{∏

xk∈Uk

(

1−ξ+
ξ

1+sPk (xk+d)
−η

)b}

.

Taking the average w.r.t. the Bernoulli RVsPk yields

Mb,n=E

{∏

xk∈Uk

(

1−pk+pk

(

1−ξ+
ξ

1+s(xk+d)
−η

)b
)
}

. (17)

Note thatM1,n=Jn, see (7). Next, we generalize Lemma 1
for b>1.

Lemma 2. For low activity ξ such that λξb (R−c)≪ 1 and
λc≪1, Mb,n≈exp

(
−λξ

∫R+d

c+d 1−
(
1− ξs

s+xη

)b
dx
)
∀θ.

Proof. Firstly, we take the expectation overxk for each term
of the product in (17) obtaining

Mb,n=
K−1∏

k=1

(

1−pk

(

1− 1

c

∫ c

0

(

1− ξs

s+(x+ak)
η

)b

dx

))

. (18)

Secondly, we follow exactly the same steps as in the proof of
Lemma 1. After substitutingpk≈λc ∀k in Mb,n, the sufficient
condition for the lemma to hold is

λc
∑K−1

k=1

(

1− 1

c

∫ c

0

(

1− ξs

s+(x+ak)
η

)b

dx

)
(a)

≤

λc
∑K−1

k=1

(

1−(1− ξ)
b
) (b)
≈ λc (K−1) ξb =

λξb (R−c)≪1,

where(a) holds∀s, and (b) is true for ξb≪ 1 which is met
under the conditionλξb (R−c) ≪ 1 for λ (R−c) ≥ 1, i.e.,
more than a single vehicle (on average) in the near-field.

The numerical calculation of (18) can be simplified using
binomial expansion in the integrand yielding

Mb,n=

K−1∏

k=1

(

1−pk+pk

b∑

j=0

(
b

j

)
h(ak+1,j)−h(ak,j)

(−ξ)
−j

)

, (19)

whereh(ak, j)=
ak

c 2F1

(

j, 1η ,
η+1
η ;

aη

k

−s

)

.

The contributionMb,f = E

{
∏

xk∈Φp
Gf (xk)

b
}

, uses the
PGFL of PPP, see [33, App. A].

Mb,f =exp

(

−λ

∫ ∞

R+d

1−
(

1− ξs

s+xη

)b

dx

)

=exp

(

λ

b∑

j=1

(
b

j

)

(−ξs)
j
∫ ∞

R+d

dx

(s+xη)
j

︸ ︷︷ ︸

Fj

)

,
(20)

whereFj=
(R+d)1−jη

(jη−1) 2F1

(

j− 1
η , j, j− 1

η+1;−s (R+d)−η
)

.
The momentMb is calculated by multiplying (19) with (20)

before averaging over the shifted-exponential distribution for
the link distance. The integration becomes computationally
demanding for highb hence, we will calculate only the
first two moments, and match them to a Beta PDFg(z) =
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Fig. 3. The simulated meta distribution of the SIR for a hardcore process
with intensity λ = 0.025m−1, c= 16m and ξ = 0.5 (black lines), and the
Beta approximations using the discretization model (blue lines) and the models
M1 (solid red lines) and M2 (dashed red lines). The simulations are generated
using104 spatial configurations with104 realizations of fading and activity
per configuration. See the caption of Fig. 2 for other parameter settings.

1
B(α,β)z

α−1 (1−z)
β−1

, α, β > 0, where B(α, β) = Γ(α)Γ(β)
Γ(α+β) .

The Beta approximation has been widely adopted for meta dis-
tributions [10], [11]. Its parameters areα = m1(m1(1−m1)−m2)

m2

and β = m1−1 + m1(1−m1)
2

m2
, wherem1 = M1,nM1,f and

m2=M2,nM2,f−m2
1. [10, Sec. II-F].

We will also approximate the meta distribution due to the
models M1 and M2. In Fig. 2, we saw that the model M3
involves much more complicated integration than M1 without
obvious benefits. The model M4 improves the prediction as
compared to M2 but not as much as M1. For the model M1
the momentsMb are calculated after substitutingR=c in (20)
and averaging overµe−µ(r−c), r > c. For the model M2 the
moments are computed after substitutingR = 0 in (20) and
averaging overλe−λr, r>0. For all models we will apply the
method of moments with Beta approximation.

The simulated meta distribution due to the hardcore process
and the various approximations are depicted in Fig. 3. The first
point to remark is that M2 can be very unreliable, especially
for large thresholds,− it significantly overestimates both
moments, see also Fig. 2. Correcting M2 using M1 already
brings a major improvement, which can be enhanced further
using the discretization model. Reading from the figure, M2
predicts that70% of scheduled links achieve a SIR of0 dB
with probability at least0.8 while, the other models predict
very accurately the correct fraction83% of links. Another
remark from Fig. 3 is that for low thresholdsθ, the CoV of
the meta distribution decreases, which means that most of the
scheduled links will experience about the same reliability. The
meta distribution for activityξ=0.1 is depicted in Fig. 4.

V. PROPERTIES OF THE META DISTRIBUTION

In this section we study the behaviour of the moments
M1,M2 and the CoV of the meta distribution w.r.t. the activity
and the SIR threshold. In addition, we devise low-complexity
approximations for these terms, which turn out to be much
more accurate than the predictions using the model M2.
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Fig. 4. The meta distribution of the SIR for a hardcore process with activity
ξ=0.1. See the caption of Fig. 3 for other parameter settings and explanation
of line styles. The black dashed lines correspond to a Beta approximation
using the simulated mean and variance due to the hardcore process. This is to
illustrate that for low activity and large thresholdsθ, the Beta approximation
may not be very accurate at the tail. In the inset, we illustrate that for threshold
20 dB, a generalized Beta PDF with two parameters (green dashedline),
g(z)=αβzα−1 (1−zα)β−1, gives a marginal improvement, and with three
parameters (green solid line),g(z) = α

B(ǫ,β)
zαǫ−1 (1−zα)β−1, matching

also the skewness, gives almost a perfect fit. The penalty paid in both cases
is the numerical iterative calculation of their parameters.

Lemma 3. For λc≪1, the CoV of the meta distribution for the
discretization model as ξ→0, θ→∞ such that ξθ

1
η =T , where

T >0 is constant, converges to ν√
µ(µ+2ν)

, where ν=λT η2+1
η2−1 .

Proof. For ξ → 0, the conditionλξb (R−c) ≪ 1, b ∈ {1, 2}
is satisfied for realisticλ, c, R. In addition λc ≪ 1 hence,
the assumptions in Lemma 2 hold. Therefore the moments
M1,M2 due to the discretization model can be approximated
using the model M1. The first moment due to M1, see (9), is

M1 =

∫ ∞

c

e−λξ
∫

∞

c+r
θrηdx

θrη+xη µe−µ(r−c)dr. (21)

For largeθ, the integral w.r.t.x in (21) accepts the following
approximation.

∫∞

c+r
θrηdx
θrη+xη

(a)
≈
∫ rθ

1
η

c+r

(
1− xη

θrη

)
dx+

∫∞

rθ
1
η
θrηx−ηdx =

η2+1
η2−1r θ

1
η −(c+r)+ (c+r)1+ηr−η

(η+1)θ ≈ η2+1
η2−1r θ

1
η −(c+r) ,

where (a) follows from expanding the fraction (up to first-
order) for smallx<θ1/ηr in the first term, and largex>θ1/ηr
in the second term.

After substituting the above approximation in (21), and
carrying out the integration w.r.t.r, we end up with

M1 ≈ eλcξ
µe−ν1c

µ+ν1
, ν1 = λξ

(
η2+1

η2−1
θ

1
η − 1

)

. (22)

Similarly, for the second moment we get

M2 ≈ e2λcξ−λξ2c µe−ν2c

µ+ν2
,

ν2 =2λξ
(

η2+1
η2−1 θ

1
η −1

)

−λξ2
(

4η3+3η+1
(η+1)(4η2−1) θ

1
η −1

)

.
(23)

After substitutingθ
1
η =Tξ−1 in ν1, ν2 and taking the limit

of M1,M2 for ξ→0, we get

lim
ξ→0

M1=
µe−νc

µ+ ν
, lim

ξ→0
M2=

µe−2νc

µ+ 2ν
. (24)
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TABLE I
THE DISCRETIZATION MODEL, THE MODEL M1, AND THE

APPROXIMATIONS(22), (23)PREDICT WELL THE MOMENTSM1,M2 AND

THE COV OF THE META DISTRIBUTION DUE TO THE SIMULATED
HARDCORE PROCESS. THE MODEL M2 FAILS IN THE ESTIMATION OF

COV. EACH TERM IS ROUNDED AT THE FIFTH DECIMAL DIGIT. ξ=10−2 ,
θ=103 , SEE THE CAPTION OFFIG. 3 FOR OTHER PARAMETER SETTINGS.

M1 M2 CoV
Discretization model 0.89968 0.81293 0.06580
Model M1 0.90050 0.81456 0.06729
Lemma 3, (22) and (23) 0.89698 0.80846 0.06954
Model M2 0.90015 0.81891 0.10322
Simulations hardcore 0.89811 0.81010 0.06579

Finally, writing the CoV as
√

M2

M2
1
−1, and substituting the

limits from (24) yields the desired result. The limits depend on
ξ, θ through the productξθ1/η, while the approximations (22)
and (23) depend also individually onξ.

In order to illustrate the usefulness of Lemma 3, let us
assume early penetration of VANETs, with activityξ=10−2.
Let us also consider a high-rate data communication atθ=30
dB, yieldingT =0.1 for η=3. The numerical calculation of
the momentsM1,M2 and the CoV using various models are
presented in Table I. The model M1 is a good approximation
to the discretization model because the activity is low. The
approximations (22) and (23) follow closely the results due
to M1, because the thresholdθ is large. In addition, the
limit (ξ→ 0) for the CoV in Lemma 3 works well yielding,

ν√
µ(µ+2ν)

= 0.070. Neglecting the hardcore distance, i.e.,

µ= λ and ν√
λ(λ+2ν)

= 0.112 incurs large error, because the

link gain experiences much higher variability forc= 0 than
for c = 16, while λ is fixed. In Fig. 5, it is illustrated that
the approximations in (22) and (23) are good also for realistic
activity values, e.g., up toξ=0.2. For ξ=0.5 we obtainθ=1
for T =0.5, and the approximations in (22), (23) break down.

The limit of the CoV in Lemma 3 increases inν and thus in
θ, while ξ is kept constant, see Fig. 6 for an illustration. This
is also evident by visual inspection from Fig. 3, where the
variance of the meta distribution is much less forθ=1 than
for θ = 100. The large CoVs mean that the average success
probability M1 does not represent well the performance of
different links across a snapshot of the network. Furthermore,
Lemma 3 indicates that for low and decreasing activityξ→0,
while keeping constantM1 by increasingθ, the variance of
the conditional success probability across the network does
not become zero. This is in accordance with [10, Corollary 7]
for cellular networks with random activity. In Fig. 5, for
M1 ≈ 0.566 and activity ξ → 0, the standard deviation of
the conditional success probability converges to0.16. Finally,
according to (24), forη > 2 and θ≥ 1, M1,M2 increase for
increasingη but the CoV decreases. Intuitively, higher pathloss
means that links scheduled at the same time are better isolated
from each other, and the fraction of links achieving certain
reliability should increase, see also Fig. 8 and Fig. 9.

Next, we present approximations forM1,M2 and CoV for
θ ≪ 1. For small θ, the model M1 approximates well the
discretization model even for large activity, see Fig. 2 and
Fig. 3 for example illustrations.
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Fig. 5. The momentsM1,M2 for pairs (ξ, θ) satisfyingT = ξθ1/η =0.5.
The discretization model, the model M1 and the approximations (22) and (23)
in Lemma 3 estimate accurately the moments due to the simulated hardcore
process. The model M2 fails. See the caption of Fig. 3 for other parameters.
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Fig. 6. The momentsM1,M2 and the CoV for activityξ=0.05 and large
thresholdsθ. The discretization model, the model M1 and the approxima-
tions (22), (23) give very good predictions to the simulatedhardcore process,
while M2 fails. The limit for the CoV in Lemma 3 increases approximately
by θ1/2η for largeθ. See the caption of Fig. 3 for other parameter settings.

Lemma 4. For θ ≪ 1, the CoV of the meta distribution for
the discretization model is approximated by ν∗√

µ(µ+2ν∗)
, where

ν∗= (η+1)λt
2η(η−1) and t=ξθ≪1 is a positive constant.

Proof. For smallθ, equation (21) can be approximated as

M1 ≈
∫∞

c e−λξ
∫

∞

c+r
θrηx−ηdxµe−µ(r−c)dr

=
∫∞

c e−
λξθ
η−1 r

η(r+c)1−η

µe−µ(r−c)dr.

For small θ, we get µ > λξθ
η−1 , which means that the

term e−µr dominates the integrand. In addition, the main
contribution to the integral is given by the vicinity ofc.
Because of that, we can expand the termrη (r+c)

1−η around
c, without introducing much error. After expanding up to the
first order and carrying out the integration, we end up with

M1 ≈ e
λct
2η

µe−ν∗c

µ+ ν∗
. (25)

Similarly, the approximation ofM2 for θ≪1, keeping only
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Fig. 7. The momentsM1,M2 for activity ξ=0.5 and small thresholdsθ. The
discretization model and the model M1 predict well the simulated moments
due to the hardcore process. The approximations (25), (26) give better
predictions than M2. The CoV (see the inset) is approximately proportional
to θ for smallθ, see Lemma 4. See the caption of Fig. 3 for other parameters.

the leading-order term w.r.t.t, is

M2 ≈ e
λct

2η−1
µe−2ν∗c

µ+2ν∗
. (26)

The approximations (25) and (26) depend onξ and θ
only through their product. After substituting (25), (26) into√

M2

M2
1
−1, the result of the lemma follows.

The approximations (25), (26) are validated in Fig. 7.
Summing up, according to Lemma 3, if we reduce the activity
by 10 dB, we can increase the thresholdθ by 10η dB to
maintain the same probability of successM1 for largeθ and
ξ → 0. According to Lemma 4, for lowθ, we can increase
the threshold only by10 dB. For instance, in Fig. 2, the
probability of outage at−10 dB is 0.014 with activity ξ=0.5.
The same outage with activityξ = 0.1, occurs around−3
dB confirming (25). Note also that according to (26), the two
pairs (ξ, θ)∈{(0.5,−10dB) , (0.1,−3dB)} result in the same
second momentM2 too. On the other hand, the probability
of outage at10 dB is 0.45 with activity ξ = 0.5 in Fig. 2,
while with activity ξ = 0.1 the same outage occurs at24.5
dB, instead of31 dB predicted by (24). This is because (24)
is valid for ξ → 0, and (22) should be used instead. Finally,
the CoVs calculated in the Lemmas decrease inc, while the
intensity λ is fixed. This is clear after writing the CoV as

νµ−1√
1+2νµ−1

, whereνµ−1∝(1−λc), see Fig. 6 and the inset in

Fig. 7 for the comparison between M2 and the Lemmas.

VI. VALIDATION WITH REAL TRACES

Thanks to [4], [5], there are publicly available traces for
three-lane unidirectional motorway traffic. In order to generate
them, the studies have collected per-lane measurements every
second about the number of passing vehicles and their speed,
using induction loops at a measurement location outside
Madrid in Spain. The measurements have been used to cali-
brate a simulator modeling micro-mobility features like lane-
changing pattern, velocity distributions etc. The output of the
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Fig. 10. Meta distributions for the 1200-th snapshot from motorway M40,
May 7 2010, busy hour, left lane, considering interference from all three
lanes. For lane separation4m and antenna beamwidthπ

20
we haver0≈50m

for the middle lane and2r0 ≈ 100m for the right lane. For the right lane,
we assume a PPP beyond2r0 for all three models withλr ≈ 0.0205m−1.
For the middle lane we assume PPP beyondr0 for the models M1 and M2
with λm ≈ 0.0186m−1. For the discretization model we estimateλm ≈
0.0193m−1, cm≈9.86m, andKm=14 for q=2%. η=4, see the caption
of Fig. 9 for other parameter settings and mapping of line styles to models.

simulator is the location of vehicles, i.e., lane and horizontal
position over a road segment of 10 km with one second
granularity. In [23] we have analyzed these traces using theJ-
and the Ripley’s K-function [34, Ch. 2.8]. We have illustrated
that the PPP cannot capture the distribution of inter-vehicle
distances, because it permits unrealistically small distances
with high probability. The PPP becomes more problematic for
the left lane because due to the high speeds over there, the
drivers maintain large safety distances. We have illustrated that
the envelope of the J-function for the fitted hardcore process
Φc can capture the J-function of the real snapshot, see [23,
Sec. IV] for a detailed description of the fitting method.

In the current paper, we use the fitted parametersλ, c to
assess which model (discretization, M1 and M2) can better
predict the simulated outage probability and the meta distri-
bution of snapshots. We see in Fig. 8 that for the left lane
of the selected snapshot,λc ≈ 0.3, the discretization model
outperforms the model M1, especially for large thresholds,
while M2 incurs very large errors. Higher spatial regularity,
λc≈0.4 in Fig. 9, makes clear the benefit of discretization.

The extension of the discretization model to multiple lanes
is straightforward by discretizing with lane-specific parameter
c. Due to directionality, only vehicles behind some distance
r0 from the receiver may contribute to other-lane interference,
see [23, Section VI]. The interference originated from other
lanes does not require to constrain the location of any of
the points of the processes. We just add a reference point
(the receiver) at the origin. The separation threshold between
near- and far-field interferers for other lanes is easier to
calculate. Starting from

∫∞

R r−ηdr ≤ q
∫∞

r0
r−ηdr, we have

R≥(1/q)
1

η−1 r0. The results are available in Fig. 10. Summing
up, Fig. 8− Fig. 10 highlight the discretization model as a
reasonable choice for modeling the outage probability along
motorway VANETs.
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Fig. 8. (a) The simulated probability of outage using real trace and the approximations using the discretization model,and the models M1 and M2. For
the discretization model and M1, the (fitted) shifted-exponential PDF hasλ ≈ 0.0205m−1 and c ≈ 14.82m, yielding λc ≈ 0.3037. For M2, the (fitted)
exponential PDF hasλ≈ 0.0195m−1. For q = 2%, we getRmin ≈ 442m from (15), and we calculateK = ⌈Rmin

c
⌉= 30 andR=Kc≈ 445m. 105

simulations. The approximation (22) in Lemma 3 for large thresholds is accurate forθ>10, and the approximation (25) in Lemma 4 for small thresholds is
accurate forθ<0.5. (b)-(c) The simulated meta distribution and the approximations using the same models.104 spatial configurations and104 realizations
of fading and activity per configuration. The approximations (22) and (23) coupled with the Beta approximation are depicted for large thresholdsθ=10 and
θ=100. For θ=1, we used the approximations (25) and (26), which are not accurate because Lemma 4 assumes smallθ≪ 1. Activity ξ=0.5. We have
selected the 1000-th snapshot from motorway M40, May 7 2010,busy hour [4], [5]. The empirical CDF of inter-vehicle distances, obtained from the trace,
is used to simulate the locations of interferers and the useful link distance.
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Fig. 9. Fitting the models to the simulations using the 1200-th snapshot from motorway M40, May 7 2010, busy hour [4], [5].For the discretization model
and the model M1 we use the estimatesλ≈0.0203 m−1, c≈19.76m, resulting toλc≈0.4017. For the model M2 we estimateλ≈0.0191 m−1. See the
caption of Fig. 8 for explanation of the legend and other parameter settings.

VII. C ONCLUSIONS

In high-speed motorways the vehicles maintain large safety
distances from the vehicle ahead. Because of that, a shifted-
exponential PDF captures the distribution of headway distance
along a lane much better than the PPP. In order to approximate
the PGFL of the shifted-exponential (or hardcore) process,we
used a shifted-exponential PDF for the link distance coupled
with a guard zone (equal to the hardcore distance) behind the
transmitter. This model predicts the moments of the SIR much
better than the PPP. Nevertheless, for regular deployments,
and/or large SIR threshold and transmission probability, it
starts to lose some of its power. Because of that, we have de-
vised a discretized deployment for the near-field. This is more
tailored to the hardcore constraints, hence it approximates
better the PGFL of the hardcore process. The discretization
model coupled with the Beta PDF for the meta distribution
can capture the statistics of the outage probability along alane
of the motorway. This has been validated against synthetic
traces generated from real vehicular data, considering also
interference due to multiple lanes. The discretization model

would be useful for network planning, because it provides the
system designer with better prediction of the distributionof
outage probabilities than that obtained with a PPP.

We have shown that for increasing SIR thresholds the
disparity in the success probability across different links
increases. This means that the upper tail of the SIR CDF,
calculated as an average over all spatial realizations, does not
represent accurately the outage probability along a snapshot
of the motorway. As a result, the calculation of the meta
distribution becomes useful. We have also shown that the
PPP predicts much higher disparity than that observed with
real traces, because it allows more variability in the link
distance. Another important conclusion is that the mean and
the variance of the meta distribution in the low SIR depend
only on the product of transmission probability and SIR
threshold. Therefore lowering the activity byx dB allows
increasing the operation threshold byx dB with little effect
on the meta distribution. This is, however, not the case for
high SIR thresholds. Regarding future work, it would be good
to see the calculation of the meta distribution also for the
rate statistics. In addition, it would be interesting to study
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the joint distribution of the SIR over multiple slots, whichis
related to the design of retransmission schemes for VANETs.
Some preliminary analysis about the temporal statistics of
interference under the hardcore point process can already be
found in [35].
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