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ARTICLE

Genetic manipulation of cell line derived
reticulocytes enables dissection of host malaria
invasion requirements
Timothy J. Satchwell 1,2,3,5, Katherine E. Wright 4,5, Katy L. Haydn-Smith1,2,3,

Fernando Sánchez-Román Terán4, Pedro L. Moura 1, Joseph Hawksworth1, Jan Frayne1,2,

Ashley M. Toye 1,2,3 & Jake Baum 4

Investigating the role that host erythrocyte proteins play in malaria infection is hampered by

the genetic intractability of this anucleate cell. Here we report that reticulocytes derived

through in vitro differentiation of an enucleation-competent immortalized erythroblast cell

line (BEL-A) support both successful invasion and intracellular development of the malaria

parasite Plasmodium falciparum. Using CRISPR-mediated gene knockout and subsequent

complementation, we validate an essential role for the erythrocyte receptor basigin in

P. falciparum invasion and demonstrate rescue of invasive susceptibility by receptor re-

expression. Successful invasion of reticulocytes complemented with a truncated mutant

excludes a functional role for the basigin cytoplasmic domain during invasion. Contrastingly,

knockout of cyclophilin B, reported to participate in invasion and interact with basigin, did not

impact invasive susceptibility of reticulocytes. These data establish the use of reticulocytes

derived from immortalized erythroblasts as a powerful model system to explore hypotheses

regarding host receptor requirements for P. falciparum invasion.
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Malaria, an infectious disease caused by Plasmodium
parasites, is an enormous economic and health burden.
Every year > 200 million clinical cases and almost half a

million deaths are reported, with most fatalities occurring in
children under the age of five1. Parasite invasion into and
development within red blood cells (RBCs) is responsible for all
pathology associated with this disease. Invasion begins with the
interaction between a merozoite (the invasive parasite form) and
the RBC surface, which precedes penetration and intracellular
vacuole formation via mechanisms that remain incompletely
understood. One host protein implicated in the invasion process
is basigin (BSG, CD147), a surface receptor believed to be
essential for invasion via its interaction with Plasmodium falci-
parum Rh52, though our understanding of the function the
interaction plays in invasion is limited.

One of the biggest obstacles to the investigation of host protein
involvement in red blood cell invasion is the intractability of this
anucleate cell as a system for genetic manipulation. Elegant use of
proteases, blocking antibodies, and the identification and study of
rare naturally occurring red blood cell phenotypes have provided
valuable information regarding the requirement for individual
receptors (reviewed in ref. 3–5). However, reliance upon the
identification of often vanishingly rare blood donors to provide
insight is inefficient and precludes hypothesis-driven investiga-
tion of host protein involvement in invasion.

The capacity to derive reticulocytes (young red blood cells) that
are susceptible to invasion by malaria parasites through in vitro
culture and differentiation of hematopoietic stem cells (CD34+

cells) isolated from peripheral blood or bone marrow has opened
up myriad new possibilities to erythrocyte biologists. Such cells
are phenotypically equivalent to in vivo-derived reticulocytes and
display functional equivalence to red blood cells6–8. Through
lentiviral transduction of immature nucleated erythroblast pre-
cursors prior to differentiation it is now possible to generate
enucleated reticulocytes with rare or novel phenotypes to study
host cell protein requirements and involvement in invasion. The
power of this approach was demonstrated in 2015 in a forward
genetic screen employing shRNA-mediated knockdown of blood
group proteins in primary in vitro-derived reticulocytes. This
study identified important roles for CD55 and CD44 in P. falci-
parum invasion9. Although informative, shRNA-mediated
depletion of gene expression frequently results in incomplete
knockdowns that can mask all but the most obvious of invasion
defects. Furthermore, the finite period in which transduced
nucleated cells can be maintained in their undifferentiated state
requires that for each repeated experiment a fresh transduction of
new cells must be conducted.

Generation of immortalized erythroid cells able to proliferate
indefinitely in an undifferentiated state whilst maintaining the
capacity to undergo differentiation to generate reticulocytes has
been a major goal of the erythroid biology field for decades. Early
excitement surrounding the development of induced pluripotent
stem cell lines has been tempered by the observation of severe
erythroid differentiation defects, expression of fetal globins, and
to date minimal capacity for enucleation10–12. The capability of
orthochromatic erythroblasts, characterized by their condensed
nuclei, to support malaria parasite entry13,14 has led to explora-
tion of cell lines unable to complete differentiation as a model for
invasion15. For example, a recent study reported invasive sus-
ceptibility of semi-differentiated cells of the JK-1 erythroleukemic
cell line. These cells display a nucleated polychromatic
erythroblast-like morphology and despite supporting parasite
invasion were not able to support further parasite development15.
Although these cells can provide insight into the requirement of
receptors, such as basigin, for attachment, and entry15, the sig-
nificant membrane complex remodeling and reduction of

membrane protein abundance (basigin and CD44 in particular)
that occur prior to and during erythroblast enucleation7,16,17

means that observations made using this model may not extra-
polate well to anucleate red blood cells.

In 2017, Trakarnsanga et al.18 reported the generation of the
first immortalized human adult erythroblast cell line—Bristol
Erythroid Line Adult (BEL-A). Able to proliferate indefinitely as
undifferentiated proerythroblasts, this line can be induced to
undergo differentiation and enucleation, generating reticulocytes
that are functionally identical to those derived from primary cell
cultures. Expanding BEL-A cells can be lentivirally transduced
with high efficiency, and are amenable to CRISPR-Cas9-mediated
gene editing for the generation of stable clonal cell lines with
knockout of individual and even multiple blood groups19. In
addition, reticulocytes generated through in vitro differentiation
of the BEL-A cell line, whether unedited or as edited sublines,
derive from the same donor, eliminating the impact of donor
variability and polymorphisms between experiments.

In this study, we exploit differentiation of the BEL-A cell line to
generate enucleated reticulocytes that can sustain invasion and
growth of P. falciparum. By employing CRISPR-Cas9-mediated
receptor gene knockout and lentiviral expression of wild-type and
mutant genes for complementation of invasion defects, we pre-
sent a sustainable model system that allows us to interrogate the
requirement for specific domains and associations of essential
receptor complexes during the process of P. falciparum invasion.

Results
P. falciparum invasion and development in BEL-A reticulo-
cytes. In order to determine whether BEL-A-derived reticulocytes
represent a suitable model for the study of malaria parasite
invasion, expanding BEL-A cells were induced to undergo
terminal erythroid differentiation. After 15 days, enucleated
reticulocytes were purified by leukofiltration under gravity and
subjected to invasion assays, in which magnet purified P. falci-
parum schizonts were added to target cells. Reticulocytes derived
from the BEL-A cell line in this manner were susceptible to
invasion, with robust parasitemia equivalent to that observed in
parallel using donor red blood cells as noted by the appearance of
ring stage (immature) parasites 2 h post-parasite incubation (Fig.
1a, b). To assess the efficiency of invasion into BEL-A-derived
reticulocytes, we manually evaluated Giemsa-stained cytospins
and calculated the parasite multiplication rate (PMR), or the ratio
of resultant ring stage parasites to mature schizonts added. The
PMR was statistically indistinguishable for invasion into BEL-A-
derived reticulocytes, red blood cells, and primary CD34+ cell-
derived reticulocytes in our assays (Fig. 1c), indicating that
parasites can invade all three cell types at the same rate. The PMR
value (0.6) is lower than reported PMRs15, which we attribute to
the low hematocrit at which these assays were performed.
Interestingly, the selectivity index, which measures the propensity
of the cells to support multiple invasions, was approximately
twofold higher in reticulocytes derived from either cell source
compared with red blood cells (Fig. 1d and Supplementary Fig. 1).
To assess whether rings observed in the reticulocytes complete
the intracellular replication cycle, cytospins of infected BEL-A-
derived reticulocytes and red blood cells were taken at several
timepoints post-invasion across the intra-erythrocytic cycle (Fig.
1a, b). Representative images of trophozoites, schizonts, and new
rings are presented, confirming the capacity of BEL-A-derived
reticulocytes to undergo growth and reinvasion with equivalent
rates of intracellular parasite development between cell types.

Flow cytometric quantification of reticulocyte invasion. The
ability to measure parasitemia and calculate invasion efficiency
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using dyes that stain nucleic acids combined with flow cytometry
provides a rapid and high-throughput alternative to manual
counting of Giemsa-stained smears or cytospins. As application
of nucleic acid dyes for this purpose is reliant upon the absence of
DNA in uninfected red blood cells, use of nucleated erythroid
cells as a model for invasion precludes their use. In vitro differ-
entiation of primary CD34+ cell-derived erythroblasts or BEL-A
cells generate enucleated reticulocytes that can be purified by
leukofiltration, which removes nucleated precursors and extruded
pyrenocytes. To determine whether flow cytometry could be used
to measure invasion efficiency in BEL-A-derived reticulocytes,
target cells incubated with schizonts for 16 h were stained with
SYBR green for 20 min and analyzed by flow cytometry. Although
background staining of reticulocytes (derived from either CD34+

or BEL-A cells) is greater than that of erythrocytes (attributable to
SYBR green staining of reticulocyte RNA), invaded reticulocytes
could be distinguished, and invasion efficiency quantified at dif-
ferent multiplicities of infection for single and multiply invaded
cells using this approach (Fig. 2, Supplementary Fig. 2). Flow
cytometry yielded values comparable to manual counting for the
PMR and selectivity index (Supplementary Fig. 3).

Receptor knockout and complementation in BEL-A reticulo-
cytes. Since the immortalized nature of the BEL-A cell line
enables use of CRISPR-Cas9-mediated gene editing for knockout
of individual or multiple proteins and clonal selection, we next
sought to validate use of CRISPR-Cas9 editing in the context of
invasion studies. Cells were transduced with a lentiviral vector co-

expressing Cas9 and a guide targeting the BSG gene. Transduced
cells were puromycin selected and a population in excess of 80%
was found to display a null BSG phenotype based on flow cyto-
metric assessment with the monoclonal antibody HIM6. Indivi-
dual null cells were fluorescence-activated cell sorting (FACS)-
sorted on this basis into 96-well plates, expanded and the null
phenotype verified by flow cytometry and immunoblotting.
Compound heterozygous mutations within the vicinity of the
guide site were confirmed by Sanger sequencing with subsequent
ICE (Influence of CRISPR Edits) software analysis (Supplemen-
tary Fig. 4)20. BEL-A cells expanded from the selected clone were
differentiated to verify capacity for enucleation; complete absence
of basigin on reticulocytes was confirmed by flow cytometry (Fig.
3a), whereas expression of other known malaria receptors GPA,
GPC, band 3, CD55, and CD44 was unaffected as compared with
unedited BEL-A-derived reticulocytes (Fig. 3b).

Whilst previous use of in vitro-derived reticulocytes has
focused exclusively upon depleting expression of candidate
receptors, complementation or rescue studies for the reintroduc-
tion of modified proteins using such a system have not been
reported. To assess the capacity to successfully rescue the
predicted invasion defect brought about by absence of basigin,
sequences encoding full-length wild-type BSG sequence (contain-
ing silent mutations within the BSG gRNA site) were cloned into
the lentiviral vector pLVX-Neo for expression in BSG KO BEL-A
cells such that it was resistant to editing by the Cas9 and gRNA
constitutively expressed in these cells.

Transmission of extracellular receptor binding events to
downstream intracellular processes by the cytoplasmic domain

2 h

a

c d

b
16 h

Red blood cells BEL-A derived reticulocytes
21 h 26 h 40 h 44 h 47 h 64 h 2 h

ns
ns1.0

0.8

0.6

0.4P
M

R

0.2

0.0 0

5

10

S
el

ec
tiv

ity
 in

de
x

15

25

20

RBC

BEL-
A

CD34
+

RBC

BEL-
A

CD34
+

16 h 21 h 26 h 40 h 44 h 47 h 64 h
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of integral membrane proteins is a common theme across biology
and whilst the role of the basigin cytoplasmic domain in red
blood cells has not been defined, signaling functions of the C-
terminus have been previously reported in other cell types21–23.
Therefore, to explore the requirement for the cytoplasmic domain
of basigin for successful invasion, a similar construct was
generated in which the BSG cytoplasmic tail was truncated (from
40 to 5 residues).

BSG KO BEL-A cells were transduced with lentiviral vectors
for expression of the wild-type (WT) or truncated (BSGΔC) basi-
gin, resulting in populations with mixed surface presentation of
the BSG extracellular domain. To maximize the possibility of
obtaining reticulocytes in which expression of the reintroduced
BSG was equivalent to that endogenously expressed in unedited
reticulocytes, transduced undifferentiated BEL-A cells were
labeled with anti-basigin HIM6 and individual clones FACS-
sorted to match BSG expression in modified BEL-A cell lines to
that of untransduced cells (Supplementary Fig. 5). In each case,

selected clones were induced to undergo differentiation, with
capacity for enucleation verified and expression of BSG as well as
other receptors assessed. Figure 4a shows 89.3 ± 5.2% (standard
deviation) rescue of reticulocyte surface expression upon
reintroduction of WT BSG with 98.3 ± 4.2% for BSGΔC.
Complete absence of basigin expression in BSG KO reticulocytes
and altered electrophoretic mobility of BSGΔC was confirmed by
immunoblotting (Fig. 4b). Immunoblotting with an antibody
specific to the C-terminus of basigin enables detection of full-
length but not truncated protein as expected, confirming absence
of the cytoplasmic domain in BSGΔC reticulocytes (Fig. 4c).
Expression of other parasite-associated erythrocyte surface
receptors was not substantially altered (Fig. 4d and Supplemen-
tary Fig. 6).

The immunophilin protein cyclophilin B was recently reported
to associate with basigin to form a host multiprotein receptor
complex that may be required for invasion24. No null erythroid
phenotypes have been reported for cyclophilin B. Therefore, to
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generate novel CypB KO reticulocytes and confirm its involve-
ment in basigin-mediated parasite invasion, BEL-A were
transduced with pLentiCRISPRv2 containing a guide targeting
the PPIB (CypB) gene. Expression of CypB was undetectable by
flow cytometry in either undifferentiated BEL-A cells or red blood
cells (Supplementary Fig. 7). CypB was also undetectable in BEL-
A-derived reticulocytes as measured by immunoblotting; how-
ever, a high level of expression was observed in undifferentiated
BEL-A cells (Fig. 4e) consistent with its reported downregulation
during erythropoiesis25 (Supplementary Fig. 8). Transduced cells
were puromycin selected and blind-sorted to derive single clones.
Knockout of CypB was confirmed by immunoblotting of edited
and unedited undifferentiated BEL-A cell lysates, confirming
complete absence of detectable full-length protein or putative
truncation product (Fig. 4e). Sanger sequencing identified a
homozygous 8 bp deletion at position 284 resulting in frameshift
(Fig. 4f). Reticulocytes derived from CypB KO BEL-A cells were
found to express normal levels of BSG and other malaria
receptors with the exception of a mild reduction in GPC (Fig. 4d).

Complementation of basigin knockout restores invasion. To
assess invasive susceptibility of modified reticulocytes, P. falci-
parum schizonts were magnetically purified and added to 5 × 105

target cells in a 96-well plate. After 16 h, cytospins were prepared,
Giemsa-stained, and invasion quantified by manual counting of
rings. Figure 5a (left) illustrates the anticipated complete absence
of invasion in BSG KO reticulocytes in agreement with previous
studies2,15 and quantified in Fig. 5b. An invasion assay in which
unmodified and BSG KO BEL-A-derived reticulocytes were
incubated with schizonts at high multiplicity of infection resulted
in ~ 60% parasitemia in unedited cells, with no rings observed in
BSG KO reticulocytes, confirming the phenotype even under
extreme invasive pressure (Supplementary Fig. 9). Of note, no

significant difference in invasive susceptibility was observed
between unmodified reticulocytes and reticulocytes derived from
the PPIB (CypB) knockout line across three independent
experiments encompassing assays at both low and high multi-
plicity of infection and rates of invasion (Fig. 4b, Supplementary
Fig. 10).

Reintroduction of WT BSG on an endogenous BSG KO
background results in the complete restoration of invasive
susceptibility (Fig. 5a, b). Strikingly, expression of C-terminally
truncated basigin also rescued invasive susceptibility to levels
equivalent to that of unmodified BEL-A-derived reticulocytes.
These data demonstrate for the first time the capacity for
complementation of invasion defects through genetic manipula-
tion of in vitro-derived reticulocytes.

Discussion
The ability to disrupt and functionally complement phenotypes
through genetic knockout and exogenous gene expression is a
cornerstone approach in genetics and cell biology; however, direct
application of these techniques to red blood cells is precluded by
their anucleate nature. The development of systems for the
in vitro culture of nucleated erythroid precursors that can be
manipulated prior to their differentiation to enucleated reticulo-
cytes, however, has paved the way to their application within the
field of red blood cell biology.

Using enucleated cells derived through in vitro differentiation
of the recently described immortalized adult erythroblast cell line,
BEL-A, we demonstrate the capacity of these reticulocytes to
support invasion by and growth of the malaria parasite P. falci-
parum. Using CRISPR-mediated knockout of the gene encoding
the essential host receptor basigin in BEL-As we report the
generation of basigin null reticulocytes. These reticulocytes are
completely refractory to invasion by P. falciparum, confirming
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Source data are provided as a Source Data file
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essentiality of this receptor for invasion2. By lentiviral introduc-
tion of exogenous CRISPR-resistant wild-type basigin on an
endogenous basigin knockout background, we generate reticulo-
cytes with close to endogenous levels of this receptor and observe
complete rescue of invasive susceptibility in reticulocytes derived
from this line, demonstrating the ability to genetically comple-
ment a P. falciparum invasion defect that results from absence of
an essential red blood cell host receptor.

Although these data firmly establish the role of the extracellular
domain of basigin as a site for binding of the merozoite PfRh5,
the molecular consequences of this binding event within the host
cell remains controversial, with proposed consequences including
the formation of an opening or pore between parasite and host,
and a Ca2+ influx26–28. The role of the C-terminal cytoplasmic
domain of basigin is poorly understood; it has been shown to
have a signal inhibitory function at the T-cell synapse23 and
reduces the sensitivity of intracellular store-operated Ca2+ to
cGMP in hepatoma cells;21,22 however, there have been no studies
describing its function in red blood cells. To explore the
hypothesis that the cytoplasmic domain of basigin participates in
merozoite invasion in response to PfRh5 binding of the extra-
cellular domain, a C-terminally truncated mutant was expressed
in basigin knockout BEL-A cells. Reticulocytes differentiated from
this modified cell line were found to exhibit no significant dif-
ference in susceptibility to invasion by P. falciparum. This
excludes a requirement for the cytoplasmic domain in parasite
invasion.

In addition to enabling dissection of the molecular basis of host
receptors with established involvement in invasion, the ability to
generate novel reticulocyte phenotypes with complete deficiency
of prospective receptors provides a model for the verification or
exclusion of candidate receptors identified via less direct
approaches. A recent report proposed the existence of a multi-
protein complex between basigin and cyclophilin B within the
erythrocyte membrane, with a synthetic cyclophilin B-binding
peptide shown to inhibit merozoite invasion, leading to the
proposal that cyclophilin B is a host receptor for P. falciparum24.
As there have been no reports of cyclophilin B knockout red
blood cells that would enable direct assessment of this hypothesis,
we generated a cyclophilin B knockout BEL-A cell line, from
which reticulocytes were derived. In contrast to the complete
ablation of invasion in basigin knockout reticulocytes, no sig-
nificant difference in invasive susceptibility was observed in
cyclophilin B knockout reticulocytes compared with unedited
controls. Through generation of this novel phenotype, we thus
conclude that host cell-derived cyclophilin B is not a crucial
receptor for merozoite invasion of the red blood cell.

In demonstrating the capacity for intracellular development
and reinvasion of BEL-A-derived reticulocytes, this work opens
the door to potential future development of continuous growth
assays over multiple cycles; however, we note that the economic
costs associated with generating sufficient reticulocytes for such
experiments at scale are currently prohibitive. Optimization of
reticulocyte yield, culture costs, and conditions for extended
storage of reticulocytes should represent areas of future devel-
opment in this context. Interestingly, although a similar PMR was
observed between mature red blood cells and reticulocytes
derived from either primary CD34+ or BEL-A cell-derived reti-
culocytes, reticulocytes derived from either cell source demon-
strated a two to threefold greater propensity to support multiple
invasion events. This may reflect the increased surface area of the
larger reticulocyte for merozoite attachment, or indicate a reti-
culocyte membrane-cytoskeletal architecture more permissive to
invasion than that of mature erythrocytes.

The amenability of the BEL-A cell line to genetic manipulation
(including via gene editing), coupled with the ability of BEL-A-

derived reticulocytes to permit the entire red blood cell devel-
opment cycle of the parasite, allows for wide-ranging manipula-
tion of receptors and other host proteins involved in parasite
invasion, development, and egress.

Whilst the capacity for edited erythroid cells to undergo suc-
cessful differentiation and enucleation must always be considered,
future studies will undoubtedly exploit advances in the applica-
tion of CRISPR guide libraries for generating panels of sustainable
receptor knockout lines for the study of a variety of invasion-
associated phenotypes as well as alternative editing approaches
for site specific modification of endogenously expressed host
proteins. Notably, BEL-A-derived reticulocytes express both the
Duffy blood group protein and transferrin receptor19 and thus
should be susceptible to invasion by other malaria species
including Plasmodium vivax and Plasmodium knowlesi.

In summary, we present here data that establish reticulocytes
derived through differentiation of the immortalized erythroblast
cell line BEL-A as a robust model system for the exploration of
host protein involvement in malaria invasion. We provide evi-
dence that P. falciparum merozoites are able to invade and
undertake the complete intracellular development cycle within
the reticulocytes derived from this line. Further, using CRISPR-
mediated gene knockout we demonstrate capacity to generate
novel reticulocyte receptor knockout phenotypes, recapitulating
known invasion defects and challenging indirect evidence in
support of others. Through lentiviral expression of wild-type and
truncated basigin on a background of endogenous protein
knockout, we additionally present the first demonstration of
complementation of a receptor-associated invasion defect whilst
excluding a role for the cytoplasmic domain of basigin during this
process. Overall, these data establish a model system that will
enable detailed dissection of host protein involvement in multiple
aspects of malaria parasite pathology.

Methods
Cloning. Lentiviral vector pLentiCRISPRv2 containing guide sequence 5′-TTC
ACTACCGTAGAAGACCT-3′ targeting BSG or 5′-TGAAGTCCTTGATTACA
CGA-3′ targeting PPIB (CypB) was ordered from Genscript. Lentiviral expression
constructs for complementation experiments were generated using a pLVX-Tight-
Puro plasmid modified to contain a CMV enhancer and promoter and a neomycin
resistance gene. Gibson assembly was used to combine the NotI-linearized plasmid
with sequence encoding either full-length BSG, or BSG lacking the cytoplasmic
domain (residues 1–234; BSGΔC). The human BSG gene was codon re-optimized,
including six mutations in the CRISPR guide sequence used to knockout BSG (new
sequence 5′-TTTACCACCGTGGAGGATCTGG-3′). The re-optimized gene was
synthesized commercially with flanking sequences (5′ flank CTAGCGCTACCGG
TCGCCACCGGATCCACC; 3′ flank 5′-GCGGCCGCGCCGGCTCTAGATCG
CG-3′) for Gibson assembly to generate the full-length BSG construct. To generate
the BSGΔC construct, PCR, using the full-length synthetic gene as a template, was
used to add sequences for Gibson assembly (primers 5′-CTAGCGCTACCGGTCG
CCACCGGATCCACCATGGCCGCCGCCCTCTTTGTC-3′ and 5′-CGCGATCT
AGAGCCGGCGCGGCCGCTCACTTCCGCCGCTTCTCGTAGATG-3′).

BEL-A cell culture. BEL‐A (Bristol Erythroid Line–Adult) cells were cultured as
per the method originally described by Trakarnsanga et al.18 and expanded on by
Hawksworth et al.19. In the expansion phase, cells were cultured at a density of
1–3 × 105 cells/ml in expansion medium, which consisted of StemSpan SFEM
(Stem Cell Technologies) supplemented with 50 ng/ml SCF, 3 U/ml erythropoietin,
1 μM dexamethasone (Sigma-Aldrich) and 1 μg/ml doxycycline (Takara Bio).
Complete medium changes were performed every 48 h. In the differentiation phase,
cells were seeded at 2 × 105/ml in differentiation medium (Iscove's Modified
Dulbecco’s Medium (IMDM; Source BioScience UK Ltd), supplemented with
3 U/ml erythropoietin (Bristol Royal Infirmary), 3 U/ml heparin (Sigma), 0.5 mg/
ml holotransferrin (Sigma), 3% v/v heat-deactivated Human Male AB Serum
(Sigma), 2% (v/v) fetal calf serum (Hyclone), 10 µg/ml insulin (Sigma), 100 U/ml
penicillin (Sigma) and 100 µg/ml streptomycin (Sigma), 1 ng/ml IL‐3, 40 ng/ml
SCF and 1 μg/ml doxycycline). After 2 days, cells were reseeded at 3.5 × 105/ml in
differentiation medium. On differentiation day 4, cells were reseeded at 5 × 105/ml
in fresh differentiation medium without doxycycline. On differentiation day 6, a
complete media change was performed, and cells were reseeded at 1 × 106/ml. On
day 8, cells were transferred to tertiary culture medium (IMDM supplemented as
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above in the absence of SCF and IL-3) and maintained at 1 × 106/ml with complete
medium changes every 2 days until day 14.

CD34+ cell culture. For isolation of peripheral blood mononuclear cells (PBMCs),
the blood sample was mixed with 0.6% v/v citrate-dextrose solution (ACD; Sigma),
diluted 1:1 with Hanks balanced salt solution (HBSS; Sigma) with 0.6% v/v ACD
and layered on top of 25ml Histopaque 1077 (Sigma). The sample was then cen-
trifuged at 400 g, at room temperature (RT) for 35 min. The interface layer con-
sisting of density-purified mononuclear cells was then collected, washed three times
in HBSS and resuspended in 12ml cold Red Cell Lysis Buffer (NH4Cl, 4.15 g/L;
EDTA, 0.02 g/L; KHCO3, 0.5 g/L) at 4 °C for 10 min, to provoke lysis of any
remaining erythrocytes. Cells were washed twice in HBSS and counted in a hae-
mocytometer using the Trypan Blue dye (Sigma) exclusion test to distinguish
between dead and live cells.

CD34+ magnetic cell isolation was performed on the PBMCs according to the
manufacturer’s protocol for the Direct CD34+ progenitor cell isolation kit
(Miltenyi Biotec), to enrich for haematopoietic progenitor cells. Cells were cultured
according to a protocol initially described by Griffiths et al7. Isolated cells were
counted and plated at a density of 1 × 105 cells/ml in a primary expansion medium.
This primary medium was IMDM (Source BioScience UK Ltd) supplemented with
3U/ml erythropoietin (Bristol Royal Infirmary), 3U/ml heparin (Sigma), 0.5 mg/ml
holotransferrin (Sigma), 3% v/v heat-inactivated Human Male AB Serum (Sigma),
2 mg/ml Human Serum Albumin (HSA; Sigma), 10 µg/ml insulin (Sigma), 100 U/
ml penicillin (Sigma) and 100 µg/ml streptomycin (Sigma), with extra
supplementation of 40 ng/ml Stem Cell Factor (SCF; Miltenyi Biotec) and 1 ng/ml
IL-3 (R&D Systems) to induce cell proliferation. The cells were incubated at 37 °C
in 5% CO2 in this primary medium with daily media addition from Day 3 to Day 7
of culture. From Day 8 to Day 12, secondary medium was added instead, which
consisted of the same IMDM base supplemented with 40 ng/ml SCF. After Day 13,
tertiary medium consisting of the IMDM base without growth factor additions was
used in order to induce terminal erythroid differentiation. On Day 21, when the
cells typically achieved a density in culture of 2 × 106 cells/ml, reticulocytes were
purified through leukofiltration of the culture to remove nuclei and nucleated cells.

Leukofiltration. For leukofiltration, a leukocyte reduction filter (NHSBT, Filton,
Bristol) was pre-soaked and equilibrated with phosphate-buffered saline (PBS) and
the cultured cell suspension was loaded into the filter followed by at least three
volumes of PBSAG and allowed to pass through under gravity. The resulting flow-
through was then centrifuged at 400 × g, for 20 min and the pelleted cells were
resuspended in PBSAG. The purified reticulocytes were then stored at 4 °C.

Lentiviral transduction. HEK293T cells (Clontech) were cultured in Dulbecco's
Modified Eagle Medium (DMEM) (Gibco) containing 10% fetal calf serum (Gibco).
Cells were seeded in 10 cm dishes and calcium phosphate transfected using lenti-
viral packaging vectors pMD2 (5 μg) and pPAX (15 μg) and the lentiviral vector of
interest (20 μg). After 24 h, DMEM was removed and replaced with 5 ml fresh
media. Virus was harvested after 48 h, concentrated using Lenti-X concentrator
(Clontech) according to the manufacturers protocol and stored at − 80 °C. Con-
centrated virus equivalent to that harvested from half a 10 cm dish of
HEK293T cells was added to 2 × 105 BEL-A cells in the presence of 8 μg/mL
polybrene (Sigma) for 24 h. Cells were subsequently washed three times in PBS and
resuspended in fresh media. For vlentiCRISPRv2 transductions cells were selected
24 h after removal of virus using 1 μg/ml puromycin for 48 h.

Selection of individual clones by FACS. BEL-A cells transduced with plenti-
CRISPRv2 containing guide targeting BSG were immunolabelled with propidium
iodide and anti-basigin antibody HIM6.Individual cells within the negative
population FACS were sorted into a 96-well plate for onward culture using a BD
Influx Cell Sorter. To derive clones of BSG knockout cells transduced with pLVX
constructs in which basigin expression was matched to endogenous levels, trans-
duced populations were immunolabelled with HIM6 and single clones FACS iso-
lated through matching to a tight gate based on endogenous basigin expression of
unedited BEL-A cells. Derivation of PPIB (CypB) knockout clones was achieved
through blind sorting of individual clones followed by downstream screening using
Sanger sequencing and immunoblotting.

Flow cytometry. For flow cytometry on undifferentiated BEL‐As, 1 × 105 cells
resuspended in PBSAG (PBS+ 1 mg/ml BSA, 2 mg/ml glucose)+ 1% BSA were
labeled with primary antibody for 30 min at 4 °C. Cells were washed in PBSAG,
incubated for 30 min at 4 °C with appropriate APC‐conjugated secondary antibody,
and washed and data acquired on a MacsQuant VYB Analyser using a plate reader.
For differentiated BEL‐As, cells were stained with 5 μg/ml Hoechst 33342 then
fixed (if required) in 1% paraformaldehyde, 0.0075% glutaraldehyde to reduce
antibody binding‐induced agglutination before labeling with antibodies as descri-
bed. Reticulocytes were identified by gating upon Hoechst‐negative population.

Sequencing of CRISPR-edited BEL-A clones. For verification of CRISPR edits,
genomic DNA was isolated from specific clones using a DNeasy Blood and Tissue

Kit (Qiagen). DNA regions encompassing guide sites were amplified using primers
specific for basigin: FWD 5′-TGAAAGCAGGAAGGAAGAAATG-3′ REV 3′-
TCAAACCCTGGGACTTCAC-5′ and PPIB FWD 5′-GCCCGCTCACTTAGTA
GCAC-3′, REV 3′-ATCGCGTACCCACATGTCTT-5′. In each case the forward
primer was used for Sanger sequencing performed by Eurofins MWG.

Antibodies. Mouse monoclonal antibodies used were as follows: BRIC4 (GPC),
BRIC216 (CD55), BRIC222 (CD44), BRIC71 (band 3), BRIC256 (GPA) (all IBGRL
hybridoma supernatants used 1:2), HIM6 (basigin) (Biolegend [1:50 flow cyto-
metry, 1:500 immunoblotting]), ab64616 (basigin C-terminal) (AbCam, 1:500)),
K2E2 (CypB) (Santa Cruz, [1:50 flow cytometry, 1:500 immunoblotting]),
SAB2101856 (CypB N-terminal) (Sigma 1:500), GAPDH 0411 (Santa Cruz)
(1:1000), IgG1 control MG1-45 (1:50 Biolegend). Secondary antibodies were allo-
phycocyanin (APC)-conjugated monoclonal rat anti-mouse IgG1 RMG1–1 (Bio-
legend 1:50), swine anti-rabbit HRP (P0399), or rabbit anti-mouse HRP (P0260)
(Dako 1:2000).

Parasite culturing. P. falciparum parasites of a D10 derived parasite strain (D10-
PHG)29 were maintained in human erythrocytes at between 2 and 4% hematocrit
using standard culture conditions30. The culture medium consisted of Roswell Park
Memorial Institute 1640 containing 5.96 g/L HEPES, 2 g/L sodium bicarbonate,
and 0.0053 g/L Phenol Red (Sigma), supplemented with 0.05 g/L hypoxanthine
(Sigma), 0.025 g/L gentamycin (Sigma), 0.3 g/L L-glutamine (Sigma), and 5 g/L
AlbuMAX II (Thermo Fisher Scientific). Cultures were incubated at 37°C in a gas
mixture of 5% O2, 5% CO2, 90% N2.

Invasion assays into erythrocytes and BEL-A-derived reticulocytes. Schizont
stage parasites were magnetically purified using the Magnetic Cell Separation
(MACS) system (Miltenyi Biotec)31 and added to wells of a 96-well plate con-
taining either erythrocytes or leukofiltered BEL-A-derived reticulocytes in culture
medium. Each well contained 5 × 105 cells, with cell numbers counted using a
hemocytometer, in a final volume of 200 µl. Heparin (100 mU/µl final) was used to
inhibit invasion in negative controls. After ~ 16 h, invasion was quantified using
cell counting and flow cytometry. For cell counting, 1.5 × 105cells were applied to a
slide using a cytocentrifuge. Slides were immersed in 100% methanol fixative (15
min), Giemsa stain (10 min), and water (3 min), and imaged using a Leica DMR
microscope fitted with a Zeiss AxioCam HR camera. For quantification of invasion
at least 1000 cells were counted per cytospin.

For flow cytometry, cells were washed in PBSAG, stained with SYBR Green
(1:1000 in PBS; Sigma-Aldrich) for 20 min at room temperature in the dark, and
washed three times in PBSAG. In total, 1 × 105 cells from each well were acquired
using the fluorescein isothiocyanate channel of a BD Fortessa flow cytometer.

Reporting summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the corresponding
authors upon reasonable request. The source data underlying Figs. 1c–d, 4a–e, and 5b,
and Supplementary Figs. 2–4, 9, and 10 are provided as a Source Data File.
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