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Multilevel versus Single-Level Regression for the Analysis of Multilevel Information:  

The Case of Quantitative Intersectional Analysis  

 

Abstract 

Intersectional MAIHDA involves applying multilevel models in order to estimate 

intercategorical inequalities. The approach has been validated thus far using both simulations 

and empirical applications, and has numerous methodological and theoretical advantages over 

single-level approaches, including parsimony and reliability for analyzing high-dimensional 

interactions. In this issue of SSM, Lizotte, Mahendran, Churchill and Bauer (hereafter “LMCB”) 

assert that there has been insufficient clarity on the interpretation of fixed effects regression 

coefficients in intersectional MAIHDA, and that stratum-level residuals in intersectional MAIHDA 

are not interpretable as interaction effects. We disagree with their second assertion; however, 

the authors are right to call for greater clarity. For this purpose, in this response we have three 

main objectives.  

First, in the LMCB commentary the authors incorrectly describe model predictions based 

on MAIHDA fixed effects as estimates of “grand means” (or the mean of means), when they are 

actually “precision-weighted grand means.” We clarify the differences between average 

predicted values obtained by different models, and argue that predictions obtained by MAIHDA 

are more suitable to serve as reference points for residual/interaction effects. This further 

enables us to clarify the interpretation of residual/interaction effects in MAIHDA and 

conventional models. Using simple simulations, we demonstrate conditions under which the 

precision-weighted grand mean resembles a grand mean, and when it resembles a population 

mean (or the mean of all individual observations) obtained using single-level regression, 

explaining the results obtained by LMCB and informing future research. Second, we construct a 

modification to MAIHDA that constrains the fixed effects so that the resulting model predictions 

provide estimates of population means, which we use to demonstrate the robustness of results 



reported by Evans et al. (2018). We find that stratum-specific residuals obtained using the two 

approaches are highly correlated (Pearson corr=0.98, p<0.0001) and no substantive 

conclusions would have been affected if the preference had been for estimating population 

means. However, we advise researchers to use the original, unconstrained MAIHDA. Third, we 

outline the extent to which single-level and MAIHDA approaches address the fundamental goals 

of quantitative intersectional analyses and conclude that intersectional MAIHDA remains a 

promising new approach for the examination of inequalities. 
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1. Introduction 

An innovative new approach to quantitative intersectional analysis has recently been 

proposed: intersectional MAIHDA (multilevel analysis of individual heterogeneity and 

discriminatory accuracy) (Evans 2015; Evans et al. 2018; Green et al. 2017; Merlo 2018). 

Intersectional MAIHDA involves applying multilevel models in order to estimate intercategorical 

inequalities. Individuals are viewed as nested within intersectional strata. This framing treats 

strata as a type of context, analogous to how neighborhoods or other physical contexts would 

be modeled in a multilevel framework. Strata are defined using relevant axes of marginalization 

and inequality such as gender, race/ethnicity, and socioeconomic status. This approach offers 

many theoretical and methodological advantages over conventional single-level approaches. 

Among those, MAIHDA provides an improved and parsimonious way of analyzing high-

dimensional interactions as compared with single-level regression, which typically entails 

inclusion of interaction parameters (Evans et al. 2018; Jones et al. 2016; Merlo 2018). 

Furthermore, intersectional MAIHDA has answered calls from intersectional scholars for 

innovative new quantitative methods to study intercategorical inequalities (Bauer 2014; Bowleg 

2012; McCall 2005; Nash 2008) and calls from social epidemiologists for innovative new eco-

epidemiologic approaches (Merlo 2014; Merlo & Wagner 2012). While MAIHDA has been 

validated thus far using simulations (Bell et al. 2019; Evans 2015; Evans et al. 2018; Jones et 

al. 2016) and has been applied in a number of empirical scenarios (Axelsson Fisk et al. 2018; 

Evans 2019; Evans & Erickson 2019; Evans et al. 2018; Hernández-Yumar et al. 2018; 

Persmark et al. 2019), there remain many subtleties to this new approach that are worthy of 

further exploration and explication. 

In this issue of SSM, Lizotte, Mahendran, Churchill and Bauer (2019) (hereafter “LMCB”) 

put forward a critique of intersectional MAIHDA as a tool for estimating residual “interaction 

effects” for intersectional social strata. They agree that MAIHDA provides unbiased estimates of 

the strata-specific population means, and that the decomposition of these means by Evans et al. 



(2018) and others into additive (fixed) effects and interaction (residual) effects is mathematically 

correct. However, they take issue with the interpretation these authors have assigned to the 

additive fixed effect regression coefficients in intersectional MAIHDA and the model predictions 

which result from these. Their argument proceeds as follows. First, they assert that researchers 

have erroneously interpreted model predictions based on the fixed effect regression coefficients 

in intersectional MAIHDA as population means. Second, using simulations they demonstrate 

that “fixed effects in MAIHDA do not represent population average effects; rather, they reflect 

effects under an implicit re-weighting of the data given all intersections are of equal size.” 

Though they do not use the term “grand mean” at any point, based on this description they 

imply that the fixed effects regression coefficients estimated by MAIHDA always produce 

predictions of grand means (i.e., a mean of stratum-specific means). They also note that grand 

means are equal to the population means (i.e., mean of all individual observations) obtained 

using single-level models when strata are of equal size (as in their simulation Scenario 1). Third, 

because they assert that the fixed effects in MAIHDA do not result in population-average 

inferences, they “do not provide a meaningful reference point for intersectional effects” in the 

form of residual interaction parameters. Ultimately this leads the authors to conclude that 

MAIHDA is unsuitable for estimation of intersectional interaction effects. Instead they argue for 

the use of single-level approaches and suggest that the issue of small sample sizes in some 

strata could be addressed through penalized regression or other techniques. 

While the authors are right to call for greater clarity on the interpretation of MAIHDA fixed 

effects, they are incorrect in their claim that Evans et al. (2018) interpreted these as population 

means. In supporting their point, they refer only to an (admittedly) ambiguously worded passage 

by Evans (2019) that, despite their assertion, did not use the term “population average” and was 

intended to illustrate a different point entirely (namely, the fact that additive fixed effects in 

models which include interactions have a fundamentally different interpretation than the 

analogous fixed effects in models which do not include interactions). Evans & Erickson (2019) 



instead used the term “global mean” and Hernández-Yumar et al. (2018) referred to population 

averages where the “population” was of strata, not individuals. The authors’ larger point that the 

ambiguity of terminology in this literature may have created some confusion is valid, and so in 

this response we define clearly the differences between population means, grand means, and 

precision-weighted grand means, and we demonstrate the conditions under which these values 

are similar or different. 

In response to their second point regarding an implicit reweighting of the data, the 

simulation scenarios they consider illustrate a known and well-understood difference between 

single-level models and multilevel models: namely, that single-level models estimate population 

means (or averages across individuals) while multilevel models estimate precision-weighted 

grand means (or precision-weighted means of cluster-specific means). Despite this, the authors 

instead describe fixed parameters from intersectional MAIHDA as being grand means and imply 

that this is generally true. While it is true that in their simulation scenarios the MAIHDA models’ 

estimates of precision-weighted grand means happen to be equal to grand means, this is a 

reflection of the parameter space these simulations are situated within and especially the large 

number of individuals per stratum in the simulated samples. The difference between a grand 

mean and a precision-weighted grand mean is meaningful, because in parameter spaces more 

often encountered in intersectional research the precision-weighted grand mean will tend to fall 

somewhere between the population mean and the grand mean. In other words, the simulation 

scenarios outlined in the LMCB commentary are unrealistic and this exaggerates the differences 

seen between the two approaches more than will typically be encountered. Furthermore, we 

stress that there is nothing inherently wrong with choosing to estimate either population means 

or precision-weighted grand means. Rather, these choices are rooted in the specific research 

question at hand.  

Finally, we disagree with LMCB’s assertion that because intersectional MAIHDA fixed 

effects do not result in estimates of population means that this makes it inadvisable to interpret 



the stratum residuals as interaction effects. In fact, we contend, the estimation of precision-

weighted grand means in MAIHDA is actually an advantage of the approach, and therefore the 

residual “interaction effect” estimates are both interpretable and meaningful.  

To address these points, our response proceeds as follows. First, we define clearly the 

differences between the various approaches to making population-average inferences and 

discuss their relative advantages and disadvantages in the context of intersectional analysis. 

Using simulations, we outline the conditions under which precision-weighted grand means more 

closely resemble grand means, and when they more closely resemble population means. Based 

on this exercise we explain why the simulation scenarios outlined in the LMCB commentary 

make it appear that intersectional MAIHDA provides estimates of grand means rather than 

precision-weighted grand means. This further enables us to clarify the interpretation of 

residual/interaction effects in MAIHDA and conventional models, and the differences between 

estimates of “interaction effects” between the two approaches. Second, we address the 

concerns of the authors that the results of prior publications might appear different if the fixed 

effects in intersectional models had estimated population means rather than precision-weighted 

grand means. Though we ultimately recommend the continued use of intersectional MAIHDA as 

it was originally proposed, we provide an alternative version of MAIHDA (a “constrained 

MAIHDA”) which constrains the fixed effects such that they produce population means. We 

apply this constrained approach to both the simulation scenarios outlined by LMCB and to the 

empirical data used by Evans et al. (2018) to demonstrate the robustness of these results. 

Finally, we outline the extent to which single-level and MAIHDA approaches satisfy the 

fundamental goals of quantitative intersectional analyses and conclude that intersectional 

MAIHDA remains a more suitable new approach for the examination of inequalities. 

 

2. Population Means, Grand Means, and Precision-Weighted Grand Means 



Terms such as “population average” and “grand mean” have been used very differently 

across the literature, and at times this has resulted in confusion about their meaning. 

Acknowledging differences in terminology, we now define what is meant by them in the present 

study so as to provide clarity. As a simple example, suppose survey respondents are randomly 

sampled from 100 neighborhoods. In a null single-level model (a linear regression with no 

covariates), the intercept represents the population mean, or the mean value of outcome 𝑦𝑖 

across the sample regardless of neighborhood. A grand mean would be obtained by calculating 

the mean value of outcome 𝑦𝑖 in each neighborhood, then taking the mean of the neighborhood-

specific means. While this statistic will tell us something about the average neighborhood value, 

it does not take into account the differences across neighborhoods in the reliability of 

neighborhood-specific estimates. Some neighborhoods might have many observations, and as 

such their sample averages will provide more reliable estimates of their neighborhood 

population means than would be the case for for neighborhoods with fewer observations. The 

grand mean implicitly treats all neighborhoods as being of equal sample size and reliability. To 

clarify further, the population mean can be understood as a frequency-weighted mean of the 

neighborhood means, while the grand mean is an unweighted mean of the neighborhood 

means. In a null multilevel model, the intercept estimates a precision-weighted grand mean, or a 

weighted average of the neighborhood-specific means that takes into account the reliability of 

the neighborhood values. For simplicity this value has sometimes been referred to as a “global 

mean” (e.g., Evans & Erickson 2019), but this may have contributed to the confusion 

surrounding interpretation identified in the LMCB commentary. 

It is important to note that the descriptions of the three types of mean values above are 

made in the context of null models. In a null single-level model the intercept is an estimate of the 

population mean, while in a null multilevel model the intercept is an estimate of a precision-

weighted grand mean. In models that include fixed effects these interpretations become slightly 

more complex. For instance, in a single-level model which includes the gender variable 



“woman” (a dummy variable where 1=woman, 0=man) the intercept estimates the population 

mean among men, while the regression coefficient on the woman dummy variable estimates the 

population mean difference between women and men. So this model is still estimating 

“population means.” We therefore refer more generally to single-level models as estimating 

population means and MAIHDA as estimating precision-weighted grand means, without 

restricting this interpretation to the null case alone.  

In their commentary, LMCB use simulations to demonstrate that when interactions exist 

between two axes of marginalization (such as gender and immigration status), then in an 

additive-only model the population mean effect for “gender” will reflect the frequency of 

immigrants in the sample, whereas a grand mean will be based on the assumption that all strata 

are of equal size and therefore that strata of immigrants and non-immigrants should be 

weighted equally in the sample. The result is a difference between population means and grand 

means. They assert that the population mean has a more intuitive interpretation, however they 

provide no deeper justification to support this assertion beyond the claim that grand means are 

reflecting a “artificial population where all intersections are of equal size.” However, as noted 

previously, this assertion is based on both a misstatement of what average values are obtained 

using MAIHDA and the arbitrary assumption that residuals in population mean models are 

inherently superior for intersectional analysis. 

Because they do not discuss precision-weighted grand means, LMCB’s commentary 

frames the question of which value has a more intuitive interpretation for intersectional analysis 

as being a contest between population means and grand means. The core question when 

considering a baseline additive effect for intersectional strata is: what is the additive effect in the 

average stratum? (Or in the case of non-null models, what is the additive effect for the average 

strata of women, or the average strata of immigrants?) But what counts as an “average 

stratum”? A population mean’s estimate assigns more weight to larger strata and less weight to 

smaller strata when estimating outcomes in a hypothetical average stratum. A grand mean, on 



the other hand, weights all strata equally. Neither value is inherently more intuitive, and they 

represent subtly different aspects of reality. Population means provide a window on the average 

experiences in a population where all individuals are weighted equally (and therefore strata are 

weighted according to size). The downside of this is that a form of erasure happens, where what 

is considered “average” is more a reflection of outcomes for the majority than the minority. In 

intersectional analysis the purpose is often to reveal points of erasure, and to acknowledge that 

an average based on everyone will inherently be less likely to represent reality for minorities. On 

the other hand, grand means provide estimates where all strata are weighted equally, which 

deals with the issue of erasure, but may also fail to address the issue of reliability. Some strata 

have estimates that are more reliable than others, so why wouldn’t we want to factor this into 

our assessment of what an “average stratum” is experiencing? Critically, the intersectional 

MAIHDA approach is generally a compromise between these two views of “average stratum” 

because it estimates precision-weighted grand means. We therefore argue that this is ultimately 

a more satisfying way to describe predicted outcomes for an “average stratum.” What is less 

clear is under what conditions the precision-weighted grand mean will resemble the population 

mean, and when it will resemble the grand mean. In this study we explore this issue more fully.  

While there is nothing inherently wrong with estimating population means, grand means, 

or precision-weighted grand means, LMCB are right to call for greater clarity on this issue and to 

challenge us to explore the issue more fully. 

 

3. Simulations 

 At the heart of this first simulation exercise is a question about when the precision-

weighted grand mean (obtained using intersectional MAIHDA) will resemble the population 

mean and when it will resemble the grand mean. We base this simulation on the Scenario 2 

outlined in the LMCB commentary, and therefore briefly repeat the details of this simulation 

below. 



3.1 Simulated Data 

The data consist of 𝑁 = 100000 simulated individuals nested within 32 strata formed by 

the unique combinations of five independent binary variables. Let 𝑦𝑖𝑗 denote the outcome for 

individual 𝑖 (𝑖 = 1,… , 𝑛𝑗) in stratum 𝑗 (𝑗 = 1,… ,32) and 𝑥1𝑗, 𝑥2𝑗, 𝑥3𝑗, 𝑥4𝑗, 𝑥5𝑗 the five independent 

binary variables from which the strata are defined. Further, let 𝑝1 = 0.7, 𝑝2 = 0.7, 𝑝3 = 0.5, 𝑝4 =

0.5, 𝑝5 = 0.5 denote the marginal probabilities of positive values for each variable. The data 

generating process for 𝑦𝑖𝑗 can then be written as the following linear regression model: 

 𝑦𝑖𝑗 = 0 + 1𝑥1𝑗 + 1𝑥2𝑗 + 1𝑥3𝑗 + 1𝑥4𝑗 + 1𝑥5𝑗 + 1𝑥1𝑗𝑥2𝑗 + 𝑣𝑖𝑗 

𝑣𝑖𝑗~𝑁(0,1) 

(Eq.1) 

where we have included the interaction between 𝑥1𝑗 and 𝑥2𝑗 as well as each covariate as a 

main effect. The resulting population mean and variance in the simulated data is 3.39 and 2.99. 

For simplicity and clarity, we fit all models using restricted maximum likelihood estimation 

(REML). 

 

3.2 Model Specifications 

LMCB first fit a conventional single-level regression model that includes all five additive 

main effects but excludes the interaction parameter: 

 𝑦𝑖𝑗 = 𝛽0 + 𝛽1𝑥1𝑗 + 𝛽2𝑥2𝑗 + 𝛽3𝑥3𝑗 + 𝛽4𝑥4𝑗 + 𝛽5𝑥5𝑗 + 𝑟𝑖𝑗 

𝑟𝑖𝑗~𝑁(0, 𝜎𝑟
2) 

(Eq.2) 

We refer to this single-level model as Model 1. The intersectional MAIHDA model (Model 2), 

which has unconstrained fixed parameters (in order to contrast later with constrained MAIHDA), 

can be written as: 

 𝑦𝑖𝑗 = 𝛽0 + 𝛽1𝑥1𝑗 + 𝛽2𝑥2𝑗 + 𝛽3𝑥3𝑗 + 𝛽4𝑥4𝑗 + 𝛽5𝑥5𝑗 + 𝑢𝑗 + 𝑒𝑖𝑗 

𝑢𝑗~𝑁(0, 𝜎𝑢
2) 

(Eq.3) 



𝑒𝑖𝑗~𝑁(0, 𝜎𝑒
2) 

where 𝑢𝑗 represents the residual for stratum 𝑗 and 𝑒𝑖𝑗 represents the residual for individual 𝑖 in 

stratum 𝑗. The variance partition coefficient (VPC) can be calculated as: 

 
VPC =

𝜎𝑢
2

𝜎𝑢
2 + 𝜎𝑒

2 
(Eq.4) 

Table 1 provides the estimates for Model 1 (single-level model without interaction) and Model 2 

(unconstrained intersectional MAIHDA). Interaction parameters are not included in Model 1 in 

order to explore the differences in fixed parameter estimates between Models 1 and 2 due to 

frequency vs. precision-weighting of the data provided on each stratum, rather than to fixed 

effect specification differences. In Model 1 we expect that the regression coefficient for 𝑥1𝑗, for 

example, will reflect the frequency in the sample of 𝑥2𝑗 because of the omitted interaction 

between the two variables and the subsequent (expected) omitted variable bias. Because 𝑥2𝑗 =

1 is present for 70% of the sample, the estimated regression coefficient for 𝑥1𝑗 reflects this: 𝛽1 =

1.7. As we will show, in this parameter space the precision-weighted grand mean is equal to the 

grand mean, and a grand mean would be estimated under the assumption that 𝑥2𝑗 = 1 is 

present in 50% of the population (i.e., all intersections are assumed to be of equal size), and 

therefore 𝛽1 = 1.5. 

For each model, we calculated the predicted mean outcome: 

 𝑦̂𝑗 = 𝛽̂0 + 𝛽̂1𝑥1𝑗 + 𝛽̂2𝑥2𝑗 + 𝛽̂3𝑥3𝑗 + 𝛽̂4𝑥4𝑗 + 𝛽̂5𝑥5𝑗 (Eq.5) 

 

And the predicted total interaction (or residual) effect: 

 𝑟̂𝑗 = 𝑦̅𝑗 − 𝑦̂𝑗 (Eq.6) 

 

where 𝑦̅𝑗 denote the sample average outcome in stratum 𝑗. 



Thus, the predicted total interaction effect for each stratum is simply the difference between the 

mean observed and predicted outcome for that stratum. These predictions are provided in Table 

2. In the multilevel model, it is then standard to additionally apply a shrinkage factor to these 

predictions as: 

 
𝑢̂𝑗 = 𝑠̂𝑗𝑟̂𝑗, 𝑠̂𝑗 =

𝜎̂𝑢
2

𝜎̂𝑢
2 +

𝜎̂𝑒
2

𝑛𝑗

 
(Eq.7) 

 

where 𝑠̂𝑗 denotes the shrinkage factor. The resulting shrunken effects 𝑢̂𝑗 are often referred to as 

the empirical Bayes predictions of the random effects. However, in the current simulated data 𝑛𝑗 

is large for all strata and so 𝑠̂𝑗 is effectively 1 in all strata (i.e., no shrinkage). The shrunken 

effects 𝑢̂𝑗 are therefore effectively the same as the unshrunken effects 𝑟̂𝑗. It is also for this 

reason that the precision-weighted grand mean estimates equal the grand mean. It is very 

relevant to note that in empirical data applications where some or many strata consist of far 

fewer individuals, the effect of shrinkage will be notable, and the precision-weighted grand mean 

will diverge from the grand mean. 

 

3.3 Simulation: When does the precision-weighted grand mean resemble the grand mean, 

and when does it resemble the population mean? 

Because the main difference between a precision-weighted grand mean and a grand 

mean is in the shrinkage factor, which depends on both the sample size per stratum (and by 

extension the total sample size, 𝑁) and the variance within- and between-strata (and therefore 

the VPC) it is the parameter space at varying levels of 𝑁 and VPC that we explore. 

All simulations were based on Scenario 2 parameters, except for the total sample size 

and VPC. VPC in the original Scenario 2 was an extremely high 66.7%, far higher than that 

estimated in any application of MAIHDA to real data. We therefore modified the VPC to more 



realistic values of 5% and 1% by increasing the relative size of the individual-level variance. 

This enabled us to leave the stratum-level variance alone and to match the fixed parameter 

values for each variable in the data generating process. For each VPC value a simulated data 

set containing 100000 observations was constructed. Then a random sample of the appropriate 

size (𝑁) was taken from this data set. Both null single-level and null unconstrained MAIHDA 

models were fit to this subsample, and the intercept estimate for each model was estimated. A 

total of 100 iterations of the sampling procedure were conducted for each combination of 

sample size and VPC, enabling the estimation of average intercept values for each model. 

Figure 1 presents the results of this simulation. 

Across all parameter conditions, the null single-level model provided estimates of the 

population mean. When the total sample size was large (and therefore the average stratum size 

was large) and/or the VPC was large, the unconstrained MAIHDA estimate resembled the grand 

mean. As the 𝑁 decreased and the VPC decreased the precision-weighting feature of 

unconstrained MAIHDA meant that the estimates obtained moved away from the grand mean 

and converged on the population mean. 

While the values selected by LMCB were reasonable choices for the purposes of clarity 

in demonstrating the underlying difference between population and (precision-weighted) grand 

means, the sample size and VPC values were considerably higher than those reported in all 

applications of MAIHDA to date. In the null models, the VPC was 66.77% in Scenario 1, 66.69% 

in Scenario 2, and 50.57% in Scenario 3. In most applications of MAIHDA, the VPC is <5%, and 

rarely exceeds 10%. Furthermore, the total sample size of 100000, when distributed across only 

32 strata, resulted in large sample sizes in even the very smallest strata (>1,000 in Scenario 2). 

This resulted in shrinkage factors for all strata of effectively 1 (no shrinkage), and therefore the 

precision-weighted grand mean was effectively equal to the grand mean in all simulated 

conditions. This explains why the authors erroneously concluded that MAIHDA in general 

provides estimates of grand means. 



The results of LMCB’s simulation Scenario 1 are also mathematically intuitive: when the 

sample size in all strata is equal, then the population mean will be equal to the grand mean. But 

what might cause the population mean and the grand mean to diverge further (other than 

unequal strata sizes)? One situation where the two values would be very different is when there 

is a systematic correlation between the size of strata and stratum-specific means. In Scenario 2, 

for instance, there is a systematic positive correlation (corr=0.778) between stratum size and 

stratum means (see Table 2). Population means place more weight on strata with more 

respondents than grand means do (because grand means weight all strata equally regardless of 

size), and if these strata also happen to have higher means, then this will result in the 

population mean being significantly higher than the grand mean. As expected, this was the case 

in Scenario 2, where the population mean=3.39 and the grand mean=2.75. In simulation 

Scenario 3 outlined by LMCB the correlation between stratum size and stratum mean values 

was negative (corr=−0.202) and so the population mean was lower than the grand mean 

(population mean=1.82; grand mean=2.00). If, on the other hand, there were no correlation 

between size of strata and stratum-specific means then the population and grand means would 

coincide. LMCB imply that grand means and population means are equal only when strata are 

of equal size; This discussion reveals additional conditions when this may be true. 

This simulation exercise has provided some general insights into the conditions under 

which the population mean, grand mean, and precision-weighted grand mean will be similar or 

different. When strata are of equal size and/or there is no correlation between stratum means 

and stratum size, all three values will be similar. When strata are of unequal size, if the strata 

are large and/or the VPC is large, shrinkage will be minimal and the precision-weighted grand 

mean will resemble the grand mean. However, as sample size (in total and per stratum) 

decreases and the VPC decreases, the precision-weighted grand mean will converge to the 

population mean. While this simulation exercise explored the difference between these three 



approaches in the context of null models, as we demonstrate empirically below these insights 

also extend to models that include covariates.  

 

3.4 Clarifying the Interpretation of Interaction Effect Estimates 

 Residuals in intersectional MAIHDA models that include additive fixed effects and fixed 

effect interaction parameters in conventional single-level models can only be interpreted as 

“interaction effects” under the assumption of no omitted variable bias. This has been clearly 

stated with respect to MAIHDA (Evans et al. 2018), however the same is also true for the 

conventional approach and this subtlety is not always acknowledged.  

The clarifications we have made about the average values obtained by the two 

approaches enable us to now clarify the interpretation of the interaction effects in each 

approach. In both models the additive component represents what would have been predicted 

for a stratum (or, consequently, an individual belonging to that stratum) based on additive 

effects alone, whereas the residual/interaction parameter represents how much that stratum’s 

total predicted value differs from this additive approximation. There are two important 

differences between the models and interpretations, however. First, as we have noted, the 

additive baseline in the conventional model is an estimate of a population mean, and therefore 

the interaction effect modifies this estimate of the population mean. In intersectional MAIHDA 

the additive baseline is an estimate of a precision-weighted grand mean, and therefore the 

residual interaction effect modifies this value.  Second, as discussed more extensively by Evans 

(2019), the additive parameters in the two models are making fundamentally different 

comparisons. As a simple example, in a conventional single-level model containing fixed 

dummy parameters “woman” (1=woman; 0=man) and “Black” (1=Black; 0=White) and the 

dummy interaction parameter “woman and Black” the parameter for “Black” would have the 

interpretation of the difference in the population means between Black men and White men. In a 

similar MAIHDA model, the fixed interaction parameter would not be included and therefore the 



parameter for “Black” would represent the difference in the precision-weighted grand means 

between all Black strata and all White strata, with no specificity with respect to gender.  

While this point may perhaps be obvious, we nevertheless stress that determining 

whether a particular stratum is relatively advantaged or disadvantaged based on residual (or 

interaction parameters) alone is not possible. Interaction effects tell us only the direction and 

magnitude of the difference between the total predicted value for a stratum and what might have 

been predicted for it based on additive effects alone. In other words, the interaction effect tells 

us whether the stratum is advantaged or disadvantaged relative to what might have been 

predicted for it based on additive effects alone. It is therefore necessary to consider the 

magnitude of the additive effects as well as the direction and magnitude of the interaction 

effects when determining relative (dis)advantage between strata, or more simply to compare the 

total predicted values (which sum across the additive and interaction effects). 

 

4. Examining the robustness of results: A demonstration using constrained 

intersectional MAIHDA 

For the purposes of demonstration only, we outline an adaptation of linear intersectional 

MAIHDA as it has been applied to date. This involves continuing to conduct a multilevel analysis 

of individuals nested in intersectional strata, but one where we effectively constrain the fixed 

effects regression coefficients to equal those of a single-level linear regression. This leads to 

estimation of population means while still arguably retaining the advantages of multilevel 

modeling, such as the calculation of variance partition coefficients (VPCs) and the shrinkage 

adjustment being applied to predicted interaction effects. Though we ultimately recommend the 

continued use of intersectional MAIHDA as it was originally proposed (i.e., unconstrained 

MAIHDA) for the reasons provided above, we provide this alternative in order to explore a 

concern expressed by LMCB: namely, that results and conclusions of prior studies might have 

been different had intersectional MAIHDA estimated population means. 



We illustrate this proposed alternative first in the context of simulation Scenario 2 (similar 

results were obtained for simulated Scenarios 1 and 3, available upon request) and then apply it 

to the empirical case used by Evans et al. (2019).  

 

4.1 Constrained intersectional MAIHDA 

In practice, the easiest way to conduct a constrained intersectional MAIHDA is through a 

two-step process: (1) fit a single-level model to the data that includes all additive main effects, 

but excludes interaction parameters (as in Eq.2), then (2) fit a two-level variance components 

model to the residuals from the step 1 model. The intercept should be omitted from this second 

model. The second model decomposes the total residual into stratum- and individual-level 

residual components. Similarly, the total residual variance is decomposed into separate stratum- 

and individual-level variance components. The step 2 model can be written as: 

 𝑟̂𝑖𝑗 = 𝑢𝑗 + 𝑒𝑖𝑗 

𝑢𝑗~𝑁(0, 𝜎𝑢
2) 

𝑒𝑖𝑗~𝑁(0, 𝜎𝑒
2) 

(Eq.8) 

The estimates for this constrained multilevel model (Model 3) are presented in the third column 

of Table 1. The predicted mean and interaction effects are presented in Table 2. As in the case 

of unconstrained MAIHDA in this simulation, the constrained model has no relevant shrinkage 

acting on the stratum-level residuals. Therefore, while constrained MAIHDA provides the 

(expected) identical predicted mean outcomes as the single-level approach, it also provides 

identical residuals in this case. In more realistic data sets, residuals would be expected to differ 

between Models 1 and 3 due to shrinkage. 

 Results for null versions of all three models are available in Supplemental Tables 1 and 

2. As can clearly be seen from these comparisons across models, Model 2 (unconstrained 

MAIHDA) produces subtly different estimates for fixed effect parameters than Model 1 



(conventional single-level regression) due to the reweighting of estimates. Model 3 (constrained 

MAIHDA), however, is a hybrid approach that estimates population mean values while 

maintaining the advantages of MAIHDA. The Pearson correlation between stratum residuals 

from Models 2 and 3 is strong (corr=0.872, p<0.0001; see Table 3), but low enough that, at least 

in these simulated data, the two approaches would lead to somewhat differing predictions for 

the stratum specific means. 

  

4.2 Empirical Application 

 In their commentary, LMCB particularly highlight the original contribution of Evans et al. 

(2018), and therefore we return to this empirical example in order to determine the extent to 

which the results originally published might have been different using the constrained approach. 

4.2.1 Empirical Data 

Data comes from Wave 2 of the National Epidemiologic Survey on Alcohol and Related 

Conditions (NESARC) (collected in 2004-2005) (Grant and Kaplan, 2005). A final sample of 

N=32,788 respondents was analyzed after deletions for missingness on necessary variables. 

The dependent variable was a continuous measure of body mass index (BMI). Social strata 

were defined by all combinations of: gender (2 categories), race/ethnicity (three categories), 

education (4 categories), income (4 categories), and age (4 categories) for a total of 384 strata 

(382 of which contained respondents in the sample). For further details, see Evans et al. (2018). 

4.2.2 Models and Results 

 For comparison purposes, four models were fit: a conventional single-level model (Model 

1), unconstrained intersectional MAIHDA to mirror analyses performed by Evans et al. (Model 

2), the constrained intersectional MAIHDA as proposed in this article (Model 3), and a “grand 

means” model (Model 4). The grand means model (also sometimes called a “between-model”) 

was a single-level regression performed on a data set where each value was one stratum and 

the dependent variable was the mean value for all observations in that stratum. This forces the 



parameter estimates to be equal to grand means, rather than precision-weighted grand means. 

As in the simulation scenarios, Model 1 does not include interaction parameters in order to show 

differences between Models 1 and 2 that are due to the issue of frequency vs. precision-

weighting of the stratum-specific samples, rather than to differences in fixed effect specification.  

Fixed and random effect parameters are compared across models in Table 4, and 

stratum-specific estimates for Models 1-3 are available in Supplemental Table 3. As expected, 

differences between models in fixed parameter interpretations as population means (Models 1 

and 3) and precision-weighted grand means (Model 2) results in slight differences in parameter 

estimates. Of interest to the present discussion is the extent to which stratum residuals obtained 

in Models 2 and 3 resemble each other after adjustment for additive main effects (Supplemental 

Table 3). As reflected in Figure 2, this correlation is very high, with a Pearson correlation=0.98 

(p<0.0001) (Table 3). Figure 3 presents substantive results for Model 2 (unconstrained 

MAIHDA) that mirrors a similar figure in Evans et al. (2018) showing patterns in higher/lower 

than expected residuals for strata at varying levels of education and age, grouped by gender, 

race/ethnicity and high/low income. For comparison, the same figure setup is used for results 

from Model 3 (constrained MAIHDA).  

From these comparisons and correlation values we conclude that the substantive 

conclusions previously published by Evans et al. (2018) would not have been meaningfully 

different if constrained MAIHDA had been used. Indeed, the two sets of results are very similar, 

suggesting that the potential concerns raised by the LMCB matter little in practice when the 

different approaches are applied in real intersectional analyses. 

 

5. Simulation Parameter Spaces: Clarity versus Realistic Values 

 While the correlation between residuals obtained using unconstrained (Model 2) and 

constrained (Model 3) MAIHDA was still strong in the simulated scenarios (e.g., Scenario 2 

corr=0.872 (p<0.0001)), it was substantially stronger in the empirical case (corr=0.977 



(p<0.0001)). On first glance this would suggest that we should sometimes see meaningful 

differences between the two approaches. However, based on results from the simulations 

conducted to determine when the precision-weighted grand mean resembles the population 

mean, and when it resembles the grand mean, the reason for the lack of any meaningful 

difference is clear. In the empirical example from NESARC, the VPC was <2% and though the 

total sample size was large it was averaged over a larger number of strata, thus reducing the 

average stratum sample to 85.8 respondents. This places the null unconstrained MAIHDA in the 

parameter space where the precision-weighted grand mean from a null model will be 

converging on the population mean. 

The extension of the logic that precision-weighted grand means fall between population 

means and grand means is more complex in the case of additive models, however it can be 

seen to mostly hold in the empirical example outlined in Table 4. With the exception of two fixed 

parameters for levels of age, all fixed parameters obtained using unconstrained MAIHDA 

(precision-weighted grand means) fell between values for the population mean (Model 1) and 

the grand mean (Model 4).  

In summary, though there is nothing inherently problematic with choosing to estimate 

grand means, in most empirical cases the estimates produced by an unconstrained MAIHDA 

will more closely resemble those from a single-level model than the simulations outlined in the 

LMCB commentary would seem to imply. These results inform our understanding of other 

studies which have used unconstrained MAIHDA to date.  

 

6. Fundamental Analytic Goals of Quantitative Intersectional Approaches 

The MAIHDA framework fits well with the concept of proportionate universalism 

discussed by Marmot within the literature on resource allocation in public health (Carey et al. 

2015; Marmot & Bell 2012). That is, health actions must be universal, not targeted, but with a 

scale and intensity that is proportionate to the level of disadvantage. The MAIHDA approach 



can be used to inform decisions regarding the degree to which public health interventions need 

to be universally targeted (Merlo et al. 2019). The use of MAIHDA may also enable a better 

understanding of the heterogeneity underlying traditional uni-dimensional studies of health 

inequalities (Merlo 2018). When applying intersectionality to issues in public health, however, it 

is also essential to maintain the critical theory orientation inherent to the approach in order to 

avoid blunting intersectionality’s “critical edge and transformative aims” (May 2015, p.141). 

From a methods perspective, a basic analytic framework for performing quantitative 

analyses of intersectional inequalities in public health should embrace at least three analytical 

goals: (1) mapping average health outcomes across intersectional strata; (2) quantifying the 

share of the total variation in the outcome that is at the between-intersectional strata level as 

opposed to the within-stratum level; and (3) quantifying interaction of effects between the 

dimensions that define the intersectional strata. 

 

6.1 Mapping Averages Across Intersectional Strata 

The first analytic goal represents traditional epidemiological descriptive analyses of the 

distribution of the average health outcome values across strata. This procedure helps to identify 

strata of individuals that – on average – are over or under a pre-specified reference (e.g., the 

whole population, or another intersectional stratum). Mappings of risk support informed public 

health decision-making, however an over-reliance on comparisons of averages (“the tyranny of 

the averages” (Merlo 2003; Merlo 2014; Merlo et al. 2017; Merlo & Wagner 2012)) results in a 

failure to consider the heterogeneity that exists within strata. For instance, mapping averages is 

not sufficient to assess whether it would be preferable to direct resources only toward certain 

intersectional strata or to adopt an approach that will shift population distributions (Rose 1992). 

For this purpose, we need measures of discriminatory accuracy. 

 



6.2 Quantifying Heterogeneity Within and Between Strata 

The second goal is focused on the measurement of components of variance and 

discriminatory accuracy (e.g., VPC, ICC). This focus is still unusual in traditional epidemiology, 

which is mostly dedicated to the analysis of measures of association (Merlo 2014), yet this 

information is relevant for many reasons. Discriminatory accuracy refers to the ability of a 

measure (in this case, intersectional strata classifications) to distinguish between individuals 

who have a health outcome and those who do not. Even in the case of larger average 

differences between strata, when discriminatory accuracy is low focusing on specific strata (i.e., 

a “high risk” strategy) may lead to inefficient interventions and raise ethical issues related to risk 

communication and the perils of stigmatization of individuals from specific strata. Despite strong 

condemnation, many continue to use markers of social position and identity such as categories 

of gender, race/ethnicity and socioeconomic status as reified, essentialized labels, and 

sometimes attribute sources of between-stratum differences along these axes to biology rather 

than to social determinants. Consideration of the (often low) discriminatory accuracy of stratum 

labels and the (frequently high) within-stratum variability provides a valuable check on this 

unfortunate tendency. Some scholars have suggested referring to cases of relatively high 

discriminatory accuracy as being supportive of a “categorical” perspective (Merlo 2018; Wemrell 

et al. 2017a), by which they mean a situation in which category labels have been particularly 

well-suited to sorting those who are affected by adverse outcomes from those who are not. 

Symmetrically, cases of low discriminatory accuracy encourage us to remain skeptical of the 

use of such labels for determining individual risk, particularly in clinical settings. These cases 

encourage a more “anticategorical” perspective (Hernández-Yumar et al. 2018; Merlo 2018; 

Wemrell et al. 2017a). It is critical to note that the terms (inter)categorical and anticategorical 

are meant here very differently than how they are frequently used to define distinct approaches 

within intersectional scholarship. McCall (2005), for instance, defines intercategorical 

approaches as those that adopt categorical labels (while remaining aware of their limitations) in 



order to document inequality, while anticategorical approaches are those that seek to illuminate 

the extent to which these labels are “simplifying social fictions” (p.1773). While anticategorical 

intersectional scholarship approaches the issue from a very different perspective and uses a 

very different set of methods, the “anticategorical” conclusion yielded by cases of low 

discriminatory accuracy ultimately arrives at a similar argument: namely, that labels are 

insufficient to understand the complex realities of the situation and we should remain cognizant 

of this fact. 

 

6.3 Estimating Interaction Effects 

The third goal is well-known in social epidemiology, as it focuses on the identification of 

interaction effects. While in qualitative intersectionality the term “interaction” is metaphoric, here 

it is operationalized as an estimated quantity (either a fixed effect interaction term or a random 

effect residual) that enables final “total” estimates for particular strata to differ from what might 

have been expected based on some combination of additive effects. In the conventional single-

level approach this is accomplished by selecting a priori a single reference level (often high SES 

White men) and building from that a set of between-stratum comparisons that modify the 

expected value. This means that interaction terms are only estimable for certain strata, and 

these values represent comparisons with other strata expected values. In intersectional 

MAIHDA this is accomplished by controlling for all additive effects in the fixed part of the model 

and leaving all interactions to be encompassed by the stratum-level residual estimates. While 

the unconstrained and constrained approaches to MAIHDA now introduce some differences in 

interpretation of these fixed parameters, the ultimate goal of identifying interaction terms for all 

social strata simultaneously remains. 

 



6.4 To what extend do the different approaches satisfy the fundamental goals of 

quantitative intersectional analysis? 

 A side-by-side comparison of the modeling approaches is presented in Table 5. As 

shown, both approaches—conventional single-level and unconstrained intersectional 

MAIHDA—are capable of providing estimates of mean or frequency values in all strata 

combinations (Goal #1). However, the conventional single-level approach is far less 

parsimonious than the MAIHDA approach under high-dimensionality, and unless additional 

analytic steps are taken to adjust standard errors, strata with smaller sample sizes may have 

unreliable estimates. On the other hand, shrinkage in multilevel models enables us to obtain 

reasonable estimates for strata with fewer respondents (Evans et al. 2018), and while this 

shrinkage may not always be complete it is substantially less likely to yield erroneously 

significant effects than the single-level approach (Bell et al. 2019). 

 For Goal #2, MAIHDA automatically provides estimates of variability between- and 

within-strata, enabling consideration of heterogeneities at all levels and assessments of 

discriminatory accuracy. Single-level approaches, on the other hand, do not directly estimate 

these values. A recent proposal for how to adapt single-level approaches to evaluate 

heterogeneity and discriminatory accuracy using AUC analysis (which in this case approximates 

the VPC) holds considerable promise (Wemrell et al. 2017b), but this is still far from customary. 

 For Goal #3, both approaches are capable of estimating interaction effects, though the 

interpretation of these effects differs between the approaches (Evans 2019). Furthermore, as 

mentioned previously, interaction effects are obtained for only some strata in the single-level 

approach, whereas they are obtained for all strata in MAIHDA. Which approach is most suitable 

will depend on a number of factors, including what the research question is and whether 

sufficient data is available to make some of the practical advantages of MAIHDA irrelevant. 

 

7. Conclusion 



 Intersectional MAIHDA answers calls from intersectional scholars for innovative new 

quantitative methods to study intercategorical inequalities (Bauer 2014; Bowleg 2012; McCall 

2005; Nash 2008) and calls from social epidemiologists (Merlo 2014; Merlo & Wagner 2012) for 

innovative eco-epidemiologic approaches. Methodological development requires engagement 

from many scholars to test the claims made about any new approach, and to examine the 

conditions under which different approaches either have advantages or disadvantages relative 

to better-known approaches. This exchange has helped to clarify one of the estimation 

subtleties of intersectional MAIHDA which affects the interpretation of stratum-level residual 

estimates. In this response we clarify the interpretation of fixed and residual parameters in 

MAIHDA, demonstrate the conditions under which precision-weighted grand means will more 

closely resemble population means or grand means, and discuss factors that could cause 

population and grand means to diverge. Under conditions most frequently encountered by 

researchers (i.e., lower VPC and smaller sample size per stratum) intersectional MAIHDA 

estimates of precision-weighted grand means will result in fixed effect estimates that tend to fall 

between population means and grand means. We argue that this is another advantage of the 

intersectional MAIHDA approach. While the single-level approach defines an “average stratum” 

as being whatever is experienced by the majority (thus treating majorities as the “average” or 

“default” against which all other strata are assessed), and a between-stratum (grand means) 

approach would fail to consider differences in reliability of stratum-specific estimates due to 

differences in sample size, the intersectional MAIHDA approach is a compromise that allows the 

experiences of minority strata to contribute more to a vision of what an “average stratum” 

experiences while simultaneously adjusting for reliability of estimates. 

 We argue that fundamentally the multilevel approach is more suitable for modeling 

intersectional inequalities, both for theoretical and methodological reasons. Intersectionality is a 

theoretical framework that draws attention to the social processes constructing interlocking 

systems of oppression and inequality; Intersectionality does not locate the causes of concern 



with individuals. A multilevel modeling framework that situates individuals within intersectional 

social strata, and estimates parameters associated with strata rather than individual-level 

variables, is strongly aligned with this theoretical perspective. Methodologically, the multilevel 

approach also acknowledges a basic truth often apparent empirically—namely, that statistical 

clustering by social strata occurs and the data is therefore multilevel in structure. While single-

level approaches can still be used successfully to evaluate inequalities, and we do encourage 

their future use, intersectional MAIHDA is the more natural framework for modeling and 

interpreting intersectional effects. 

In the future, researchers have a variety of analytic tools at their disposal for 

intersectional analysis, and we advise them to select the most appropriate approach for their 

particular research question(s) while taking steps to address all of the fundamental analytic 

goals of quantitative intersectional analysis. 
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