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A B S T R A C T

Traditional unreinforced masonry (URM) constructions still represent an important part of the school building
stock in several low-income countries including Nepal. Unfortunately, their intrinsic vulnerability impacts ne-
gatively on the resilience of cities and local communities. Observations after major seismic events have shown
that the predominant mode of failure is the out-of-plane (OOP) of the weak and loosely connected perimeter
masonry walls which typically leads to partial or global collapse. Starting from this evidence, a closed-form
analytical approach is presented aimed at deriving the OOP force-displacement response of URM walls for
different boundary conditions and vertical loads. The novel analytical solution is successfully validated with the
results of seventeen OOP experimental tests on URM walls available in the literature. Then, referring to a case-
study Nepalese school building, capacity curves of the constituting walls are derived and adopted for the vul-
nerability assessment of the structure through the Capacity Spectrum Method (CSM) where equivalent hysteretic
damping is calibrated with available OOP shaking table test results. Lastly, PGA capacities for different damage
states are successfully compared with median values from observational fragility curves.

1. Introduction

In April 2015, a catastrophic MW 7.8 earthquake followed by several
aftershocks occurred in Nepal causing 8,790 deaths and 498,852
building collapses [1]. Particularly, the event significantly damaged the
school facilities drawing the attention of Authorities to the high vul-
nerability of these buildings. According to different post-earthquake
reconnaissance reports [2–6] approximately 6,000–8,200 schools were
destroyed by the 2015 sequence of events. In terms of classrooms,
47,557 suffered structural damage of which 9.1% collapsed, while 5.1%
and 7.8% experienced heavy and moderate damage [2].

Fortunately, the 2015 April 25th mainshock occurred on Saturday
morning when school facilities were closed, therefore no causalities
were recorded in these buildings. Given the level of damage and the
amount of students living in the affected area (545,250 just in the
Kathmandu Valley (KV), [7]), the number of fatalities could have been
much higher if the earthquake had occurred during a weekday.

The structural configuration of most Nepalese school buildings
(89%, [6]) consists of unreinforced masonry (URM) walls that bear both
vertical and horizontal loads. In mountain areas at least 50% of them
are effectively made of rubble-stone and dry or mud mortar joints. On
the contrary, the construction practice in the KV is slightly different
from the rest of the country thanks to the proximity to industrial

activities and the availability of cement and bricks [8]. According to a
study published by NSET and GeoHazards International [9] on the
vulnerability of public schools in the KV, most of the school buildings
were constructed between 1975 and 1995 with a consistent prevalence
of URM walls made of brick and mud mortar. From 1995 onwards, an
increase of brick with cement mortar masonry is reported. The vast
majority of school buildings have only one or two stories with floors
made of earth laid on wooden planks, supported by timber or bamboo
joists [9].

From the standpoint of their seismic vulnerability, URM Nepalese
schools are similar to residential and commercial buildings [9]. They
are usually characterized by several structural weaknesses, as reported
by Gautam et al. [1,10], Sharma et al. [11] and Brando et al. [12]. First,
the floors commonly used in URMs cannot transfer the seismic forces to
the vertical bearing structure due to their high in-plane flexibility and
insufficient interlocking with bearing walls [10]. Secondly, there is a
lack of wall-to-wall connection between orthogonal corner walls and
seismic detailing (such as tie rods, anchors and ring beams) is com-
monly missing. Moreover, the quality of construction is poor, leading to
insufficient seismic capacity [13–15].

For these reasons, Nepalese masonry buildings and, among them,
school buildings, are not able to respond in a monolithic box-type
manner under seismic actions [16,17], with the walls behaving
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independently and being particularly weak against transversal forces.
This weakness was largely observed after the 2015 earthquake where
out-of-plane (OOP) failure was the most critical damage [1,3–6,10–12]
especially for low-axial load walls (i.e., non-loadbearing or at higher
stories) (Fig. 1).

Given the above observations, the OOP response (conventionally
represented by a force-displacement (F-Δ) diagram) is a key aspect for
assessing the seismic vulnerability of Nepalese URM structures. Among
the available approaches for F-Δ curves calculation [18], the present
work focuses on analytical closed-form solutions. These are certainly
more suitable in the context of Nepal since do not require specific
structural analysis software. Additionally, although more advanced
numerical/analytical approaches are available in the literature (e.g.
[13,19–23]), closed-form solutions are still largely adopted thanks to
their straightforward implementation. According to these methods, the
wall is assumed as a rigid body that rotates around an overturning
point, triggering the so-called collapse mechanism [24–27]. The sim-
plification, firstly introduced by Heyman [28] and assumed in sub-
sequent research works (e.g. [24,25,29]), allows the calculation of the
F-Δ curve through a set of closed-form equations.

The main drawback of simplified methods is that F-Δ diagrams are
represented by rough bilinear [28], trilinear [24,25] or quadrilinear
[29,30] curves while laboratory tests shows smoother trends [31,32].

In this work, a novel non-piecewise-linear closed-form solution for
the calculation of the OOP F-Δ curve of a masonry wall is presented
(Section 2) and validated with respect to previous experimental tests
(Section 3). Differently from most of the simplified methods available in
the literature (e.g. [24,25,30,33]), this mechanical-based formulation
directly accounts for the nonlinear behavior of the masonry wall at
cross-section level, resulting in a more accurate matching with experi-
mental results.

The proposed equations are adopted for the vulnerability assess-
ment of a typical Nepalese masonry school building (Section 4). In line
with the post-quake observations discussed above, the vulnerability
assessment is based on three main assumptions: (i) the OOP failure
mode is considered as the predominant damage pattern for traditional
masonry constructions in Nepal [11,12]; (ii) the walls of the structure
behave independently since no diaphragm action is guaranteed by the
horizontal structures (i.e. floors and roof) [10]; (iii) as in D’Ayala et al.
[34], the vulnerability of the whole building is ruled by the wall with
the worst OOP seismic performance. The vulnerability assessment is
based on the modified version of the Capacity Spectrum Method (CSM)
proposed by Lagomarsino and Cattari [25,35]. Additionally, in the
present study, one of the CSM ruling variables, i.e., the asymptote of the
hysteretic damping h MAX, , is calibrated with respect to OOP shaking
table test results available in the literature [27].

2. Evaluation of the out-of-plane capacity of masonry walls

The OOP capacity of a masonry wall is usually represented by a F-Δ
curve. While this diagram can be calculated with a wide range of ad-
vanced techniques (refer to Ferreira et al. [18] for a detailed review),
straightforward closed-form solutions are largely adopted for their low
computational cost and fast applicability [29].

Three existing approaches for the derivation of piecewise linear F-Δ
curves are reviewed. Subsequently, the novel mechanical-based closed-
form solution is presented.

2.1. Existing simplified models for force-displacement curve estimation

2.1.1. Rigid body – Bilinear model
According to Heyman [28], a masonry wall (Fig. 2a) can be treated

as a rigid body (cantilever configuration, Fig. 2b) or as a system of rigid
bodies (with pinned-pinned, Fig. 2c, and clamped-clamped boundary
conditions, Fig. 2d). Under this assumption, the F-Δ response is de-
scribed by a Bilinear model. The first branch has infinite stiffness to
represent perfectly-rigid behavior up to maximum lateral capacity. The
second one is characterized by a negative slope until the attainment of
the limit displacement before collapse (Fig. 3).

The maximum capacity F0, i.e., the force at incipient rocking, and
the limit top displacement Δmax at collapse are directly evaluated by
imposing the equilibrium in the generic deformed configuration. For
instance, for the cantilever configuration (Fig. 2b) these parameters are
defined as:

= + = +
+

F (N W)t
2h

; (N W)t
2(N W/2)0

h
max (1)

where N is the vertical load at the top of the wall, W=B⋅t⋅h⋅γm is its
self-weight, B is the width, t is the thickness, h is the total height of the
wall, γm is the masonry specific weight, and αh is a non-dimensional
coefficient ranging from 0 to 1, which defines the position of the re-
sulting horizontal forceover the height of the wall.

2.1.2. Doherty et al. (2002) – Trilinear model
The model by Doherty at al. [24] starts from the rigid body ap-

proach to construct a trilinear F-Δ curve of the wall (Fig. 3). The two
internal points of the Trilinear model are defined through the parameters
{k1, k2} that were evaluated from experimental results by the same
authors [32]:

= =F F ; k1 2 1 1 max (2)

= =F (1 k )F ; k2 2 0 2 2 max (3)

Fig. 1. OOP damage of Nepalese URM buildings (credits: Rama Mohan Pokhrel).
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2.1.3. Ferreira et al. (2015) – Quadrilinear model
The model of Ferreira et al. [29] is formulated to address the sta-

bility of a cantilever wall and it is characterized by a four branches F-Δ
curve (Quadrilinear model). The first point of the curve corresponds to
the cracking of the wall at the base:

= + = +F (N W)t
6h

; (N W)th
18E Icr

h
cr

2

m (4)

where Em is the masonry Young’s modulus and I is the cross-section
inertia defined as I = B⋅t3/12. The post cracking branch is defined as:

=
+

= + +F
(N W)t

2h
; (N W)th

6E I 3
1
3y

s

h
y

2

m k
s

k

(5)

where ξs and ξk are corrective parameters evaluated from experimental
tests carried out by Ferreira et al. [33] with average values 0.92 and
0.67 respectively. The equations referred to the nonlinear plateau are:

= =F F ; 0. 6(1 )tI y I s (6)

While the last point of the curve is:

= =F 0; 0. 6tu u (7)

2.2. Closed-form mechanical-based model

The mechanical-based model presented in this study is based on

three main assumptions.

i. The OOP response of a vertically spanning masonry wall is purely
governed by bending (Fig. 4a). This hypothesis has been largely
validated in experimental tests [27,31–33] and has been adopted in
numerous mechanical-based models available in the literature
[21–23,36].

ii. Since the nonlinear flexural deformations localize in the area with
maximum bending moment (e.g., [31,33]), the wall is modeled as a
rigid body connected to the ground with a nonlinear hinge (Fig. 4b).

iii. The moment-rotation relationship of the nonlinear hinge is com-
puted starting from the moment-curvature (M-χ) of the critical
cross-section (Fig. 4c). The M-χ curve is calculated under the as-
sumption that axial strains behave linearly in bending; i.e., sections
remain plane. This hypotheses has been largely discussed and va-
lidated, mostly in the works of Parisi et al. [37,38], Brencich at al.
[39] and Cavaleri et al. [40]. In this study, the closed-form M-χ
relationship reported by Giordano et al. [41] for the case of elastic-
brittle no-tension masonry material is adopted. According to Crespi
et al. [42], the uniaxial compressive limit is assumed equal to the
strength of the masonry blocks fmb. The rotation θ is calculated
through a constant integration of the critical cross-section’s curva-
ture over the integration length Li.

The model is adapted for the three boundary configurations pre-
viously discussed by introducing the quantity hLV, i.e., the shear length
of the wall:

=
=

=

h h; (cantilever)
h ; (pinned pinned)

h ; (clamped clamped)

LV

LV
h
2

LV
h
4 (8)

The integration length Li is assumed equal to 0.25⋅hLV. This as-
sumption is discussed in Section 3.3.

The first step required for the analytical formulation of the model is
the definition of the moment-rotation relationship of the nonlinear
hinge. As previously mentioned, this depends on theM-χ diagram of the
critical cross-section. Giordano et al. [41] reported closed-form ex-
pression for a URM cross-section characterized by an elastic-brittle, no-
tension material constitutive law:

Fig. 3. F-Δ curves for different models.

Fig. 2. (a) Masonry wall geometry. Boundary conditions: (b) cantilever (C); (c) pinned-pinned (P-P); (d) clamped-clamped (C-C).
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=M
E Bt ,

N̄ ,

1
12 m

3
cr

t
2

2N̄
9E B cr limm (9)

where: N̄ is the cross-section axial load which is equal to (W+N) for
the cantilever case and (W+N/2) for the pinned-pinned and clamped-
clamped cases; = N E Bt2 ¯ /( )cr m

2 is the curvature at cracking limit;
= f B E N/(2 ¯ )lim mb m

2 is the curvature at the achievement of the com-
pressive limit of the material fmb. Assuming that the curvature dis-
tribution over the integration length Li is constant, the moment-rotation
relationship of the nonlinear hinge is obtained multiplying the critical
cross-section curvatures by Li:

= ·Li (10)

Consequently, the top-wall OOP displacement is proportional to
the rotation (Fig. 4b):

= ·hLV (11)

From Eqs. (10) and (11), the cross-section curvature is expressed as
a function of the top displacement:

=
L hi LV (12)

Finally, imposing the rotational equilibrium of the wall around the
nonlinear hinge and using Eqs. (10) and (11), the force displacement
relation is derived. In the following the equations related to the three
boundary conditions are reported. It can be observed that the equations
are indirectly dependent from the compressive strength of the units fmb
through the curvature at limit, lim.

Cantilever

=

=

= + +

( )

( )F M N

for L h :

F E Bt N

for L h L h :

F (N W) N

1
h

W
2

i LV cr
1

h
1

12 m
3

L h
W

2

i LV cr i LV lim

1
h

t
2

2L t(N W)
9E B

W
2

LV h

LV h i LV

LV h
i

m (13)

Pinned-Pinned

=

=

= + +

( )

( )

( )

F M N

for L h :

F E Bt N

for L h L h :

F N N

2
h

W
2

i LV cr
2

h
1

12 m
3

L h
W

2

i LV cr i LV lim

2
h

W
2

t
2

2L t(N W / 2)
9E B

W
2

LV h

LV h i LV

LV h
i

m (14)

Clamped-Clamped

=

=

= + +

( )

( )

( )

F M

for L h :

F E Bt

for L h L h :

F N

2
h

W
4

N
2

i LV cr
2

h
1

12 m
3

L h
W

4
N
2

i LV cr i LV lim

2
h

W
2

t
2

4L t(N W / 2)
9E B

W
4

N
2

LV h

LV h i LV

LV h
i

m (15)

3. Numerical-experimental validation of the out-of-plane closed-
form model

In order to validate the mechanical-based closed-form model de-
scribed in Section 2.2, a review of the available OOP experimental tests
on masonry walls has been conducted [25,31–33,43,44]. Among these,
only static and pseudo-static tests have been considered. Additionally,
experimental tests on cavity walls have not been considered since they
are not representative of the construction practice in Nepal [9]. The
result is a sample of seventeen OOP loading tests conducted for dif-
ferent geometries, masonry typologies, material properties, boundary
conditions and applied vertical loads. Table 1 summarizes the main
data, properties and sources of these tests. The F-Δ curves provided in
these studies have been digitalized and postprocessed in order to obtain
diagrams with uniform scale, where the total acting force F is plotted on
the vertical axis and the maximum OOP displacement Δ on the hor-
izontal one. Subsequently, all the tests have been compared with the
four analytical models discussed in Section 2: Bilinear (Section
2.1.1), Trilinear (Section 2.1.2), Quadrilinear (Section 2.1.3), and the
one proposed in this study and discussed in Section 2.2 (i.e., Present
study).

Fig. 4. Mechanical-based model: (a) OOP flexural response of the wall; (b) proposed mechanical-based model; (c) nonlinear hinge moment-rotation relationship
definition.
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3.1. Description of the tests and comparison with analytical models

3.1.1. Ferreira et al. (2015)
The experimental campaign by Ferreira et al. [33] consists of six

OOP loading tests on stone masonry walls. Three of these walls were
tested by applying with a hydraulic jack a concentrated horizontal force
at the top of the wall, while the other three were loaded with a pressure
distribution generated through an airbag. The mechanical and geome-
trical characteristics of the six specimens are reported in Table 1 (from
#1 to #6). The experimental campaign investigated three levels of
vertical load N.

Figs. 5 and 6 report respectively the graphical comparison of one
airbag test and one point-load test. Fig. 5a shows the comparison be-
tween the F-Δ curve of OP_PA3 (#3 referring to Table 1) and the curves
obtained with the four analytical methods. In Fig. 5b, the relative error
percentages with respect to the experimental results are evaluated for
the four analytical models and plotted against the displacement (Δ)
normalized with respect to the maximum experimental displacement
(Δmax,exp). Furthermore, for each analytical model, the average value of
the absolute error, µ e(| |), is reported. Analogous results are reported in
Fig. 6 for test OP_PF1 (#4).

3.1.2. Lagomarsino (2015)
The test results reported in Lagomarsino [25] are related to a single

pull-release OOP in a field experimental test conducted on one external
wall of an existing masonry building located in Southern Italy. In this
case, the load was applied through a cable equipped with an actuator.
In Fig. 7a the numerical and experimental F-Δ diagrams are reported
while in Fig. 7b the corresponding relative errors are shown.

3.1.3. Degli Abbiati et al. (2017)
Experimental tests by Degli Abbiati et al. [31] were performed for

three stone masonry wallets by applying a concentrated force at 2/3 of
the total height of the walls. The load was applied in quasi-static dis-
placement-controlled conditions. Fig. 8 reports the results in terms of F-
Δ curves and relative error for the first test (Panel_1, #8 in Table 1). It is
noted that the experimental curve reported here is the maximum en-
velope of the one reported in [31].

3.1.4. Griffith et al. (2004)
The laboratory test from Griffith et al. [32] were performed with

clamped-clamped boundary conditions. Fig. 9 reports the results for the
test S_13 (#13 in Table 1). For these tests the quadrilinear methodology
cannot be implemented since it does not fit for clamped-clamped
boundaries.

3.2. Discussion of the results

Tables 2 and 3 summarize the mean value of the absolute errors
µ e(| |) and the absolute error at experimental peak force e| ( )|peak exp, for
cantilever configuration tests (#1 to #10) and clamped-clamped tests
(#11 to #17) respectively. The first statistic µ e(| |) expresses the aver-
aged predictive performance of a given analytical method with respect
to the entire F-Δ experimental curve. The second quantity e| ( )|peak exp,
indicates the model accuracy in estimating the lateral capacity at ex-
perimental peak force. Referring to cantilever tests, the average of µ e(| |)
is 13.19% for the proposed formulation while it exceeds 20% for the
multilinear models. Moreover, the mean of e| ( )|peak exp, is around 9% for
novel/quadrilinear models and larger than 12% for bilinear/trilinear.
The comparison with clamped-clamped tests shows larger errors for all
the models. Therefore, the proposed approach leads to better predic-
tions since the means of µ e(| |) and e| ( )|peak exp, have the smallest mis-
match with experimental results (i.e., 31.17% and 11.49% respec-
tively).

An additional comparison among the four analytical procedures can
be done in terms of residual force at the maximum experimental dis-
placement max exp, . In this case the proposed model matches the test
results with an average absolute error of 21% while for the other
models the quantity exceeds 50%.

3.3. Evaluation of the optimum integration length Li

As introduced in Section 2.2., the proposed closed-form mechanical
model is based on the definition of the integration length Li which is a
challenging aspect for masonry structures [47]. In the present work Li is
expressed as a percentage of the shear length hLV. In order to evaluate
the optimum value of Li, the experimental versus numerical compar-
isons described in Section 3.2. have been repeated for twelve values of
Li (ranging from 0.05⋅hLV to 0.6⋅hLV). Fig. 10 reports the average error of

Table 1
OOP experimental database.

# Test name Material Geometry B.C.* Vertical load
N [kN]

Horizontal force type Authors Ref.

URM type Em [MPa] fmb [MPa] γm [kN/m3] t [m] B [m] h [m]

1 OP_PA1 Stone 490 43.83 21 0.65 1.30 2.50 C 0.0 Airbag Ferreira et al. 2015 [33]
2 OP_PA2 Stone 490 43.83 21 0.65 1.30 2.50 C 52.0 Airbag Ferreira et al. 2015 [33]
3 OP_PA3 Stone 490 43.83 21 0.65 1.30 2.50 C 140.0 Airbag Ferreira et al. 2015 [33]
4 OP_PF1 Stone 490 43.83 21 0.65 1.30 2.50 C 0.0 Point Force Ferreira et al. 2015 [33]
5 OP_PF2 Stone 490 43.83 21 0.65 1.30 2.50 C 52.0 Point Force Ferreira et al. 2015 [33]
6 OP_PF3 Stone 490 43.83 21 0.65 1.30 2.50 C 140.0 Point Force Ferreira et al. 2015 [33]
7 P_1 Rubble 1079 9.00(a) 19(b) 0.45 1.65 2.25 C 0.0 Point Force Lagomarsino 2015 [25]
8 Panel_1 Rubble 690(b) 50.00 22 0.22 0.90 1.10 C 0.0 Point Force Degli Abbiati et al. 2017 [31]
9 Panel_2 Rubble 690(b) 50.00 22 0.30 0.90 0.90 C 0.0 Point Force Degli Abbiati et al. 2017 [31]
10 Panel_3 Rubble 690(b) 50.00 22 0.30 0.90 1.50 C 0.0 Point Force Degli Abbiati et al. 2017 [31]
11 S_11 Brick 48(c) 14.2(d) 18 0.11 0.95 1.50 C-C 0 Point Force Griffith et al. 2004 [32]
12 S_12 Brick 43(c) 15.7(d) 18 0.11 0.95 1.50 C-C 0 Point Force Griffith et al. 2004 [32]
13 S_13 Brick 5(c) 15.7(d) 18 0.11 0.95 1.50 C-C 0 Point Force Griffith et al. 2004 [32]
14 S_10 Brick 18(c) 26.7(d) 23 0.05 0.95 1.50 C-C 0 Point Force Griffith et al. 2004 [32]
15 S_14 Brick 46(c) 26.3(d) 23 0.05 0.95 1.50 C-C 0 Point Force Griffith et al. 2004 [32]
16 S_10L Brick 710(c) 26.7(d) 23 0.05 0.95 1.50 C-C 3.55 Point Force Griffith et al. 2004 [32]
17 S_14L Brick 440(c) 26.3(d) 23 0.05 0.95 1.50 C-C 7.12 Point Force Griffith et al. 2004 [32]

* Boundary Conditions: C= cantilever; P-P=pinned-pinned; C-C= clamped-clamped.
(a) In absence of specific experimental data, compressive strength of masonry units is assumed as three times the one of the masonry continuum (Eurocode 6 [45]).
(b) Data not reported in the source paper, therefore Italian Building Code indications are considered [46].
(c) Flexural elastic modulus estimated by Godio et al. [23] from the experimental tests by Griffith et al. [32].
(d) The source paper does not provide the compressive strength of the blocks fmb. Conservatively, the compressive strength of the masonry continuum is adopted.
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the proposed model with respect the 17 experimental tests in terms of
µ e(| |) and e| ( )|peak exp, , as defined in Section 3.2. It can be observed that
the average error attains its minimum for integration length coefficients
equal to 0.35 in terms of µ e(| |) and 0.15 in terms of e| ( )|peak exp, ,

respectively. As a consequence of these results, an intermediate value of
0.25⋅hLV has been selected for the model. It is important to underline
that the present experimental calibration should be considered valid in
the thickness (t) and vertical stress (σV) ranges of the experimental tests

Fig. 6. Point force OOP tests by Ferreira et al. [33] (#4 in Table 1): (a) F-Δ curves comparison; (b) error of the models with respect to the experimental curve.

Fig. 7. Point load OOP in-field test reported by Lagomarsino [25] (#7 in Table 1): (a) F-Δ curves comparison; (b) error of the models with respect to the experimental
curve.

Fig. 5. Airbag OOP tests by Ferreira et al. [33] (#3 in Table 1): (a) F-Δ curves comparison; (b) error of the models with respect to the experimental curve.
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i.e.: (i) t between 5 cm and 65 cm; (ii) σV ranging from 0MPa to
0.165MPa.

4. Out-of-plane vulnerability assessment of a typical nepalese
URM school building

The seismic vulnerability of a structure consists in its predisposition
to be damaged when subjected to a specific level of seismic input.
Consequently, as discussed by Calvi et al. [48], the goal of the vul-
nerability assessment is to estimate the intensity of the earthquake
which generates a specific Damage State (DS) in the building. This in-
tensity is usually expressed by a representative parameter of the ground
shaking (i.e. the Intensity Measure IM) such as the Peak Ground Ac-
celeration (PGA). Referring to the OOP vulnerability assessment of
masonry buildings, IMs for corresponding DSs are usually calculated by
adopting specific spectral-based approaches currently included in na-
tional codes and technical guidelines [46,49,50]. In general, spectral-
based approaches assume that the OOP capacity of the building (or of a
portion of the building) can be expressed in the form of a nonlinear-
static pushover curve of an equivalent nonlinear Single-Degree-Of-
Freedom (SDOF) system [24,25,34]. Subsequently, the IM corre-
sponding to the OOP displacement of the considered DS are calculated
in two ways.

One option is to estimate it through the displacement-based analysis
methodology (as proposed in [24,51]). An elastic SDOF ‘substitute
structure’ is defined so that achieves the same displacement of the real

nonlinear SDOF system given a seismic excitation. Once the effective
stiffness of the ‘substitute structure’ is defined, the IM corresponds to
the spectral displacement which equates the DS displacement at the
natural frequency of the ‘substitute structure’.

The second option is to employ the CSM, originally developed by
Freeman [52] and subsequently applied to the case of URM [25,30].
The F-Δ curve of the structure is reported in a spectral-displacement (Sd)
vs. spectral-acceleration (Sa) plane. Then, the IM corresponding to the
DS displacement is estimated by properly intersecting the pushover
curve with the Acceleration Displacement Response Spectrum (ADRS)
shape of the site. This intersection is performed by considering an
equivalent damping coefficient which accounts for the energy dissipa-
tion of the system [49].

The use of spectral-based approaches for the OOP vulnerability as-
sessment of masonry structures has been matter of debate in the last
decades. For instance, Makris and Konstantinidis [53] have criticized
the reliability of the equivalent SDOF idealization for the case of
rocking structures. Instead, they have proposed a novel rocking re-
sponse spectrum. However, as pointed out by Lagomarsino [25], this
methodology is hardly applicable for the assessment of existing ma-
sonry structures since rocking spectra resulting from the Probabilistic
Seismic Hazard Analyses (PSHA) are not yet available. Numerous sci-
entific discussions have also been presented regarding the definition
and selection of representative IMs for the OOP response of systems
[54]. For instance, Dimitrakopoulos and Paraskeva [55] have pointed
out that the overturning of rocking elements is poorly correlated with

Fig. 8. OOP tests by Degli Abbiati et al. [31] (#8 in Table 1): (a) F-Δ curves comparison; (b) error of the models with respect to the experimental curve.

Fig. 9. OOP tests by Griffith et al. [32] (#13 in Table 1): (a) F-Δ curves comparison; (b) error of the models with respect to the experimental curve.
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the PGA and depends primarily on the velocity characteristics of the
ground motion. However, a recent research work by Giresini et al. [56],
focused on the OOP fragility assessment of masonry facades, has ver-
ified that the PGA remains one of the most relevant IMs to define the
response of a URM wall in OOP motion.

Starting from these considerations, in the following, the analytical
solution described in Section 2.2 and validated in Section 3 is adopted
to perform a spectral-based vulnerability assessment for a re-
presentative URM Nepalese school building. The case study structure is
readapted from NSET [9] and it is a two-story building made of brick-
mud masonry with timber joists-planks flooring system and galvanized-
iron roof. Fig. 11 reports the plan view of the ground (Fig. 11a) and first

(Fig. 11b) floors and the schematic elevation views (Fig. 11c). The
maximum in-plan dimensions are 7.0 m×7.5m while the total height
of the structure is 5m. The thickness of the wall is equal to 0.35m. The
characteristics of the masonry material are taken from experimental
tests on the same masonry typology reported in [57]. Particularly, the
following values are adopted: masonry elastic modulus Em=794MPa,
bricks compressive strength fmb=11.03MPa, masonry unit weight
γm=17.68 kN/m3. It is noted that, from a structural-seismic point of
view, the case-study is consistent with most of the damaged masonry
buildings surveyed during the post-earthquake reconnaissance missions
(e.g. [3,4,10,11]). Particularly, it is characterized by: (i) absence of
adequate wall-to-wall and wall-to-floor connections; (ii) presence of
flexible floor/roof; (iii) lack of seismic detailing. As already mentioned,
under these conditions the walls of the structure behave independently,
and the OOP failure is dominant.

The vulnerability assessment procedure presented herein consists in
a three steps analysis: (1) walls classification; (2) F-Δ curves calculation
and DSs definition; (3) estimation of IMs for the corresponding DSs.
PGA is chosen as the IM for this study.

4.1. Walls classification

To perform the OOP vulnerability assessment of a masonry building
it is important to consider all the possible collapse mechanism which
are likely to happen during a seismic event (e.g. D’Ayala and Speranza
[34]). Accordingly, the first assessment step consists of identifying the
vulnerable walls. Given the structural deficiencies of URM Nepalese
buildings [1,10,12], any of the vertically disconnected walls is herein
considered as vulnerable. A classification of the walls with respect to
their boundary conditions and overburden load is therefore needed.
Referring to Fig. 11:

- The walls labelled as C (blue-crossed) are non-loadbearing. As in
Doherty et al. [24], they are characterized by cantilever boundary
configuration and absence of vertical overloads. Additionally, since
they are not connected to the floor beams (which is typical in Ne-
palese URMs [10]), their vertical span is equal to 5m (i.e., total
height of the building).

- The walls labelled as C-CGF (green-dotted) are located at the ground
floor and according to [24] are characterized by clamped-clamped
boundary condition. Their vertical load is the sum of the load
transferred from the first floor, the overload of the roof and the self-
weight of the second-story walls. The vertical span of these walls is
equal to 2.4 m.

- The walls labelled as CFF (red-dashed), located at the first floor,
support the weight of the roof and are assumed with cantilever
boundary configuration. As a matter of fact the light galvanized-iron
paneled roof is generally disconnected to the walls and, therefore, is
not able to restrain OOP displacements (as shown in some of the

Table 2
Errors of the analytical solutions with respect to experimental tests (cantilever configuration).

# µ(|e|) [%] |e( )|peak,exp [%]

Bilinear Trilinear Quadrilinear Present study Bilinear Trilinear Quadrilinear Present study

1 10.15 24.65 8.22 7.35 8.08 22.19 0.57 6.35
2 27.66 28.64 15.75 9.44 21.11 12.80 11.42 3.07
3 52.28 24.40 28.92 7.92 38.37 0.38 27.30 2.52
4 12.03 34.30 11.67 10.72 4.72 31.40 12.34 17.43
5 9.16 24.84 7.16 13.98 4.98 31.58 12.58 23.94
6 25.66 21.14 4.48 16.57 5.42 24.10 3.01 21.89
7 16.25 31.79 28.73 12.85 2.03 26.54 6.13 9.69
8 12.66 24.57 20.81 4.76 16.44 16.17 7.12 3.68
9 21.06 22.36 50.38 12.57 4.39 24.84 3.96 3.22
10 48.96 37.36 54.55 35.71 15.11 17.12 5.90 1.12
Average 23.59 27.40 23.07 13.19 12.06 20.71 9.03 9.29

Table 3
Errors of the analytical solutions with respect to experimental tests (clam-
ped–clamped configuration).

# µ(|e|) [%] |e( )|peak,exp [%]

Bilinear Trilinear Present
study

Bilinear Trilinear Present
study

11 40.14 23.57 9.12 19.53 13.94 9.54
12 12.81 21.38 9.55 6.54 23.29 17.12
13 100.52 61.83 6.29 93.92 39.62 5.71
14 79.10 64.93 40.17 17.22 15.60 12.32
15 165.42 127.59 46.46 52.55 9.83 8.24
16 160.87 143.72 69.10 16.61 16.04 16.00
17 132.76 83.41 37.50 47.56 6.24 11.50
Average 98.80 75.20 31.17 36.27 17.80 11.49

Fig. 10. Calibration of the integration length Li by minimizing the error with
respect to the experimental tests.
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photographic documentation reported in EERI [4]).

According to the information provided in [9,57], the floor overload
is quantified considering the wooden structure (timber joists plus
planks, equal to 0.5 kN/m2) and a 10 cm thick mud-layer (1.7 kN/m).
The galvanized-iron sheeting roof is assumed 0.2 kN/m2 according to
the Indian Standards IS 875 [58] (reference document for the Nepalese
Building Code (NBC) [59]). A fraction of 30% of the code compliant live
load is also taken into account (0.3× 3.0 kN/m2=0.9 kN/m2

[58,60]). Table 4 summarizes the wall classification.

4.2. Force-displacement curve calculation and DS definition

Fig. 12a reports the F-Δ curves of the three different walls config-
urations considering a representative width B=1m. As expected, the
non-loadbearing walls (configuration C) and the ones at upper stories
(configuration CFF) are characterized by lower transversal force capa-
city. From the F-Δ curve, the damage thresholds are directly calculated
in accordance with spectral procedures available in literature (e.g. La-
gomarsino [25] and Rota et al. [61]). Herein, the following damage
limit states are considered:

- DS1 (slight damage) corresponds to the displacement at the attain-
ment of 70% of the peak horizontal force;

- DS2 (moderate damage) is defined at the peak displacement peak;
- DS3 (severe damage) is assumed at 25% of the ultimate displace-
ment (i.e., displacement corresponding to null force);

- DS4 (near collapse) corresponds to 40% of the ultimate displace-
ment.

The described damage states are shown on the Sa – Sd plane in
Fig. 12b for configuration C.

4.3. IM estimation for corresponding DS

To evaluate the IM correspondent to a specific DS, an appropriate
capacity-demand procedure has to be implemented. As previously
mentioned, the CSM [52] is adopted for the case. Differently from the
N2 Method [62], which is based on the concept of ductility and beha-
vior factor, the CSM relies on the definition of an equivalent damping
coefficient. For the specific case of OOP vulnerability assessment of
masonry structures, Lagomarsino [25] has extensively discussed and
validated the suitability of CSM with respect to the other techniques.
The first step of the CSM is to transform the F-Δ curve in a capacity
curve defined in a spectral-acceleration (Sa) versus spectral-displace-
ment (Sd) plane. As in Doherty et al. [24], the transformation is per-
formed with the following equations:

Fig. 11. Case-study URM Nepalese school building: (a) plan view of the ground floor; (b) plan view of the first floor; (c) elevation views.

Table 4
Walls classification.

Configuration Boundary condition* Floor location Height H [m] Overburden N [kN]**

C Cantilever Ground+ First 5.0 0
C-CGF Clamped-clamped Ground 2.4 20.1
CFF Cantilever First 2.4 0.3

* Refer to Fig. 2.
** The overburden N is calculated for a unitary width B= 1m.
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where:Me is the effective mass of the equivalent SDOF system estimated
by discretizing the wall into a finite number of elements with mass mi
and modal displacement i; e is the effective displacement of the
SDOF. From Eq. (16), it can be noted that the capacity curve of the wall
is independent from the width B. More specifically, since F and Me are
linearly proportional with B, Sa depends only on the wall configuration
(Table 3). Furthermore, e is independent from B and so is the spectral
displacement Sd. From the DS defined on the capacity curve, the cor-
responding periods TDS are estimated as:

=T 2
S
SDS

d,DS

a,DS (17)

and the equivalent damping coefficients DS for any DS [35] become:

= + 1 1
µDS 0 h,MAX

DS (18)

where, according to Lagomarsino et al. [35], 0 is the initial
damping of the structure which ranges from 3% to 5%, h MAX, is the
asymptote of the hysteretic damping which depends on the type of
structure (Table 5) and µDS is the displacement ductility defined as

DS/ DS1 with exponent ranging from 1 and 2.
Considering the nature of the problem, from Table 5 it results that

h MAX, =20% (Type B) is the value to adopt for the OOP assessment of
masonry building without box behavior and therefore subjected to OOP
damage. However, since the definition of a correct h MAX, is funda-
mental for a proper implementation of the CSM and it affects the final
PGA capacity, in Section 4.3.1. This value is calibrated with respect to
experimental shaking-table test results by Al Shawa et al. [27].

The final step of the assessment procedure is the calculation of the
IM for each DS. A normalized ADRS demand spectrum (PGA=1.0 g) is
constructed. Since the Nepalese Building Code [59] does not provide
elastic response spectrum equations (i.e., it provides only the inelastic
design spectra similarly to some pre-1990 codes such as the Italian

DM3/3/1975 [63]), the spectral shape of the Eurocode 8 [64] is used.
In particular, the spectral shape for Type I and soil A is adopted. Lastly,
the IM is estimated by scaling the normalized ADRS in order to intersect
the capacity curve at the given DS [25,35]. It is underlined that, for the
walls located at the upper floors, specific amplified response spectra
have to be considered [65,66]. In the present study the equations
proposed by Lagomarsino [25] are adopted. For any DS, the lowest PGA
from the different wall configurations is representative of the entire
building. Fig. 12b reports the capacity versus demand assessment
conducted for the walls in configuration C.

4.3.1. Calibration of h MAX, with respect to shaking table tests by al Shawa
et al. (2012)

The experimental campaign by Al Shawa et al. [27] consists of 34
one-component shaking table tests of one simple masonry structure
composed by the façade (located perpendicularly with respect to the
seismic action) and two transverse walls, resulting in an overall U-plan
configuration. Despite the experimental tests were carried out for the
assessment of masonry structures in Mediterranean countries, the ma-
sonry typology could be representative of Nepalese URMs since there is
no interlocking between orthogonal walls (i.e. façade and transversal
panels) and the frontal wall is able to deform in the OOP direction
without any restraint. The geometrical characteristics of the structure
are: length of 3.3m for the façade and 2.3m for the transversal walls;
height of the specimen 3.44m; thickness 0.25m. The mechanical
characteristics of the masonry material are: elastic modulus
Em=1080MPa (from the Italian Building Code [46]); compressive
strength of units fmb=5.98MPa. The 34 shaking table tests were per-
formed considering three ground motion from the 1980 Irpinia (Italy)
earthquake and one record from the 1997 Umbria-Marche (Italy)
earthquake (response spectra reported in Fig. 13b) with different scale
factors. More details of the experimental tests are reported in the source
paper [27].

The calibration of h MAX, is executed by considering five possible
values, from 5% to 25%. For any of these values, the following steps are
carried out:

i. estimation of the capacity curve of the façade adopting the closed-

Fig. 12. (a) F-Δ curves; (b) capacity vs demand assessment for configuration C.

Table 5
Values of h MAX, for different type of structures (from [35]).

Type A B C D F
Structures with box-
behavior

Structure analyzable by
independent macro-elements

Assets characterized by one-
dimensional masonry elements

Arched structures subject to
in-plane damage

Blocky structures subjected to
overturning

h MAX, 25 20 15 15 5
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form mechanical-based solution reported in Section 2.2. Re-
presentation of the experimental maximum displacement on the
capacity curve;

ii. evaluation of the PGA that correspond to the attainment of the
experimental maximum displacement through the CSM;

iii. calculation of the PGAEXP/PGACSM ratio, where PGAEXP refers to the
experimental test while PGACSM is the one estimated from the
spectral-based procedure;

iv. repetition of the procedure for the whole set of tests.

The CSM is herein executed either adopting the spectral shape of the
Eurocode 8 [64] (EC8) and the spectral shape of the ground motion
used for the test (Exp). The outcome of the procedure previously de-
scribed is reported in Fig. 13b (Test #18 referring to the source paper
numbering [27]). The black-solid line represents the OOP capacity
curve of the wall; the black-square marker indicates the maximum ex-
perimental displacement; the blue and the green curves are the EC8-
shape and Exp-shape spectra calculated with the CSM so that intersect
the capacity curve at the experimental maximum displacement.

Lastly, in Fig. 14, the boxplot of the ratios PGAEXP/PGACSM are re-
ported for the different value of h MAX, (values PGAEXP/PGACSM greater
than 1 lead to conservative assessment). It can be observed that in terms
of median value the ground-motion spectral shape (Exp) gives always
conservative estimation of the PGA with respect to the real value. Ad-
ditionally, when considering the EC8 spectral shape, =h MAX, 10% is the
value which minimize the error at the median.

4.4. Discussion of the assessment results

Table 6 reports the values of PGA for the four DS discussed in 4.2 by
considering h MAX, equal to 20% (following the recommendations of
Lagomarsino and Cattari [35]) and to 10% (based on the calibration to
experimental data in 4.3.1.). The quantities are compared with the
median values of the observational fragility curves derived by Chau-
lagain et al. [67] and by Gautam et al. [68] for Nepalese unreinforced
masonry buildings. It is specified that these works are based on the
definition of three DS which correspond to DS2, DS3 and DS4 of the
present study. There is a good agreement between analytical PGAs and
median empirical values for both h MAX, values. In general,

Fig. 13. (a) Response spectra of the ground motion records adopted in Al Shawa et al. [27]; (b) CSM implementation for EC8-shape and Exp-shape spectra.

Fig. 14. Box plot for different h MAX, and spectral shapes ranging from 5% to 25% evaluated for EC8 and experimental spectral shapes.

Table 6
Comparison between analytical assessment results and median PGA from ob-
servational fragility curves.

Damage State PGA

= 20%h,MAX [35] = 10%h,MAX

Present Study DS1 0.02 0.02
DS2 0.12 0.10
DS3 0.19 0.15
DS4 0.30 0.24

Chaulagain et al. Moderate 0.12
Extensive 0.19
Collapse 0.35

Gautam et al. DS-1 0.13
DS-2 0.16
DS-3 0.22

N. Giordano, et al. Engineering Structures 203 (2020) 109548

11



h MAX, =10% produces more conservative results. The PGA evaluated
analytically for DS2 and h MAX, =10% is 0.10 g while the two empirical
values are 0.12 g and 0.13 respectively. Similarly, the PGA estimation
for DS3 is 0.15 g for the analytical procedure and at 0.19 g and 0.16 g
for the Chaulagain et al. and Gautam et al.’s studies, respectively.
Lastly, in DS4, the value of PGA is 0.24 g for the proposed methodology
and 0.35 g, 0.22 g for the empirical benchmarks.

5. Conclusions

The vulnerability assessment of school buildings is a fundamental
step for the implementation of effective risk mitigation policies in low-
income countries such as Nepal. The present study proposes a novel
mechanical-based closed-form solution for the OOP seismic assessment
of these structures. The main conclusions of the work can be summar-
ized as follows:

- The novel closed-form model has simulated the experimental F-Δ
response of seventeen OOP tests with an average error of about 20%
(10% when calculated at the peak experimental force). Furthermore,
its predictive performance results better when compared with three
closed-form piecewise linear models available in the literature
[24,28,29].

- By adopting the proposed model, OOP vulnerability assessment of a
typical Nepalese URM school building was carried out with the CSM.
PGA values for different DSs are in very good agreement with the
median values from empirical fragility curves of Nepalese buildings
[67,68].

- Additionally, CSM asymptotic hysteretic equivalent damping h MAX,
has been calibrated with OOP experimental shaking table tests by Al
Shawa et al. [27], providing a suggested value of 10%.

The assessment methodology presented is aimed to be straightfor-
ward and applicable at large scale without incurring in significant
analysis costs (e.g. software purchase, implementation time, etc.). The
approach, meant for school buildings in Nepal, can be extended to other
URM building categories (e.g., residential, commercial, etc.) and used
in other geographical locations where URMs are characterized by poor
wall-to-wall and wall-to-floor connections, so that OOP damage is the
dominant failure mode.
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