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Abstract: A method was developed to determine the edge position of uranium blocks embedded in
concrete, usingMuon Scattering Tomography. Thismethod is useful for nuclear wastemanagement,
as it provides a precise image of high-Z materials inside nuclear waste drums. Simulations were
performed of uranium blocks with different sizes, encased in a concrete tube, and their lengths
were reconstructed. The resolution obtained for the reconstructed lengths was 2.9 ± 0.5 mm and
the method works down to a smallest size of 5 mm. This result was obtained without including
the muon momentum. The same method was then applied including the momentum information,
resulting in a better resolution of 0.96 ± 0.03 mm, and works down to a smallest size of 2 mm.
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1 Introduction

Developing techniques to scan nuclear waste, imaging and finding materials without having to open
their containers is essential for the management of legacy nuclear waste. Knowing the position
and size of high-Z materials inside nuclear waste vessels can help to determine the presence and
respective amount of special nuclear materials. This information can then be used to decide the
appropriate way of disposal of nuclear waste.

Muon scattering tomography (MST) is a technique that uses the muons that are naturally
produced in the atmosphere by cosmic rays as scanning probes [1]. Muons are highly penetrating
particles, which makes them a good candidate to study dense materials, since most of them will
cross large amounts of such materials without being absorbed. They are an ubiquitous and free
source, which does not introduce additional radiation in the volume to be scanned, and that can be
used over large areas.

Because they are charged, muons undergo multiple Coulomb scattering [2–4]. The width of
the distribution of their projected scatter angles (σ) is given by

σ ≈
13.6 MeV

βcp
z
√

X/X0(1 + 0.038 ln(X/X0)) (1.1)

where p is the momentum of the muon, βc its velocity, z its charge number, X the thickness of the
material, and X0 the radiation length [4] which is given by

X0 ≈
A · 716.4 g/cm2

ρ · Z(Z + 1) ln (287/
√

Z)
(1.2)
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where A is the mass number, Z the atomic number and ρ the density of the material traversed.
Hence the width is higher for higher atomic number Z of the material crossed. Thus by measuring
the width of the scattering angle distribution information on the crossed material can be extracted.
The scattering angle for a single muon can be measured by tracking the muon before and after
crossing the volume.

Several methods were developed to perform imaging of high-Zmaterials embedded in concrete,
such as [5] and [6], which are also based on scattering density in voxels, and were applied by other
groups, such as in [7, 8] and [9]. We have developed our ownmethod for imaging volumes of high-Z
materials in concrete [10], which achieved a resolution of 1.2±0.5 mm but used the momentum
information. Here we present a much improved version of the algorithm. A description of the
original algorithm and the improvement is given in section 3. One of the improvements is that the
improved algorithm can also be applied without momentum information, albeit resulting in a worse
resolution. This is important as it is not possible to measure the muon momentum with our current
set up without an error on the order of 30-200%.

2 Methods

Our previous method exploited the fact that, since the width of the scattering angle distribution
is larger for high-Z materials compared to concrete, the concentration of vertices with tracks with
large scattering in a voxel is higher (see section 3 and [10]). Hence, moving the voxel grid our
discriminating variable will change when moving between high-Z material and concrete. Our new
method uses a multivariate analysis. The algorithm was developed and tested using a Monte Carlo
simulation based on the performance of our small demonstrator system.

2.1 Simulations

Simulationswere performed inGeant4 [11, 12] version 9.4, including themuon processes ofmultiple
scattering, ionisation, Bremsstrahlung and pair production. An illustration of the simulation setup
is shown in figure 1. The sample to be measured was a concrete cylinder of 13 cm radius and 40 cm
length, inside a 1.5 mm thick steel container. The size of this sample was chosen to be the same as
a mock waste drum we previously tested with the detector system. A rectangular cuboid uranium
block was placed inside the concrete. This shape for the uranium block was chosen for simplicity.
The uranium block was simulated with different sizes in the x direction (along the length of the
cylinder); blocks where this length was above 30 mm were cubic, and blocks with less than 30 mm
in x were 30 mm long in y and z.

Both above and below the sample there were 3 layers of detector pairs (to measure the x and y

position of the muon), with an area of 1 × 1 m2. These were simulated as resistive plate chambers
(RPCs) [13]. The RPCs were 6 mm thick, and made of glass. The spacing between each xy pair
was 19 mm, and 58 mm between each of the pairs. The height between the upper and lower tracking
systems was 548 mm. The drum was placed in the centre of this space, which means that there were
274 mm between the centre of the drum and both the upper and lower plates closest to the drum.
The detector resolution was 450 µm and the angular resolution was 2.75 mrad. All performance
parameters like the hit resolution are the same as measured with our small prototype system [13].

– 2 –
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Figure 1. Illustration of the simulation geometry.

The cosmic-ray muons were simulated with CRY [14], which provides angle and momentum
distributions of cosmic rays. For each uranium block size, 5 simulations were performed, using the
number of muons corresponding to 500000 seconds (139h, or about 5.8 days), with 7000 muons per
m2 per minute. With this rate, the total data taking time for the 5 simulations corresponds to 29 days.

2.2 Simulation validation

In order to validate the simulation, data was taken with our prototype detector system [13] which
used 50 × 50 cm2 RPCs. The prototype system was built to provide experimental data for a study
into the detection of lumps of high-Z materials in cargo containers [15, 16]. These lumps are
detected using the metric distance distribution of scattering vertices. This variable is explained in
more detail in section 3.1 Figure 2 shows the discriminator distribution, which is the median of
the metric distance, obtained in real data [17] and figure 3 shows the same distribution using our
simulation framework [17]. The distributions were obtained from scanning a 10 × 10 × 15 cm3

lead block. A χ2 test comparing the two distributions was performed, resulting in a p-value of 0.8,
demonstrating a good correspondence between experimental data and simulation.

2.3 Track fitting

Themuons generated byCRYwere propagated through the set-up and the hit positionswere smeared
with the measured position resolution. The output from Geant4 of the hit positions on the detector
plates was analysed with a ROOT [18] application that performed a fit of the upper and lower tracks,
as described in [15]. For a system with 3 pairs (for x and y directions) of upper and 3 of lower
detector layers, 12 hit points are obtained for each muon. A first fit is performed separately for

1This metric distance was weighted by the KNN (k-nearest neighbors) discriminator of both tracks [17] instead of the
angle and momentum which is used in the current paper.

– 3 –
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Figure 2. Discriminator value for experimental data, from a 10 × 10 × 15 cm3 lead block.
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Figure 3. Discriminator value for simulation, from a 10 × 10 × 15 cm3 lead block.

each 3 points in upper and lower, x and y directions, to guarantee that a good muon track is found.
Subsequently, in a second step, all the 12 points obtained from an event are fitted at the same time,
demanding an incoming and outgoing track meeting in a vertex. The fit has 7 parameters, which
are the 4 track slopes (for upper and lower, x and y) and the 3 coordinates of the vertex position.
This is done by minimising, using MINUIT [19], the function

E = Ex + Ey . (2.1)

Ex (and, analogously, Ey) is given by

Ex =

3∑
i=1

(hi − (vx + kx,upper · (zi − vz)))2

σ2
hi

+

6∑
i=4

(hi − (vx + kx,lower · (zi − vz)))2

σ2
hi

(2.2)

– 4 –
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where hi are the measured hit positions, zi the vertical position of the detectors, vx, vy, vz the vertex
positions, k the track slopes, and σhi the errors on the measurement of the hit positions. Figure 4
illustrates the track and vertex fit principle. It is a 2D representation for simplicity, but the fit is
performed in 3D. The scatter vertex point calculated by the fit is not a real point where the muon
scattered, since muons scatter in multiple points, but it is a useful approximation. The χ2 values
from the 3-point fits and from the combined fit are calculated and used as a cut: tracks with χ2 values
above the cut are discarded. This is an advantage of the vertex method over the other commonly
used method of the point of closest approach. Tracks with a reconstructed vertex outside the volume
of interest are also rejected. For accepted tracks and vertices, variables such as the scattering angle
and offsets are calculated for further analysis. About 99% of the tracks pass these cuts.

Figure 4. Illustration of the muon scattering principle and vertex reconstruction. The figure is shown in 2D
for simplicity, but it should be noted that the measured angle is in 3D, although projected angles in 2D can
also be calculated. The sizes are exaggerated in order to better visualise the difference between the multiple
scattering and the reconstructed vertex.

3 Metric distance method

Our previous imaging method, described in [10], exploits the fact that the concentration of vertices
with high scattering angles is large for high-Z materials. Therefore, it divides the volume of interest
in cubic voxels with a side of 1 cm, takes a fixed number of tracks in each voxel with the highest
scatter angle and calculates a weighted metric distance for each pair of tracks, as

mi j =

®vi − ®vj
(θipi)(θ jpj)

, (3.1)

where ®vi is the reconstructed vertex position of muon i, θi its scatter angle and pi =
p̂i
p0
, where p̂i is

its momentum (if it is available) and p0 = 3GeV is a reference momentum. This algorithm was first

– 5 –
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developed for homeland security applications, where the voxels usedwere larger, and it was only nec-
essary to determine if a voxel contained a high-Z material, which would be identified by a high den-
sity of highly scattered muons [15]. For applications using small voxels, like imaging nuclear waste
drums, the distribution of distances

®vi − ®vj should be the same for all homogeneously filled voxels,
therefore only the weighting by the angle and momentumwill be relevant. However, the distribution
of the distance between vertices of highly scattered angles will be relevant for non-homogeneously
filled voxels, such at the edge of the blocks, making it a good method to identify edges [10]. The
distributions of the metric distance are also sensitive to the presence of voids in the concrete [20].

In [10] the number of chosen trackswere themost scattered 26 in each voxel, whose combination
in pairs gives a number of entries in each metric distance graph of 325. The distribution of the log-
arithm of the metric distance, ln(mi j/m0), was plotted for each voxel (m0 = 1 m·rad−2 is a reference
value so that the variable in the logarithm has no units). Figure 5 shows examples of two of those
distributions; one for a voxel filled with concrete and one filled with uranium. Whenmoving the grid
inside the concrete object with the uranium inclusion distributions are obtained containing compo-
nents due to uranium and to the concrete. These distributions were fitted with two Landau distribu-
tions, where the peak locations were fixed to the values for the metric distance obtained when only
using concrete and uranium. For each voxel the ratio of the amplitude of two fitted Landaus for con-
crete and uranium was calculated. To obtain a good resolution determining the edges of the blocks,
this was done for several grids, with the same voxel size but each shifted by 1 mm in the direction of
the edge scanning (the x-axis, along the length of the concrete cylinder). When defining the start and
finish of each block as the voxelwhere the amplitude fraction exceeded 99% for uranium, a resolution
of 1.2±0.5 mm was obtained using simulated muon data equivalent to 25 days of data taking.

4 Edge finding method

The previous method works well, but it requires the true momentum information which is experi-
mentally not available. In the new method [21], shown in this paper, the distributions of ln(mi j/m0)

were fitted with a single Landau distribution convoluted with a Gaussian but the peak locations are
left free. The same number of tracks (26) was used. This value was chosen as a balance between
having enough tracks to see the distribution shape and perform the fit, and not taking too much
time to perform the calculations. As the chosen tracks are the most scattered ones, increasing this
number (for the same data taking time) adds tracks with a lower scattering angle, which give less
information. An example of these distributions and fits can be seen in figure 5. There is no physics
reason why the distributions follow a Landau convoluted with a Gaussian, but the fit describes most
distributions well. To improve on the previous method we moved on to a multivariate analysis
(MVA) method. This method was performed using the ROOT package TMVA [22]. The MVA
method used was the Fisher linear discriminant [23], which is a supervised method (the training
data includes label information on the respective class) that separates the data into two classes. In
summary, this method finds the plane w in the L-dimensional space, for L variables measured, so
that projected samples from the two classes onto w are better separated.

Here the Fisher linear discriminant was trained using simulations ofmuons going through either
a solid concrete block or a solid uranium block. Variables from the fit, in particular the width, the
peak position, and the peak amplitude, as well as variables from the histogram such as the maximum

– 6 –
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Figure 5. Distributions of the logarithm of the metric distance for a voxel inside uranium and a voxel in
concrete, as well as respective fit with a Landau distribution convoluted with a Gaussian.

value and respective bin position, were fed into the Fisher algorithm as benchmark results. The
training samples usedwere obtained fromvoxelswith only concrete and only uranium (fromuranium
blocks of 4 × 4 × 4 cm3). For the training samples the probability that a voxel contained uranium
was extracted. This probability can be seen in figure 6. As, in practice, the muon momentum is
either not measured, or measured with a large uncertainty, the momentum was not used in these
results. Section 6 will show results for an ideal system that measures the muon momentum.

Next, runs with blocks of uranium were simulated and the metric distance distribution for each
voxel was fitted and the probability that the voxel was either uranium or concrete was calculated
using the Fisher linear discriminant. As in the previous method, this was done for several voxel
grids, shifted by 1 mm. Figure 7 and 8 show examples of the Fisher probability output ξ as a
function of different voxel edge locations for a 1 cm and a 4 cm block respectively. Each point in
these figures is the average of the values from the 5 simulations with the same block size for single
voxels along x, at fixed y and z values. The Fisher probability does not reach 1 for all the values of
x in the uranium region, but it is still easy to distinguish the uranium from the much lower concrete
background, and consequently reconstruct the block length. The Fisher probability in the concrete
background is zero, barring a few unphysical spikes which can be filtered out easily, since real
uranium pieces will give non-zero values for several adjacent voxel locations. For the case without
momentum, the block lengths were measured by taking the region between the first and the last
point whose ξ was above a threshold of 0.1. Uncertainties on the measurement of the length of each
block were calculated by performing the same length measurement for 5 different simulations with
data corresponding to 5.8 days of muon flux each, and calculating the standard error on the mean.

As the reconstructed vertex is not a real scattering vertex but just a useful assumption, tracks
scattered with large scattering angles in the uranium can give rise to reconstructed vertices in the
concrete and vice-versa. This leads to a phenomenon we refer to as mixing. Voxels close to the edge
of the material will contain vertices that actually belong to the other material. This does not occur
far away from the edge. This mixing range extends for approximately 5 mmwith the given geometry
of this study. It is this mixing range that determines the performance of the resolution algorithm.

– 7 –
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If the block is bigger than the mixing range, the edge resolution will be the same irrespective of
the actual size of the block. If the block is smaller than the mixing range, then there is no longer
contrast between the two materials and thus it becomes impossible to find the edge of the block.
As such, it was not possible to measure lengths smaller than 0.5 cm. As an example of the Fisher
probability output obtained for these small blocks, figure 9 shows an example of a 0.3 cm block,
where it is impossible to distinguish the uranium from the concrete background.

Fisher probability output
0 0.2 0.4 0.6 0.8 1
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Figure 6. Output from the training with the Fisher linear discriminant, using samples of pure concrete and
pure uranium.
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Figure 7. Fisher probability output, ξ, as a function of the x coordinate for a 1 cm block of uranium inside
concrete, before calibration.
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Figure 8. Fisher probability output, ξ, as a function of the x coordinate for a 4 cm block of uranium inside
concrete, before calibration.
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Figure 9. Fisher probability output, ξ, as a function of the x coordinate for a 0.3 cm block of uranium inside
concrete.

5 Results

Several uranium blocks were simulated, with sizes varying from 0.5 cm to 5 cm. Figure 10 shows
the reconstructed sizes as a function of the simulated sizes. The reconstruction was repeated 5
times for each size. The error bars represented the standard error on the mean for each generated
size. The variation in the size of the error bars is due to the limited amount of repeats. A clear
linear relationship between the reconstructed and the generated sizes is observed, as

Reconstructed Size = (0.65 ± 0.03) × Real Size + (0.34 ± 0.08) cm. (5.1)

– 9 –
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The slope and intercept are due to the fixed size of the 1 cm voxels, and to the “mixing region” around
the uranium blocks, where some vertices of muons that scattered in uranium are reconstructed in
concrete and vice-versa: for blocks that are close to the voxel size or smaller, most voxels from
the 1 mm shifts contain the mixing regions from both sides of the block, stretching their measured
length, while for larger blocks the voxels at each edge only contain the mixing region of the
respective edge. Therefore, it was necessary to calibrate the reconstructed lengths. Each point
was calibrated by performing the fit excluding that point and using the resulting equation to obtain
the corresponding calibrated length. These fits were performed using a χ2 fit. The calibrated
reconstruction results are shown in figure 11. The fit line performed after the calibration yields

Reconstructed Size = (1.01 ± 0.05) × Real Size − (0.01 ± 0.13) cm. (5.2)

Hence, the calibrated reconstructed size and the real size are the samewithin errors. The uncertainty
in the reconstructed length is independent on the real size for blocks larger than the mixing region
of about 5 mm. This can be seen from the size of the error bars. Because of this and since the recon-
structed size is linearly dependent on the real size, we can combine all data points in this graph to
calculate the position resolution as the standard deviation of the reconstructed minus the real size, as

σ =

√∑
i(lt,i − lr,i)2

n
, (5.3)

where lt,i is the true simulated size, lr,i the reconstructed sizes, and n the number of data points used.
The resolution obtained was σ = 2.9 ± 0.5 mm. With this technique it was possible to reconstruct
the size of uranium blocks down to 0.5 cm. For smaller sizes, most points in the uranium region
had Fisher probability values similar to concrete due to the mixing, making it impossible to perform
this measurement. This is within errors the same as in our previously published result. However,
the previously published result used the true momentum information. As such, this method is a
significant improvement and represents a more realistic performance estimate.
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Figure 10. Reconstructed lengths against real lengths before calibration, including the linear function fitted
to the data.
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Figure 11. Reconstructed lengths against real lengths, after calibration.

6 Results using momentum information

This study was also performed using the momentum information, in order to show how this informa-
tion would improve the method for an ideal muon tomography system that could measure the muon
momentumwith great precision and to demonstrate the significant improvement due to the use of the
Fisher linear discriminant over the previous method that also used the true momentum information
but a different analysis technique. The training for the MVA was also done using momentum since
this changes the distribution of the metric distance. Using the momentum leads to a smaller mixing
region as tracks with large scattering angles yielding uranium-like vertices in concrete are typically
tracks with a very low momentum (see equation (1.1)). By adding the momentum information,
these tracks no longer bias the metric distance towards uranium. Figure 12 shows themetric distance
distributions for a uranium voxel and a concrete voxel (equivalent to figure 5, but using momen-
tum information), achieving a better peak separation that the case without momentum. Figure 13
shows the Fisher probability output from the training data with pure concrete and pure uranium
voxels. The training in this case was performed using voxels from the edges of a uranium block of
18 × 18 × 18 cm3. This accounts for the different results from the training than the ones obtained
without momentum (figure 6). Figure 14 and 15 show examples of this reconstruction for a 3 cm and
a 0.5 cmblock respectively. In this case, the threshold on the ξ discriminant to determine the edges of
the blocks was chosen to be 0.9. The differences in the fluctuations of the concrete between with and
without momentum information are most likely due to the differences in the training for both cases.

The method was applied to measure the length of several blocks of uranium with different
sizes, from 0.2 cm to 10 cm, embedded in concrete. The reconstructed sizes versus the real sizes
are shown in figure 16, and the respective linear fit yields

Reconstructed Size = (0.76 ± 0.01) × Real Size + (0.44 ± 0.02) cm. (6.1)

This fit result is used to calibrate the reconstructed sizes. These results can be seen in figure 17.
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Figure 12. Distributions of the logarithm of the metric distance for a voxel inside uranium and a voxel in
concrete, as well as respective fit with a Landau distribution convoluted with a Gaussian, using momentum
information.
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Figure 13. Output from the training with the Fisher linear discriminant, using samples of pure concrete and
pure uranium, using momentum information.

The straight line fit for the edge reconstruction using momentum information yielded

Reconstructed Size = (0.99 ± 0.01) × Real Size − (0.01 ± 0.03) cm, (6.2)

so the slope and intercept are compatible within errors to 1 and 0 respectively.

The resolution obtained was σ = 0.96± 0.03 mm, showing a significant improvement over the
previous result of 1.2±0.5 mm [10]. For lengths lower than 0.2 cm, it was not possible to measure
the uranium block, because the points corresponding to the uranium in the Fisher probability graphs
were similar to the ones from the concrete background, due to the size of the mixing region.
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Figure 14. Fisher probability output, ξ, as a function of the x coordinate for a 3 cm block of uranium inside
concrete before calibration, using momentum information.
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Figure 15. Fisher probability output, ξ, as a function of the x coordinate for a 0.5 cm block of uranium
inside concrete before calibration, using momentum information.

7 Conclusions

Muon tomography can be used to scan nuclear waste containers. Previous results have shown that
it is possible to find high-Z material lumps in concrete and determine edges of uranium blocks em-
bedded in concrete. Here we have shown, using our validated Monte Carlo simulation, the proof of
principle of a method, focusing on measuring uranium blocks, that is a significant improvement on
our previously published results. A resolution of σ = 2.9±0.5 mmmeasuring lengths of simulated
uranium blocks between 0.5 cm and 5 cm was obtained. For blocks smaller than 5 mm, there is not
sufficient contrast in the metric distance distributions between the voxels in the concrete and in the
uranium. This method did not use momentum information, since preliminary studies to measure the
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Figure 16. Reconstructed lengths against real lengths before calibration, including the linear function fitted
to the data (Equation 6.1), using momentum information.
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Figure 17. Reconstructed length against real length, after calibration, using momentum information. The
inset is the same graph zoomed in the lengths under 2 cm.

momentum with a muon tomography system using multiple scattering in the detector planes show
momentum resolutions between 30% and 200%. To make a fair comparison to our previous pub-
lished result and to find out how much the use of the Fisher linear discriminant improved the result,
the study was also done using the momentum information. It was shown that using the momentum
information provides a better edge definition, with a resolution ofσ = 0.96±0.03mm, for lengths be-
tween 0.2 cm and 10 cm. It was not possible to measure lengths smaller than 2mmusingmomentum
information. This is a major improvement on the 1.2± 0.5 mm obtained with the previous method.
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