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Sensing Through the Body – Non-Contact Object Localisation Using
Morphological Computation

Euan Judd1,2, Gabor Soter1,2, Jonathan Rossiter1,2, Helmut Hauser1,2

Abstract— Biological systems exhibit remarkable sensing
capabilities by using a widely distributed sensor network and
a tight coupling between body and environment. The result are
seemingly highly robust and adaptive solutions. To enable the
next generation of embodied robots with similar capabilities, we
need to develop novel sensing and computational technologies.
In this paper, we propose an approach using proprioceptive
sensing and leveraging the system-environmental interaction in
soft robotics based on the principle of morphological compu-
tation, i.e. the use of morphological features for computational
tasks. We exploit the body dynamics of a moving octopus-
inspired robot tentacle in coordination with the dynamics of
the surrounding water to predict the position of objects in its
vicinity without touching them. The values of proprioceptive
strain sensors, which were emulated with the help of computer
vision techniques on recorded videos of the experiments, and
simple linear regression on these values were sufficient to
solve this computational prediction problem. We were able to
demonstrate that the body of the soft tentacle could be used
to “feel” the location of an object by observing its own body
dynamics (strain sensors) which are responding to changes (i.e.
different positions of the object) in the environment.

I. INTRODUCTION

The theory of embodied intelligence suggests that be-
haviour is an emergent property of the interaction between a
system’s controller, morphology and environment [1]. This
has been exploited in a number of robotic applications. For
example, Corucci et al. [2] used this principle to simplify
control of a simulated underwater quadrupedal robot allow-
ing it to transition between qualitatively different modes of
locomotion by changing a single morphological parameter.
Another example is [3], which uses the idea of embod-
ied intelligence for the control of a terrestrial quadrupedal
robot. The magnitude of the change in ground friction and
the robot’s weight were sensed by measuring locomotion
stability–i.e. periodicity–of the motor torque, joint angle,
acceleration, and foot pressure sensors. It has also been
shown that the interaction of morphology and environment
can play a crucial role in sensing. For example, it has been
demonstrated that the interaction of body and environment is
fundamental for the development of the sensorimotor loops
[4]. For a general discussion and more examples, we refer
to [5].

While these examples are encouraging, little work has
been done on formalizing the idea mathematically. One
approach has been proposed by Hauser et al. [6], [7] by using
nonlinear mass-spring-damper systems to provide general
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Fig. 1. The octopus inspired EcoFlex® 00-10 silicone tentacle was
suspended vertically in water from a linear actuator. 32 red pins, 16 down
each side of the tentacle, were used to obtain 30 strain measurements using
computer vision techniques. A cylindrical object was suspended in the water
far enough from the tentacle so that they never contact.

models of how soft bodies can carry out computational tasks
for control and sensing. Their theoretical models are based
on the machine learning technique called reservoir comput-
ing, which exploits high-dimensional nonlinear, dynamical
systems as a computational resource [8].

In this context, the morphology of the body can be seen as
a kernel in the Machine Learning sense. This means the body
can provide the nonlinear projection of input variables (e.g.
forces from the environment) into its high-dimensional state
space (state of the soft body). For a more detailed discussion
on kernels, we refer to [6], [8]. The soft body can there-
fore be represented as a nonlinearly connected mass-spring-
damper system which maps low-dimensional input to a high-
dimensional output (Fig. 2). Being a dynamical system, it
inherently has the property to integrate input information
over time which is beneficial for computation which needs
information on the history of input values [9]. If we use the
body as a reservoir then the addition of linear outputs is all
that is required to carry out complex, nonlinear computations.
Interestingly, we only need to adapt this linear readout to
learn a given computational task. This means, with the help
of the body dynamics as a computational resource, we can
use simple linear regression to learn complex computational
tasks, including nonlinear controllers and nonlinear filtering
for sensing.

It has already been shown that a soft silicone tentacle
can be used to perform numerous computations using this
approach [9], [10]. In this paper we propose to use the body



(a) Physical reservoir (b) Tentacle as a physical reservoir

Fig. 2. (a) A physical reservoir in reservoir computing consists of mass-spring-damper systems that nonlinearly map a low-dimensional input, u(t), to a
high dimensional output, ε(t). The output of a reservoir, yj(t), can be calculated as the addition of the linear readouts, εi(t), that have been multiplied
by output weights, wi, where i is the number of a particular readout. Learning is therefore reduced to finding the weights, w, the only adapted part of the
system, using linear regression. (Diagram adapted from [6].) (b) The silicone tentacle is a physical reservoir where the control input to the linear actuator
is the low-dimensional input and strain measurements between red pins are the high-dimensional linear readouts.

of a soft silicone tentacle as a sensor to predict the position
of an object in its vicinity without touching it (Fig. 1). The
tentacle is moved by a linear actuator and thereby introduces
dynamics in the water. The environment (i.e. the water) will
respond differently for different positions of the object. In
response, these small differences in hydrodynamics in the
environment of the tentacle, reciprocally, will also change
the state of the soft (passive) tentacle, which can be picked
up through proprioceptive sensing. At the same time the body
will be used as a nonlinear filter (reservoir), which allows us
to employ a simple linear readout to predict the position of
the object.

II. METHOD

A. SETUP

An octopus-inspired tentacle was fabricated using
EcoFlex® 00-10 silicone (smooth-on.com). The tentacle was
34cm long with a maximum diameter of 3cm at the proximal
end, which was attached to a linear slider. The tentacle
diameter tapers down to 0.6cm at the distal tip.

Strain sensors were emulated using computer vision tech-
niques in order to measure the behaviour of the tentacle and
provide the linear outputs from the reservoir. This contact
free method was chosen as it would allow us to have a high-
dimensional output from the body while not significantly
affecting the computational performance of the tentacle or
the complex behaviour induced by environmental changes.
Therefore, 32 red pins were placed uniformly along the
tentacle, 16 on either side, in such a way that they would
be visible to a video camera at all times (Fig. 1). A total of
32 markers provided 30 emulated strain measurements; 15

between successive markers on the left of the tentacle and 15
between successive markers on the right side of the tentacle.
This allowed compressive and tensile strains to be recorded
on both sides of the tentacle.

The tentacle was suspended vertically from a motorised
linear slider (Fig. 1). The stepper motor was driven using
an Adafruit Motorshield on an Arduino Uno. The tentacle
dangled into an acrylic tank filled with water so that all
markers on the tentacle were submerged. The cylindrical
object, which should be detected, was of diameter 2.7cm
and was moved and secured in the tank using neodymium
magnets.

B. DATA ACQUISITION

A Panasonic Lumix 4k DMC-G80 camera was used to
record videos at 28 Megapixels and 60 frames per second
(FPS) with the 12-60mm lens set to 12mm. Refraction of
light through the tank was ignored as reservoir computing is
robust enough and does not require highly accurate readouts
from a reservoir. The stepper motor was provided with a
voltage of 10V and a current of 1A and the desired position,
p, of the linear slider was controlled using the following
sinusoidal function

p = Asin(ωt), (1)

where the amplitude, A, was the distance that the linear
slider moves and was measured using an optical encoder,
ω was the angular frequency equal to 2πf , where f was
the frequency and t was the elapsed time in seconds. The
amplitude was provided to the desired position equation as
the number of incremental scale periods (each 180µm).



Various experiments were conducted with different am-
plitudes, frequencies and object positions to systematically
investigate the proposed setup and its limitations. Once the
videos had been captured, OpenCV [11] was utilised to
acquire strain measurements between the 32 red markers.
The developed C++ algorithm, which took successive frames
as inputs, is described below:

1) The red pins were separated out from the rest of the
image using an adaptive threshold that set any pixel
with a high red channel and a low blue and green
channel to black. Every other pixel was set to white.

2) The resulting RGB image was converted to grayscale.
The image was further processed to improve the
performance of the blob detector used in the next
step. OpenCV’s cv::erode() removed protrusions
while cv::dilate() filled concavities. Finally,
cv::blur() was used to remove noise.

3) OpenCV’s cv::SimpleBlobDetector was used
to determine the centroid coordinates of each pin. The
function extracts connected components that have a
user specified degree of circularity, area, distance apart
from other connected areas, and convexity.

4) Finally, pins were tracked between frames starting
from the first frame (Fig. 2b). In this way we could
label each pin in the first frame by measuring the
distance between the pin and the coordinate origin.
When the second frame was processed, in which the
stepper motor had moved, the pins were labelled based
on how far they were to the nearest pin in the previous
frame as measured by Euclidean distance.

Once the pin positions in the first and second frame were
found, the strain between pins could be found easily using
the following formula

ε = (L− L0)/L0, (2)

where ε is the strain between pins, and L0 and L are
the distances between pins in the first and second frames
respectively.

C. PREDICTIONS

By using the body as a computational resource, i.e. as a
kernel, the training can be reduced to finding a set of static,
linear weights for the readout, which can be easily found by
using linear regression. At its simplest, linear regression is
used to predict the “dependant” variable, y, by fitting a linear
equation to the provided data for the “independent” variable,
ε. However, here we use multiple regression between mul-
tiple independent variables, ε, and one dependant variable,
yj for the jth video frame (observation), as in the following
equation

yj = w0 +

N∑
i=1

wiεi, (3)

where w0 is the intercept and wi is the regression coef-
ficient, or weight, for strain εi where i is the number of a

particular readout (Fig. 2b). Estimated weights (ŵ) are found
by minimising the sum of squared residuals, SSR, calculated
with the following equation

SSR =

M∑
j=1

(yj − ŷj)2, (4)

where yj is the target value, ŷj is the predicted value
and yj − ŷj is the residual of the jth observation. The
interpretation is that we are minimising the distance between
yj and the hyperplane ŷj = εTj ŵ. Simply put, we try to find
the optimal weights, ŵ, that minimise the SSR.

We used Python’s Scikit-Learn [12] linear model to per-
form multiple regression. The time series for each object
position was separated into training (1400 frames) and testing
data (600 frames). The first 92 frames of the training data
were removed to eliminate the transients (washout period)
caused by the initial actuation impulse [6]. The training
portions were then labelled with the object position. Finally,
multiple regression was used to determine a fixed set of
weights (ŵ) that will be used to predict all positions.

The predicted object position, ŷ, is then the average ŷj–
i.e. the prediction for the jth frame–over the 600 frames in
the test data. The mean squared error (MSE) with respect to
ŷ is then

MSE =
1

M

M∑
j=1

(yj − ŷj)2, (5)

where yj is the target value and ŷj is the predicted value
for the jth frame and M is the number of frames in the test
data.

III. RESULTS

A. PREDICT OBJECT POSITION

We want to determine if the object position can be
predicted using regression analysis and whether the body can
be used as a computational resource for this application. A
total of 10 positions were recorded on the y-axis ranging
from 21cm to 30cm in steps of 1cm measured from the
proximal end of the tentacle with a constant x-axis position
of 20cm (Fig. 2b). The effect of the input frequency and
amplitude to the driving motor of the linear slider on the
accuracy of the predictions was also important to explore,
but this was limited to 5 different frequencies to reduce the
magnitude of the data acquisition task. These frequencies
were 1.1Hz, 1.3Hz, 1.4Hz, 1.7Hz, and 2Hz at an amplitude
of 4.1cm. The videos were separated into training data (1308
frames) and test data (600 frames). Therefore, the tentacle
completed 19.8 (1.1Hz), 16.8 (1.3Hz), 15.6 (1.4Hz), 12.8
(1.7Hz), and 10.9 (2Hz) cycles for the training period and
9.1 (1.1Hz), 7.7 (1.3Hz), 7.1 (1.4Hz), 5.9 (1.7Hz), and 5
(2Hz) cycles for the test period.

For each of the five frequencies we learnt one set of
output weights and this set of output weights was used to
make predictions for all 10 object positions (Fig. 3). The
predictions best fit the ground truth at the lower range of
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Fig. 3. (a) Prediction performance was compared for 5 input frequencies
with a constant input amplitude of 4.1cm. (b) The mean squared error was
generally worse for higher input frequencies.

investigated frequencies. Additionally, all models in Fig. 3a
show a characteristic overestimation of low y-axis positions
and an underestimation of high y-axis positions. The highest
mean squared errors (MSE) were observed for object po-
sitions at either end of the explored range on the y-axis.
Further, the average MSE was 2.97cm2, 3.03cm2, 4.01cm2,
4.08cm2, and 4.39cm2 for input frequencies 1.1Hz, 1.3Hz,
1.4Hz, 1.7Hz, and 2Hz respectively (Fig. 3b).

B. CONFUSION MATRIX

The previous results (Fig. 3) showed that the predictions,
ŷ, did not monotonically increase with the ground truth
positions, y. This suggests that more than one environmental
state could produce the same measured behaviour. To explore
this a little further, a new model was trained for each of
the 10 object positions presented previously, i.e. 10 different
sets of weights, one for each position, using the 〈4.1cm,
1.1Hz〉 pair. However, this time the model was used to
classify between an object being present in the environment
and no object present in the environment. Therefore, the
models were trained with data from two cases, one when
no object is present and one when the object is at one of the
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Fig. 4. Weights for 10 models (columns) were trained with data from
each of the 10 object positions. Each model was then tested with data from
the same object position they were trained with (diagonal). The models
were also tested with data from the remaining 9 object positions (rows).
Predictions were weights in the range [0, 1] where an object was classified
as present if the weight was 0.5 or above. Confusion occurred most notably
in models y=22cm and y=23cm where measured behaviour from some of the
remaining 9 positions produced a higher weight than the measured behaviour
of the object position used to train the model.

10 positions along the y-axis. The output from the models
was a weight in the range [0, 1] used to classify whether
the object was present or not, a weight equal or above 0.5
would be classified as present and a weight below 0.5 would
be classified as not present.

A confusion matrix was made that shows the output of
each model when given test data from each of the 10 object
positions (Fig. 4). The weights on the diagonal (top-left
to bottom-right) shows predictions when the test data was
from the same object position as the model’s training data.
The weights on the diagonal were generally found to be the
highest with some notable exceptions in models y=22cm and
y=23cm where data from other object positions produced
similarly high or higher weights.

C. FREQUENCY-AMPLITUDE PAIRS

We further explore the effect of the input frequency and
amplitude on predictions for positions that varied in both the
x and y axes. We chose 9 positions including 3 positions
on the x axis (19cm, 21cm, and 23cm) and 3 positions
on the y axis (10cm, 20cm and 30cm). The 25 amplitude-
frequency pairs included 5 frequencies (1.1Hz, 1.3Hz, 1.4Hz,
1.7Hz, and 2Hz) and 5 amplitudes (3.56cm, 3.93cm, 4.27cm,
4.63cm, and 4.99cm). Again, predictions here are binary. An
object in the environment was present if the prediction was
greater than or equal to 0.5.

Models were trained using multiple linear regression.
Videos for each position were separated into training (2908
frames) and testing data (600 frames). Each cell in Fig. 5
shows the average of the weights for each of the 9 positions
tested. The highest and lowest average weight for all 9
positions were found for the 〈3.56cm, 1.3Hz〉 and 〈4.99cm,
2Hz〉 amplitude-frequency pairs respectively. The weights
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Fig. 5. Each cells shows the average weight of all 9 object positions. The
〈3.56cm, 1.3Hz〉 pair resulted in the highest average prediction of all 25
amplitude-frequency pairs explored while the 〈4.99cm, 2Hz〉 pair resulted
in the lowest average prediction.

did not monotonically decrease as the object was moved
away from the tentacle on the x-axis and towards the distal
tip of the tentacle on the y-axis for any of the 25 pairs. We
had expected to see a monotonic decrease as the object would
have had a lower effect on the tentacle’s behaviour as it got
further away and towards the proximal end. Additionally,
all predictions are correctly classified with the lowest single
weight of 0.74.

D. REDUCED SENSOR DIMENSIONALITY

In this section we explore the robustness of the proposed
approach. We systematically reduced the dimensionality of
the readout by removing visual strain sensors but keeping the
same sensor positions. Four new models were trained using
every second, third, fourth, and fifth strain sensor on either
side of the tentacle and removing the rest. This corresponds
to 16, 10, 8, and 6 total strain sensors respectively.

The remaining strain sensors in each of the four cases
were used to make four new multiple regression models.
The sensor measurements used were from the data for the
〈4.1cm, 1.1Hz〉 pair (Fig. 3a) as it was found to produce
the best predictions. The results are summarised in Fig. 6.
As expected they show that predictions worsen as the sensor
dimensionality reduces. However, the performance degrades
gracefully. This suggests that a reduced number of sensors,
e.g. due to fail functions, can be counteracted by relearning
the predictions with the reduced number of available sensors.
The MSE was greatest for the highest and lowest y-axis
positions (Fig. 6b). The average MSE generally increased
as the number of sensors decreased. The average MSE was
2.97cm2, 6.17cm2, 5.99cm2, 7.38cm2, and 7.73cm2 for 30,
16, 10, 8, and 6 strain sensors respectively. The average MSE
was therefore more than doubled as the number of sensors
was reduced from 30 to 16. However, 16 sensors still resulted
in a reasonable capacity to make predictions.

IV. DISCUSSION

The experimental results in this paper support the hy-
pothesis that the position of an object can be predicted
by measuring the body dynamics of a compliant tentacle
without the tentacle and object touching. Object positions
along the y-axis could be predicted with a variety of mo-
tor input frequencies although low input frequencies were
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Fig. 6. (a) Four new weight sets were found using every second (16
sensors), third (10 sensors), fourth (8 sensors) and fifth (6 sensors) strain
sensor reading on either side of the tentacle and the 〈4.1cm, 1.1Hz〉 pair.
(b) Reducing the number of strain sensors significantly increased the mean
squared error of the models.

found to exhibit improved performance. The average MSE
monotonically decreased as frequency decreased with the
lowest frequency having the lowest average MSE. This
suggests continuing to reduce the frequency may improve
the performance further. However, we expect the existence
of a lower limit for this reduction. This will be investigated
in future experiments. Increasing the prediction accuracy by
lowering the frequency was perhaps a result of reducing
the power transmitted by the propagating wave along the
tentacle as the frequency decreased. This decreased power
would have had a proportionally lower effect on the overall
behaviour while the vortices generated by the interaction
between the tentacle and the object through the fluid would
have a higher effect.

There was a persistent pattern of overestimation for low
y-axis position predictions and underestimation for high y-
axis position predictions for all frequencies. This was also
observed in the higher MSE at both ends of the ground
truth range. This suggests a polynomial, rather than a linear
function, may fit the data better.

Initial results show that the body as a computational



resource can provide reasonable predictions for the position
of an object in the environment. However, confusion between
positions was found to occur where similar measured be-
haviour resulted from different object positions when using
the simple binary output models. This confusion was pri-
marily when the object was at the lower end of the explored
y-axis range (y=22cm and y=23cm). An object positioned
at y=30cm was close to the distal tip of the tentacle when
the tentacle was at rest while y=0cm was close to the
proximal end of the tentacle attached to the linear slider.
Less confusion occurred as the object moved towards the
distal tip of the tentacle (y=30cm). This is perhaps because
the local behavioural change caused by the object affects
only a relatively small area at the tip of the tentacle while the
rest of the tentacle behaved as though no object was present.
When the object is further towards the proximal end of the
tentacle, the local behavioural change causes behavioural
change all the way down the tentacle as the travelling wave is
influenced. Perhaps the tentacle’s larger diameter towards the
proximal end causes the sensitivity to reduce. Alternatively,
it may be a result of the amplitude and frequency of the wave
travelling down the tentacle.

All amplitude-frequency pairs successfully predicted the
presence of an object by a significant margin while fur-
ther exploring how input amplitude and frequency affect
classification of objects that move along both x and y
axes. However, low amplitude-low frequency pairs were
found to provide better predictions for all 9 positions. The
〈3.56cm, 1.3Hz〉 pair was found to be the best overall
from the investigated parameters. Therefore, we may observe
improved predictions if the frequency and amplitude are
further reduced.

Interestingly, predictions did not monotonically decrease
as the object was placed further away from the tentacle.
This was observed for all amplitude-frequency pairs. The
position furthest from the tentacle and at the distal tip
(x=23cm and y=30cm) would presumably cause the least
behavioural change in the tentacle but was still predicted
with a comparably high weight. This suggests that a single
amplitude-frequency pair is suitable for making predictions
within the explored range of positions. It also shows that
a subtle change in measured behaviour may be sufficient
to make classifications. This approach could therefore be
used to classify other changes in the environment such as
the change in object size or shape. However, fewer sensors
would significantly reduce the performance of these predic-
tions. Homogeneously reducing the number of strain sensors
from 30 to 16 doubled the average MSE. Fewer sensors
both reduces the behavioural information and reduces the
reservoir’s computational performance as higher dimensional
space is not as fully explored to isolate behaviour. It would
be interesting to explore, in future work, how the removal
of individual sensors would affect the overall performance,
i.e. to see which sensors are more significant for the task.
On the other hand, this also suggests that increasing the
number of linear readouts from the reservoir could increase
the predictive performance.

V. CONCLUSION

This paper presented a case study for how the theory
of embodied intelligence can be exploited to develop a
novel approach to proprioceptive sensing in soft robotics. In
particular, it is shown that the position of an object can be
predicted by measuring the body dynamics of a compliant
robot appendage in water without direct physical contact.
Furthermore, the proposed reservoir computing approach can
utilize the nonlinear and complex dynamics of the com-
pliant body to perform computations necessary for making
predictions. Although we still must explore the robustness
of this approach further and improve the accuracy of the
predictions, the experimental results are encouraging. Future
work will focus on developing novel proprioceptive sensors
that can be used in high numbers but do not reduce the
compliance of the tentacle. Such sensors need to be low
cost to manufacture. This can be facilitated by morphological
computation which does not require highly accurate sensors
or the spatial relationship between sensors to be known.
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