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Supplementary Figure 1. RT-PCR analysis demonstrates expression of genes from clusters shown in 
Figure 3 for A. rimae (top) and O. uli (bottom). The rpoB gene was used as a positive control.1 Primers used 
are listed in Supplementary Table 4. 
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Supplementary Figure 2. SDS-PAGE of Spn-LicC (lane 1), Tde1415 (lane 2), Ari1348 (lane 3), and Bio-
Rad Precision Plus Protein Standard (lane M). 
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Supplementary Figure 3. Dynamic light scattering data showing molecular weights of 38 kDa for 
Ari1348, 43 kDa for Spn-LicC, and 146 kDa for Tde1415.  
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Supplementary Figure 4. HR-ESI-MS of (A) CMP-AEP revealing the [M-H]- ion at m/z 429.0582 
consistent with a molecular mass of 430.0655 for molecular formula C11H20N4O10P2 (calculated 430.0655), 
and (B) CDP-Cho revealing the [M-H]- ion at m/z 487.1001 consistent with a molecular mass of 488.1071 
(calculated 488.1073). 
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Supplementary Figure 5. 1H NMR (D2O, 400 MHz) spectra of CMP-AEP: d 7.95 (d, 1H, H6, J = 7.6 Hz), 
6.12 (d, 1H, H5, J = 7.6 Hz), 6.00 (d, 1H, H1’, J = 4.0 Hz), 4.82-4.18 (m, 5H, H2’, H3’, H4’, H5’), 3.29 
(m, 2H, H2”), 2.15 (m, 2H, H1”) 
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Supplementary Figure 6. 13C NMR (D2O, 100 MHz) spectra of CMP-AEP: d 166.1 (C4), 157.7 (C2), 
141.3 (C6), 96.6 (C5), 89.3 (C4’), 82.5 (C1’), 73.9 (C3’), 69.3 (C2’), 64.8 (C5’), 35.1 (C2’’), 26.1 (C1’’; 
1JCP = 130 Hz). Bottom spectrum represents commercial AEP alone. 
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Supplementary Figure 7. 31P NMR (D2O, 121 MHz) spectra of (A) CMP-AEP alone and (B) with 
phosphonoacetic acid (PnAc) and 2-ethylaminophosphonate (AEP). Using PnAc as the internal standard 
with a reported chemical shift of 15.7,2 our measured chemical shifts of CMP-AEP: d 11.4 (PA), -11.4 (PB), 
3J = 25.6 Hz. 
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Supplementary Figure 8. 31P NMR analysis of 1-hour reactions of 10 µM PntC enzyme with 1 mM AEP 
and 2 mM of CTP, ATP, or GTP in 50 mM Tris-Cl and 7 mM MgCl2, pH 8.0. 
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Supplementary Figure 9. Steady-state kinetic analysis of cytidylyltransferase activities of (A) Spn-LicC 
with AEP, (B) Spn-LicC with P-Cho, (C) Ari-PntC with AEP, (D) Ari-PntC with P-Cho, and (E) Tde-PntC 
with AEP. Activity not detected for Tde-PntC and P-Cho. Error bars show standard errors of the mean 
(open square), with all data points shown as filled circles. 
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Supplementary Figure 10. Cartoon representations of Tde1415 crystal structures. (A) Overall dimeric 
stucture showing molecule A in blue and molecule B is bi-colored yellow (residues 1-249) and green 
(residues 250-615). (B) Tde-PntC cytidylyltransferase domain (green) in complex with CMP-AEP. (C) 
AEPT domain (yellow) complexed with PLP. (D) Superposition of Tde-PntC-apo (cyan) and Tde-
PntC:CMP-AEP (green) reveals low RMSD ranging from 0.53 to 0.86 Å. The exception is the disordered 
residues 14-20 of Tde-PntC-apo (dotted blue line). 
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Supplementary Figure 11. Time-dependent conversion of 1.5 mM AEP to PnAA catalyzed by 50 nM 
Tde1415 in the presence of 6 mM pyruvate, 30 µM PLP, and 300 mM NaCl in Tris-Cl, pH 8. Reactions 
were run at 20 °C and quenched with an equal volume of methanol at each time point. 
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Supplementary Figure 12. Mass spectrometry revealing the aminotransferase activity of Tde1415 as 
shown. A) Detection of AEP (calculated mass = 124.0169) in the presence of Tde1415 (also observed in 
no enzyme control) and B) detection of PnAA (calculated mass = 122.9853). 
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Supplementary Figure 13. Proposed mechanism for aminotransferase activity of Tde1415 catalyzing the 
interconversion of AEP and PnAA. The first structure represents the crystallographically observed state, 
which unusually does not have an imine linkage between K441 and PLP. 
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Supplementary Figure 14. Comparison of PntC activity in the presence of different metals. The activity 
of EDTA-treated enzyme (“No metal”) was compared against the same enzyme supplemented with Ca2+, 
Mg2+, or Zn2+. All four treatments were repeated in triplicate with and are reported with standard errors. 
Assays were carried out in 50 mM Tris-Cl pH 8.0 with 7.0 mM metal, 7.0 mM CTP, 3.0 mM AEP, and 5.5 
µM enzyme. Reactions were allowed to proceed at 20 °C for 2 h, then an internal standard (6.0 mM 
phosphonoacetic acid) was added immediately prior to acquiring 31P NMR spectra. Peak integrations for 
CMP-AEP were calculated relative to the internal standard. Bars represent mean values with standard errors 
shown. Individual data points (three for each metal) are shown as open circles. The yield of CMP-AEP 
product is assigned as 100% for the most active condition (Zn2+). 
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Supplementary Figure 15. (A) Clustal Omega multiple sequence alignment of selected PF12804 
cytidylyltransferases. Amino acid sequences were retrieved from NCBI with the following accession 
numbers: Bfr-PntC from Bacteroides fragilis 638R (CBW22390); Tde-PntC from Treponema denticola 
ATCC 35405 (NP_992021); Cj1416 from Campylobacter jejuni (CAI38904); Oul-PntC from Olsenella uli 
DSM 7084 (ADK67708); Ari-PntC from Atopobium rimae ATCC 49626 (ZP_03568201); Spn-LicC from 
Streptococcus pneumoniae R36A (AAK94072); Hin-LicC from Haemophilus influenzae C486 
(AJO89865); FrbH from Streptomyces rubellomurinus (ABB90397); YgbP (or IspD, CDP-ME synthase) 
from Escherichia coli K-12 (CQR82192). Box denotes the GXG(T/S)RX8PK consensus sequence. The 
dotted line represents a salt bridge between Glu216 and Arg129 observed in the apo Spn-LicC crystal 
structure (PDB 1JYK).3 (B) Cladogram of cytidylyltransferases from the alignment. YgbP is a MEP 
cytidylyltransferase belonging to the IspD Pfam (PF01128), which possesses significant overlap with 
PF12804. 
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Supplementary Figure 16. The effects of a second Mg2+ ion on Spn-LicC MD simulations. The top panel 
reproduces the Spn-LicC data from Figure 5b in the main text, which resulted from simulations based on 
the crystallographic observation of a single Mg2+ ion in the active site. The bottom panel shows data 
resulting from the inclusion of a second Mg2+ ion in the simulations. 
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Supplementary Figure 17. Analysis of Tde1415 active site variants R15A, K25A, and K153A. (A) 
Activity of each variant based on integration of 31P NMR peaks relative to a phosphonoacetic acid internal 
standard. Averages and standard errors of three measurements are shown as bars, with individual data points 
included as open circles. (B) SDS-PAGE analysis of purified variant enzymes. 
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Supplementary Table 1. X-ray data collection and refinement statistics (molecular replacement).* 
 

 Tde-PntC-apo Tde-PntC-CMP-AEP 
Data collection   
Space group P21 P21 
Cell dimensions     
    a, b, c (Å) 89.05, 129.01, 135.80 76.45, 154.05, 134.58 
    a, b, g  (°)  90, 92.99, 90 90, 90.09, 90 
Resolution (Å) 38.00-2.72 (2.77-2.72)** 48.00-1.95 (2.06-1.95) 
Rmerge 0.097 (0.700) 0.188 (0.965) 
CC1/2 0.996 (0.728) 0.989 (0.767) 
I / sI 13.0 (2.1) 9.8 (2.1) 
Completeness (%) 99.9 (99.7) 98.2 (97.1) 
Redundancy 4.2 (4.3) 6.8 (7.0) 
   
Refinement   
Resolution (Å) 2.72 1.95 
No. reflections 342,389 1,510,620 
Rwork / Rfree 0.199/0.233 0.220/0.254 
No. atoms   
    Protein (chains A, B, C, D) 19241 19277 
    Magnesium 4 8 
    PLP - 64 
    CMP-AEP - 108 
    gamma-PO4 - 20 
    Water 257 1614 
B-factors (Å2)   
    Protein (chains A, B, C, D) 48.7 26.4 
    Magnesium 55.9 28.9 
    PLP - 22.1 
    CMP-AEP - 31.4 
    gamma-PO4 - 36.5 
    Water 48.6 28.7 
R.m.s. deviations   
    Bond lengths (Å) 0.005 0.011 
    Bond angles (°) 0.948 1.14 

*One crystal was used for data collection and refinement. **Values in parentheses are for highest-resolution shell. 
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Supplementary Table 2. Strains used in this study. 
Strain Genotype/Description Source (Reference) 
E. coli DH5α E. coli host for general cloning Life Technologies 
E. coli BL21(DE3) E. coli host for protein production Life Technologies 
E. coli HG1000 pGH1000 in BL21(DE3) This study 
E. coli HG2000 pGH2000 in BL21(DE3) This study 
E. coli HG3000 pGH3000 in BL21(DE3) This study 
A. rimae ATCC 49626 VPI D140H-11A [NCFB 2896] ATCC4 
O. uli ATCC 49627 VPI D76D-27CT = DSM 7084 ATCC5 

 
Supplementary Table 3. Plasmids used in this study. 
Plasmid Description Source (Reference) 
pGH1000 pET29 plasmid containing Spn-licC as an 

NdeI/XhoI fragment 
This study 

pGH2000 pET29 plasmid containing ari1348 as an 
NdeI/NotI fragment 

This study 

pGH3000 pET21 plasmid containing tde1415 as an 
NdeI/NotI fragment 

This study 
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Supplementary Table 4. Primers used in this study. 
Target gene Primer Name Sequence (5’à3’) 
oul594 ouPEPmut-F 

ouPEPmut-R 
cgagaggatacggctctacg 
ctccatgatgtcgtctatcgtgc 

oul592 ouPnPy decarb-F 
ouPnPy decarb-R 

atcacatcatcgccgcaaac 
tggtggagacgatggggtc 

oul_rpoB ourpoB-F 
ourpoB-R 

tcgacgtgcgcttcgtc 
gacacgcgcaaggtcg 

oul602 
 

ouLicC(602)-F 
ouLicC(602)-R 

cgaggaggcgggtctg 
gagtgatgcgaccgcc 

oul609 
 

ouLicD(609)-F 
ouLicD(609)-R 

ctgcgtagggagggcg 
gaaggtagggcatgcccg 

oul593 
 

ouLicC(593)-F 
ouLicC(593)-R 

ccggtcaagctcatcgaaaac 
ggacagggcggattctg 

oul591 
 

ouLicD(591)-F 
ouLicD(591)-R 

ctgggatgatgatatcgacatcgg 
tgtctgggtgaagcggttc 

ari1347 arPEPmut-F 
arPEPmut-R 

ctatctttacgacgacgtgattgc 
tatccccgtcaagaatgatgggtttg 

ari1349 arPnPy decarb-F 
arPnPy decarb-R 

attatcaatcctgtggcttctcttctg 
cgtcaccgtcaatgcacc 

ari_rpoB arrpoB-F 
arrpoB-R 

catgaccgagcgcgg 
gctatctcaagaccaagcttcttg 

ari1348 
 

arLicC-F 
arLicC-R 

ggcgttgagaggatctctgtg 
taattcggcaatatggttattcaccacatc 

ari764 
 

arLicD(764)-F 
arLicD(764)-R 

taccatctccatcggaatctttccg 
atctttccacttgccaaaatcaagtctg 

ari768 
 

arLicAC-F 
arLicAC-R 

ggactttcttctcgctttgctc 
cacggtcaaaatacacgtgtcc 

ari769 
 
tde1415 
 

arLicD(769)-F 
arLicD(769)-R 
Fwd-NdeI 
Rvs-XhoI 
Fwd-R15A 
Rvs-R15A 
Fwd-K25A 
Rvs-K25A 
Fwd-K153A 
Rvs-K153A 

cttgggacgatgatattgacgtcg 
tggtcttcacgtgtgcatagc 
catatgattaagcaagcggtgattctggc 
ctcgagaacgccaacgccgatgc 
ctgggtagcgcactgaaggataagaccaagacc 
ggtcttggtcttatccttcagtgcgctacccag 
gaccaagaccatgccggcgggttttctggagatc 
gatctccagaaaacccgccggcatggtcttggtc 
ctgaccggcctgagcgcaaaccgtg 
cacggtttgcgctcaggccggtcag 
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