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A B S T R A C T

Working memory, the ability to keep recently accessed information available for immediate manipulation, has
been proposed to rely on two mechanisms that appear difficult to reconcile: self-sustained neural firing, or the
opposite—activity-silent synaptic traces. Here we review and contrast models of these two mechanisms, and then
show that both phenomena can co-exist within a unified system in which neurons hold information in both
activity and synapses. Rapid plasticity in flexibly-coding neurons allows features to be bound together into
objects, with an important emergent property being the focus of attention. One memory item is held by per-
sistent activity in an attended or “focused” state, and is thus remembered better than other items. Other, pre-
viously attended items can remain in memory but in the background, encoded in activity-silent synaptic traces.
This dual functional architecture provides a unified common mechanism accounting for a diversity of perplexing
attention and memory effects that have been hitherto difficult to explain in a single theoretical framework.

1. Introduction

Our capacity to hold and manipulate information over delays of a
few seconds has long been thought to be subserved by the persistent
firing of neurons during the delay (Funahashi, 2017; Fuster and
Alexander, 1971). However, a number of recent studies have instead
proposed “activity-silent” working memory, in which synaptic weights
hold information during the delay, even in the absence of neuronal
firing (Silvanto, 2017; Sreenivasan et al., 2014; Mongillo et al., 2008;
Stokes, 2015). This dispute comes at a time when it is also becoming
clear that working memory (WM) is not a homogeneous store. When we
hold multiple items in WM, strong attentional effects are apparent. For
example, people are faster and more accurate to recall the last item
encoded, or the last item that was brought to mind (Chun et al., 2011;
Oberauer, 2002; Souza and Oberauer, 2016; Zokaei et al., 2014a). First,
we review how active and silent working memory have previously been
modelled independently, and second, we build a simple neural model in
which sustained firing and activity-silent working memory are re-
conciled as attended and unattended items within memory.

One item in memory, termed the ‘focus of attention’, appears to be
in a privileged state. An item may enter the focus of attention when it is
newly encountered, or if it becomes relevant for subsequent decisions
or actions (Olivers et al., 2011). The identity of the focused item is
decodable using functional MRI and is susceptible to TMS, unlike the

unfocused items which are considered to be stored but in a non-privi-
leged state (Lewis-Peacock et al., 2012; Sprague et al., 2016). In con-
trast, unfocused items are decoded better after their latent representa-
tion is re-activated (Rose et al., 2016; Wolff et al., 2017). These findings
suggest that both active and inactive representations may coexist in
WM, and items can move between these two states (LaRocque et al.,
2014; Postle, 2016; Zokaei et al., 2014b). Computational neural models
of both active (Compte et al., 2000; Zenke et al., 2015) and silent (Mi
et al., 2017; Mongillo et al., 2008) WM have been separately postulated,
but neither type of model on their own accounted for shifts of attention
within WM. In Section 1 we review these models. In Section 2 we
propose a model to account for both persistent activity and silent sy-
naptic storage, that reproduces several neural and behavioral results
regarding the focus of attention within memory, and makes new tes-
table predictions. Section 3 discusses some open questions regarding
models with this dual functional architecture.

1.1. Models of synaptic WM without sustained activity

Rapid synaptic plasticity at the millisecond scale has been used to
explain how a pattern of inputs can be remembered (Fiebig and
Lansner, 2017; Sandberg et al., 2003). In these synaptic models, si-
multaneously-activated neurons become more strongly connected.
Whereas some models have utilized short-term facilitation (Mongillo
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et al., 2008), others have proposed Hebbian plasticity, which requires
coincident firing of presynaptic and postsynaptic neurons (Fiebig and
Lansner, 2017; Sandberg et al., 2003). Short term facilitation permits
weakly-encoded activity patterns to spontaneously reactivate, allowing
partial readout of those patterns (Trübutschek et al., 2017).

Plasticity has long been demonstrated in cortical neuron receptive
fields (Edeline et al., 1993) and may arise through a variety of synaptic
mechanisms (Zucker, 1989; Tsodyks and Markram, 1997; Fischer et al.,
1998; Dittman et al., 2000; Jensen et al., 1996; Malsburg, 1981). In
particular Hebbian learning rules allow associative mappings to be
formed between neurons that are co-active, so that when a partial
pattern is later presented, the original combination of active neurons
can be re-activated, by associative recall. Such short-term Hebbian
plasticity has been demonstrated in pyramidal neurons, is dependent on
postsynaptic NMDA receptors, has a rapid onset after brief stimulation
(e.g. after just 25 spikes over 500ms) and may persist for up to 15min
(Malenka, 1991). Stronger stimulation may lead to facilitation over
longer time scales, which may underlie associative episodic memory
(Burgess and Hitch, 2005; Rizzuto and Kahana, 2001), or long term
memory, which can provide the synaptic backdrop to support an active
WM (Litwin-Kumar and Doiron, 2014, 2014; Zenke et al., 2015). Rapid
plasticity in auto-associative networks can also account for serial recall
of sequences of items (Fiebig and Lansner, 2017; Howard and Kahana,
2002) – including serial order effects such as primacy and recency
(Farrell and Lewandowsky, 2002) – because new information may use
up free space, or overwrite old information (Matthey et al., 2015;
Sandberg et al., 2003).

One model of this kind uses associative plasticity, not between the
co-occuring features themselves, but between the features and a sepa-
rate ‘context vector’. Such temporal context models have been used to
explain episodic retrieval (Howard and Kahana, 2002). In these models,
input patterns co-occurring in time are bound by Hebbian plasticity to a
temporal context — a vector which varies depending on the input itself.

In these synaptic models, the physiological meaning of a neuron’s
firing depends upon its input and output connections. Plasticity in these
models could therefore lead to neurons whose activity represents dif-
ferent things on different trials – a property that we characterize here as
flexible coding. Such models may therefore generate novel testable
predictions about neurophysiological data. However these models do
not produce stable persistent-activity states in feature-selective neu-
rons, which has long been considered a hallmark of WM (Funahashi,
2017).

1.2. Models involving sustained neural firing

In contrast, in sustained activity models, items are held in WM by
virtue of delay-period activity (Compte et al., 2000; Funahashi, 2015;
Funahashi et al., 1989), which relies on positive feedback to allow
stimulus-induced activity to persist or resonate, leading to an “at-
tractor” state. (Chumbley et al., 2008; Wimmer et al., 2014; Zipser
et al., 1993). Although such active maintenance may also depend upon
rapid changes in synaptic weights (Hansel and Mato, 2013; Pereira and
Wang, 2015), the neurons generally retain their selectivity over time.
These models do not generally allow memory recall from a silent in-
active state.

Several non-plastic models have been proposed, in which features
are bound by persistent activity in fixed conjunctive neurons. Fixed
conjunctions may involve a spatial map (e.g. Schneegans and Bays,
2017a), neurons with mixed selectivity (Matthey et al., 2015;
Schneegans and Bays, 2017b) or a “binding pool” (Bowman and Wyble,
2007; Swan and Wyble, 2014). In all these hard-wired models, in-
formation is stored only in the activation of neurons – not in their sy-
napses. They must therefore overcome a combinatorial problem by
employing lower resolutions (over low-level features) for the con-
junctive neurons. These models predict that binding neurons should
exhibit mixed selectivity, as observed in prefrontal cortex

(Parthasarathy et al., 2017; Rigotti et al., 2013). The bottleneck also
allows such models to predict interference errors, and may also account
for some attentional effects on decodability (Schneegans and Bays,
2017a) but they cannot reinstate information that becomes fully un-
decodable from activity. With the exception of the binding pool which
includes token- or pointer-like representations (Swan and Wyble,
2014), these models account for WM primarily as perceptual storage, in
sensory brain areas. They do not explain how other brain areas read out
or decode the stored information. Models involving spatial feature maps
(Schneegans and Bays, 2017b) account also for the privileged role of
spatial features, but they would require an analogous ‘map’ of temporal
context to account for sequential same-location items.

An attractive common feature of several of these active-storage
models is that the statistics of recall errors are accurately explained by
interference, governed by the proximity structure of features within
each dimension (Oberauer and Lin, 2017). Thus, if two items are nearby
on a feature dimension e.g. space or time, they are more likely to be
confused – as supported by behavioural data. In fact, this general result
of Oberauer and Lin applies both to associative context models and the
fixed conjunctive neuron models.

1.3. A new model of WM using a plastic attractor

The present work unites persistent activity attractors with silent
synaptic storage. In our new class of memory model, both active and
silent representations are essential to WM. We propose that persistent
activation serves as the focus of attention that encodes recent activity
patterns into synapses. Rapid plasticity in flexibly-coding neurons al-
lows features to be bound together into objects, with an emergent
property being that the last item is maintained actively. Recent, pre-
viously-attended items are preserved instead in synaptic traces. They
are in a non-privileged state but, importantly, can be re-activated by
partial information.

We propose that attention arises from the interaction between two
distinct types of neural representation: fixed feature neurons, and freely-
conjunctive neurons (Fig. 1A). Feature neurons may be sensory, motor or
conceptual. They have fixed receptive fields or tuning curves – as ob-
served in posterior cortical areas. In contrast, the freely-conjunctive
neurons can rapidly change their connection weights with the feature
cells, and therefore their activity does not represent a fixed feature or
item in memory. Instead, through rapid plasticity on each trial, a con-
junctive cell will come to encode a conjunction of simultaneously active
features, by forming a transient reciprocal associative mapping to fea-
ture-selective neurons.

Persistent activity arises by mutual excitation between feature and
conjunction neurons. The conjunction neurons form a limited-capacity
store that can hold many kinds of information in one place. Thus, our
model bridges the gap between neuron-level descriptions and the psy-
chological notion of a general-purpose register, sometimes termed a
“memory slot” (Cowan, 2010; Luck and Vogel, 1997), a concept which
has not as yet been characterized at the level of single prefrontal neu-
rons. Such registers are difficult to explain unless individual neurons
can encode different types of WM content at different times. Our model
permits this by allowing rapid synaptic changes so that conjunctive
neurons can represent many kinds of information, depending on the
recent context.

We suggest that two lines of evidence point to such conjunction
neurons being located in prefrontal cortex (PFC): firstly, PFC is highly
active in memory and manipulation (Eriksson et al., 2015; Postle et al.,
2006), yet secondly, information is not always easy to decode
(Christophel et al., 2012; Cogan et al., 2017; Kamiński et al., 2017).
Although WM contents can undoubtedly be decoded from many PFC
neurons, about 60% of prefrontal neurons appear to be nonselective,
and even for those that are selective, they often show less than a 50%
modulation of their firing rate by information in WM (Miller et al.,
1996; Parthasarathy et al., 2017). This apparently-nonselective

S.G. Manohar, et al. Neuroscience and Biobehavioral Reviews 101 (2019) 1–12

2



component of prefrontal activity could reflect transient and flexible
coding by conjunctive units.

We first aim to provide a single common mechanism accounting for
a diverse range of perplexing attention and memory effects. Second, we
attempt to explain neurophysiological data where items in memory
initially produce persistent activity, which then falls “silent” when at-
tention shifts to new information (Konecky et al., 2017), and why
sometimes “inverted” representations of unattended information may
be decoded. Third, we aim to explain why many imaging studies con-
clude that attention and working memory are “distributed” processes
involving both prefrontal and sensory brain areas (Christophel et al.,
2017; Gayet et al., 2017, 2017; Xu, 2017) that also explain how WM
enables us to encode and execute task rules. In our simulations, we
chose to examine the extreme situation where conjunctive neurons are
fully nonselective for features. This limiting scenario is of course im-
plausible, since no single prefrontal neuron could receive input from
every feature neuron. However we argue that it is a highly illustrative
paradigmatic case. In reality prefrontal neurons will necessarily have
some degree of selectivity, but here we focus only on characterizing the
novel concept of how rapid plasticity can give rise to flexible coding,
and therefore we model purely conjunctive neurons as distinct from
feature-selective neurons.

2. Simulation of a generic feature binding model

2.1. Operation of the model

When a stimulus is perceived (Fig. 1B; Movie S1), conjunctive
neurons compete through lateral inhibition to become active in

response to the combination of active features. In the example shown in
Fig. 1 the conjunction units learn rapidly to encode combinations of
color, orientation and location (Fig. 1B.2). During encoding into WM,
the winning conjunctive unit sustains the activity of all co-active fea-
ture neurons through mutual excitation. This strengthens synapses in
both directions through rapid Hebbian plasticity, further stabilizing the
active pattern. Once a conjunctive unit succeeds in reciprocally acti-
vating a set of feature units, we say that attention is focused on the ac-
tivated features, binding the features of a compound stimulus into a
perceptual object.

The reciprocal feature-to-conjunctive synapses keep the novel
combination of features persistently active, even when the stimulus is
no longer present (Fig. 1B.3).

When a new stimulus arrives, a new pattern of sensory input de-
stabilizes internal activity, shifting activity away from the attractor
carved by the first object. A new conjunction may win and form another
attractor state by plasticity, which in our model amounts to shifting the
focus of attention to the newly activated feature pattern. Crucially,
however, synapses between the previous object’s constituent features
and one particular conjunctive unit remain strengthened even after
those neurons fall silent (Fig. 1B.4). Thus, presenting any one feature of
a previously attended object (e.g. color, as shown in Fig. 1) will act as a
memory probe, re-activating the corresponding conjunction neuron
(Fig. 1B.5), and therefore also the other features that were associated
with it (Fig. 1B.6). The object’s features are therefore recalled by auto-
associative pattern completion, which brings them back into an at-
tended, foreground state. Separate objects must always be encoded
sequentially, which we suggest is plausible in light of the empirically
observed attentional bottleneck in feature binding (Reynolds and

Fig. 1. Conjunctive neurons form a plastic attractor to support attention and working memory.
A Two populations of neurons are distinguished based on their inputs. Posterior neurons (green) encode sensory-motor features, whereas prefrontal neurons (blue)
are “conjunctive”: i.e. they are able to rapidly increase or decrease their synaptic connectivity with patterns of feature neurons, using a Hebbian associative rule. We
simulated 12 feature-selective neurons (f) and 4 freely-conjunctive neurons (c). An active combination of neurons (pink) causes strengthening of synapses in both
directions, producing a stable attractor across brain areas. c=conjunctive cells, f=feature cells. W= synaptic weights, i=sensory input.
B Sequence of proposed neuronal events during attention, encoding and retrieval in working memory. 1. Sensory input activates features. In this case a vertical red
bar located at the top left of the display activates separate feature neurons tuned to orientation, color and location. 2. Features excite conjunctive neurons, which
compete. 3. The winning conjunction drives sustained activity. 4. New input to the system (in this case an oblique purple bar at bottom left) disrupts current firing
activity, but synaptic weightings remain. 5. Probe feature (in this case red colour) re-activates the original conjunctive unit that encoded the red vertical bar. 6.
Conjunctive unit re-activates original features, completing recall.
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Fig. 2. Predicting visuospatial WM capacity, encoding and decay.
A To simulate WM performance, four objects are presented sequentially, by activating feature neurons (f, activity depicted as a heatmap from dark blue to red)
indicating the color, orientation and location of each item. Conjunctive units (c) are shown below as four differently-colored traces. Conjunctive units compete to
become active for each object. One conjunctive unit wins for each object, driving activity that persists even after input is removed (yellow parts of heatmap). At the
time of the probe, a single feature is stimulated, triggering pattern completion. Recall is accurate if the orientation of the corresponding item is re-activated. Two
example trials are shown; note that different patterns of conjunctive units are activated on different trials even for the same stimuli, depending on trial history.
Example 1: good encoding. Example 2: weak encoding of the second item. Two conjunctive neurons with similar recent preferences compete to encode object 2
(arrowhead). When it is probed, item 4 is reported instead.
B & C When more items are encoded in the model, recall accuracy is reduced, as observed in data (adapted from Luck and Vogel, 1997).
D & E The last item encoded in the model is recalled better than others, as it remains active in the focus of attention during the delay period, matching observed serial
order curves. Figure adapted from (Gorgoraptis et al., 2011) indicates the probability of reporting the target item as calculated by fitting the distribution of responses
in a similar task.
F&G Shorter encoding durations reduce modelled recall accuracy. Data from a similar task (adapted from Bays et al., 2011b) where adding items reduced both initial
encoding rate and asymptote. The model qualitatively reproduces the interaction observed in human performance.
H & I The model predicts faster memory decay when more items are stored. This matches the empirical interaction between memory-set size and delay. Data adapted
from (Pertzov et al., 2016) shows the modelled probability of reporting the target. Note that at very short delays, model recall was more accurate than in human data.
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Desimone, 1999).
To demonstrate the power of the model, we simulated a common

visuospatial WM task (Fig. 2A) in which participants remember the
orientations of a set of colored bars (e.g. Gorgoraptis et al., 2011;
Pertzov et al., 2016). Neurons were modelled as firing-rate units
obeying a Hebbian plasticity rule (see Methods). Memory items were
composed of combinations of features, and up to four unique items
were presented sequentially to the feature units. After a delay, we
probed one of the items by activating its color-feature alone, and re-
cording whether its orientation was subsequently re-activated. Re-
markably, just four color, orientation, location and conjunctive neurons
each are needed to explain a wide range of behavioral and neurophy-
siological data, which no models have yet captured (Table S1).

Crucially both the activation and learning equations were im-
plemented continuously over a block of trials, with blank input in be-
tween trials, so that encoding, recall and interference from the previous
trial all arose naturally from the way stimuli were presented. We tuned
the model to perform at levels comparable to humans at this task (see
Methods).

For clarity, here we elected to keep the model’s operation almost
identical for all the simulations, even though the experimental data we
match come from a variety of tasks and measures. Although it is pos-
sible to adjust the numbers of features, synaptic and learning para-
meters and timings to reproduce each individual experiment, this per-
mits many degrees of freedom. Thus we believe that showing that a
single generic model can qualitatively reproduce all the effects makes
clear the capabilities and limitations of the basic model. Moreover, we
wished to emphasise that features within the model could also map to
non-visuospatial attributes – such as motor or conceptual representa-
tions.

First we confirm the network can qualitatively produce standard
working memory effects; second, we demonstrate the novel features of
the model regarding the focus of attention; third, we show that the
model accounts for neural data from multi-item WM; and finally, we
make some novel predictions and show that model could be extended to
implement task rules.

2.2. Capacity limits and serial order in WM

A key feature of WM is its limited capacity. The more items held in
memory, the less accurately they are remembered (Luck and Vogel,
1997; Bays and Husain, 2008). Simulated recall accuracy (Fig. 2B)
matched the set-size effect from classical visuospatial WM experiments
(Fig. 2C). This is because each additional stimulus competes for con-
junctive neurons, and may corrupt or overwrite synaptic traces of
previously-seen objects. Whether a previous item is overwritten is de-
termined by how well the currently-active features match the existing
synaptic weights, which are themselves continuously subject to Heb-
bian rules. Therefore in our model, capacity is limited by interference
between items in memory, similar to several previous psychological
models (Howard and Kahana, 2002), in line with convergent evidence
from multiple WM domains (Almeida et al., 2015; Farrell et al., 2016;
Oberauer and Lewandowsky, 2014). Note that with our canonical ex-
ample parameters, accuracy is lower than the illustrated data because
the model chooses between four options rather than two, but varying
the model parameters can make it arbitrarily more accurate (Fig.
S8,S9). Moreover the capacity limit is not simply determined by the
number of conjunctive neurons, and can be adjusted by tuning the level
of inhibition if more conjunctive neurons are used (Fig. S14).

Importantly the model predicts the counterintuitive finding that
storing extra features on different dimensions within a single object
either occurs automatically (Allen et al., 2006) or else may incur a
smaller cost than a separately-encoded feature (Luck and Vogel, 1997) –
although other studies have demonstrated that extra features do impose
costs (Oberauer and Eichenberger, 2013). Our model predicts that
primacy effects may be stronger when adding an irrelevant but

distinguishing feature to each object (Fig. S7). Controversially, some
studies indicate that objects form fundamental units (Hardman and
Cowan, 2015; Luria and Vogel, 2011), whereas others suggest show
that the features of an object can be forgotten independently (Bays
et al., 2011a; Fougnie and Alvarez, 2011; Wang et al., 2017). Our model
predicts a mixture of feature-based and object-based forgetting (Fig.
S17).

2.3. Serial order effects

When we remember a sequence of objects, we recall the first and
last objects better (primacy and recency). Our model can reproduce
both of these effects. Simulated performance (Fig. 2D) matched the
serial position curve obtained in WM experiments (Fig. 2E). The si-
mulation suggests that neutrally, primacy benefits arise because the
first object in a trial does not need to compete with ongoing persistent
activity from a previous item (Fig. 1B4). In our model this relies on the
fact that, at the start of each trial, feature units are inhibited but pre-
vious synaptic weights are not erased – though there is no explicit
signal to forget items from the previous trial. Recency benefits arose for
two reasons. First, the finally-encoded item did not incur retroactive
interference from subsequent items, whereas previous items are cor-
rupted by interference when subsequent items are encoded. Second, the
final item remains in an active state rather than a silent state during the
delay. Note that our plasticity rule has no explicit temporal decay.
Because capacity limits are generated through interference, we only
require that the plasticity lasts longer than the memory delay (Fig. S11).
Serial position effects are strongly disrupted when items share features
(Fig. S16).

2.4. Encoding and maintenance

The time-course of encoding was interrogated by presenting items
for brief durations, and demonstrated exponential saturation with an
asymptote dependent on the number of items encoded. In a similar
empirical study (Bays et al., 2011b), memory precision (1/standard
deviation of response angular error) followed a similar pattern. In that
study, the probability of choosing the target was not calculated, but
their reported precision appears to correspond well to our model’s
probability of reporting the correct target orientation (Fig. 2F&G). Ac-
curacy and precision are not guaranteed to be equivalent measures
however.

Simulations demonstrated that memory deteriorates faster when
increasing numbers of items are remembered (Fig. 2H&I), as shown in a
recent study (Pertzov et al., 2016). This arises because a greater pro-
portion of items are held in an unattended state. Unattended items are
more vulnerable to interference, because their synapses are gradually
weakened over time. This occurs not because of any specific decay rule,
but rather because the plasticity rule operates continuously to alter all
synaptic weights, and this ‘erodes’ the representations that are not
currently active, such that all non-attended features become more
homogeneously connected to the non-attended conjunctive neurons
(see Supplementary Video). Memory items therefore interfere with each
other during the delay. Our model also makes the strong prediction that
an item stored in an attended state (e.g. the final item in a sequence) is
more robust to decay over time. For very short delays, the last item was
recalled even better (akin to an “iconic” effect, Fig. S13), an effect that
was not seen in human data.

2.5. Shifting the focus of attention

An important advance over other models, is the ability of our model
to re-activate a previous item by bringing it into the focus of attention.
The logic here is that sensory input can guide attention by pattern-
completion. In behavioral experiments, an “incidental” task inserted
into the memory delay can shift attention to one of the items in memory
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(Fig. 3A) (Zokaei et al., 2014a) bringing it into the foreground. We si-
mulated “retro-cueing” one of the items during the memory delay by
presenting one of its features for a brief period, which brought that item
back into the focus of attention (Fig. 3B). The external cue could thus
re-activate a memory item which was previously encoded silently. Note
that this simulation illustrates how feature-selective units can exhibit
task-dependent modulation because they also receive non-sensory input
through rapidly-plastic synapses from the conjunctive units.

Recall of the incidentally-cued item improved, compared to the
uncued item (Fig. 3C), matching experimental data (Fig. 3D). This at-
tentional shifting also explains how cues that indicate which item will
be probed (predictive retro-cues, Rose et al., 2016) improve perfor-
mance.

2.6. Recall

After the probe feature was activated, it took a number of time steps
for the conjunction and response feature units to become active. We
measured this time to obtain reaction time predictions, which varied
inversely with accuracy similar to empirical data (Fig. S1).

The process of recall may also be susceptible to interference, be-
cause it effectively uses pattern completion to re-activate the other
features of the corresponding object. In particular, the memory probe
itself can interfere with recall, for example if it contains a feature on the
dimension that needs to be reported (Fig. S2), in line with empirical
probe-interference effects (Souza et al., 2016). Items in the focus of
attention are protected from probe interference, presumably because
they do not need to be brought back from an inactive state (Makovski
et al., 2008; Wang et al., 2018; Tabi et al. 2019) Interference of another

Fig. 3. Shifting the focus of attention in WM.
A Experiment (Zokaei et al., 2014a) where participants remembered two items, each comprising three features: color, location and orientation. During the retention
interval, a color was shown, and as a secondary task, the location of the corresponding object had to be recalled. At the end of the delay, a color was shown which
could indicate the same (“congruent”) or different (“incongruent”) object than the one tested during the delay. Participants then reported the orientation of the
corresponding object. Reproduced under the terms of the Creative Commons Attribution 3.0 Unported (CC BY 3.0) license (https://creativecommons.org/licenses
/by/3.0) from Fig. 1A of Zokaei et al. (2014a), The Journal of Neuroscience. January 1, 2014. 34(1);158–162.
B Similar events were simulated, with an incidental cue (IC) during the delay. If the first object was cued, then persistent delay activity shifted to the cued item.
C&D The model predicts that the item in the focus of attention before recall is reported more accurately, matching data. Probability of target from mixture model
fitted to data of Zokaei et al. 2014.
E Decoding direction of object 2 from feature-selective units during the delay, on trials where the first item was cued (IC). Decodability is low but still above chance
after the cue, with below-chance performance of a cross-decoder trained on trials where the second item was cued (full analysis Fig. S12).
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kind arises when recalling items as a whole series: often the preceding
or following item is reported instead (Smyth, 1996; Solway et al.,
2012). Although our simulations probe a single item at a time, they still
demonstrate such “transposition errors”, where consecutively presented
objects are confused (Fig. S3).

2.7. Neural encoding of items in WM

Three major predictions emerge about neural decoding. First, an
emergent property of our framework is that sustained activity re-
presents a single item held in memory (Funahashi, 2017), but not
multiple items (Lara and Wallis, 2014). We used a linear decoder to
extract information about one feature of one of the items in WM, after
items had been encoded. The predictions of the model for decodability

from feature-selective neurons (Fig. S4) are in keeping with human and
nonhuman physiological data demonstrating that only the attended
WM item is decodable using standard techniques (Konecky et al., 2017;
Lewis-Peacock et al., 2012; Sprague et al., 2016). Second, evoking
neural activity by stimulation can restore decodability from EEG signals
(Rose et al., 2016; Wolff et al., 2017). We simulated transcranial
magnetic stimulation (TMS) by an indiscriminate pulse of activation to
feature neurons (Fig. 4A), and decoded one feature dimension from
feature-selective units (Fig. 4B). If the model’s color and orientation
feature dimensions are considered as mapping to spatial location and
stimulus category respectively, then the simulation matches the effects
of TMS on decoding (Fig. 4C) (Rose et al., 2016), or if they are instead
mapped to spatial location and orientation, then the model’s results
reproduces the effects of a high-energy visual pulse (Wolff et al., 2017).

Fig. 4. Introducing a pulse of excitation during the delay period.
A After presenting two items, during the delay all feature neurons
f received an excitatory input pulse i=+1, consequently acti-
vating conjunction neurons.
B&C We tried decoding the identity of each of the two stimuli
from feature neuron activity. Although the first object was not
decodable without the pulse, it became transiently distinguish-
able (*) after the pulse. This matches the observed increase in
decodability after TMS (Rose et al., 2016).
D&E Stronger pulses altered model performance, abolishing the
benefit for the second item, which was in the focus of attention.
The pulse disrupted persistent activity, re-instating competition
between conjunctive neurons. This results in randomly re-se-
lecting which of the stable states of the plastic attractor is active.
The prediction matches observed effects of TMS targeting motion-
selective cortex (probability of selecting the target in mixture
model fitted to data from (Zokaei et al., 2014a).
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Simulating a stronger pulse of stimulation disrupted attention, but not
synapses. This worsened recall of the attended item, yet contrarily
improved unattended items (Fig. 4D&E), precisely as demonstrated
empirically (Zokaei et al., 2014a).

We were initially surprised to note that even when the second item
is in the focus of attention, during the delay period, decoding for the
first item is still above chance. We therefore employed ‘cross-decoding’
to examine whether an item is encoded in the same way when it is
attended vs unattended (Fig. S12). The accuracy with which a classifier
could decode an item from the activity of feature neurons fell con-
siderably below chance when training on attended and testing on un-
attended representations, and vice versa. Thus, unattended items were
encoded in an ‘inverse’ pattern to the attended items. Why should this
be? In our model, feature neurons of items not in the focus of attention
are inhibited by the mutual competition in that layer. This led to a non-
specific inhibition of the unattended three features in each dimension.
Moreover, conjunctive neurons for unfocused objects are also inhibited
by competition, leading to selective inhibition of neural pattern corre-
sponding to the unattended item. Remarkably, several studies in recent
months have suggested this “representational inversion” phenomenon
can be observed in human imaging data (van Loon et al., 2018;
Rademaker et al., 2018; Yu and Postle, 2018).

Third, the model predicts that decoding from prefrontal cortex is
unreliable (Lee and Baker, 2016). This is because the concept of a re-
ceptive field breaks down for conjunctive neurons. The same activity
can have different meanings on different trials, dependent on residual
synaptic weights from previous trials. Such neurons should show much
stronger representations over short timescales. We predict this will
manifest behaviorally, with better recall for a feature combination
present on the previous trial (Fig. S5), because the same conjunction
unit will be re-used. Moreover, neural activity patterns in conjunction
neurons predict stimuli strongly if we consider data only from con-
tiguous pairs of trials, compared to data from temporally-separated trials
(Fig. 5A), and the pattern similarity should be even lower when inter-
vening stimuli involve a recombination of the features (Fig. 5B–D). This

confirms that each conjunctive neuron’s activity represents different
things, as its synaptic weights change. Such a system can flexibly en-
code a broad variety of novel information rapidly, without incurring the
combinatorial explosion that haunts previous fixed-selectivity models
(Matthey et al., 2015; Postle et al., 2006).

2.8. Simulation of task sets

The same system can also implement stimulus-response rules, if
some feature neurons represent motor plans. In this case, we encode a
task rule by attending to a stimulus and a motor plan together. For
example, if a left-hand movement plan is activated while a red color-
feature is simultaneously activated, they will be encoded together into
working memory. The conjunction of sensory features with a motor
plan creates a task-set mapping (Duncan et al., 2012). Later, that sti-
mulus can also re-activate the corresponding motor plan by pattern-
completion, triggering the movement – so that the stimulus generates a
response. Task sets can therefore be rapidly formed by sequentially
attending to stimulus-response pairs (Curtis and D’Esposito, 2003), and
deciding on an action is simply the motor analogue of WM recall.

To simulate stimulus-response mapping, we presented the task rules
sequentially, each consisting of a pairing between one color and one
response (Fig. S6A). Then on each subsequent trial, a single color from
the set was shown, and the response was recorded. The model re-
produces Hick’s law, in which response times are longer in situations
when more response options are possible in the current task set (Fig.
S6B) (Proctor and Schneider, 2017). It also produces faster reaction
times when the response is repeated from the previous trial (Fig. S6C),
in line with experimental evidence (Schvaneveldt and Chase, 1969).

In this situation, the role of prefrontal conjunctions can be viewed as
controlling representations in posterior cortex, i.e. routing information
from perceptual to motor representation as governed by task sets held
in working memory, a role classically assigned to executive/supervisory
attention. Critically the model predicts that, because the task rules are
held in WM across many trials rather than being repeatedly

Fig. 5. Conjunctive unit representations are stable over short timescales.
Conjunctive units change their selectivity over short periods. If selectivity were stable, neural patterns should be similar when the stimulus is the same. We compared
similarity of the pattern of an earlier trial, to trial n, during the delay periods of a series of 1-item trials.
A) The similarity of the conjunctive neurons’ delay activity pattern is calculated for trials where the stimuli were identical (blue line) or different (red line). Patterns
were more similar when stimuli were the same, compared to when stimuli were different, indicating “classical encoding” at least for nearby trials. This classical
behavior decreased with the temporal distance between trials. Since we modelled the extreme case where neurons are purely conjunctive, with no feature selectivity,
consistency of pattern is completely abolished after about 6 trials.
B-D) The model predicts that interference reduces pattern similarity over time by overwriting the synaptic weights. If the objects in intervening trials share one
feature with the nth trial object, but mismatch on the other feature dimension, then we say the conjunction between the two feature dimensions is “violated”.
B) When the intervening trial contained a violation, the patterns on the n-2 and nth trials reflected the stimuli much more weakly, indicating interference or
overwriting of the original conjunction.
C and D) Trials 3-back and 4-back were similarly examined, this time asking how many intervening conjunction violations occurred. The more overwriting that
occurred between the n-3 and nth trials, the less classical encoding could be observed.
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overwritten, the current stimulus and response (i.e. the active task rule)
are consistently decodable from conjunctive neurons, until the rules
change (Fig. S6D). This contrasts with WM storage, where frequent
overwriting leads to poor decoding, and may explain why task rules
have generally been easier to decode from PFC (Reverberi et al., 2012;
Sakai, 2008).

2.9. Simpler models

To investigate the necessity of various components of our model, we
compared the full model with three variants with simpler assumptions.
First, we examined a model that used non-Hebbian short-term facil-
itation at synapses between the feature and conjunctive neurons. With
the small number of fully-connected neurons in our model, this is un-
able to generate stable persistent activity because facilitation is not
synapse-selective (Fig. S10A). Second, we removed plasticity from just
the conjunctive-to-feature neurons. This network was able to produce
stable persistent activity, but was unable to re-activate appropriate
features during recall, because the reciprocal synapses back to the
feature neurons did not develop appropriate selectivity (Fig. S10B).
Third, we examined a model without conjunctive neurons, but with
Hebbian plasticity directly between feature neurons. This model was
able to produce sustained activity, and could shift attention between
items in memory. It accounts for set size and some aspects of the serial
position curves, but did not produce interference between memory
items during the delay (Fig. S10C). Moreover, without conjunctive
neurons, we are unable to predict prefrontal activation during WM
tasks, or the possibility of activity without apparent selectivity.
Conjunctive neurons also potentially allow for extending the model to
support gating of distractors and internally-driven shifts of attention,
without invoking extensive prewired connectivity between feature-se-
lective neurons and prefrontal cortex or thalamus. For these reasons, we
conclude that a combination of Hebbian plasticity and flexibly con-
junctive neurons are critical components for our particular model.

3. Discussion

The model of freely-conjunctive neurons presented here accounts
for both sustained firing and activity-silent synaptic traces in WM
(Silvanto, 2017; Stokes, 2015), and consequently makes a range of
testable behavioral and neural predictions (Table S1). This neuronal
framework provides a parsimonious mechanism for feature binding,
general-purpose memory ‘slots’, and task sets. The model reproduces
classical WM effects of capacity, serial order, encoding rate, temporal
decay (Fig. 2), reaction times, and transposition errors (Figs. S1&3), as
well as the ability to switch attention between items within memory – a
phenomenon that evades most current models (Fig. 3). At a neural
level, it explains why it is difficult to decode memory contents from
prefrontal activity, why only the item in the focus of attention can be
decoded elsewhere (Fig. S4). Further it explains why decodability can
be restored by re-focusing an unattended item, or after a perturbation
such as transcranial magnetic stimulation (TMS) or bottom-up input
(Rose et al., 2016; Wolff et al., 2017), which presumably re-activate the
conjunctive neurons and thus an object’s features through synaptic
traces (Fig. 4). The model also makes strong novel predictions about
probe interference, trial-to-trial effects (Figs. S2&5), and disruption of
neural pattern similarity by intervening stimuli (Fig. 5).

3.1. Flexible neural codes

One strength of our model is that it allows pattern completion using
flexible attractors, potentially providing a mechanism for mapping in-
formation in WM to appropriate responses, via changes in the focus of
attention.

To support flexible attractor states, we postulated two distinct
modes of neural representation (Fig. 1). First, feature-selective neurons

are traditional, place-coded (“labelled-line”) units. They are selective
because they have some fixed, non-plastic inputs (or in the case of
motor units, fixed outputs). But if plasticity modifies both the input and
output synapses of a neuron, the meaning or interpretation of a neu-
ron’s firing will also change. This is simply because neurons code in-
formation only in virtue of their inputs and outputs. Plasticity therefore
begets a new category of flexibly-coding neurons, where the informa-
tion signaled by firing is protean and dependent on the history on each
trial. Decoding the fine-grained identity of stimuli from prefrontal
cortex is unreliable compared to posterior sensorimotor regions (Cogan
et al., 2017; Lee and Baker, 2016), because the idea of a receptive field
breaks down. Standard decoding methods assume trial-to-trial stability
of activation patterns to represent a given feature, and so do not
measure the sequential effects we predict.

This flexible coding scheme is crucial for our model to generate two
phenomena. First, it permits sustained activity that is guided dynami-
cally by task sets or objects in memory, which we postulate corresponds
to attentional interactions between frontal and temporo-parietal re-
gions. Second, because individual neurons can encode different things
at different times, information must compete to be encoded by any
conjunctive neuron – thus leading to a capacity limit for general-pur-
pose information storage, observed in both WM and attention. This may
help resolve a long-standing theoretical debate on whether working
memory consists of pointers, or activated long-term memory (Norris,
2017): conjunctive neurons act as pointers that activate long-term
memories. If the inputs to feature-selective neurons are governed by
long-term memory, then their activity may convey abstract conceptual,
configural or statistical information about the world, which could then
also be flexibly controlled by conjunctive neurons. For example, it
would be possible to store arbitrary associations–for example, “if you
see a platypus, touch your nose with your left hand”, by holding the
neurons active during the encoding of the rule that are selective for
platypuses, moving the left hand, and targeting the nose.

The conjunctive neurons in our model mathematically resemble
temporal contexts (Howard and Kahana, 2002), but those models have
focused on behavioral effects in list recall. They do not explicitly keep
one item in a privileged state, and make few direct neural predictions.
Unlike the temporal context model, our model does not account for
working and episodic memory in a single framework.

3.2. Relaxing the model’s assumptions

In this study we deliberately chose to study the simplest possible
model that could support conjunctive neurons. The very small number
of neurons, and their simple learning and dynamics, makes it much
easier to see how they interact to generate the novel predictions.
Moreover it is much more transparent where the model can or cannot
match existing data. Naturally there are many directions in which the
model needs to be extended, to fully reproduce the phenomena ob-
served in real neurons. A number of its assumptions can plausibly be
relaxed.

3.3. Pure flexible and stable representations

For simplicity we have treated conjunctive neurons as “pure”: i.e.
that they are homogeneous and domain-general, resulting in inability to
decode information across many trials. This architecture parallels the
psychological notion of a memory slot. However it is certainly im-
plausible because all-to-all connections between PFC and feature-se-
lective neurons are not feasible. Moreover, how can we then explain
studies that do demonstrate decoding of WM from prefrontal areas? In
reality, we envisage that each conjunctive neuron is likely to receive
inputs from only a subset of feature neurons. In order for conjunctive
neurons to bind features into objects, these inputs must at least include
multiple feature dimensions and multiple features in each dimension.
The model is therefore potentially compatible with the presence of
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mixed selectivity (Rigotti et al., 2013), which would provide a back-
ground of weak input selectivity based on the presence or absence of
connections, upon which rapid plasticity is superimposed. This means
that the variable selectivity predicted by the model (Fig. 5) would not
be as strong in real neurons, and indeed single-unit studies do suggest
considerable stability in monkey prefrontal cortex, at least when
averaged over many trials (Freedman et al., 2001; Rainer et al., 1998).
We note that stable mixed selectivity, even without plasticity, could in
some situations produce binding and capacity limits (Matthey et al.,
2015). However without additional mechanisms, it would presumably
not account for attentional shifts, activity-silent storage, or apparent
control over posterior cortical areas, and moreover it complicates many
accounts of how other brain areas would ‘read-out’ WM contents.

Further, there may also be significant topography in conjunctive
cells connectivity, which we have neglected. For example, different
regions of prefrontal cortex may be specialized for remembering dif-
ferent kinds of information (Romanski, 2004). This may have two de-
sirable consequences. First, aspects of the attended object – especially
information that is highly topographical in posterior areas, such as
stimulus category and spatial location – would be consistently decod-
able from prefrontal cortex (Lee and Baker, 2016) but will be modu-
lated by relevance (Kornblith and Tsao, 2017). Second, conjunctive
neurons in different prefrontal subregions may connect preferentially to
visual, motor or auditory cortex, which could account for the separ-
ability of visuospatial and phonological WM and also their overlap
(Morey et al., 2011). One concern with freely-conjunctive neurons is
that, in order to allow truly arbitrary information or instructions to be
stored, they would need an implausibly large array of hard-wired in-
puts. These concerns might be allayed by including topography, e.g.
intermediate layers of flexible but more domain-specific conjunctive
neurons.

Some studies show that more than one item can be prioritized and
recalled better. Does this indicate that attention can highlight more
than one item at a time (Cowan, 2011)? Some recent findings suggest
there may be two or more “foci of attention” (Christophel et al., 2018;
Sutterer et al., 2018). Our model may still be compatible with some of
these findings, as it predicts graded benefits for more than one item.
Recently-focused items have facilitated synaptic weights, even though
only one item is technically held in an active state. An alternative
strategy might be to directly permit multiple foci of attention within
this model. To do this, conjunctive neurons could be partially segre-
gated, which in theory could generate more than one focus of attention
(although this would require reduction of inhibition between features,
and would significantly disrupt encoding).

We treated “features” as just simple perceptual attributes, but we
believe that our class of feature-selective neurons could include any
aspect of the world that is encoded in a stable way, including those
aspects that incorporate long-term knowledge, such as object identity,
category, or even linguistic information such as word meanings. These
attributes are likely to be encoded stably in posterior cortical areas, in
contrast to the temporary combinations of information represented in
an ephemeral way – e.g. for online manipulation – as typified by our
conjunctive neurons. The current simulations used only a single, rapid
learning rate, but it remains to be studied how this could be reconciled
with longer-term learning.

Biological sensory neurons encode perceptual features on a con-
tinuous domain, with overlapping neural selectivities; however the
present model used only a few discrete features. It would therefore be
important to confirm that our model could also be extended to con-
tinuous feature domains, to predict the range of proximity phenomena
accounted for by other models (Oberauer and Lin, 2017). Moreover,
unlike our model, visual representations in posterior cortex are ar-
ranged spatially, such that space is a fundamental component of all
other feature representations. In its present form, our model does not
account for the unique role of space in visual WM (Pertzov and Husain,
2014; Wang et al., 2016), but we argue that its simpler form better

explains how a single architecture could hold generic, content-general
information in WM.

3.4. Internal control over attentional shifts

We have assumed that attentional shifts are externally cued.
Endogenous shifts of attention are not modelled. One way of im-
plementing internally-generated attentional modulation would be to
de-stabilize the persistent activity by adding delayed suppression, or
refractoriness, to the competitive conjunctive neurons. The result would
be that, after an object is attended, its activity is extinguished after a
delay, leading to a transient and unstable focus of attention. Akin to
some models of visual attention guidance (Itti and Koch, 2001), at-
tention may then be successively re-deployed towards weaker-re-
presented features in WM. This would be needed to account for three
key phenomena: (a) rehearsal, in which attention moves sequentially
between items during a memory delay, (b) the ability to free-recall WM
items in order, and (c) to permit serial encoding of a simultaneously-
presented memory array. Our model currently relies on each object to
be presented or attended sequentially, like the temporal context model
(Howard and Kahana, 2002).

Although WM maintenance commonly engages PFC, evidence from
neuropsychology and functional imaging suggests PFC’s role includes
cognitive control, WM manipulation, and response selection, rather
than simply WM storage (Bechara et al., 1998; D’Esposito and Postle,
1999; Rowe et al., 2000; Thompson-Schill et al., 2002), and it remains
to be tested whether the conjunctive neurons we propose can perform
such functions. For example, we cannot account for the ability to “gate
out” distractors, and prevent them from being encoded in WM. How
could irrelevant distractors be ignored, while still allowing relevant in-
puts to capture attention? To achieve this, conjunctive units would
themselves need to be under higher-level control. The current model,
with only one layer of conjunction units, does not explain higher order
control of attention, since sufficiently-strong bottom-up stimuli that
match a conjunction will always tend to re-activate that conjunction
and thus capture the focus attention. The conjunction and feature
neurons together simply act as a “matched filter”, amplifying patterns
that have recently been active (Chrysikou et al., 2014; Hayden and
Gallant, 2013). The model also cannot yet perform n-back tasks, where
a decision must be made regarding items presented earlier in a se-
quence. After an item is presented, attention seems to shift back to
previously-presented items (Greene et al., 2015). Perhaps gating vs
granting access to working memory by preventing this might be con-
trolled by interactions between prefrontal cortex and the basal ganglia
(Badre, 2012; Chatham et al., 2014).

In some studies, activity-silent representations have been associated
with so-called non-conscious WM. In this phenomenon, the identity of a
subliminal masked stimulus can be guessed above chance despite re-
ports that no stimulus was seen, and despite an intervening distractor
(Soto et al., 2011). This non-conscious storage has been accounted for
by storage in synaptic weights (Trübutschek et al., 2017), in line with
non-conscious episodic memory (Chong et al., 2014). This contrasts
with our model, however, in which information in synapses can be fully
reactivated and brought back into the focus of attention, and would
thus presumably be reportable.

3.5. Location of conjunctive neurons and their plasticity

Conjunctive-coding neurons might not be confined to prefrontal
cortex. Other regions that play a role in working memory, such as the
hippocampus, basal ganglia or thalamus, might also contain freely
conjunctive neurons. Moreover, there may be a continuum or overlap of
mechanisms subserving working memory and episodic memory (Fiebig
and Lansner, 2014). Quite unlike the long-lasting episodic encoding
proposed in the hippocampus, however, the volatile synaptic weights
we propose would produce strong but evanescent trial-by-trial
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selectivity changes (Fig. 5). A more intriguing possibility is that both
freely-conjunctive and stable-feature neurons are actually present in the
same brain regions, with a spectrum between highly-plastic and stably-
coding neurons.

The Hebbian rule we use could share mechanisms with long-term
potentiation (LTP). Stimuli too weak to elicit LTP can still elicit sy-
napse-specific potentiation that decays over minutes, sometimes termed
“short-term potentiation” or “relatively short-lasting LTP” (Malenka
and Nicoll, 1993; Frey and Morris, 1998). This potentiation differs from
post-tetanic potentiation and short-term facilitation (Jin et al., 2011) in
that it includes a postsynaptic component (Huang et al., 1992). This
kind of rapid-onset, postsynaptic-dependent plasticity is sufficient for
our WM model to operate (Fig. S11), irrespective of whether it decays
over minutes or not. Fewer studies have quantified postsynaptic po-
tentiation in PFC, but those that have show similar effects: a single
500ms train produces 130% facilitation lasting 20min, which is NMDA
dependent and modulated by dopamine (Huang et al., 2004).

In summary, a single architecture captures both persistent activity
attractors and silent synaptic memory. We introduce a new scheme of
transient flexible neuronal coding, that can support many empirical
phenomena (Tables S1/2) including the “focus of attention”, and gen-
erates numerous testable neural predictions.
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