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a b s t r a c t

We provide an introduction to the estimation of discrete choice models when choice
sets are heterogeneous and unobserved to the econometrician. We survey the two most
popular approaches: ‘‘integrating over’’ and ‘‘differencing out’’ unobserved choice sets.
Inspired by Chamberlain (1980)’s original idea of constructing sufficient statistics from
observed choices, we introduce the term ‘‘sufficient set’’ to refer to any combination
of observed choices that lies within the true but unobserved choice set. The concept
of sufficient set helps to unify notation and organize our thinking, to map econometric
assumptions onto economic models, and to implement both methods in practice.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Discrete choice models are commonly used in applied economics. To estimate a discrete choice model requires that
we have information on the set of alternatives over which the consumer is choosing. In many situations it is trivial to
observe consumers’ choice sets, for example, Bay Area commuters’ mode choice was between car and bus before BART
was built. In other cases, researchers can explicitly ask survey respondents about the alternatives that they considered
or ask for a ranking (e.g., Train and Winston, 2007, Berry et al., 2004). However, in many situations it can be difficult to
formulate choice sets, for example, the discrete choice of housing with the constraint that there is only one house for
sale at the specific address the buyer prefers (de Palma et al., 2007). There are many reasons why consumer choice sets
may be heterogeneous and unobserved by econometricians, including limited consumer attention, search, or endogenous
product choices by firms. Failing to account for unobserved choice set heterogeneity will generally cause estimators of
preference parameters to be inconsistent.
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In this paper, we survey the two main empirical approaches to tackling the problem of unobserved choice set
eterogeneity: ‘‘integrating over’’ and ‘‘differencing out’’ unobserved choice sets. The two approaches originate from
ifferent econometric literatures, started respectively by Manski (1977) and McFadden (1978). While integrating over
eterogeneous unobserved choice sets is commonly done in empirical applications, differencing them out is less popular,
ossibly because McFadden (1978)’s original motivation was to facilitate estimation with large but observed choice sets.

We provide a unifying notation for understanding the two approaches and, inspired by Chamberlain (1980)’s idea of
constructing sufficient statistics from observed choices, we introduce the idea of ‘‘sufficient sets’’, which serve several
purposes. First, sufficient sets help clarify that differencing out can also address the problem of unobserved choice sets,
and that it is complementary to integrating over them. Second, sufficient sets prove useful to implement both approaches
in practice, particularly in panel-data environments. Third, they help translate economic assumptions derived from the
characteristics of a given choice environment into econometric assumptions appropriate for estimation.

To build intuition, we begin by illustrating the well-understood result that, in a multinomial logit (MNL), mistakenly
adding alternatives to a consumer’s choice set leads to violations of the Independence of Irrelevant Alternatives (IIA)
and to inconsistent estimators. This problem arises naturally with unobserved choice set heterogeneity when researchers
specify a common choice set for all consumers that is likely to be larger than at least some consumers’ true choice sets, for
example by specifying a choice set that includes all products above a certain market share threshold or a given number
of products with the largest product shares.

The most popular approach to address this concern models the joint probability that a consumer is matched to a
certain choice set and that she makes a specific choice from that choice set. As first proposed by Manski (1977), one can
then obtain the marginal choice probability by ‘‘integrating over’’ unobserved choice set heterogeneity, as is routinely
done with any other form of unobserved heterogeneity (e.g., standard mixed logit models that integrate over unobserved
preference heterogeneity). The integrating over approach has a long tradition in marketing and transportation studies
analyzing consumers’ consideration sets (e.g., Roberts and Lattin, 1991, Ben-Akiva and Boccara, 1995, Bronnenberg and
Vanhonacker, 1996, Chiang et al., 1998, Başar and Bhat, 2004, Erdem and Swait, 2004, Bruno and Vilcassim, 2008, Van
Nierop et al., 2010, Draganska and Klapper, 2011, Ching et al., 2014, and Juang and Bronnenberg, 2018) and has also
recently been applied in economics (e.g., Goeree, 2008, De los Santos et al., 2012, Conlon and Mortimer, 2013, Honka,
2014, Abaluck and Adams, 2017).1 Because the number of choice sets to integrate over grows exponentially in the number
of available products, practical implementation is subject to a curse of dimensionality.

The insight that mistakenly adding alternatives to choice sets yields inconsistent estimates also forms the basis of the
‘‘differencing out’’ approach proposed by McFadden (1978) for the consistent estimation of MNL models from subsets of
true and observed choice sets. The idea of estimating discrete choice models from subsets of true/observed choice sets
has been shown to be effective also in Generalized Extreme Value models (e.g., Train et al., 1987, Bierlaire et al., 2008,
and Guevara and Ben-Akiva, 2013b), mixed logit models with discrete distributions of random coefficients (e.g., Bajari
et al., 2007, Fox et al., 2011, and Fox et al., 2016), semi-parametric models (e.g., Fox, 2007) and, in the context of ‘‘long’’
panel data, individual-specific MNL models (e.g., Dubois et al., 2020).2

However, it may not be clear to a researcher how to construct proper subsets of consumers’ true choice sets when they
are unobserved, and therefore how to implement these estimators (e.g., Frejinger et al., 2009). Inspired by Chamberlain
(1980), we propose the use of consumers’ observed choices paired with assumptions about the evolution of their
unobserved choice sets over time as a practical tool to construct proper subsets in panel data environments characterized
by unobserved choice set heterogeneity. We call these subsets ‘‘sufficient sets’’. For example, in the case of the MNL
with fixed effects studied by Chamberlain (1980), the set of permutations of a consumer’s observed choices over time
represents a sufficient set, indeed one which (Chamberlain, 1980) specifically chose to difference out fixed effects but
that incidentally also differences out true and potentially unobserved choice sets.

We expand on this idea in a wide variety of models using the ‘‘differencing out’’ approach ranging from the original
MNL model of McFadden (1978) to the semi-parametric Pairwise Maximum Score Estimator of Fox (2007). We also show
that sufficient sets can be used in the ‘‘integrating over’’ approach to greatly reduce the number of choice sets over which
a researcher needs to integrate (i.e., only supersets of the sufficient sets can have positive probability mass), making this
approach more viable in applications with even moderately large choice sets.3

We highlight the costs and benefits of differencing out unobserved choice sets relatively to integrating over them.
he integrating over approach requires the specification of a choice set formation model which is estimated along with
references given choice sets, thus requiring additional functional form assumptions, data on the choice set formation
rocess, and is computationally more intensive. However, it enables researchers to learn about both consumer preferences
nd choice set formation. This may be essential in applications in which the key counterfactuals involve re-matching
f choice sets to consumers (e.g., Gaynor et al., 2016). The differencing out approach treats the choice set formation

1 For a recent survey of these applied literatures in the context of consumer search, see Honka et al. (2019).
2 To the best of our knowledge, in the context of cross-sectional or ‘‘short’’ panel data, results of this kind are not available for mixed logit
odels with continuous distributions of random coefficients, even though some interesting approximations have been proposed by Keane and Wasi

2012) and Guevara and Ben-Akiva (2013a).
3 Goeree (2008) proposes a convenient importance sampling procedure (which we detail in Appendix A) that also greatly simplifies the practical

mplementation of this approach. Goeree (2008)’s importance sampling and sufficient sets are not mutually exclusive and can be used together.
Please cite this article as: G.S. Crawford, R. Griffith and A. Iaria, A survey of preference estimation with unobserved choice set heterogeneity. Journal of
Econometrics (2020), https://doi.org/10.1016/j.jeconom.2020.07.024.
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process as a nuisance parameter to be dropped from the likelihood function, so requires less prior knowledge and data
on the choice set formation process, and it is simpler to implement. However, it does not allow inference about choice
set formation. Whenever information on the choice set formation process is available, integrating over is likely to be the
preferred approach. However, there are cases where such information is not available or is unreliable, or where the curse
of dimensionality prevents implementation of the integrating over approach. In these cases, one can still learn about
consumer preferences by differencing out unobserved choice sets.

Importantly, the economic characteristics of the choice environment can inform the specification of sufficient sets in
both approaches. Sufficient sets can help map concrete economic information about choice environments onto suitable
econometric assumptions. For example, settings characterized by non-sequential or fixed-sample search (e.g., Morgan
and Manning, 1985) imply a choice environment that is stable for any individual consumer over time, but (possibly)
varying across consumers. These models imply sufficient sets based on the collection of products chosen by a consumer
over time, what we call a Full Purchase History sufficient set. Settings characterized by sequential search (e.g., Caplin
et al., 2011), limited attention (e.g., Eliaz and Spiegler, 2011), or consumer focus (e.g., Kőszegi and Szeidl, 2013) imply
choice environments that evolve over time, and suggest sufficient sets based on the accumulation of products chosen
by a consumer in the past, what we call a Past Purchase History sufficient set. Cross-sectional settings where a group of
individuals face a common choice environment, as for example in the analyses of Currie et al. (2010) of whether greater
availability of fast food increases obesity, suggest sufficient sets made of the collection of products observed to be chosen
by individuals in the relevant group, what we call an Inter-Personal sufficient set. These are only a few examples of
sufficient sets. Sufficient sets can be combined or devised to reflect a large range of choice environments. We discuss the
use of specification tests to aid comparisons between alternative sufficient sets within a particular application.

We implement some of the surveyed approaches in both Monte Carlo simulations and an empirical illustration. The
illustration estimates the distribution of price and advertising sensitivities for chocolate bars; advertising can affect both
a consumer’s valuation of a specific product and the likelihood that the product enters the consumer’s choice set. We
show that assumptions on individuals’ choice sets can have a material impact on the estimated distributions of price and
advertising sensitivities. These results are in line with models of imperfect consumer attention as in Eliaz and Spiegler
(2011) and the patterns of estimated price sensitivities are in line with those by Goeree (2008).

The methods surveyed in this paper rely on an exogeneity assumption between consumer preferences and the
matching of consumers to choice sets. This assumption is ubiquitous in empirical work and accommodates models in
which firms select the products to sell or in which consumers search for alternatives on the basis of both observable
characteristics and expectations over unobservable characteristics, but rules out the matching of consumers to choice sets
on the basis of the realizations of unobserved preferences.4 The problems of ‘‘endogenous’’ matching and of ‘‘unobserved’’
choice sets are of a fundamentally different nature and can be better understood in isolation. On the one hand, endogenous
matching of choice sets gives rise to econometric problems akin to sample selection even when choice sets are perfectly
observable.5 On the other, unobserved choice set heterogeneity is a concern even when choice sets are exogenously
matched to consumers. In this paper we limit our discussion to exogenous unobserved choice set heterogeneity and refer
the reader to Hickman and Mortimer (2016) and Honka et al. (2019) for recent surveys on the endogenous matching of
choice sets.6 Some recent working papers, such as Lu (2018) and Barseghyan et al. (2019), address these problems on the
basis of partial identification methods and illustrate that many interesting features of the model can be identified even
when unobserved choice sets are endogenously matched to individuals on the basis of their unobserved preferences.

In addition to the empirical literatures surveyed above, this paper relates to a fast-growing theoretical literature
in which limited attention is used to rationalize apparently inconsistent consumer and firm behaviors. This strongly
motivates our interest in empirical approaches to accommodate such theories. These include, for example, consumer
attention as in Eliaz and Spiegler (2011), Masatlioglu et al. (2012), and Manzini and Mariotti (2014), rational inattention
as in Gabaix (2014) and Matejka and McKay (2015), search as in Janssen and Moraga-González (2004) and Rhodes (2014),
screening rules as in Gilbride and Allenby (2004), models of salience as in Bordalo et al. (2014), and focus as in Kőszegi
and Szeidl (2013).

The rest of the paper is structured as follows. In Section 2, we introduce the model and illustrate how heterogeneity in
unobserved choice sets may lead to inconsistent estimators of MNL models. This helps to build intuition for the possible
solutions discussed in Section 3, where we also (briefly) discuss the case of aggregate-level data on market shares. In
Section 4 we discuss a number of other considerations in the differencing out approach, including the relationship between
some economic models and sufficient sets, how to create bounds of functions of the point-identified preference parameters
(e.g. price elasticities and consumer surplus), and specification tests. We provide an empirical illustration in Section 5. A
final section concludes. Several appendices present additional derivations and results.

4 Most applied papers dealing with choice set formation processes also rely on assumptions that guarantee exogenous matching, see for
example: Goeree (2008), Draganska et al. (2009), Conlon and Mortimer (2013), and Eizenberg (2014).
5 Some papers dealing with observed but endogenous choice set heterogeneity include Iaria (2014), Musalem (2015), Ciliberto et al. (2016), and Li

et al. (2018).
6 In addition, Hickman and Mortimer (2016) and Honka et al. (2019) also discuss the problem of unobserved choice set heterogeneity in the

context of aggregate-level data on market shares (e.g., Goeree, 2008 and Bruno and Vilcassim, 2008). While we briefly mention this problem in the
current paper, most of our discussion focuses on individual-level purchase data. In our view, the idea of ‘‘sufficient set’’ does not suit well the case of
aggregate data: similar to Chamberlain (1980), we propose to construct subsets of each individual’s unobserved choice set on the basis of observed
individual-level past purchases. In the case of aggregate-level data, it is not clear how one could use panel data on the evolution of market shares
to obtain similar results to those available for individual-level discrete choice models.
Please cite this article as: G.S. Crawford, R. Griffith and A. Iaria, A survey of preference estimation with unobserved choice set heterogeneity. Journal of
Econometrics (2020), https://doi.org/10.1016/j.jeconom.2020.07.024.
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. The problem of unobserved choice set heterogeneity

To build intuition, we start by illustrating that unobserved choice set heterogeneity leads to violations of the
ndependence of Irrelevant Alternatives (IIA) property in models with Gumbel errors and therefore to inconsistent
stimators. Understanding the nature of the problem introduced by unobserved choice set heterogeneity helps to better
ppreciate the solutions proposed in the literature, which we will describe in the next section (including those that
ccommodate more general error specifications).

.1. Basic model and notation

Let there be a panel of i = 1, . . . , I individuals each observed making a sequence of T choices, one per choice situation
= 1, . . . , T . Denote i’s sequence of choices by Yi = (Yi1, . . . , YiT ). For simplicity, we assume to observe exactly T choice

situations for each i, but this is easily generalized.
We consider a situation in which i is matched to her choice set CS⋆it in choice situation t , but this choice set is

unobserved to the researcher. Denote by × the cartesian product and let i’s set of possible choice sequences be given
by CS⋆i = ×

T
t=1CS

⋆
it . Any choice sequence Yi belongs to CS⋆i .

Let preferences be defined by a parameter vector θ and let the probability with which i is matched to a given set of
possible choice sequences, CS⋆i = c , be given by Pr

[
CS⋆i = c

⏐⏐ γ ], with γ also a parameter vector. In principle, γ could
include some or all of the parameters that are in θ and could be the result of, for example, limited consumer attention,
consumer search behavior, or strategic decision-making by firms.

Given θ and a specific match with a set of possible choice sequences, CS⋆i = c , each individual i is observed to make
a sequence of choices Yi = j = (j1, . . . , jT ). We assume that the conditional indirect utility of alternative jt in choice
situation t for individual i is

Uijt t = V
(
Xijt t , θ

)
+ ϵijt t , (2.1)

where Xijt t is a vector of observable characteristics, and ϵijt t is the portion of i’s utility that is unobserved to the
econometrician. The probability that i is matched to the set of possible choice sequences CS⋆i = c and makes a sequence
of choices Yi = j is:

Pr
[
Yi = j, CS⋆i = c

⏐⏐ θ, γ ] = Pr
[
Yi = j| CS⋆i = c, θ

]
Pr
[
CS⋆i = c

⏐⏐ γ ] . (2.2)

The first term in (2.2) is the probability of choosing j solely due to preferences given the sequence of choice sets i is
matched to, and the second is the probability that the individual is matched to that sequence of choice sets. The following
assumption implies that Pr

[
Yi = j| CS⋆i = c, θ

]
is multinomial logit (MNL) for any c.

Assumption 1. Conditional on all V (Xijt t , θ )’s and on CS⋆i = c , ϵijt t from (2.1) is distributed i.i.d. Gumbel.

Assumption 1 allows for general matching processes: Pr[CS⋆i = c|γ ] can take any form and be a function of any element
of the MNL model Pr[Yi = j|CS⋆i = c, θ]. For example, this accommodates models in which firms select the products
to sell or in which individuals search for alternatives on the basis of both observable characteristics and expectations
over unobservable characteristics, but rules out the matching of individuals to choice sets on the basis of the realizations
of the unobservables, ϵijt t ’s. In other words, Assumption 1 rules out the possibility that individuals and choice sets are
endogenously matched.7

We use Assumption 1 to provide some intuition about the econometric problem introduced by unobserved choice set
heterogeneity. In Section 3 we use this to illustrate the basic ideas behind the main solutions proposed in the literature,
we then relax Assumption 1 and extend the discussion to more general models than the MNL.

An implication of Assumption 1 is that conditional Maximum Likelihood estimators of θ can be constructed from
Pr[Yi = j|CS⋆i = c, θ], since this conditional probability is multinomial logit.8 Using Assumption 1, i’s conditional
probability of selecting choice sequence Yi = j, given their set of possible choice sequences, CS⋆i = c = ×

T
t=1ct , is the

familiar product of T MNL’s, each one specific to a choice situation along the sequence:

Pr
[
Yi = j| CS⋆i = c, θ

]
=

T∏
t=1

exp
(
V
(
Xijt t , θ

))∑
k∈CS⋆it=ct exp

(
V
(
Xikt t , θ

)) . (2.3)

7 See footnote 5 in the introduction for references on the observed but endogenous matching of choice sets in demand estimation.
8 Given Assumption 1, if γ shares some common element with θ (as is likely), failing to control for the choice set matching process Pr

[
CS⋆i = c

⏐⏐ γ ]
nly causes a loss of efficiency in the resulting conditional Maximum Likelihood estimator relative to a joint Maximum Likelihood estimator derived
rom Eq. (2.2).
Please cite this article as: G.S. Crawford, R. Griffith and A. Iaria, A survey of preference estimation with unobserved choice set heterogeneity. Journal of
Econometrics (2020), https://doi.org/10.1016/j.jeconom.2020.07.024.
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2.2. The problem of adding unavailable alternatives

Eq. (2.3) cannot be directly used for estimation, because CS⋆i = c is unobserved. In order to proceed, usually the
esearcher will specify a set of choice sequences, Si = s, possibly different from CS⋆i = c , on the basis of which to
construct a likelihood function. Researchers often specify Si to be common across i and given by, for example, all those
products above a certain market share threshold or a given number of products with the largest market shares. Suppose
that the researcher specifies the likelihood function to be used in estimation as the conditional probability of i choosing
Yi = j from the set of choice sequences Si = s = ×

T
t=1st . Then, the potentially misspecified model is:

Pr [Yi = j| Si = s, θ ] =

T∏
t=1

exp
(
V
(
Xijt t , θ

))∑
k∈Sit=st exp

(
V
(
Xikt t , θ

)) , (2.4)

where the difference between (2.3) and (2.4) lies in the terms included in the summations in the denominator of
each. Since McFadden (1978), is known that using model (2.4) to estimate θ in the presence of unobserved choice set
heterogeneity will not be a problem whenever the researcher manages to specify Si = s ⊆ CS⋆i = c. However, whenever
Si = s includes alternatives not originally available in CS⋆i = c , then the use of model (2.4) will lead to inconsistent
estimators of θ . Not surprisingly, this is a consequence of model (2.4) satisfying (when Si = s ⊆ CS⋆i = c) or violating
(when Si = s ⊈ CS⋆i = c) the IIA property from Assumption 1. To see this, note that individual i’s probability of choosing
sequence j among the potentially misspecified Si, given that the true set of sequences is CS⋆i = c and conditional on the
vector of parameters θ is:

Pr
[
Yi = j| Si = s, CS⋆i = c, θ

]
=

T∏
t=1

Pr[Yit = jt |CS⋆it = ct , θ]∑
rt∈st∩ct Pr[Yit = rt |CS⋆it = ct , θ] +

∑
kt∈st\ct Pr[Yit = kt |CS⋆it = ct , θ]

=

T∏
t=1

exp
(
V
(
Xijt t , θ

))∑
rt∈Sit=st∩CS⋆it=ct exp

(
V
(
Xirt t , θ

))
= Pr

[
Yi = j| Si = s ∩ CS⋆i = c, θ

]
,

(2.5)

where the denominator in the first line decomposes st into those alternatives that are in ct (rt ∈ st ∩ ct ) and those that
are not (kt ∈ st \ ct ). The second equality obtains because the probability i selects an alternative not in her true choice set
is zero, Pr[Yit = kt |CS⋆it = ct , θ] = 0 for all kt /∈ CS⋆it = ct . In other words, because Assumption 1 implies the IIA property
only when the choice set assumed by the researcher is a subset of i’s true choice set, Si = s ⊆ CS⋆i = c , Eq. (2.5) is not
guaranteed to equal (2.4). By expressing (2.5) in terms of (2.4), we obtain:

Pr
[
Yi = j| Si = s ∩ CS⋆i = c, θ

]
=

T∏
t=1

exp
(
V
(
Xijt t , θ

))∑
rt∈st∩ct exp

(
V
(
Xirt t , θ

)) ∑mt∈st exp
(
V
(
Ximt t , θ

))∑
mt∈st exp

(
V
(
Ximt t , θ

))

=

T∏
t=1

exp
(
V
(
Xijt t , θ

)
− ln

(∑
rt∈st∩ct exp(V(Xirt t ,θ))∑
mt∈st exp(V(Ximt t ,θ))

))
∑

mt∈Sit=st exp
(
V
(
Ximt t , θ

))
=

T∏
t=1

exp(V
(
Xijt t , θ

)
− ln(πit (θ )))∑

mt∈Sit=st exp
(
V
(
Ximt t , θ

)) .

(2.6)

Suppose st ∩ ct ⊂ st for some t ’s (i.e., st includes alternatives not in ct ), then ln(πit ) < 0 for those t ’s and models (2.4) and
(2.5) will differ. In this case, if estimation proceeds on the basis of model (2.4), the likelihood function will be mistakenly
ignoring a sequence of up to T fixed effects for each i, ln(πit )’s, which are functions of the rest of the model. Put differently,
suppose instead st ⊆ ct for all t ’s, then ln(πit ) = 0 for all t ’s and (2.5) equals (2.4), can consequently, the model used in
estimation will correspond to the true conditional choice model.

More succinctly, given true model (2.3), the likelihood function obtained from model (2.4) will mistakenly ignore a
sequence of (i, t)-specific fixed effects if and only if at least one choice set Sit = st of the sequence Si = s includes at
least one alternative not originally in CS⋆it = ct . The ln(πit (θ ))’s are (i, t)-specific fixed effects that cause inconsistency in
estimation. πit (θ ) measures the probability that individual i would choose one of the alternatives in her true choice set
when faced with the set of products assumed by the researcher. If st ∩ ct ⊂ st , i.e. if st includes alternatives not in ct , this
probability will be strictly less than one, and smaller (and thus the likely inconsistency greater) the more likely it is that
i would have preferred one of the products mistakenly included in s .
Please cite this article as: G.S. Crawford, R. Griffith and A. Iaria, A survey of preference estimation with unobserved choice set heterogeneity. Journal of
Econometrics (2020), https://doi.org/10.1016/j.jeconom.2020.07.024.
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.3. Quantifying the size of the bias in MNL model

Table 1 provides Monte Carlo evidence on the size of the bias in MNL and mixed MNL models from mistakenly
ttributing to individuals alternatives that were not available to them. The three panels describe the relative importance
f different features of the choice set generating process on the extent of the bias arising from unobserved choice set
eterogeneity. We report the average bias and the standard deviation of the estimates (across 20 replications) that arise
f the researcher imputes the full choice set of five alternatives instead of the true (heterogeneous and unobserved) choice
et to all individuals in all choice situations.
In each scenario, the data generating process is a MNL model with systematic utility V (Xijt t , θ ) = Xijt tβ and

heterogeneous choice sets across individuals. Given these data, we report in the first column estimates from a MNL model
with systematic utility V (Xijt t , θ ) = δjt +Xijt tβ and with full choice sets, and in the second column estimates from a mixed
MNL model with V (Xijt t , θi) = δjt + Xijt tβi, βi = β + σ × νi, νi distributed standard normal, and with full choice sets.9
Note that, differently from the data generating process, both estimated models include alternative-specific constants δjt ’s,
but that this does not yield consistent estimates. In the top panel, we report results for the baseline model, where all
individuals make choices from the full choice set. In this case, both the MNL and the mixed MNL models with full choice
sets are correctly specified and virtually unbiased. In the second panel, an increasing share of individuals make choices
from a choice set of four randomly selected alternatives. In both the standard and mixed MNL models, the bias increases
with the share of individuals facing constrained choice sets. In the mixed MNL model the bias in both the estimated
mean β̂ and the estimated standard deviation σ̂ of the random coefficient increases. In the third panel, 30% of individuals
make choices from a choice set of two, three, or four randomly selected alternatives. For a given share of individuals with
constrained choice sets, in both estimated models the bias increases with the severity of the constraint in choice sets.
In the bottom panel, 10% of individuals have their first-best alternative removed from the choice set, with an increasing
‘‘distance’’ between the systematic utilities of the (removed) first best and the (chosen) second best. The bias increases the
more individuals prefer the alternatives that are not included in their true choice sets but that are mistakenly included
in the choice sets of the models used in estimation. Interestingly, and differently from the previous two panels, the bias
in the mixed MNL estimates is larger in the estimated standard deviation σ̂ of the random coefficient, while the mean β̂
s basically unbiased.

The results are intuitive and show the consequences of failing to account for unobserved choice set heterogeneity.
he size of the bias can be substantial. Collectively, these results confirm the theoretical insights from Section 2.2: the
stimation bias is proportional to the extent of the (incorrect) choice set enlargement and to the size of the systematic
tilities of the alternatives mistakenly added to the choice sets. Furthermore, the results show that simply adding
lternative-specific constants and random coefficients to a MNL model does not address the econometric problems
ntroduced by unobserved choice set heterogeneity.

. Two solutions: Integrating over and differencing out heterogeneous unobserved choice sets

The methods proposed in the literature to address unobserved choice set heterogeneity can be grouped into two
amilies: those that ‘‘integrate over’’ and those that ‘‘difference out’’ unobserved choice sets. The first is the approach
f Manski (1977), which models the unconditional probability i chooses j by integrating over all possible unobserved

choice sets that include j. This is akin to treating unobserved choice set heterogeneity in a manner analogous to unobserved
preference heterogeneity, and has been widely used in the applied literature (e.g., Goeree, 2008 and Van Nierop et al.,
2010).

A second approach that is less commonly used aims at ‘‘differencing out’’ unobserved choice sets by conditioning choice
probabilities on subsets of the true choice sets. This approach builds on well known estimators originally developed for
ther purposes, such as McFadden (1978), Fox (2007), Fox et al. (2011), Hey and Orme (1994), and Dubois et al. (2020) to
‘difference out’’ unobserved choice sets in various models (beyond the MNL). We introduce the term ‘‘sufficient set’’ to
escribe a method of identifying subsets of true choice sets and illustrate how it can be used in models in the ‘‘differencing
ut’’ approach with increasingly general error structures. We also discuss how the two approaches can be combined to
educe the computational burden of the ‘‘integrating over’’ approach.

.1. ‘‘Integrating over’’ unobserved choice sets

The most popular approach used in the literature to address unobserved choice set heterogeneity is to jointly
odel choice set formation and the purchase decision given a choice set. As originally discussed by Manski (1977), the
nconditional probability of i selecting choice sequence j can be written as:

Pr[Yi = j|θ, γ ] =

∑
c∈C⋆i

Pr[Yi = j|CS⋆i = c, θ] Pr[CS⋆i = c|γ ], (3.1)

9 The mixed MNL is estimated by simulated maximum likelihood using 150 shifted and shuffled Halton standard normal draws of νi per individual.
ubstantially increasing the number of draws per individual yields results that are qualitatively unchanged.
Please cite this article as: G.S. Crawford, R. Griffith and A. Iaria, A survey of preference estimation with unobserved choice set heterogeneity. Journal of
Econometrics (2020), https://doi.org/10.1016/j.jeconom.2020.07.024.
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Table 1
Size of the bias in the MNL model with full choice sets.

MNL Mixed MNL

Bias Bias Bias
(StdDev) β̂ (StdDev) β̂ (StdDev) σ̂

Baseline
100% of consumers have full choice set 0.005 0.013 0.071

(0.032) (0.034) (0.080)

Increasing the share of individuals with constrained choice sets
90% have full choice set, 10% choose from 4 out of 5 −0.223 −0.019 0.498

(0.021) (0.034) (0.023)
70% have full choice set, 30% choose from 4 out of 5 −0.525 −0.272 0.531

(0.013) (0.023) (0.019)
50% have full choice set, 50% choose from 4 out of 5 −0.719 −0.529 0.446

(0.007) (0.015) (0.015)

Increasing the num. of alt. randomly removed from choice sets
30% have 4 out of 5 available −0.525 −0.272 0.531

(0.013) (0.023) (0.019)
30% have 3 out of 5 available −0.839 −0.425 0.683

(0.007) (0.021) (0.019)
30% have 2 out of 5 available −1.139 −0.474 0.916

(0.003) (0.022) (0.020)

Increasing the differentiation of alt., 10% have first-best removed
First-best alternative is slightly better −0.346 −0.064 0.682

(V1 − V2)/V1 ≃ 10%, σ 2
X = 1.5 (0.017) (0.031) (0.024)

First-best alternative is better −0.471 −0.026 0.775
(V1 − V2)/V1 ≃ 35%, σ 2

X = 2.5 (0.012) (0.029) (0.020)
First-best alternative is much better −0.740 0.010 0.891

(V1 − V2)/V1 ≃ 110%, σ 2
X = 5.5 (0.009) (0.036) (0.025)

We consider a population of 1000 individuals making a sequence of choices over 10 choice situations. On each choice situation
they choose between a maximum of five alternatives. The indirect utility of each alternative is specified as in Eq. (2.1). The
true systematic utility is V (Xijt t , θ ) = Xijt tβ , and the unobserved portion of utility, ϵijt t , is distributed i.i.d. Gumbel. In the
baseline specification, Xijt t is drawn from a normal distribution with mean 0 and variance 5, and β = 2. In the MNL column,
we report estimates of a MNL model with V (Xijt t , θ ) = δjt +Xijt tβ and where all individuals are incorrectly assumed to always
have full choice sets. In the mixed MNL column, we report estimates of a mixed MNL model with V (Xijt t , θi) = δjt + Xijt tβi ,
βi = β + σ × νi , where we draw 150 shifted and shuffled Halton νi ’s per individual from a standard normal, and all
individuals are incorrectly assumed to always have full choice sets. The mixed MNL is exclusively used in estimation, the
data are always generated from a standard MNL model. The table reports averages of the biases and standard deviations of
the estimates across 20 replications per scenario. In the top panel, all individuals make choices from the full choice set. In
the second panel, an increasing share of individuals make choices from a choice set of four randomly selected alternatives.
In the third panel, 30% of individuals make choices from a choice set of two, three, or four randomly selected alternatives.
In the bottom panel, 10% of individuals have their first-best alternative removed from the choice set, with an increasing
‘‘distance’’ between the systematic utilities of the (removed) first best and the (chosen) second best. In the second to bottom
panels, choice sets differ across individuals but are constant across choice situations within individual.

here C⋆i is the collection of possible sets of choice sequences to which individual i can be matched. By having information
n the matching process between individuals and choice sets, one can integrate over unobserved choice set heterogeneity
n a manner analogous to how it is routinely done with unobserved preference heterogeneity. Until recently, it was
elieved that the identification of model (3.1) relied on the availability of auxiliary data about Pr[CS⋆i = c|γ ] (e.g., Roberts
nd Lattin, 1991) and/or the availability of instruments that exclusively affected the matching between individuals and
hoice sets (e.g., Goeree, 2008). In a recent paper, however, Abaluck and Adams (2017) present identification results for
his model that do not require the availability of such auxiliary data.10

Whenever model (3.1) is correctly specified and C⋆i is not too large, so that estimation is computationally feasible
e.g., by a Simulated Maximum Likelihood Estimator of (3.1)), then one can use this approach to learn about both
references θ and about the matching process between individuals and choice sets γ . Knowledge of both θ and γ is

essential in many contexts, especially when the researcher is interested in simulating counterfactuals that may involve
the re-matching of choice sets to individuals (e.g., Gaynor et al., 2016).

Even though Manski (1977)’s approach represents the best option in many instances, there are also cases in which
it may not be appropriate. The rest of this subsection discusses three of the main possible drawbacks of the integrating
over approach. The first is that in addition to Pr[Yi = j|CS⋆i = c, θ], the practical implementation of model (3.1) requires
knowledge also of the functional form of Pr[CS⋆i = c|γ ]. The second, perhaps less obvious, is that the collection of choice
ets over which expectations are taken is rarely observable and therefore C⋆i may easily be misspecified. Third, even when

10 The intuition of their argument is that whenever some alternatives are not in the choice sets of some individuals, the discrete-choice analogue
of Slutsky symmetry will be violated. They show that one can therefore use deviations from Slutsky symmetry to separately identify γ and θ .
Please cite this article as: G.S. Crawford, R. Griffith and A. Iaria, A survey of preference estimation with unobserved choice set heterogeneity. Journal of
Econometrics (2020), https://doi.org/10.1016/j.jeconom.2020.07.024.
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r[Yi = j|θ, γ ] is correctly specified, in practice the estimation of model (3.1) may prove difficult. Indeed, this model
suffers from a curse of dimensionality related to the number of elements in C⋆i , which grows exponentially in the number
f alternatives available to individual i, Ji, for example, Abaluck and Adams (2017) limit their estimations to the case
f Ji=10. Two possible ways of alleviating the practical consequences of this curse of dimensionality are the importance
ampling procedure proposed by Goeree (2008) (detailed in Appendix A) and the idea proposed in Section 3.3. Note that
oth simplifications are not ‘‘free’’ and require additional assumptions on the choice set formation process Pr[CS⋆i = c|γ ].
We illustrate these potential drawbacks in the context of Goeree (2008). In our notation, Goeree (2008)’s choice model

can be written as:

Pr[Yit = jt |θ, γ ] =

∑
ct∈C

j
t

exp
(
V (Xijt t , θ )

)∑
rt∈ct exp

(
V (Xirt t , θ )

) [∏
lt∈ct

φilt t (γ )
∏
kt /∈ct

(
1 − φikt t (γ )

)]
, (3.2)

here C j
t is the collection of all period t choice sets that include product jt . This relies on:

• Assumption 1, with Pr[Yit = jt |CS⋆it = ct , θ] =
exp

(
V (Xijt t , θ )

)∑
rt∈ct exp

(
V (Xirt t , θ )

) , and
• the additional assumption that consideration of each product is independent of the consideration of the other

products: Pr
[
CS⋆it = ct |γ

]
=
∏

lt∈ct φilt t (γ )
∏

kt /∈c

(
1 − φikt t (γ )

)
.

Even given this second assumption, in Goeree (2008) the total number of products is still very large (> 2100), so
he non-parametric estimation of all the φ’s is not feasible. To reduce the dimensionality of estimating the matching of
onsumers to choice sets, she further assumes that:

φilt t (γ ) =
exp

(
Wilt tγ

)
1 + exp

(
Wilt tγ

) , (3.3)

with Wilt t a vector of observable characteristics and γ a vector of parameters measuring the sensitivity of product
onsideration with respect to these observables.
This implies that every ct ∈ C j

t will have a strictly positive probability in the distribution of choice sets for each (i, t),
so that Pr

[
CS⋆it = ct |γ

]
> 0 for every (i, t). However, it may be that for some (i, t) combination Pr

[
CS⋆it = ct |γ

]
= 0 for

some ct , i.e. ct is not in the support of the choice set distribution to which individual i can be matched to in period t:

Pr
[
CS⋆it = ct |γ

]
=

⎧⎨⎩
∏
lt∈ct

φilt t (γ )
∏
kt /∈ct

(
1 − φikt t (γ )

)
if ct ∈ C j⋆

it

0 if ct ∈ C j
t \ C j⋆

it ,

(3.4)

where C j⋆
it is the collection of choice sets to which individual i can possibly be matched to in period t . Since C j⋆

it is typically
unobserved and heterogeneous across (i, t) combinations, model (3.2) and (3.3) will suffer from support misspecification
whenever there exist observations where the true collection of unobserved choice sets to which an individual can be
matched to is restricted, i.e. ∃ (i, j, t) combination such that C j⋆

it ⊂ C j
t . With support misspecification, standard estimators

will be inconsistent.
To be clear, computing expectations over the power set of the universal set, as with C j

t in (3.2), would not be a problem
if one could afford to estimate a truly flexible specification for φ that was able to accommodate Pr

[
CS⋆it = ct |γ

]
= 0

whenever necessary. The problem arises because one is not usually able to estimate a truly flexible model for φ, and
needs to make additional assumptions along the lines of (3.3). Taken together, C j

t in (3.2) and (3.3) may introduce bias
due to the potential inclusion of infeasible choice sets.11

3.2. ‘‘Differencing out’’ unobserved choice sets

When Manski (1977)’s approach is not appropriate, one can still hope to estimate the preference parameters θ by
differencing out unobserved choice sets. We start by introducing the differencing out method in the context of the MNL
model, then in the next two subsections we extend the discussion to more general models.

11 Two other papers that take a similar approach to Goeree (2008) are Van Nierop et al. (2010) and Draganska and Klapper (2011). Van Nierop
t al. (2010) assume that the model for Pr

[
CS⋆it = ct |γ

]
is a J-dimensional multivariate normal distribution, which again cannot be 0 for any ct .

In the corresponding equation to (3.2), they compute expectations over C j
t , associating positive mass to every ct ∈ C j

t rather than only to each
ct ∈ C j⋆

it ⊂ C j
t . Draganska and Klapper (2011) assume Pr

[
CS⋆it = ct |γ

]
to be a MNL model with choice set C j

t , and compute expectations over C j
t ,

j .
Please cite this article as: G.S. Crawford, R. Griffith and A. Iaria, A survey of preference estimation with unobserved choice set heterogeneity. Journal of
Econometrics (2020), https://doi.org/10.1016/j.jeconom.2020.07.024.

where again the multinomial logit model cannot be exactly 0 for any ct ∈ Ct
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Table 2
Performance of sufficient set logits.

MNL, full MNL, true FPH SSL PPH SSL CP SSL
%|Bias| %|Bias| %|Bias| %|Bias| %|Bias|

Baseline
100% full choice set 0.3% 0.3% 0.6% 0.8% 1.2%

Increasing share of individuals with a random product removed from choice set
10% constrained 11.2% 0.2% 0.4% 0.9% 0.8%
30% constrained 26.3% 0.3% 0.6% 1.2% 0.6%
50% constrained 36.0% 0.4% 0.7% 1.0% 0.9%

Increasing share of products randomly removed from choice set
30% have 4 of 5 26.3% 0.3% 0.6% 1.2% 0.6%
30% have 3 of 5 36.0% 0.7% 1.0% 1.3% 1.2%
30% have 2 of 5 57.0% 0.4% 0.5% 0.7% 0.5%

We consider a population of 1000 individuals making a sequence of choices over 10 choice situations. On each
choice situation, they choose between a maximum of five alternatives. The indirect utility of each alternative
is specified as in Eq. (2.1). The systematic utility is V (Xijt t , θ ) = δjt + Xijt tβ , and the unobserved portion of
utility, ϵijt t , is distributed i.i.d. Gumbel. Xijt t is drawn from a normal distribution with mean 0 and variance
5, δjt = 0 for all jt ’s, and β = 2. The table reports averages of the percentage absolute bias of the estimates,
|(̂β − β)/β|×100. In the top panel, all individuals make choices from the full choice set. In the central panel,
an increasing share of individuals make choices from a choice set of four randomly selected alternatives. In
the bottom panel, 30% of individuals make choices from a choice set of two, three, or four randomly selected
alternatives. In the central and bottom panels, choice sets differ across individuals but are constant across
choice situations within individual. We simulate and average results over 20 replications per scenario. To
speed up computations, the CP SSL is estimated by sampling at random (uniformly), for each individual,
5000 permutations of the observed sequence of choices, as suggested by D’Haultfœuille and Iaria (2016).

.2.1. Multinomial logit model
This approach originates from McFadden (1978)’s idea of estimating MNL models from subsets of the observed but

otentially large choice sets. To implement this idea when choice sets are unobserved, inspired by Chamberlain (1980),
e combine information on i’s observed choice sequence in panel data environments, Yi = j, to construct subsets of i’s
rue but unobserved choice set, CS⋆i = c , and then rely on McFadden (1978)’s consistent estimator of θ from subsets
f the true choice sets. We call these subsets sufficient sets: they are a collection of choice sequences generated by any
orrespondence f (Yi) that satisfies the following property.

ondition 1. Given any choice sequence Yi ∈ CS⋆i , the correspondence f is such that Yi ∈ f (Yi) and f (Yi) ⊆ CS⋆i .

It is easy to see that if Assumption 1 (i.e., MNL model) and Condition 1 hold, then f (Yi) will be a sufficient statistic
for CS⋆i or, equivalently, a MNL model conditional on f (Yi) will be guaranteed to satisfy the IIA property even if choice
sets are unobserved. It is for this reason that we call any f that satisfies Condition 1 a sufficient set. More precisely, if
Assumption 1 and Condition 1 hold, then for every individual i and choice sequence Yi = j such that f (j) = r:

Pr[Yi = j|f (Yi) = r, θ] =

∏T
t=1 exp(V (Xijt t , θ ))∑

k∈f (Yi)=r
∏T

t=1 exp(V (Xikt t , θ ))
(3.5)

nd θ can be consistently estimated by the conditional Maximum Likelihood Estimator derived from Pr[Yi = j|f (Yi) = r, θ];
ee Appendix B for details. Eq. (3.5) is a direct consequence of the IIA property. We define the MNL in (3.5) as the Sufficient
et Logit (SSL) model.
In essence, one can estimate preferences θ based only on the variation in characteristics of those products in i’s

ufficient set, rather than on her full (but unobserved) sequence of choice sets. This is evident since Eq. (3.5) does not
epend on i’s unobserved sequence of choice sets, CS∗

i = c. Whenever CS⋆i = c is observed, the econometrician can easily
etect appropriate subsets of CS⋆it = ct for any i in t , and rely on McFadden (1978) to consistently estimate θ . However,
s we saw in Section 2.2, whenever CS⋆i is unobserved the econometrician needs to be careful in constructing choice
ets for each i in any t so that they are actual subsets of each CS⋆it . The main idea of the differencing out approach is to
exploit individual i’s observed choice sequence Yi, paired with assumptions about the evolution of CS⋆it over t , to construct
a proper subset of CS⋆i , and then to rely on McFadden (1978) to consistently estimate θ .

In Table 2, we present Monte Carlo evidence on the effectiveness of the SSL for estimating preferences in the presence
of unobserved choice set heterogeneity. The rows in Table 2 characterize different types of unobservable choice set
heterogeneity and the columns show the % bias arising from alternative estimators: the MNL on the full choice set, the
MNL on the true choice set, and alternative versions of the SSL, with different sufficient sets corresponding to those
introduced in Section 4.1. Going down the first column indicates that increasing unobserved choice set heterogeneity,
either in the form of increasing the share of individuals with a product missing from their specified choice set or in the
form of an increasing number of products missing from their specified choice set, is associated with significant bias that
Please cite this article as: G.S. Crawford, R. Griffith and A. Iaria, A survey of preference estimation with unobserved choice set heterogeneity. Journal of
Econometrics (2020), https://doi.org/10.1016/j.jeconom.2020.07.024.

is not present either when choice set heterogeneity is correctly specified (in column 2), or when using sufficient sets
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hat are subsets of consumers’ true choice sets (columns 3–5). Further details of this Monte Carlo exercise, as well as an
xtension to two economically relevant choice set formation processes – a model of consumer screening and a model of
ostly search – are provided in Appendix D.

iscussion. The differencing out approach is quite general and works for any f that generates subsets of CS⋆i . In Section 4.1
we discuss how different economic models can be used to motivate alternative specifications of sufficient sets. While these
examples of sufficient sets are suggestive, we note here that they represent a set of sufficient conditions that imply the
SSL in (3.5), but they are neither necessary nor the minimal sufficient conditions for the result to hold. In Section 4.3.1
we discuss statistical tests to help researchers choose among different sufficient sets.

The SSL expression in (3.5) makes clear that individual i will have a non-zero log-likelihood contribution whenever
her observed choice sequence Yi = j gives rise to a non-singleton f (j) = r . In the practical examples of sufficient
sets we discuss in the paper, similar to Chamberlain (1980), this happens whenever the observed choice sequence
Yi = (j1, . . . , jt , . . . , jT ) entails ‘‘some’’ switching, so that there exist at least two elements jt and jt ′ in the sequence
for which jt ̸= jt ′ . All those observations for which only one alternative is chosen repeatedly throughout the sequence
will be dropped from the log-likelihood function.

Note that, in practice, the SSL is a MNL in which the choice set is given by a (potentially huge) set of choice sequences
over T choice situations, f (Yi) = r . While this can be numerically inconvenient for some peculiar f (Yi), it will usually be
possible to re-express (3.5) in a way that greatly simplifies its practical implementation. In particular, the SSL in (3.5)
over choice sequences can be equivalently expressed as the product of T separate t-specific MNL’s over alternatives if and
nly if the sufficient set (over choice sequences) f (Yi) can be expressed as the cartesian product of T separate t-specific

sufficient sets (over alternatives). In other words:

Pr[Yi = j|f (Yi) = r, θ] =

T∏
t=1

Pr[Yit = jt |ft (Yi) = rt , θ]

=

T∏
t=1

exp(V (Xijt t , θ ))∑
kt∈ft (k)=rt exp(V (Xikt t , θ ))

,

(3.6)

f and only if f (Yi) = ×
T
t=1ft (Yi); for a derivation see Appendix C. To see why expression (3.6) results in more convenient

stimators than expression (3.5), suppose that the econometrician specifies a f (Yi) such that in each t = 1, . . . , 10 an
individual can choose one out of Jt = J = 5 different alternatives. It follows that f (Yi) contains 510 possible choice
equences of length T = 10. By using the SSL in (3.5), the econometrician would have to estimate a huge MNL model
ith a summation over 510 addends in the denominator. However, since f (Yi) can be obtained as the cartesian product
f T = 10 separate t-specific sets each containing J = 5 alternatives, expression (3.6) guarantees that this SSL model
an equivalently be expressed as the product of T = 10 MNL models each with a summation over J = 5 addends in
he denominator. The examples of sufficient sets that we propose in Section 4.1 all satisfy this condition, giving rise to
omputationally simple estimators. As we will illustrate later, a famous exception to the equivalence between (3.5) and
3.6) is the Choice Permutations sufficient set first proposed by Chamberlain (1980), which defines – in our terminology
the sufficient set as the collection of all permutations of the observed Yi = j and which results in Chamberlain (1980)’s

ixed effect logit model.12

.2.2. Individual-specific logit and mixed logit models
In this subsection, we illustrate how sufficient sets can be used in the context of MNL models with individual-specific

reference parameters. We start by discussing the simplest case in which the econometrician observes a large T for each
ndividual. We then move on to the more complex scenario in which the econometrician only observes a small T for each
ndividual: after a brief introduction of the model and basic challenges, we focus on a discrete mixture version of it for
hich both identification and estimation can be discussed in simple and intuitive terms.

ndividual-specific MNL model: panel data with large T
When the econometrician observes a large number of choice situations per individual, T → ∞ for fixed I , then she

an rely on the results from the previous subsection and on the estimator proposed by Hey and Orme (1994) and Dubois
t al. (2020) to estimate a separate MNL model with unobserved choice sets for each individual.

ssumption 2(a). Suppose that each i has systematic utilities of the form V
(
Xijt t , θi

)
with individual-specific preferences

i distributed according to p(θi = θ |ψ), where ψ is a vector of parameters. Conditional on all V
(
Xijt t , θi

)
’s, on θi = θ , and

on CS⋆i = c , ϵijt t from (2.1) is distributed i.i.d. Gumbel.

12 In those cases in which f (Yi) cannot be expressed as ×
T
t=1ft (Yi), the econometrician can directly apply McFadden (1978) and estimate θ from

subsets of the observed but potentially huge sufficient sets f (Yi). As an example, D’Haultfœuille and Iaria (2016) implement this idea in the context
of Chamberlain (1980)’s fixed effect logit model. Matlab codes are available on the authors’ personal webpages.
Please cite this article as: G.S. Crawford, R. Griffith and A. Iaria, A survey of preference estimation with unobserved choice set heterogeneity. Journal of
Econometrics (2020), https://doi.org/10.1016/j.jeconom.2020.07.024.
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Irrespective of the distribution of θi, when f (Yi) = ×
T
t=1ft (Yi), it follows from the previous subsection that i’s

probability of choosing Yi = j conditional on f (Yi) = r and on θi is given by:

Pr[Yi = j|f (Yi) = r, θi] =

T∏
t=1

exp(V (Xijt t , θi))∑
kt∈ft (k)=rt exp(V (Xikt t , θi))

, (3.7)

which we call the Individual Sufficient Set Logit (ISSL) to distinguish it from the standard SSL from (3.6). Even though
he realization of the random coefficients θi is unobserved and potentially hetereogeneous across individuals, when

→ ∞ the ISSL model (3.7) can be directly used as an individual-specific likelihood function on the basis of which
o construct a consistent individual-specific MLE of θi. In other words, for any finite I , when T is large the econometrician
can treat the unobserved θi as a ‘‘fixed effect’’ and estimate it from the individual-specific MLE derived from (3.7), for each
= 1, . . . , I . Hey and Orme (1994) and Dubois et al. (2020) propose this idea for situations with observed choice sets, but
he results from the previous subsection imply that their methods – when combined with sufficient sets from Condition 1
can be readily applied also to situations with unobserved choice sets. At an intuitive level, by following this procedure,

he econometrician would estimate by MLE a separate θ̂i for each individual i = 1, . . . , I and then – if in addition to
T → ∞, also I → ∞ – she could recover non-parametrically the distribution of random coefficients p(θi = θ |ψ) by
imply computing the frequency of each realization θi = θ among the estimates. For more details about this estimation
rocedure, see Dubois et al. (2020).

iscrete distribution of random coefficients: small T
Here we discuss the typical and more complex scenario in which the econometrician only observes a small number of

hoice situations T per individual, with I → ∞. In this case the econometrician will instead need to treat θi as a random
ffect and, relying on its distribution p(θi = θ |ψ), integrate it over to derive i’s choice probability.
Given Assumption 2(a) and Condition 1, by conditioning the probability of choice sequence Yi = j on the sufficient set

(Yi) = r , with f (Yi) = r ⊆ CS⋆i = c , we obtain the Sufficient Set Mixed Logit (SSML):

Pr[Yi = j|f (Yi) = r, ψ]

=

∫
θ

Pr[Yi = j, θi = θ |f (Yi) = r, ψ]dθ

=

∫
θ

Pr[Yi = j|f (Yi) = r, θi = θ ]p(θi = θ |f (Yi) = r, ψ)dθ

=

∫
θ

∏T
t=1 exp

(
V (Xijt t , θ )

)∑
k∈f (Yi)=r

∏T
t=1 exp

(
V (Xikt t , θ )

)p(θ |f (Yi) = r, ψ)dθ.

(3.8)

Note from (3.8) that the distribution of random coefficients used to integrate over unobserved preference heterogeneity
is conditional on the realization of the sufficient set f (Yi) = r , i.e. p(θi = θ |f (Yi) = r, ψ). As a consequence, and
differently from the unconditional mixed logit model commonly estimated by applied researchers, the SSML in (3.8) is
a conditional mixed logit model which requires the specification of the conditional distribution of random coefficients
p(θi = θ |f (Yi) = r, ψ), as opposed to the more standard unconditional distribution of random coefficients p(θi = θ |ψ).
The two are related by:

p(θi = θ |ψ) =

∑
r

p(θi = θ |f (Yi) = r, ψ) Pr[f (Yi) = r], (3.9)

where the probability of each realization r of the sufficient set, Pr[f (Yi) = r], is observed in the data. Given (3.9), it is
apparent that parametric assumptions on the unconditional distribution of random coefficients, p(θi = θ |ψ), will not
typically translate into convenient restrictions on the conditional distributions, p(θi = θ |f (Yi) = r, ψ). For example, if
p(θi = θ |ψ) is a normal density, that certainly does not imply that p(θi = θ |f (Yi) = r, ψ) will also be a normal density. This
omplexity is a consequence of the sample selection on the realized random coefficients introduced by the conditioning
(Yi) = r . The next example provides some intuition about this sample selection problem.

xample on sample selection of random coefficients. Consider a market with two kinds of products: high-quality/high-
rice products, collected in set h, and low-quality/low-price products, collected in set ℓ. Suppose that the unconditional
istribution of the marginal utility of ‘‘quality’’ βi in the population is discrete with two points of support, βhigh with

probability Pr[βi = βhigh|θ ] = θhigh and βlow with probability Pr[βi = βlow|θ ] = θlow = 1 − θhigh, where βhigh > βlow . The
parameters βhigh, βlow , and θhigh are the objects of interest. Suppose that all the choice sequences (Yi) observed in the data
give rise to two realizations of the sufficient set: f (Yi) = h, collecting all the high-quality/high-price products, and f (Yi) =

ℓ, collecting the remaining low-quality/low-price products. Assume that f (Yi) = h is observed in the data with probability
Pr[f (Yi) = h] = p and f (Yi) = ℓ with probability Pr[f (Yi) = ℓ] = 1 − p. Among the i’s with f (Yi) = h, the conditional
distribution of the random coefficients is Pr[β = β |f (Y ) = h] = ρh and Pr[β = β |f (Y ) = h] = ρh

= 1 − ρh .
Please cite this article as: G.S. Crawford, R. Griffith and A. Iaria, A survey of preference estimation with unobserved choice set heterogeneity. Journal of
Econometrics (2020), https://doi.org/10.1016/j.jeconom.2020.07.024.
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imilarly, among the i’s with f (Yi) = ℓ, it is Pr[βi = βhigh|f (Yi) = ℓ] = ρℓhigh and Pr[βi = βlow|f (Yi) = ℓ] = ρℓlow = 1− ρℓhigh.
For any i with f (Yi) = h, the conditional choice probability of choosing sequence Yi = j ∈ f (Yi) = h is:

Pr[Yi = j|f (Yi) = h, βhigh, βlow, ρ
h
high]

= Pr[Yi = j|f (Yi) = h, βi = βhigh] × ρh
high + Pr[Yi = j|f (Yi) = h, βi = βlow] × (1 − ρh

high),
(3.10)

where Pr[Yi = j|f (Yi) = h, βi = βhigh] and Pr[Yi = j|f (Yi) = h, βi = βlow] are MNL formulas with choice set f (Yi) = h
nd evaluated at preference parameters βhigh and βlow , respectively. For any i with f (Yi) = ℓ, then Pr[Yi = j|f (Yi) =

, βhigh, βlow, ρ
ℓ
high] is analogous to (3.10). Eq. (3.9) linking the conditional to the unconditional distribution of random

oefficients simplifies to θhigh = ρh
high × p + ρℓhigh × (1 − p) and θlow = 1 − θhigh. In this example, absence of sample

election corresponds to ρh
high = ρℓhigh = θhigh. This condition would be violated, for instance, if consumers with a higher

reference for quality βi = βhigh were more likely to be observed purchasing high-quality products, so that ρh
high > ρℓhigh.

This selection problem greatly complicates general treatments about identification and estimation of the SSML model
3.8), see for example Keane and Wasi (2012). However, there are simple versions of (3.8) whose identification can be
eadily shown and estimation easily performed in practice.

We now turn to one of these cases, where both the random coefficients θi and the regressors Xi have a discrete, finite,
nd known support. In this scenario, the identification of the model can be described in very transparent terms, while
he estimation can be performed by Ordinary Least Squares (OLS) or, to improve efficiency, by the easy-to-implement
nequality-constrained least square estimator proposed by Bajari et al. (2007) and Fox et al. (2011).

ssumption 2(b). Suppose the matrix Xi = [Xi1, . . . , Xit , . . . , XiT ] gathers all of i’s regressors over the T choice situations,
=
{
θ1, . . . , θq, . . . , θQ

}
is the discrete and finite support of the random coefficients θi, and Ψ r

=
[
ψ r

1, . . . , ψ
r
q , . . . , ψ

r
Q

]′
he associated conditional weights or conditional probability masses. There is a finite number P of different values taken by
he regressors Xi, so that any Xi ∈

{
X1, . . . , Xp, . . . , XP

}
. BothΘ and

{
X1, . . . , Xp, . . . , XP

}
are known to the econometrician.

Given the additional Assumption 2(b), the SSML model (3.8) simplifies to:

Pr
[
Yi = j| Xi, f (Yi) = r,Θ,Ψ r]

=

Q∑
q=1

Pr
[
Yi = j| Xi, f (Yi) = r, θi = θq

]
× ψ r

q . (3.11)

or the purpose of identification, the left hand side of (3.11), Pr
[
Yi = j| Xp, f (Yi) = r,Ψ r

]
, is known for any combination

j, p, r). Because Θ =
{
θ1, . . . , θq, . . . , θQ

}
is known, each Pr

[
Yi = j| Xp, f (Yi) = r, θi = θq

]
from (3.11) is also known for

ny
(
j, Xp, r, θq

)
combination (i.e., a simple SSL with parameters θq). For given r , as a consequence, identification boils

own to guaranteeing the existence of a unique solution Ψ r to the system of linear equations in (3.11).
There are Q sufficient set logit probabilities on the right hand side of (3.11). For brevity, we call each of them

r
[
j| Xp, r, θq

]
and re-write (3.11) as:

Pr
[
Yi = j| Xp, f (Yi) = r,Θ,Ψ r

]
=

Q∑
q=1

Pr
[
j| Xp, r, θq

]
× ψ r

q

= Pr
[
j| Xp, r,Θ

]
Ψ r ,

(3.12)

here Pr
[
j| Xp, r,Θ

]
=
[
Pr
[
j| Xp, r, θ1

]
, . . . , Pr

[
j| Xp, r, θQ

]]
and Ψ r

=
[
ψ r

1, . . . , ψ
r
q , . . . , ψ

r
Q

]′. Denote the number of
hoice sequences in f (Yi) = r by Sr (i.e., |r| = Sr ). For each

(
Xp, r

)
combination, with p = 1, . . . , P , we have a system of

r equations like (3.12) and, in turn, we have P such systems of Sr equations (one for each Xp). By stacking all of these
quations together, we obtain a (potentially huge) system of P · Sr equations for any r:

Pr [X, r,Θ,Ψ r ] =

⎡⎢⎢⎢⎢⎢⎢⎣

Pr [X1, r,Θ]
...

Pr
[
Xp, r,Θ

]
...

Pr [XP , r,Θ]

⎤⎥⎥⎥⎥⎥⎥⎦Ψ
r

= Pr [X, r,Θ]Ψ r ,

(3.13)

here X =
[
X1, . . . , Xp, . . . , XP

]
, Pr [X, r,Θ,Ψ r ] is the P · Sr × 1 vector that stacks together all the observed

r
[
Yi = j| Xp, f (Yi) = r,Θ,Ψ r

]
conditional choice probabilities, for all Xp’s and all j ∈ f (Yi) = r . For any p =

, . . . , PPr
[
Xp, r,Θ

]
is a Sr × Q matrix with rows given by Pr

[
j| Xp, r,Θ

]
, for j = 1, . . . , Sr . Pr [X, r,Θ] is the P · Sr × Q

matrix that stacks together all the P matrices Pr
[
X , r,Θ

]
with p = 1, . . . , P .
Please cite this article as: G.S. Crawford, R. Griffith and A. Iaria, A survey of preference estimation with unobserved choice set heterogeneity. Journal of
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It is then immediate to see that given Assumptions 2(a), 2(b), and Condition 1, the discrete conditional distribution of
random coefficients Ψ r , conditional on sufficient set f (Yi) = r , is identified whenever Pr [X, r,Θ] is of full column rank:

Ψ r
=
(
Pr [X, r,Θ]′ Pr [X, r,Θ]

)−1 Pr [X, r,Θ]′ Pr
[
X, r,Θ,Ψ r] . (3.14)

his full column rank condition is sufficient but not necessary for the identification of Ψ r .13 An obvious necessary
ondition for Pr [X, r,Θ] to be of full column rank is Q ≤ P · Sr . In other words, the rank condition embedded in (3.14)
equires one to have ‘‘enough’’ measurements in the sense of many potential choice sequences (a high Sr ) and large
ariation in the regressors (a high P). Intuitively, when P · Sr is high, then it is ‘‘easier’’ to sustain a finer grid of points Θ
a high Q ). In addition, at the potential cost of some loss of efficiency, Eq. (3.14) can be used in isolation to recover Ψ r

or each or only for some of the realizations of the sufficient set r = 1, . . . , R.
In practice, these features suggest to focus on the sub-sample of observations corresponding to realizations of the

ufficient set r ’s with high P · Sr , so to be able to identify and estimate a fine grid Θ with a high Q . This is important
ecause, given any Q , for all those r ’s with Q > P · Sr , the vector of weights Ψ r may not be identified (i.e., Pr [X, r,Θ]

will not be of full column rank). This highlights a trade-off in the choice of the number of grid points Q . On the one
hand, the larger the Q the more credible the model, to the extreme of being able to approximate even continuous mixing
distributions (see Fox et al., 2016), but at the cost of having to use potentially only a small part of the full sample, i.e. those
individuals with realizations of f (Yi) with large P · Sr . On the other hand, with a small Q one may be able to use a larger
portion of the sample, but the risk of misspecification will be higher. This trade-off is salient because only by having
an estimate of Ψ r for all r = 1, . . . , R one can recover the unconditional distribution of random coefficients, the object
typically estimated in standard mixed logit models. By allowing for this further dimension of unobserved heterogeneity
without any additional data, one will be able to learn less about the distribution of random coefficients.

Eq. (3.14) readily leads to a simple estimator: a separate (and potentially huge) OLS estimator for each r = 1, . . . , R.
Each individual OLS will provide an estimate of the vector of weights Ψ r (the distribution of random coefficients
conditional on f (Yi) = r). In the context of the unconditional mixed logit (with known choice sets), such a simple-to-
implement estimator was first proposed by Bajari et al. (2007) and further extended by Fox et al. (2011). To improve
efficiency, these papers propose an inequality-constrained least square estimator that complements the OLS with the
natural constraints implied by Ψ r being a vector of probabilities.14 A refined version of this estimator that does not
require perfect ex-ante knowledge of the grid Θ was proposed by Fox et al. (2016).

3.2.3. Beyond Gumbel errors: Fox (2007)’s pairwise maximum score estimator
McFadden (1978) showed that it is possible to consistently estimate preferences by a conditional Maximum Likelihood

Estimator (MLE) using subsets of individuals’ true choice sets, but this was only for the MNL model. More recently, Bierlaire
et al. (2008) extended the result to discrete-choice models with block-diagonal Generalized Extreme Value errors. To the
best of our knowledge, in the context of cross-sectional or ‘‘short’’ panel data, results of this kind are not available for the
nested logit and for the mixed logit models, even though some interesting approximations have been proposed by Keane
and Wasi (2012) and Guevara and Ben-Akiva (2013a,b).15

Building on Manski (1975), Fox (2007) extended (McFadden, 1978) by showing that semi-parametric discrete-choice
models can be consistently estimated with a Pairwise Maximum Score Estimator (PMSE) using subsets of individuals’
true choice sets. In this subsection we discuss the use of sufficient sets in the context of the PMSE proposed by Fox (2007).

Assumption 3. Suppose that V (Xikt , θ ) = Xiktθ and that Xit is the matrix stacking all the Xikt ’s for k ∈ CS⋆it = cit . For any
given (i, t) and k, k′

∈ CS⋆it = cit , Xiktθ > Xik′tθ if and only if Pr[Yit = k|Xit , CS⋆it = cit , θ] > Pr[Yit = k′
|Xit , CS⋆it = cit , θ].

Assumption 3 (Fox, 2007’s Assumption 1) states that the alternatives belonging to (i, t)’s true but unobserved choice
set with higher systematic utilities are more likely to be chosen. Note that, differently from parametric models such as the
MNL or the probit, Assumption 3 does not impose that the distribution of ϵikt is the same across individuals or even that
the distribution is the same across the choice situations of the same individual (e.g., ϵikt could be distributed Laplace while
ϵikt ′ normal). Goeree et al. (2005) show that a sufficient condition for Assumption 3 is that, for any (i, t), the joint density
of the errors across alternatives is exchangeable.16 The implementation of the PMSE with unobserved and heterogeneous
choice sets requires an additional condition on sufficient sets.

13 There are at least two reasons why the full column rank condition behind (3.14) may be stronger than necessary for identification (i.e., it is
possible to achieve identification with Pr [X, r,Θ] of rank less than Q ): the possibility of sparsity in Ψ r (i.e., ϕr

q = 0 for some q) and the fact that
the correspondence f is the same across different realizations r = 1, . . . , R (i.e., the marginal distribution of the random coefficients (3.9) imposes
restrictions across the R realizations of the sufficient set). We leave the investigation of the necessary conditions for the identification of Ψ r to
uture work.
14 So that for each r: 0 ≤ ψ r

q ≤ 1, q = 1, . . . ,Q and
∑Q

q=1 ψ
r
q = 1.

15 The lack of general extensions of McFadden (1978) to mixed logit models motivates our focus in the last subsection on individual-specific MNL
models in the context of ‘‘long’’ panel data and on mixed logit models with discrete distributions of random coefficients when only ‘‘short’’ panel
data are available.
16 Despite the flexibility, there are popular models among applied researchers that violate Assumption 3, such as the mixed logit model. See Fox
(2007) for more details about Assumption 3 in general.
Please cite this article as: G.S. Crawford, R. Griffith and A. Iaria, A survey of preference estimation with unobserved choice set heterogeneity. Journal of
Econometrics (2020), https://doi.org/10.1016/j.jeconom.2020.07.024.
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ondition 2. Suppose that f (Yi) = ×
T
t=1ft (Yi) = ×

T
t=1fit and that there is a non-empty set N of (i, t)’s with |N|= n ≤ I · T

or which K = ∩(i,t)∈N fit contains at least two alternatives, |K |≥ 2.

Condition 2 imposes two restrictions. First, it requires the sufficient set over choice sequences f (Yi) to be the cartesian
roduct of t-specific sufficient sets fit ’s over alternatives. Second, it requires that there is a set of (i, t)’s whose sufficient
ets fit ’s contain the same two or more alternatives. The PMSE makes pairwise comparisons of alternatives belonging to
ome subset K for all those (i, t)’s that are known to have originally made choices from some choice set CS⋆it such that
⊆ CS⋆it . Condition 2 uses sufficient sets to construct a K guaranteed to be strictly included in the true but unobserved

hoice set CS⋆it of every (i, t) belonging to N .17
With a slight abuse of notation, we re-label the alternatives in subset K so that K = {1, . . . , k, . . . , K }. The PMSE using

hoice-based data on the subset K of alternatives is the parameter vector θ̂Kn that maximizes:

Q K
n (θ ) =

K−1∑
k=1

K∑
k′=k+1

1
n

∑
(i,t)∈N

(1[Yit = k] · 1[Xiktθ > Xik′tθ ] + 1[Yit = k′
] · 1[Xik′tθ > Xiktθ ]). (3.15)

Given Assumption 3, Conditions 1, 2, and some additional technical assumptions (i.e. Assumptions 3 and 4 from Fox, 2007
at p.1009 and p.1011), Fox (2007)’s Theorem 1 guarantees that the Pairwise Maximum Score Estimator θ̂Kn is consistent
for θ .

3.3. Combining sufficient sets with the ‘‘integrating over’’ approach

In Section 3.2, we discussed the use of sufficient sets to specify conditional discrete-choice models that ‘‘difference
out’’ unobserved choice sets, but they can also be used to simplify the practical estimation of unconditional discrete-choice
models that ‘‘integrate over’’ unobserved choice sets, alleviating the curse of dimensionality embedded in Manski (1977)’s
approach. An early application of this idea can be found in Chiang et al. (1998).

As discussed in Section 3.1, even when model (3.1) is correctly specified and identified, its estimation is likely to suffer
from a curse of dimensionality because the number of elements in C⋆i grows exponentially in the number of alternatives
Ji available to individual i (i.e., |C⋆i |= 2Ji − 1). A direct consequence of this curse of dimensionality is that, unless the
researcher makes strong functional form assumptions on Pr[CS⋆i = c|γ ], the model can be estimated only when Ji is
small. Sufficient sets can provide additional restrictions on model (3.1) and make its estimation possible if Ji is large (and
more tractable for any given Ji). If Condition 1 is satisfied, f (Yi) = r ⊆ CS⋆i = c , where c is the true set of choice sequences
to which i is matched. It therefore follows that any set of choice sequences c ′

∈ C⋆i such that f (Yi) = r ̸⊆ CS⋆i = c ′ cannot
be the set of choice sequences to which i is matched, so that Pr[CS⋆i = c ′

|γ ] must be zero. In other words, the researcher
knows that i’s true but unobserved choice set must contain all the choice sequences in the sufficient set, and consequently
any candidate choice set that does not include even just one of these choice sequences can be removed from the collection
of possible sets of choice sequences C⋆i .

Let Cf (Yi) = {c|f (Yi) = r ⊆ CS⋆i = c} be the collection of choice sets consistent with f (Yi) = r (i.e., that include r). Then
model (3.1) simplifies to:

Pr[Yi = j|θ, γ ] =

∑
c∈Cf (Yi)

Pr[Yi = j|CS⋆i = c, θ] × Pr[CS⋆i = c|γ ]. (3.16)

where the only difference with (3.1) is in the terms included in the summation. Note that Cf (Yi) will typically be
substantially smaller than the unrestricted C⋆i . For example, suppose that there are four possible choice sequences: a,
b, c , and d. Depending on their observed choice sequence Yi, individual i will have a sufficient set of one of four possible
sizes: |f (Yi)|= 1 (e.g., f (Yi) = {a}, f (Yi) = {b}, etc.), |f (Yi)|= 2 (e.g., f (Yi) = {a, b}, f (Yi) = {b, c}, etc.), |f (Yi)|= 3
(e.g., f (Yi) = {a, b, c}, f (Yi) = {b, c, d}, etc.), or |f (Yi)|= 4 (i.e., f (Yi) = {a, b, c, d}). The collection C⋆i , usually specified as the
power set of {a, b, c, d}, will then contain 24

−1 = 15 possible (non-empty) choice sets. However, Cf (Yi) will only contain:
8 choice sets if |f (Yi)|= 1, 4 choice sets if |f (Yi)|= 2, 2 choice sets if |f (Yi)|= 3, and 1 choice set if f (Yi) = {a, b, c, d}.
Importantly, note that this use of the sufficient sets is quite general and does not rely on any functional form assumptions
made by the researcher in specifying model (3.1).

3.4. Pros and cons of ‘‘integrating over’’ versus ‘‘differencing out’’

Each of the two main approaches to the problem of unobserved choice set heterogeneity discussed above presents
advantages and disadvantages. While ‘‘integrating over’’ requires additional functional form assumptions and data on the
choice set formation process and it is computationally more intensive, it enables researchers to learn about both the
preference parameters θ and the choice set formation parameters γ . Learning about both θ and γ may be essential in
applications in which the key counterfactuals involve re-matching of choice sets to individuals. In contrast, ‘‘differencing
out’’ requires less prior knowledge and data on the choice set formation process and is simpler to implement, but it does
not allow the estimation of the parameters γ .

17 As we will see below, the sizes of N and K directly affect the number of pairwise comparisons, i.e. observations, used to construct the PMSE.
Please cite this article as: G.S. Crawford, R. Griffith and A. Iaria, A survey of preference estimation with unobserved choice set heterogeneity. Journal of
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Within the differencing out approach, we discussed four models: the Sufficient Set Logit (SSL) model, the Individual
Sufficient Set Logit (ISSL) model, the Sufficient Set Mixed Logit (SSML) model, and the semi-parametric Pairwise Maximum
Score Estimator (PMSE) studied by Fox (2007). Despite its simplicity and pedagogical value, the SSL model may be
unattractive in many applications because of the IIA property. How then to choose among the others?

When data on large T are available, one can opt for the ISSL model given its practical simplicity (basically, the
estimation of I separate MNL models), or avoid Gumbel preference assumptions and separately estimate Fox (2007)’s
semi-parametric model at the level of each individual. The necessary requirement of a large T may however prevent
the use of the ISSL model in some applications. When only small T data are available, the choice is between the SSML
and Fox (2007)’s PMSE. The primary advantage of the PMSE is to allow for flexible distributions of unobserved preferences
within the boundaries of Assumption 3. By contrast, the SSML model requires the distribution of random coefficients to
be discrete and its support Θ to be known in advance (see Assumption 2(b)).

Researchers using any of the models discussed here can evaluate the willingness to pay for alternatives’ attributes
(see, for example, Bajari et al. (2008) or Section 5.3), but knowledge of θ̂Kn does not allow for point estimation of objects
typically of interest to applied researchers, including the evaluation of predicted choice probabilities, marginal effects,
price elasticities, and consumer surplus. As we detail in the next section, the SSL, ISSL, and SSML models lend themselves
to natural lower and upper bounds on such objects of interest, whereas the PMSE cannot say anything about these (because
of greater flexibility and robustness in the estimation of the preference parameters θ ).

Across both methods and models, which approach to use therefore depends on the nature of the available data and
he relative weight placed by researchers on a number of important research design choices. At a high level, we see the
hoice between the integrating over and differencing out approaches to depend on a researcher’s willingness to specify a
articular model matching consumers to their choice sets, their ability to integrate over choice sets in estimation, and the
mportance to their research question of being able to calculate outcomes of interest that depend on information about
onsumer choice sets. Within the differencing out approach, we see the choice depending again on the nature of the data,
ut also on the desire for parametric flexibility versus computational ease and the possibility of bounding some objects
f interest.

.5. Unobserved choice sets and market-level data

Most of this paper focuses on approaches using individual-level data, however, we show here with an example that
nobserved choice set heterogeneity can also lead to inconsistent estimators in the context of aggregate-level data on
arket shares (e.g., Goeree, 2008 and Bruno and Vilcassim, 2008).
Consider a parsimonious model of inertia popular in the applied literature (e.g. Ho et al., 2017, Heiss et al., 2016, Hor-

açsu et al., 2017, and Abaluck and Adams, 2017). Abaluck and Adams, 2017, in particular, call this model the Default-
pecific Consideration (DSC) model. Suppose there are many identical individuals (indexed by i) in a large market, each
aking choices among j = 1, . . . , J products. We observe the proportion of individuals who choose each of the J products
r the outside option j = 0 over T time periods:

{
P0t , P1t , . . . , Pjt , . . . , PJt

}T
t=1. Denote by yijt = 1 whether individual i

urchases product j in period t , yijt = 0 otherwise. The predicted market shares are MNL:

Pr
[
yijt = 1

]
=

exp
(
δjt
)

1 +
∑J

k=1 exp (δkt)
,

=
exp

(
α + Xjtβ + ξjt

)
1 +

∑J
k=1 exp (α + Xktβ + ξkt)

,

(3.17)

where δt = (δ1t , . . . , δJt ) are mean utilities (δ0t is normalized to 0), Xt = (X1t , . . . , XJt ) and ξt = (ξ1t , . . . , ξJt )
are, respectively, product-specific observable and unobservable characteristics, and (α, β) are preference parameters.
Whenever every individual is known to make choices from the full choice set 0 ∪ J = {0, 1, . . . , J}, Pjt = Pr

[
yijt = 1

]
,

Pjt > 0, and E
[
ξjt
⏐⏐ Xjt

]
= 0 for each j, then following (Berry, 1994) the model can be consistently estimated by OLS:18

ln

(
Pr
[
yijt = 1

]
Pr [yi0t = 1]

)
= α + Xjtβ + ξjt . (3.18)

Now suppose that in each t a share (1 − ρ) of individuals do not make any decision among the J ‘‘inside’’ products,
but automatically ‘‘fall into’’ the outside option (or any other default option). Conversely, the remaining share ρ of
individuals still make choices from the full choice set 0 ∪ J . This implies that the observed market shares will no longer

18 To economize on notation, we assume the case in which Xjt is exogenous. The intuition carries on to the case in which some of the Xjt correlates
with ξ but the econometrician has valid instruments Z .
Please cite this article as: G.S. Crawford, R. Griffith and A. Iaria, A survey of preference estimation with unobserved choice set heterogeneity. Journal of
Econometrics (2020), https://doi.org/10.1016/j.jeconom.2020.07.024.
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orrespond to the predicted MNL probabilities from (3.17): Pjt = ρ · Pr
[
yijt = 1

]
for j = 1, . . . , J and t = 1, . . . , T , and

P0t = (1 +∆t) · Pr [yi0t = 1],19 where

∆t =

(1 − ρ) ·

(∑J
k=1 Pr [yikt = 1]

)
Pr [yi0t = 1]

= (1 − ρ) ·

( J∑
k=1

exp (δkt)

) (3.19)

aptures the increase in the probability of choosing the outside option due to the likelihood of ‘‘not making any choice
mong the inside goods’’ (this follows from the constraint that the sum of the choice probabilities must be 1). Finally,
uppose that ρ > 0 so that Pjt > 0 for each j.
It is easy to see that whenever ρ < 1, the standard procedure proposed by Berry (1994) will deliver consistent estimates

f (α, β) when T is fixed and J → ∞. Differently, in the case in which J is fixed and T → ∞ (see Freyberger, 2015), the
OLS estimator will deliver inconsistent estimates. First, when ρ < 1, ln

(
Pjt · P−1

0t

)
will differ from (3.18):

ln
(

Pjt
P0t

)
= ln

(
ρ · Pr

[
yijt = 1

]
(1 +∆t) · Pr [yi0t = 1]

)
= ln

(
ρ

1 +∆t

)
+ α + Xjtβ + ξjt , (3.20)

with ρ ·(1 +∆t)
−1

∈ (0, 1) and ln
(
ρ · (1 +∆t)

−1) < 0. Suppose T = 1 and consider asymptotic approximations in terms
of J → ∞. In this case, i.e. equation (3.20) without the t subscript, by simply regressing ln

(
Pj · P−1

0

)
on a 1 and Xj, the

resulting OLS estimator will be consistent because ∆ → ∞ as J → ∞. This is not surprising, given that as the number
of inside products grows large, the relevance of the outside option vanishes, and with it the role played by ρ < 1.

Second, consider the case of J fixed and T → ∞. Regression (3.20) can be re-written as:

ln
(

Pjt
P0t

)
= ln

(
ρ

1 +∆t

)
+ α + Xjtβ + ξjt

= α + Xjtβ + ξ ∗

jt , where

ξ ∗

jt = ln
(

ρ

1 +∆t

)
+ ξjt .

(3.21)

It is then clear from (3.19) that—whenever ρ < 1—the error term ξ ∗

jt will be a function of the rest of the model, especially
Xt , so that endogeneity will lead to inconsistency of the OLS estimator.20

Most of the existing literature has addressed the problem of unobserved choice set heterogeneity in the context of
ggregate-level data on the basis of the integrating over approach (e.g., Goeree, 2008 and Bruno and Vilcassim, 2008).
he idea of differencing out does not suit well the case of aggregate-level data; it is not clear how one could use panel
ata on the evolution of market shares to obtain similar results to those available in the literature for individual-level
iscrete choice models. In the interest of space, we refer the reader to the excellent surveys by Hickman and Mortimer
2016) and Honka et al. (2019) for an overview of the solutions proposed to address this problem.

. Further considerations on ‘‘differencing out’’

Researchers interested in the ‘‘integrating over’’ approach for handling unobserved choice set heterogeneity have a
arge applied literature on which to rely. For those researchers pursuing the less common ‘‘differencing out’’ approach,
e provide further guidance on a number of additional topics.

.1. Economic foundations of sufficient sets

In this section, we describe a few examples of how choice environments that have been analyzed in a wide variety of
iteratures in economics map onto particular sufficient sets f (Yi) that can be used to implement the estimators discussed
above.

19 Equivalently, P0t = (1 − ρ)+ ρ · Pr [yi0t = 1].
20 In this specific example, one can still obtain a consistent OLS estimator of β from a slightly unusual regression equation that excludes observations
about the outside option:

ln
(

Pjt
Pkt

)
= ln

(
ρ · Pr

[
yijt = 1

]
ρ · Pr [yikt = 1]

)
=
(
Xjt − Xkt

)
β + ξjt − ξkt . (3.22)
Please cite this article as: G.S. Crawford, R. Griffith and A. Iaria, A survey of preference estimation with unobserved choice set heterogeneity. Journal of
Econometrics (2020), https://doi.org/10.1016/j.jeconom.2020.07.024.
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4.1.1. Stable choice sets
There are many examples of economic models that give rise to choice settings that are stable over time. Morgan and

Manning (1985) present results on the existence and properties of search rules for dynamic search problems in which
individuals may choose both the number of periods in which samples of alternatives are searched and the size of the
sample searched in each period. The authors show that if individuals have full recall and no lost alternatives, then a fixed-
sample search strategy is optimal if either the marginal cost of searching or individuals’ discount factors are sufficiently
high. Such strategies have been studied empirically in both product and labor markets (e.g., Janssen and Moraga-González,
2004, De los Santos et al., 2012).

Similar factors are at play in Gaynor et al. (2016)’s study of the impact of a regulatory policy that expanded specialists’
referral networks and in studies of school choice, where the set of schools in any neighborhood usually does not evolve
rapidly, and those households that do not change neighborhood face a stable set of schools for their children (e.g., Walters,
2018, Fack et al., 2019).

Consistent with these three examples, suppose that individuals’ choice sets are potentially heterogeneous across i’s
but stable over the T choice situations, CS⋆it = CS⋆i . Let Hi =

⋃T
t=1 {Yit} ⊆ CS⋆i be the collection of all the alternatives that

ndividual i is observed to choose in any of the T choice situations. We define the Full Purchase History (FPH) sufficient
et as fFPH (Yi) = (Hi)T , the set of choice sequences given by the cartesian product of Hi in each of the T choice situations.
ote that fFPH (Yi) implies a FPH SSL model like that of the SSL, ISSL, and SSML models described in (3.6) and (3.7) which
re simple to implement.
In addition to the FPH sufficient set, the assumption of stable choice sets also underpins another sufficient set: that

roposed by Chamberlain (1980) for the classic Fixed Effect logit model (FE logit). In a model with systematic utilities
iven by Vi(Xijt t , θ ) = δijt + Xijt tβ , Chamberlain (1980) shows that β can be consistently estimated by the ML estimator
f a SSL model with sufficient set fCP (Yi) = P(Yi): the set of all possible permutations of observed choice sequence Yi. As
uch, we call this the Choice Permutations (CP) sufficient set and the corresponding model the CP SSL.21
Chamberlain (1980)’s expressed motivation for the sufficient set fCP (Yi) = P(Yi) was to difference out the fixed effects

δijt ) from each individual’s systematic utility. But his assumption of choice set stability also implies that fCP (Yi) ⊆ CS⋆i .
s such, sufficient set fCP (Yi) = P(Yi) will not only accommodate unobserved preference heterogeneity in the form of
ndividual-alternative specific fixed effects, but also unobserved choice set heterogeneity.22 Matejka and McKay (2015)
ropose a choice model with rational inattention in which the reduced form choice probabilities take the form of a CP
SL model (see Theorem 1, p.282).
As is well known, the CP SSL does not usually allow the identification of i’s fixed effects δijt ’s, but only those elements

f β associated with time-varying observables. This can limit its usefulness to applied researchers. By contrast, the SSL
nd SSML models obtained from fFPH (Yi), while relying on the same assumption of choice set stability, typically allow the
dentification of all parameters.

.1.2. Growing choice sets
The possibility that choice sets may grow over time is a consequence of many search models. For example, in addition

o the results in the previous section, Morgan and Manning (1985) also show that, if the assumptions ensuring full recall
nd ‘no lost alternatives hold, then any sequential search strategy over T periods will imply choice sets that are weakly
rowing over time, so that CS⋆it ⊆ CS⋆it+1. Similarly, Caplin and Dean (2011) propose two models of sequential search: an
lternative-based search model, which provides the micro foundations underlying some of the functional form restrictions
sed by Goeree (2008), Manzini and Mariotti (2014), and Abaluck and Adams (2017) to aid the identification of Manski
1977)’s model, and a reservation-based search model which is a formalization of Simon (1955)’s satisficing model. In
elated work, Caplin et al. (2011) find experimental evidence in support of this latter model.

Masatlioglu and Nakajima (2013) propose another dynamic search framework that they call Choice by Iterative Search,
hich also implies weakly growing choice sets. Several models in the fast-growing literature on limited attention build on
his framework. An example is Eliaz and Spiegler (2011), who study a setting in which individuals have a singleton status
uo, i.e. a choice set including only one product (possibly different across individuals), and firms seek to use marketing
evices, e.g. advertising, to include their products in individuals’ choice sets.23 A dynamic extension of this framework,
n which multiple firms compete in each period with advertising to encourage individuals to consider their products and

21 Note that the CP sufficient set, fCP (Yi), cannot be expressed as the cartesian product of t-specific sufficient sets, giving rise to models that
are harder to implement (e.g., the CP SSL model can be expressed as in (3.5) but not as in (3.6)). For those cases where T is large and/or there
is substantial heterogeneity in the alternatives chosen across the T choice situations, the computational burden implied by the CP SSL can be
onsiderable. D’Haultfœuille and Iaria (2016) show how to ease this computational burden by applying the insights of McFadden (1978) to the
stimation of β from (uniform) random subsets of fCP (Yi).
22 The argument is essentially identical to that leading to (3.5), except for the different systematic utilities that in Chamberlain (1980) have
ndividual-alternative specific coefficients. By replacing V (Xijt t , θ ) with δijt + Xijt tβ and f (Yi) with P(Yi) in Eq. (3.5), Chamberlain (1980)’s result
follows.
23 Other relevant examples of the application of this framework are Ho et al. (2017) and Heiss et al. (2016), which study the Medicare Part D
program and document that individuals switch health plans infrequently and search imperfectly, possibly because of high search costs.
Please cite this article as: G.S. Crawford, R. Griffith and A. Iaria, A survey of preference estimation with unobserved choice set heterogeneity. Journal of
Econometrics (2020), https://doi.org/10.1016/j.jeconom.2020.07.024.
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tatus quos evolve over time would also yield weakly increasing choice sets; this motivates the approach in our empirical
pplication in Section 5.
Other models beyond search can imply growing choice sets as well. Kőszegi and Szeidl (2013), analyze the impact of

‘focus’’ on individuals’ choices, providing numerous examples of individuals focusing on one of an alternative’s (possibly
any) attributes, leading them to select an alternative that exceeds others in this attribute, even if a comparison of

he alternatives across all attributes would lead to a different choice. As they describe themselves, ‘‘Formally, there are
periods and in period t , a consumer makes a choice xt from the deterministic ... consideration set Xt (ht−1), where

t−1 = (x1, . . . , xt−1) is the history of choices up to period t −1’’. In a repeat-purchase environment (e.g., retail purchases
f household goods), ht−1 would consist of the history of that individual’s previous purchase decisions, a fact that can be

used to form a sufficient set as we describe next.
These three examples suggest the following sufficient set. Let Hit =

⋃t
b=1 {Yib} ⊆ CS⋆it be the collection of all the

lternatives that individual i is observed to choose between choice situation 1 and t . We define the Past Purchase History
PPH) sufficient set as fPPH (Yi) = ×

T
t=1Hit , the cartesian product of Hit between choice situation 1 and T . Note that, similarly

o the Full Purchase History sufficient set, fPPH (Yi) implies a PPH SSL model like that of the SSL, ISSL, and SSML models
escribed in (3.6) and (3.7), which are very simple to implement. As with the FPH sufficient set, the intuition is to exploit
he variation in the characteristics of only these alternatives over time.

.1.3. Inter-personal comparisons
While the primary focus of sufficient sets in this paper is their use in panel data environments, they can also be

onstructed in cross-sectional environments to a group of individuals, each making a separate purchase decision at a
ingle point in time as long as they purchase from the same choice set.24 This could be possible, for example, for the
uestion of whether greater availability of fast food outlets causes obesity as in Currie et al. (2010). The authors collect
recise geographic data on the location of fast food outlets and where children live and attend school and examine the
ffect of the presence of a fast food restaurant within given distances of the school attended by the student. If the authors
ere willing to assume that all children living on the same street and attending the same school faced the same choice
et, they could conclude that all such outlets were in the choice set for all such children and this could form the basis for
sufficient set in our approach.
In such settings, one can call each i a ‘‘consumer type’’ and each t one of the T individuals of that type.25 Then, when the

ame choice set is faced by the T individuals of the same consumer type i, the econometrician can use the Inter-Personal
ufficient set: fIP (Yi) = (Hi)T , where Hi =

⋃T
t=1 {Yit} ⊆ CS⋆it .

26 The sufficient set fIP (Yi) imputes to each individual t the
ollection of all the alternatives observed to be chosen by any of the T individuals of consumer type i. As for fFPH (Yi) and
PPH (Yi), note that fIP (Yi) also implies a IP SSL model like that of the SSL, ISSL, and SSML models described by (3.6) and
3.7), which are very simple to implement.

.2. Bounding functions of the preference parameters

The various approaches presented in Section 3 differ in the extent to which they allow us to evaluate functions of θ (or
i for the ISSL model), for example: willingness to pay, elasticities, consumer surplus, or the analysis of counterfactuals,
uch as evaluating the effects of a change in tax policy or a merger between manufacturers. At one extreme is Fox (2007)’s
MSE discussed in sub Section 3.2.3. The PMSE can point-estimate the preference parameters θ , as well as simple functions
f these (e.g., willingness-to-pay), but cannot reveal functions of θ that involve knowledge of the distribution of the
nobserved portion of utility.27 At the other extreme are models based on Manski (1977) that integrate over unobserved
hoice sets discussed in subSections 3.1 and 3.3. These approaches involve specifying a model of choice set formation that
eveals the distribution of choice sets in the population, allowing the point-identification of all functions of θ that depend
n this distribution.
The SSL, the ISSL, and the SSML represent an intermediate case. Here we describe parameters and functions of

arameters that we can point-identify, and how we can use sufficient sets to derive bounds on several useful functions
f these parameters. For ease of notation, we limit the discussion to the SSL with the understanding that similar ideas
eadily apply also to the ISSL and to the SSML. To simplify exposition, suppose that the systematic utilities take the

24 Note the validity of this sufficient set further relies on the assumption that the observable characteristics of any product j are the same for
ach of the T individuals of consumer type i, or that the econometrician knows how they change across t ’s.
25 This is without loss of generality. We could allow each type to have a different number of individuals, Ti , but this would only complicate
notation and provide no deeper insights into the underlying mechanism at work.
26 Note that this definition of fIP (Yi) is identical to that for the Full Purchase History sufficient set, but because the underlying economic
environments are so different (e.g. i is an individual and t is a time period in fFPH (Yi), while i is a consumer type and t is an individual in
fFPH (Yi)), we prefer to define the two separately.
27 See Fox (2007) and Bajari et al. (2008) for more details on this point.
Please cite this article as: G.S. Crawford, R. Griffith and A. Iaria, A survey of preference estimation with unobserved choice set heterogeneity. Journal of
Econometrics (2020), https://doi.org/10.1016/j.jeconom.2020.07.024.
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form:

V (Xijt t , θ ) = δjt + Xijt tβ + αpjt t ,

where θ = [δ1, . . . , δJ , β, α] and pjt t is the price of alternative jt . We can point-identify the vector of preference parameters
θ from the SSL model Pr[Yi = j|f (Yi) = ri, θ].28 We can similarly point-identify simple functions of θ . For example, we
are often interested in willingness-to-pay (WTP) for product characteristic k, Xk

ijt t . By Roy’s Identity, this can be computed
as:

WTPk = −
∂Vijt t/∂X

k
ijt t

∂Vijt t/∂pjt t
= −

βk

α
. (4.1)

Other outputs of economic interest, however, require information about the distribution of choice sets in the population
for point-identification. We cannot point-identify these functions, but we can place bounds on them. This makes clear
that point-identification relies on strong assumptions about the choice set formation process. The probability with which
i chooses alternative jt given choice set CS⋆it = cit is

PrCS
⋆

ijt t (θ ) ≡ Pr
[
Yit = jt |CS⋆it = cit , θ

]
=

exp
(
δjt + Xijt tβ + αpjt t

)∑
m∈cit

exp (δm + Ximtβ + αpmt)
, (4.2)

if jt ∈ CS⋆it = cit and zero otherwise. This choice probability depends on i’s (unobserved) choice set, CS⋆it . Suppose that
we observe a superset Qit of the true but unobserved choice set, so that CS⋆it ⊆ Qit . This could be, for example, the
collection of all alternatives observed to be chosen by any i in choice situation t . It follows that, even if we do not directly
observe CS⋆it = cit , ft (Yi) ⊆ CS⋆it and CS⋆it ⊆ Qit . We can therefore use these conditions to bound the true but unobserved
denominator of the SSL choice probabilities for any Xit = [Xi1t , p1t , . . . , XiJt , pJt ] and θ :∑

m∈ft (Yi)=rit

exp (δm + Ximtβ + αpmt) ≤

∑
m∈CS⋆it=cit

exp (δm + Ximtβ + αpmt) ≤

∑
m∈Qit=qit

exp (δm + Ximtβ + αpmt) . (4.3)

Denote for brevity also PrQijt t (θ ) ≡ Pr[Yit = jt |Qit = qit , θ] and Pr fijt t (θ ) ≡ Pr[Yit = jt |ft (Yi) = rit , θ]. It follows from (4.3)
that for any jt ∈ ft (Yi) = rit :

PrQijt t (θ ) ≤ PrCS
⋆

ijt t (θ ) ≤ Pr fijt t (θ ). (4.4)

That is to say, the true choice probability with which i chooses jt in t is bounded from below by the same probability
assuming i chooses from some superset of the unobserved choice set, Qit = qit , and from above by the same probability
assuming i chooses from just their sufficient set, ft (Yi) = rit . Observe that Pr fijt t (θ ) takes the usual logit form whenever
jt ∈ rit , but that it equals zero whenever jt /∈ rit . Hence, for those jt ∈ qit but jt /∈ rit , Pr

f
ijt t (θ ) will not be a valid upper

bound for PrCS
⋆

ijt t (θ ): even if jt /∈ rit , it can still be the case that jt ∈ CS⋆it = cit and so that PrCS
⋆

ijt t (θ ) > 0. Similarly, among
the jt ∈ qit that jt /∈ rit , there can be some jt /∈ cit . But for those jt ∈ qit that jt /∈ cit , Pr

Q
ijt t (θ ) > PrCS

⋆

ijt t (θ ) = 0: PrQijt t (θ ) will
not be a valid lower bound for PrCS

⋆

ijt t (θ ). It is then unclear how to bound PrCS
⋆

ijt t (θ ) for those jt ∈ qit but jt /∈ rit . However, it
s always possible to construct bounds for the probability with which i would choose jt if indeed jt were to be added to
their true but unobserved choice set, CS⋆it ∪ {jt} = cit ∪ {jt}:

PrCS
⋆
∪j

ijt t (θ ) = Pr
[
Yit = jt |CS⋆it ∪ {jt} = cit ∪ {jt}, θ

]
=

exp
(
δjt + Xijt tβ

)∑
m∈cit∪{jt } exp (δm + Ximtβ)

. (4.5)

y defining PrQ∪j
ijt t (θ ) and Pr f∪j

ijt t (θ ) analogously, note that PrQ∪j
ijt t (θ ) = PrQijt t (θ ), Pr

CS⋆∪j
ijt t (θ ) = PrCS

⋆

ijt t (θ ), and Pr f∪j
ijt t (θ ) = Pr fijt t (θ )

or any jt ∈ rit , while PrQ∪j
ijt t (θ ) ≤ PrCS

⋆
∪j

ijt t (θ ) and PrCS
⋆
∪j

ijt t (θ ) ≤ Pr f∪j
ijt t (θ ) for any jt /∈ rit . Using these facts, we can then

omplement condition (4.4) for those jt /∈ rit and propose choice probability bounds for all (i, jt , t) combinations:

PrQ∪j
ijt t (θ ) ≤ PrCS

⋆
∪j

ijt t (θ ) ≤ Pr f∪j
ijt t (θ ). (4.6)

ondition (4.6) can be used to construct bounds for functions of individual choice probabilities, such as average choice
robabilities or elasticities. The average choice probability of alternative jt for a certain group of individuals i = 1, . . . , It
an be bounded by:

I−1
t

It∑
i=1

PrQ∪j
ijt t (θ ) ≤ I−1

t

It∑
i=1

PrCS
⋆
∪j

ijt t (θ ) ≤ I−1
t

It∑
i=1

Pr f∪j
ijt t (θ ). (4.7)

28 Note that here, differently from most other parts in the paper, we will keep track of the ‘‘i’’ subscript in the realizations of the sufficient sets,
f (Y ) = r , and of the choice sets, CS⋆ = c . This is essential to avoid confusion when computing averages across individuals, as detailed below.
Please cite this article as: G.S. Crawford, R. Griffith and A. Iaria, A survey of preference estimation with unobserved choice set heterogeneity. Journal of
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ith indirect utilities that are linear in price, individual i’s own- and cross-price elasticities are:

ξ
jj
it (Xit , θ ) = βppjt t (1 − PrCS

⋆
∪j

ijt t (θ ))

= βppjt t

⎛⎜⎜⎜⎝1 −
exp(δjt + Xijt tβ)∑

m∈cit∪{jt }

exp(δm + Ximtβ)

⎞⎟⎟⎟⎠ ,
ξ
jk
it (Xit , θ ) = βppkt tPr

CS⋆∪j
ikt t (θ )

= −βppkt t

⎛⎜⎜⎜⎝ exp(δkt + Xikt tβ)∑
m∈cit∪{jt }

exp(δm + Ximtβ)

⎞⎟⎟⎟⎠ ,
(4.8)

here pjt t is jt ’s price in choice situation t and βp is the price coefficient. As (4.8) makes clear, even though we may have
consistent estimator of δ = [δ1, . . . , δj, . . . , δJ ] and β , we still do not know the exact CS⋆it ∪{jt} = cit ∪{jt} for each i and
, and thus the true PrCS

⋆
∪j

ijt t (θ ), ∀jt ∈ CS⋆it ∪ {jt} = cit ∪ {jt}. Given (4.8), (4.6), and βp < 0, we obtain the following bounds
n the elasticities for any jt , kt , Xit , δ, and β:

βppjt t (1 − Pr f∪j
ijt t (θ ))  

Lower (in abs. value) Bound

≤ ξ
jj
it (Xit , θ ) ≤ βppjt t (1 − PrQ∪j

ijt t (θ ))  
Upper (in abs. value) Bound

−βppkt tPr
Q∪j
ikt t (θ )  

Lower Bound

≤ ξ
jk
it (Xit , θ ) ≤ −βppkt tPr

f∪j
ikt t (θ )  

Upper Bound

.
(4.9)

The same bounds in Eq. (4.3) imply the ability to bound consumer surplus. Let the true consumer surplus of individual i
in t be:

Wit
(
Xit | θ, CS⋆it = cit

)
= ζ +

1
α

ln

(∑
m∈cit

exp (δm + Ximtβ + αpmt)

)
, (4.10)

where ζ is Euler’s constant. Then, for any Xit and θ :

Wit (Xit | θ, ft (Yi) = rit) ≤ Wit
(
Xit | θ, CS⋆it = cit

)
≤ Wit (Xit | θ,Qt = qit) . (4.11)

As an example of how to conduct inference on the identification regions described in this section, in Appendix E we
provide confidence intervals for the elasticity bounds on the basis of Imbens and Manski (2004).

Partial identification. Some recent working papers take a different stand from the approaches surveyed here and address
the problem of unobserved choice set heterogeneity on the basis of partial identification methods. For example, Lu (2018)
proposes conditions for both partial and point-identification of discrete choice models. The main conditions required for
partial identification are knowledge of the smallest and the largest possible choice sets, and a monotonicity property
derived from utility maximization (i.e., Sens’s α property). Barseghyan et al. (2019) further weaken the requirements for
partial identification and characterize the sharp identification region from knowledge of the minimum size of the true but
unobserved choice sets. Both papers stress the trade-offs between identification power and several of the assumptions
commonly used in the methods described in this survey. They illustrate that interesting features of the model can be
identified even when unobserved choice sets are endogenously matched to individuals on the basis of their preferences.

4.3. Specification tests: Choice set stability and IIA

The correct implementation of the differencing out approach relies on two kinds of assumptions: assumptions about
the evolution of choice sets across choice situations and assumptions about unobserved preference heterogeneity. In
Section 4.1, we discussed examples of choice set formation processes giving rise to sufficient sets compatible with
Conditions 1 and 2, and in Section 3.2 different models that rely on the IIA property to different extents. In what follows,
we illustrate how existing testing procedures can be used to discriminate among alternative choice set formation processes
and various departures from the IIA property.

4.3.1. Testing among competing sufficient sets
In the context of the ML estimator of the SSL and the ISSL models, alternative sufficient sets lead to more or less robust

and/or efficient estimators along the lines of Hausman and McFadden (1984) and can be used to form specification tests.
We discuss here how to test for some of the assumptions implicit in several sufficient sets, such as the length of the
sequence of choice situations for which choice sets are stable or grow.
Please cite this article as: G.S. Crawford, R. Griffith and A. Iaria, A survey of preference estimation with unobserved choice set heterogeneity. Journal of
Econometrics (2020), https://doi.org/10.1016/j.jeconom.2020.07.024.
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The basis for these specification tests is the Factorization Theorem proposed by Ruud (1984) and further explored
by Hausman and Ruud (1987). Ruud (1984)’s result enables one to rank Maximum Likelihood Estimators (MLEs) of SSL or
ISSL models with different sufficient sets in terms of their efficiency: the MLE of a SSL or ISSL model with sufficient set
fL is more efficient than the MLE of a SSL or ISSL model with sufficient set fZ ⊂ fL. This result can be applied recursively,
so that if two subsets of fL are available, say fZ and fXZ with fXZ ⊂ fZ , then the efficiency rank of the three MLEs will
be fL ≻ fZ ≻ fXZ . As we detail in Appendix F, building on the Factorization Theorem one can construct Hausman tests
etween SSL or ISSL models based on different sufficient sets and implicitly test for underlying economic assumptions
uch as choice set stability or the IIA property. For example, in the context of the SSL model, the sufficient sets discussed
arlier rely on the following economic assumptions:

• fCP : Choice set stability across T choice situations and the possibility of IIA violations in the form of individual-
alternative specific fixed effects, δijt .

• fFPH : Choice set stability across T choice situations and the IIA property.
• fPPH : Choice set evolution in the form of weakly growing choice sets (or, symmetrically, weakly shrinking choice

sets) across T choice situations and the IIA property.29

The first possibility is to compare fCP , fFPH , and fPPH for choice sequences of constant length T . In this case, both the CP
and PPH sufficient sets are subsets of the FPH sufficient set: fCP (Yi) ⊂ fFPH (Yi) and fPPH (Yi) ⊂ fFPH (Yi) for any Yi ∈ CS⋆i = c.
As we discuss in Appendix F.1, these relationships can be used to test for the assumption of choice set stability and for
violations of the IIA property.

The second possibility is to fix a specific f , say fCP , and to compare choice sequences with some of their sub-
sequences: for example, the sequence 1, 2, . . . , T L can be split into two mutually exclusive sub-sequences 1, 2, . . . , T Z

and T Z
+1, . . . , T L, and this gives rise to different fCP ’s, f ZCP (separately from 1 to T Z and from T Z

+1 to T L) and f LCP (from 1
o T L) such that f ZCP (Yi) ⊂ f LCP (Yi) for any Yi ∈ CS⋆i = c . The same holds both for fFPH and fPPH . As illustrated in Appendix F.1,
hese comparisons allow one to test for general forms of choice set stability or evolution.

.3.2. Testing for departures from the IIA
A classic simple test for the IIA property proposed by McFadden et al. (1977) involves a comparison between a MNL

ith its true choice set against another MNL with a restricted choice set. The specification test described in the previous
ubsection is based on the same logic but in a more complex environment where true choice sets are not observed. The
dditional layer of complexity leads to some ambiguity in the classic testing procedure, because rejection of the null can
ow be motivated by either a failure of the IIA property (as in Hausman and McFadden, 1984) or by the sufficient sets
eing too large (a violation of Condition 1), or by both simultaneously. As illustrated in Section 2.2, the imputation in
stimation of a choice set that is too ‘‘large’’ (so that Condition 1 does not hold) is mechanically equivalent to a violation
f the IIA property. In general, such ambiguity cannot be fully resolved: any testing procedure of this kind will be valid and
nformative only under some maintained assumptions. At a deeper level, this is a fundamental identification problem: as
iscussed by McFadden (1987), any discrete choice model can be formally re-written as a model satisfying the IIA property,
ut with a complex dependence on the explanatory variables. We illustrate some examples of maintained assumptions
ecessary for the test to be valid in Appendix F.1. For instance, under the maintained assumption of choice set stability
nd a specific alternative model of unobserved preferences (i.e., Gumbel errors plus individual-alternative specific fixed
ffects), one can test for departures from the IIA property by comparing the estimates of a CP SSL versus those of a FPH
SL. Both the CP sufficient set and the FPH sufficient set require choice sets to be stable, but – differently from the FPH
SL – the CP SSL controls for individual-alternative specific fixed effects which may induce violations of the IIA.
A second way to test for departures of the IIA can be based on the more general models discussed in Section 3.2.2.

or any given correctly specified sufficient set, in the ISSL model (3.7) one can check whether the I estimates θ̂i’s are
tatistically indistinguishable across individuals. Similarly, in the SSML model (3.12), for any given correctly specified
(Yi) = r , one can check whether Ψ r is degenerate, i.e. all but one of the Q probability mass functions ψ r

q ’s are equal
o zero. A third tool that can be used to further investigate failures of the IIA property is the nested logit version of
he testing procedure proposed by Hausman and McFadden (1984), which consists of comparing a nested logit against
MNL, both from the true choice set. In Appendix G, we illustrate how under similar assumptions to those required by

he MNL, sufficient sets can also be used for the consistent estimation of nested logit models with unobserved choice
et heterogeneity. In particular, for any given correctly specified f (Yi) = r , it is possible to consistently estimate the
ithin-nest part of a nested logit model at very little additional cost with respect to a MNL model, and this is enough to

mplement a test for departures of the IIA along the lines of Hausman and McFadden (1984) in the context of unobserved
hoice set heterogeneity.

29 Importantly, the IIA requirement follows from the SSL model and it is not intrinsic in the fFPH and fPPH sufficient sets. Neither sufficient set
relies on the IIA property across individuals when employed in the ISSL model, or even within individuals in the SSML model (see Section 3.2.2).
Please cite this article as: G.S. Crawford, R. Griffith and A. Iaria, A survey of preference estimation with unobserved choice set heterogeneity. Journal of
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. An empirical illustration

There are many empirical examples of the ‘‘integrating over’’ approach, but relatively few of the ‘‘differencing out’’
ethod. To show how the ideas presented in this survey can be applied in practice, we therefore present an empirical

llustration of the differencing out approach. In Section 4.1.2, we discussed models of limited attention and the role
hat marketing expenditure can play at influencing consumers’ choice sets (as in the models of Eliaz and Spiegler, 2011
nd Goeree, 2008). We use data and methods similar to those in Dubois et al. (2020) to estimate demand for chocolate
ars by a sample of adult women in the UK making decisions on-the-go, i.e. chocolate purchased outside of the home in
mall corner stores, vending machines, concession stands, and other outlets for immediate consumption. In the language
f Section 3.2.2, we will estimate an ISSL model.
We are interested in estimating consumers’ responsiveness to price and how advertising might affect consumers’

hoices. Advertising is important in the chocolate market, and there is intuitive appeal to the idea that ads might play
n important role both in bringing products to consumers’ attention (as in Eliaz and Spiegler, 2011 and Goeree, 2008) as
ell as potentially entering their utility directly (as in Becker and Murphy, 1993).
At any point in time there are more than 100 products available to choose from. In such a choice environment, it is

nlikely that an individual will spend the time to consider each one, and collecting information on which products the
ndividual considered (for example, using eye-tracking technologies) is expensive. We compare results from estimation
ased on the Complete sufficient set – where we assume that each individual considers all of the products that are

available in the type of store in which they are currently shopping – with the Past Purchase History (PPH) sufficient
set. We allow for the possibility that individuals have finite memory of products that they have purchased, and consider
sufficient sets based on purchase histories of shorter duration (described below). For brevity we omit the ‘‘store-type
specific’’ modifier from each of these descriptions.

5.1. Model

We adapt the general ISSL model presented in Section 3.2.2 to the demand for chocolate on-the-go and our data. We
assume that each individual makes a purchase from their own (unobserved) choice set CS⋆it . It could include many or only
a few of the products currently available in the market; it always includes the option not to purchase. We observe what
product was purchased, the price paid, the type of store the product was purchased in, and what products have been
purchase by others (so are available) in that type of store.

We rely on the large number of choice situations observed per individual to specify choice probabilities as in the ISSL
model (3.7). The probability with which individual i buys the sequence of products j = (j1, . . . ., jt , . . . , jT ) given her
ufficient set f (Yi) = ri is:

Pr[Yi = j|f (Yi) = ri, θi] =

T∏
t=1

exp(V (Xijt t , θi))∑
k∈rit

exp(V (Xikt , θi))
, (5.1)

here f (Yi) = ×
T
t=1ft (Yi) = ×

T
t=1rit and each rit is the set of chocolate bars belonging to individual i’s sufficient set in

week t . Utility for any chocolate bar jt in week t is given by

Uijt t = V (Xijt t , θi) + ϵijt t , (5.2)

with

V (Xijt t , θi) = δgb + αipojt t + βg ln(aibt ), (5.3)

where δgb is a brand (to which product jt belongs) fixed effect for demographic group g , pojt t is the price of product
t in store-type o in week t , and ln(aibt ) is log advertising exposure to brand b in week t .30 The price variable and our
easure of advertising exposure are defined in the next subsection. Each individual has her own price sensitivity, αi, with
common brand and advertising sensitivity according to their membership in one of nine demographic groups defined
y age and equivalised income, which are indexed by g .
The utility of the outside option of not purchasing a chocolate bar is given by

Ui0t = δg0 +

∑
m

τgm + ϵi0t , (5.4)

here the τgm’s are demographic-group-specific month effects meant to capture seasonality and/or cyclicality in on-the-go
hocolate demand.

30 We specify brand dummies for eight large chocolate brands.
Please cite this article as: G.S. Crawford, R. Griffith and A. Iaria, A survey of preference estimation with unobserved choice set heterogeneity. Journal of
Econometrics (2020), https://doi.org/10.1016/j.jeconom.2020.07.024.
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Fig. 1. Number of products in sufficient sets. Note: The histograms shows the distribution of the number of products in the sufficient sets across
all purchase occasions.

5.2. Data

We use data on 532 women. The data are from the Kantar Worldpanel on-the-go survey, collected from individuals
who record purchases that they make on-the-go for immediate consumption.31 We use information on 130,304 purchase
ccasions over the period 2009–2014. A purchase occasion is when a woman is observed purchasing a snack of any form
n-the-go.
At any one point in time, there are more than 100 different types of chocolate products available in the market. The

utside option, when a chocolate bar is not purchased, has a 39.6% market share. The three largest market share products
re KitKat, with a market share of 3.7%, Cadbury’s Twirl, 2.7%, and Cadbury’s Dairy Milk, 2.5%.
Individuals purchase products in different outlets. We consider four types of outlets: large national chains (30.1%

f sales), news agents (25.2% of sales), vending machines (5.3% of sales), and other types of small stores and outlets
38.6% of sales). We assume that the outlet that we observe the individual shopping in is chosen independently from
emand shocks for any specific product. Prices are constructed at the level of the store-type o and week t . We observe
rices on each individual transaction and aggregate them to the level of the outlet and week (using the median); most
ational chains in the UK price nationally, we allow prices in news agents and other outlets to vary across broad regions.
5% of prices range from 20 pence to £1.00, with a few exceptional items available at very low price (for example,
adburys Dairy Milk Buttons for 19 pence) and a few large items (for example, a 360g Toblerone Milk Chocolate bar
or £4.99).

Fig. 1 shows the distribution of sizes of the sufficient sets used in estimation; panel (a) shows the distribution of the
umber of chocolate bars in the Complete sufficient set across all purchase occasions. The distribution is bi-modal, with
ufficient sets when purchasing from national outlets populating the right mode (up to a maximum of 90 chocolate bars)

31 These data were used to analyze the effects of banning advertising in the market for junk foods in Dubois et al. (2018) and in Dubois et al.
(2020) to study the impact of soda taxes; we follow their lead in many aspects of our data construction.
Please cite this article as: G.S. Crawford, R. Griffith and A. Iaria, A survey of preference estimation with unobserved choice set heterogeneity. Journal of
Econometrics (2020), https://doi.org/10.1016/j.jeconom.2020.07.024.
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Table 3
Coefficient estimates.

Complete PPH PPH PPH
12 months 11 months

Price Mean −1.777 −0.921 −0.643 −0.623
Std Dev 5.154 1.822 1.759 1.845

Advertising Mean 0.168 0.054 0.033 0.031
Std Dev 0.047 0.036 0.024 0.022

Product effects Yes Yes Yes Yes

Time effects Yes Yes Yes Yes

Notes: The Table describes the mean and standard deviation of the 532 individual price and 532 advertising
parameters. Each column shows the estimates using the indicated sufficient set.

and sufficient sets when purchasing from a vending machine populating the bulk of the left tail. Panel (b) shows the
distribution of the number of chocolate bars in Past Purchase History (PPH) sufficient sets; these range from 2 to 64.
Panel (c) shows the distribution for the Past Purchase History using only purchases made in the 12 months prior to the
current choice occasion, and panel (d) using only those made in the 11 months prior to the current choice occasion—this
reduces the sufficient sets to a maximum of 48 products.

To measure advertising exposure we convert weekly advertising (‘‘flows’’) into an advertising ‘‘stock;’’ advertising
stocks are the depreciated accumulation of the flows. We use minutes of TV advertising to define advertising flows.
Following Goeree (2008), we measure advertising exposure at the individual level. We use detailed information about
when individual ads were aired on television matched with self-reported viewing information. We denote the stock of
advertising stockibt : stockibt ranges from 0 for individuals that do not watch TV, or only watch advertising-free public TV
(the BBC), to over 100 min of accumulated exposure to advertisements for a particular brand. The mean is 10 min of
accumulated exposure. We follow Dubé et al. (2005) and allow for diminishing returns to advertising by transforming

the stock of advertising, stockibt , using the log inverse hyperbolic sine function, ln(aibt ) = ln
(
stockibt +

√
1 + stock2ibt

)
.

urther details on the data and our definitions are available in Appendix H.

.3. Coefficient estimates

Table 3 presents the mean and standard deviation of the estimated price and advertising coefficients using each of
he four sufficient sets.32 The mean of the coefficient on price reduces substantially from the Complete sufficient set
o the Past Purchase History, and reduces again when we use only information on purchases made in the year prior to
he current choice occasion; restricting to using only the past 11 months does not substantially change the mean. The
tandard deviation of the individual estimates is smaller for the estimates using the Past Purchase History. Similarly, for
he advertising coefficients, the mean of the estimates is higher when using the Complete sufficient set than when using
he Past Purchase Histories.

Fig. 2 shows the distribution of the 532 estimated price coefficients across the four sufficient sets. For any individual
, the Complete sufficient set is a superset of the full PPH and the full PPH is a superset of the 12 month’ PPH, which in
urn is a superset of the 11 months PPH sufficient set. It is evident that assumptions on individuals’ choice sets have an
mpact on these estimated distributions.

We perform some of the Hausman tests discussed in Section 4.3.1, reported in Table 4. We report the distribution of
-values of a Hausman test on the price coefficient and separately on the advertising coefficient for each individual; the
alidity of these relies on the maintained assumptions that unobserved preference heterogeneity is correctly specified by
SSL model (5.1) and that the smallest of the sufficient sets used as a reference is small enough to satisfy Condition 1.
verall, these results suggest that both the Complete and the PPH may be too large and systematically include products
ot considered or unavailable to individuals when making choices on-the-go. Among the proposed sufficient sets, the
ost robust – in the sense of Condition 1 – is the PPH using 11 months of previous purchases. Consequently, we regard

he comparison between the PPH 12 months versus the PPH 11 months as the most informative: for a substantial share
f the sample (37% in the top panel and 63% in the bottom panel), the Hausman tests provide some evidence that, during
ny purchase occasion, individuals consider at least the chocolate bars they bought in the previous year. In general, if
researcher is not satisfied by the frequency with which the Hausman test is rejected, they can then specify smaller
ufficient sets for those individuals with p-values below 10%, re-estimate the model, take these estimates as the reference
oints for another round of Hausman tests, and so on until the rate of non-rejection is deemed satisfactory.

32 We excluded the results for a small number of women for whom there is not sufficient price variation in their sufficient sets to identify all of
he price coefficients, and a small number for whom the estimated price sensitivity in all specifications was positive. Including them in the analysis
ould change none of the qualitative conclusions drawn from this illustration.
Please cite this article as: G.S. Crawford, R. Griffith and A. Iaria, A survey of preference estimation with unobserved choice set heterogeneity. Journal of
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Fig. 2. Distributions of estimated price coefficients. Note: The histograms show the distribution of estimated price coefficients for our sample of
adult women for specifications using different sufficient sets. Bars in black are statistically significant and negative, in light gray are statistically not
different from zero, and dark gray statistically significant and positive at conventional levels.

Table 4
Hausman tests.

% of sample with
p-value on individual Hausman test

>0.1 0.05–0.1 0.01–0.05 <0.01

Price coefficients
Complete v PPH 12.0 1.9 3.4 82.7
PPH v PPH 12 months 16.2 2.8 5.6 75.4
PPH 12 months v PPH 11 months 37.0 8.5 13.0 41.5

Advertising coefficients
Complete v PPH 0.0 0.0 0.0 100.0
PPH v PPH 12 months 0.0 8.5 0.0 91.5
PPH 12 months v PPH 11 months 63.0 10.2 0.0 26.9

Notes: The Table summarizes p-values of a Hausman test for each individual.

Our empirical results are in line with Goeree (2008)’s. With respect to price sensitivity, in a simplified model with three
products, Goeree (2008, Appendix B, pages 2-7) shows analytically that the more likely are individuals to select among
less than the full choice set (what she calls ‘‘limited information’’), the more attenuated will price elasticities be (i.e., closer
to zero). This is also what she finds in her empirical results (Goeree, 2008, Table VII), with price elasticities smaller
in absolute value than their full-information counterparts (estimated on what we would call the Complete sufficient
set).

Across specifications, we find that our estimates of advertising sensitivity are smaller when using the Past Purchase
History sufficient set. As described above, the literature analyzing the economics of advertising has argued that advertising
can both inform individuals about products’ existence and so increase the likelihood that they are in individuals’ choice
sets, as well as directly influence individual utility, shifting their preferences. The estimates using the Complete sufficient
Please cite this article as: G.S. Crawford, R. Griffith and A. Iaria, A survey of preference estimation with unobserved choice set heterogeneity. Journal of
Econometrics (2020), https://doi.org/10.1016/j.jeconom.2020.07.024.
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Table 5
Complementary value of advertising.

Complete PPH PPH PPH
12 months 11 months

Mean 0.756 0.656 0.403 0.404
Std Dev 0.168 0.236 0.249 0.261

Notes: The Table reports the mean and standard deviation of the estimated complementary value of
advertising. Each column shows the estimates for the indicated sufficient set.

set can, at some intuitive level, be considered as a ‘‘reduced form’’ that captures both of these effects, while the estimates
using the Past Purchase History sufficient sets, by focusing on those products for which individual attention is presumed to
be already high, identify the effects of advertising mainly through its influence on preferences. If this story is an accurate
characterization of behavior in the on-the-go chocolate market, then we would expect to find, as we do, smaller estimated
advertising sensitivity with the Past Purchase History than with the Complete sufficient set.

In Becker and Murphy (1993), advertising enters consumers’ utility functions as a complement to the value they
place on a good being advertised. As such, it has a value to consumers that can be quantified in a manner similar to
any other product characteristic. Such a specification is common in the empirical analysis of the effects of advertising,
and is something in which firms and advertising executives are likely to be interested. We can use the estimated
preference parameters and Eq. (4.1) to compute the complementary value (to consumers) of advertising; these are in
Table 5.

These estimates show that different assumptions about sufficient sets may have important practical consequences and
lead to very different economic implications. At mean advertising, a one-standard deviation increase in the log advertising
stock, ln(aibt ), equal to 0.69 (or 69%), implies an increase in valuation of a product of 52.2 pence when using the Complete
sufficient set.33 As the average price of a chocolate product is 58 pence, this is a 90% increase. By contrast, the estimates
obtained using the PPH 12 months sufficient set suggest a one-standard deviation increase in the log advertising stock
increases the value of a product by 27.8 pence, or a 48% increase.34

6. Conclusion

In this paper, we survey the two main empirical approaches to tackling the problem of unobserved choice set
heterogeneity: ‘‘integrating over’’ and ‘‘differencing out’’ unobserved choice sets. The two approaches originate from
different econometric literatures, started respectively by Manski (1977) and McFadden (1978). While integrating over
heterogeneous unobserved choice sets is commonly done in empirical applications, differencing them out appears to
be less popular in this context, possibly because the McFadden (1978)’s original motivation was to facilitate estimation
with large but observed choice sets. We provide a unifying notation for understanding the two approaches and, inspired
by Chamberlain (1980), we propose the use of consumers’ observed choices paired with assumptions about the evolution
of their unobserved choice sets over time as a practical tool to construct proper choice subsets in panel data environments.
We call these subsets ‘‘sufficient sets’’.

Sufficient sets serve several purposes. First, sufficient sets help clarify that differencing out can also address the problem
of unobserved choice sets, and that it is complementary to integrating over them. Second, sufficient sets prove useful to
implement both approaches in practice. Third, they help translate economic assumptions derived from the characteristics
of a given choice environment into econometric assumptions appropriate for estimation.

We illustrate some of the relevant issues and methods both in Monte Carlo simulations and in an empirical illustration
of on-the-go demand for chocolate bars in the UK. Both exercises highlight how different assumptions on individuals’
choice sets will have a material impact on demand estimation and that special care needs to be taken in analyzing data
subject to unobserved choice set heterogeneity.

Appendix A. Importance sampling procedure from Goeree (2008)

In this Appendix, we detail how to implement the importance sampling procedure proposed by Goeree (2008) for
the estimation of model (3.2) when choice sets are potentially large. To obtain further computational simplifications, this
procedure can be combined with the use of sufficient sets, as described in Section 3.3.

The unconditional probability of individual i choosing alternative jt in choice situation t is:

33 (0.69 × 0.756) = 0.522, where 0.756 is the mean complementary value of advertising from Table 5 using the Complete sufficient set.
34 (0.69× 0.403) = 0.278, where 0.403 is the mean complementary value of advertising from Table 5 using the Past Purchase History for the past
2 months.
Please cite this article as: G.S. Crawford, R. Griffith and A. Iaria, A survey of preference estimation with unobserved choice set heterogeneity. Journal of
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Pr [Yit = jt | θ, γ ] =

∑
ct∈C

j
t

exp
(
V
(
Xijt t , θ

))∑
dt∈ct exp

(
V
(
Xidt t , θ

))  
Pr[ Yit=jt |CS⋆it=ct ,θ]

×

Pr[ CS⋆it=ct |γ ]  ∏
lt∈ct

φilt t (γ )
∏
kt /∈ct

(
1 − φikt t (γ )

)
, (A.1)

here C j
t is the collection of all possible choice sets that include alternative jt in period t , Pr

[
Yit = jt | CS⋆it = ct , θ

]
is the

hoice probability conditional on choice set CS⋆it = ct , and Pr
[
CS⋆it = ct

⏐⏐ γ ] is the probability of i being matched to choice
et ct at choice situation t . Individual i’s probability of alternative lt to be in their choice set in t is:

φilt t (γ ) =
exp(Wilt tγ )

1 + exp(Wilt tγ )
, (A.2)

here γ are the choice set generating process parameters. The aim is to estimate both θ and γ by maximum likelihood
n the basis of (A.1). Doing this directly is often numerically infeasible because the set of possible choice sets in each
is usually too large to handle. Goeree (2008) proposed a simulation method to ease the computation of (A.1). In the
asic version of it, for each i and t one would approximate (A.1) by drawing R choice sets

{
crit
⏐⏐ r = 1, . . . , R

}
according

to probability Pr
[
CS⋆it = crit

⏐⏐ γ ] and then by averaging out across the resulting conditional choice probabilities:35

P̂r [Yit = jt | θ, γ ] = R−1
R∑

r=1

Pr
[
Yit = jt | CS⋆it = crit , θ

]
. (A.3)

An estimator based on (A.3) would still be numerically demanding since the probability with which each crit is drawn,
Pr
[
CS⋆it = crit

⏐⏐ γ ], is a function of γ . This means that at each iteration of the maximization routine, one would have to
re-draw the R simulated choice sets

{
crit
⏐⏐ r = 1, . . . , R

}
for each i and t . To overcome also this problem, Goeree (2008)

proposed an importance sampling version of simulator (A.3) that allows her to draw all the choice sets once and for all
at the beginning of estimation. The idea of the importance sampling is that we wish to draw random variable c from
probability p (c) but we are not able to directly. However, we know how to draw from probability g (c) and we have a
closed-form solution for expression p(c)

g(c) . Consequently, one can draw several cr ’s from g (cr), multiply each draw cr by
p(cr)
g(cr ) , and the resulting distribution of the drawn cr ’s will be the desired p (cr). In our context, the desired probability is(
crit
)

=
∏

lt∈crit
φilt t (γ )

∏
kt /∈crit

(
1 − φikt t (γ )

)
, while g

(
crit
)

=
∏

lt∈crit
φ0
ilt t
∏

kt /∈crit

(
1 − φ0

ikt t

)
where φ0

ilt t is (A.2) evaluated
t some initial guess γ0 that will be picked at the beginning of estimation and will not change until the end. Then, the
mportance sampling simulator of (A.1) is:

ˆ̂Pr [Yit = jt | θ, γ ] = R−1
R∑

r=1

p
(
crit
)

g
(
crit
) × Pr

[
Yit = jr | CS⋆it = crit , θ

]

= R−1
R∑

r=1

⎡⎢⎢⎢⎣
∏
lt∈crit

φilt t (γ )
∏
kt /∈crit

(
1 − φikt t (γ )

)
∏
lt∈crit

φ0
ilt t

∏
kt /∈crit

(
1 − φ0

ikt t

) × Pr
[
Yit = jt | CS⋆it = crit , θ

]
⎤⎥⎥⎥⎦ .

(A.4)

imulator (A.4) can be implemented with the following algorithm. Before starting estimation, one should draw R choice
ets

{
crit
⏐⏐ r = 1, . . . , R

}
and compute their ‘‘drawing’’ probabilities g

(
crit
)
for each i and t . This can be done as follows.

1. Set some initial value for γ and call it γ0.
2. Given γ0, compute φ0

ilt t = φilt t (γ0) =
exp(Wilt tγ0)

1+exp(Wilt tγ0)
for each i, alternative lt ∈ Jt , and t .36

3. For each i and t , draw R choice sets
{
crit
⏐⏐ r = 1, . . . , R

}
from φ0

ilt , l ∈ Jt . Each choice set crit can be drawn as follows:

(a) Draw an independent uniform ur
ilt ∈ [0, 1] for each lt ∈ Jt .

(b) Alternative lt ∈ Jt belongs to crit if and only if ur
ilt ≤ φ0

ilt .

35 As a useful complement, Honka (2014) proposed a kernel smoothing procedure to prevent lumpiness in these simulated choice probabilities
even for ‘‘manageable’’ numbers of draws, R.
36 Remember that J is the set of alternatives available in the market in t .
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4. For each i and t , compute the probability of having drawn each of the R choice sets
{
crit
⏐⏐ r = 1, . . . , R

}
as g

(
crit
)

=∏
lt∈crit

φ0
ilt t
∏

kt /∈crit

(
1 − φ0

ikt t

)
.

hen, given
{
crit
⏐⏐ r = 1, . . . , R

}
and their ‘‘drawing’’ probabilities g

(
crit
)
for each i and t , one can proceed to the estimation

f θ and γ by simulated maximum likelihood.

1. For each guessed value of (θ, γ ), compute the predicted probability of the observed choice sequence of each i as:

ˆ̂Pr [Yi = (Yi1 = j1, . . . , Yit = jt , . . . , YiT = jT )| θ, γ ] =

T∏
t=1

ˆ̂Pr [Yit = jt | θ, γ ] , (A.5)

where each ˆ̂Pr [Yit = jt | θ, γ ] in the product is computed as in (A.4) given
{
crit
⏐⏐ r = 1, . . . , R

}
and their probabilities

g
(
crit
)
.

2. Take the log of the individual likelihood contribution from (A.5) and sum across all individuals.
3. Keep iterating with new guesses of (θ, γ ) until the log-likelihood function computed at the previous step is

maximized.

ppendix B. Derivation of sufficient set logit (SSL) model (3.5)

Pr[Yi = j|f (Yi) = r, θ]

= Pr[Yi = j|f (Yi) = r, CS⋆i = c, θ]

=
Pr[Yi = j, Yi ∈ r, CS⋆i = c|θ, γ ]

Pr[Yi ∈ r, CS⋆i = c|θ, γ ]

=
Pr[Yi = j, Yi ∈ r|CS⋆i = c, θ] Pr[CS⋆i = c|γ ]

Pr[Yi ∈ r|CS⋆i = c, θ] Pr[CS⋆i = c|γ ]

=
Pr[Yi = j, Yi ∈ r|CS⋆i = c, θ]∑

k∈U

Pr[Yi = k, Yi ∈ r|CS⋆i = c, θ]

=

T∏
t=1

exp(V (Xijt t , θ ))∑
vt∈CS⋆it=ct exp(V (Xivt t , θ ))∑

k∈f (Yi)=r

T∏
t=1

exp(V (Xikt t , θ ))∑
vt∈CS⋆it=ct exp(V (Xivt t , θ ))

=

∏T
t=1 exp(V (Xijt t , θ ))∑

k∈f (Yi)=r
∏T

t=1 exp(V (Xikt t , θ ))

(B.1)

Assumption 1 and Condition 1 imply the IIA property, and the first equality follows from its definition. Note that
conditioning the choice probability on f (Yi) = r is equivalent to conditioning the choice Yi to be from the set r , or Yi ∈ r .
The second and third equalities follow from the definition of conditional probability, while the fourth follows from the
law of total probability. In the fourth equality, U is the universal set of all choice sequences. The fifth equality follows
from Pr[Yi = k, Yi ∈ r|CS⋆i = c, θ] being equal to Pr[Yi = k|CS⋆i = c, θ] for any k ∈ r or, alternatively, being equal to 0
for any k /∈ r . In the last equality,

∑
vt∈CS⋆it=ct exp(V (Xivt t , θ )) cancels out. Finally, consistency of the conditional Maximum

Likelihood Estimator derived from Pr[Yi = j|f (Yi) = r, θ] follows from McFadden (1978).

Appendix C. Derivation of sufficient set logit (SSL) model (3.6)

In this Appendix we demonstrate that Eq. (3.6) holds if and only if f Y = ×
T f Y .
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IF part. Suppose that f (Yi) = ×
T
t=1ft (Yi). Then we can re-write the denominator of conditional logit model (3.5),

Pr [Yi = j| f (Yi) = r, θ ], as (omitting the f in the conditioning for simplicity):∑
(k1,...,kT )∈r

∏T
t=1 exp

(
Vikt t

)
=

∑
(k1,...,kT )∈r1×···×rT

∏T
t=1 exp

(
Vikt t

)

=

⎛⎝∑
k1∈r1

exp
(
Vik11

)⎞⎠ ∑
(k2,...,kT )∈r2×···×rT

∏T
t=2 exp

(
Vikt t

)

=

⎛⎝∑
k1∈r1

exp
(
Vik11

)⎞⎠⎛⎝∑
k2∈r2

exp
(
Vik22

)⎞⎠ ∑
(k3,...,kT )∈r3×···×rT

∏T
t=3 exp

(
Vikt t

)
...

=

T∏
t=1

(∑
kt∈rt

exp
(
Vikt t

))
,

(C.1)

which implies that:

Pr [Yi = j| f (Yi) = r, θ ] =

∏T
t=1 exp

(
Vijt t

)∑
(k1,...,kT )∈r

∏T
t=1 exp

(
Vikt t

)

=

∏T
t=1 exp

(
Vijt t

)
T∏

t=1

(∑
kt∈rt

exp
(
Vikt t

))

=

T∏
t=1

exp
(
Vijt t

)∑
kt∈rt

exp
(
Vikt t

)

=

T∏
t=1

Pr [Yit = jt | ft (Yi) = rt , θ ] .

(C.2)

To complete the proof, we are now going to show that Pr[Yit = jt |f (Yi) = r, θ] = Pr[Yit = jt |ft (Yi) = rt , θ]. Define the
set M

(̃
js
)

=
{
(z1, . . . , zs, . . . , zT )| z ∈ f (Yi) = r, zs = j̃s

}
as the collection of choice sequences that have alternative j̃s in

position s. It then follows that:

Pr
[
Yis = j̃s

⏐⏐ f (Yi) = r, θ
]

=

∑
j∈M(̃js)

Pr [Yi = j| f (Yi) = r, θ ]

=

∑
j∈M(̃js)

∏T
t=1 exp

(
Vijt t

)∑
(k1,...,kT )∈r

∏T
t=1 exp

(
Vikt t

)

=

⎛⎝ ∑ ∏T
t=1 exp

(
Vikt t

)⎞⎠−1⎛⎝ ∑ ∏T
t=1 exp

(
Vijt t

)⎞⎠ .

(C.3)
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imilarly to (C.1), f (Yi) = ×
T
t=1ft (Yi) implies that M

(̃
js
)

= r1 ×· · ·×
{̃
js
}
×· · ·× rT , and consequently that the numerator

of (C.3) can be re-written as:∑
j∈M(̃js)

∏T
t=1 exp

(
Vijt t

)
=

∑
(j1,...,js,...,jT )∈r1×···×{̃js}×···×rT

∏T
t=1 exp

(
Vijt t

)

= exp
(
Vĩjss

)∏
t ̸=s

⎛⎝∑
jt∈rt

exp
(
Vijt t

)⎞⎠ .
(C.4)

Plugging (C.1) and (C.4) into (C.3), we obtain:

Pr
[
Yis = j̃s

⏐⏐ f (Yi) = r, θ
]

=

∑
j∈M(̃js)

Pr [Yi = j| f (Yi) = r, θ ]

=

(
T∏

t=1

(∑
kt∈rt

exp
(
Vikt t

)))−1
⎛⎝exp

(
Vĩjss

)∏
t ̸=s

⎛⎝∑
jt∈rt

exp
(
Vijt t

)⎞⎠⎞⎠

=

⎛⎝(∑
ks∈rs

exp
(
Vikss

))∏
t ̸=s

(∑
kt∈rt

exp
(
Vikt t

))⎞⎠−1⎛⎝exp
(
Vĩjss

)∏
t ̸=s

⎛⎝∑
jt∈rt

exp
(
Vijt t

)⎞⎠⎞⎠
=

exp
(
Vĩjss

)∑
ks∈rs

exp
(
Vikss

)
= Pr

[
Yis = j̃s

⏐⏐ fs (Yi) = rs, θ
]
.

(C.5)

NLY IF part. Consider two choice situations t and s. For these, define ft = { jt | (j1, . . . , jt , . . . , jT ) ∈ f (Yi) = r} and
s = { js| (j1, . . . , js, . . . , jT ) ∈ f (Yi) = r} as the collections of alternatives that appear in at least one sequence belonging
o f (Yi) = r at positions t and s, respectively. Suppose f (Yi) ̸= ×

T
t=1ft (Yi), then ∃t and s such that

(̃
jt ∈ ft ,̃ js ∈ fs

)
and

j̃1, . . . ,̃ jt , . . . ,̃ js, . . . ,̃ jT
)
/∈ f (Yi) = r . It then follows that:

Pr
[
Yit = j̃t

⏐⏐ Yis = j̃s, f (Yi) = r, θ
]

= 0,

hile, since j̃t ∈ ft :

Pr
[
Yit = j̃t

⏐⏐ f (Yi) = r, θ
]
> 0.

his implies that Yit and Yis are not conditionally independent.

ppendix D. Monte Carlo evidence on the performance of SSL model

In this Appendix, we report the results of Monte Carlo experiments evaluating the practical performance of MNL
nd SSL models in the presence of various forms of unobserved choice set heterogeneity. In Table 6, we directly
ary the extent of choice set heterogeneity by randomly removing alternatives from choice sets, independently of
he indirect utilities or the product characteristics of the removed alternatives. Differently, in Table 7 we implement
wo more economically relevant choice set formation processes: a model of screening on product characteristics (such
s price) and a model of costly search. Here, our aim is to illustrate that even when choice set heterogeneity is
he outcome of selection processes involving the alternatives’ systematic utilities and/or product characteristics, the
roposed SSL models work well without requiring the econometrician to know much about such possibly complex
rocesses.
The first column of Table 6 reports results showing the bias in a MNL model from incorrectly assuming that all

ndividuals in all choice situations have access to the full choice set, made of five alternatives. The second column
eports estimates of the true MNL model, i.e. the model that correctly assigns the true choice set facing each indi-
idual in each choice situation. There is no estimation bias in this case. The other columns report estimates from,
espectively, the Full Purchase History (FPH), the Past Purchase History (PPH), and the Choice Permutation (CP) SSL
Please cite this article as: G.S. Crawford, R. Griffith and A. Iaria, A survey of preference estimation with unobserved choice set heterogeneity. Journal of
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Table 6
Performance of sufficient set logits.

MNL, full MNL, true FPH SSL PPH SSL CP SSL
%|Bias| %|Bias| %|Bias| %|Bias| %|Bias|

Baseline
100% full choice set 0.3% 0.3% 0.6% 0.8% 1.2%

Increasing share of individuals with a random product removed from choice set
10% constrained 11.2% 0.2% 0.4% 0.9% 0.8%
30% constrained 26.3% 0.3% 0.6% 1.2% 0.6%
50% constrained 36.0% 0.4% 0.7% 1.0% 0.9%

Increasing share of products randomly removed from choice set
30% have 4 of 5 26.3% 0.3% 0.6% 1.2% 0.6%
30% have 3 of 5 36.0% 0.7% 1.0% 1.3% 1.2%
30% have 2 of 5 57.0% 0.4% 0.5% 0.7% 0.5%

We consider a population of 1000 individuals making a sequence of choices over 10 choice situations. On each
choice situation, they choose between a maximum of five alternatives. The indirect utility of each alternative
is specified as in Eq. (2.1). The systematic utility is V (Xijt t , θ ) = δjt + Xijt tβ , and the unobserved portion of
utility, ϵijt t , is distributed i.i.d. Gumbel. Xijt t is drawn from a normal distribution with mean 0 and variance
5, δjt = 0 for all jt ’s, and β = 2. The table reports averages of the percentage absolute bias of the estimates,
|(̂β − β)/β|×100. In the top panel, all individuals make choices from the full choice set. In the central panel,
an increasing share of individuals make choices from a choice set of four randomly selected alternatives. In
the bottom panel, 30% of individuals make choices from a choice set of two, three, or four randomly selected
alternatives. In the central and bottom panels, choice sets differ across individuals but are constant across
choice situations within individual. We simulate and average results over 20 replications per scenario. To
speed up computations, the CP SSL is estimated by sampling at random (uniformly), for each individual,
5000 permutations of the observed sequence of choices, as suggested by D’Haultfœuille and Iaria (2016).

The top panel of Table 6 shows the lack of bias in the absence of unobserved choice set heterogeneity. The following
wo panels show, in turn, the bias arising from, first, increasing the share of individuals with restricted choice sets and,
econd, increasing the severity of the restriction on choice sets. Overall, there is significant bias when we incorrectly
ssume full choice sets (the first column), but that there is no average bias when relying on any of these three SSL models
or estimation.

Table 7 reports results for two economically relevant choice set formation processes: a model of screening on product
haracteristics in the central panel and a model of costly search in the bottom panel. Both the models of screening and
f costly search are simple. In these simulations, our aim is not to implement the most realistic screening and search
odels that have appeared in the literature, but rather to study the performance of MNL and SSL models when choice
et heterogeneity is the outcome of non-trivial selection processes involving the alternatives’ systematic utilities and/or
roduct characteristics.
The first column of Table 7 reports results for a MNL with a full choice set of five alternatives. The second column

eports results for the MNL with true choice sets, as if one could perfectly observe the outcomes of the screening and
ostly search for each individual in each choice situation. Both models of screening and of costly search generate choice
ets that are weakly growing over choice situations, compatibly with the assumptions of the PPH sufficient set. The third
olumn reports the estimates of a PPH SSL model.
The central panel of Table 7 reports results for a choice set formation model of screening on product characteristic Xijt t .

ach individual i has a maximum threshold X i for the value of Xijt t they are willing to consider.37 In t = 1, CS⋆i1 contains
those alternatives for which Xij11 ≤ X i.38 Denote by CS

⋆

it the collection of alternatives not in CS⋆it . Once an alternative
is considered in t , it will also be in CS⋆it ′ for t ′ > t . Accordingly, in any t > 1, individual i checks whether any of the
alternatives in CS

⋆

i,t−1, i.e. those not already in CS⋆i,t−1, has an acceptable value of Xijt t and includes in CS⋆it all those for
which Xijt t ≤ X i. In other words, in each t > 1, CS⋆it is the union between CS⋆i,t−1 and those alternatives from CS

⋆

i,t−1 that
ass the X i screening.
The bottom panel of Table 7 reports results for a choice set formation model of costly search over alternatives. Each

ndividual i in every t , given the set of alternatives already in their choice set from t−1, CS⋆i,t−1, considers whether to incur a
search cost of cij to include any new alternative in CS⋆it (i.e., any alternative belonging to CS

⋆

i,t−1). When considering whether
to add or not an additional alternative to the choice set, individuals perfectly observe all the Xijt t ’s and search costs, but
need to form expectations about the ϵijt t error terms (according to Assumption 1, the choice set formation process cannot

37 Each Xijt t is distributed normal with mean 0 and variance 5. The individual-specific threshold X i is distributed standard normal.
38 To prevent CS⋆ from being empty, a randomly selected alternative is included in CS⋆ when X > X for all alternatives.
Please cite this article as: G.S. Crawford, R. Griffith and A. Iaria, A survey of preference estimation with unobserved choice set heterogeneity. Journal of
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Table 7
A Model of screening and a model of search.

MNL, full MNL, true PPH SSL
%|Bias| %|Bias| %|Bias|

Baseline
100% full choice set 0.3% 0.3% 0.8%

Increasing share of individuals who screen sequentially
30% screens 39.5% 0.2% 0.4%
50% screens 50.3% 0.1% 0.1%
90% screens 63.5% 0.1% 0.4%

Increasing share of individuals who search sequentially
30% searches 52.8% 0.5% 1.6%
50% searches 64.3% 0.2% 1.6%
90% searches 77.3% 0.3% 2.6%

We consider a population of 1000 individuals making a sequence of choices over 10 choice situations. On each
choice situation, they choose between a maximum of five alternatives. The indirect utility of each alternative
is specified as in Eq. (2.1). The systematic utility is V (Xijt t , θ ) = δjt + Xijt tβ , and the unobserved portion of
utility, ϵijt t , is distributed i.i.d. Gumbel. Xijt t is drawn from a normal distribution with mean 0 and variance
5, δjt = 0 for all jt ’s, and β = 2. The table reports averages of the percentage absolute bias of the estimates,
|(̂β − β)/β|×100. In the top panel, all individuals make choices from the full choice set. In the central panel,
an increasing share of individuals make choices from a choice set formed sequentially by screening over the
Xijt t ’s (see text for detail). In the bottom panel, an increasing share of individuals make choices from a choice
set formed sequentially by searching over alternatives (see text for detail). In the central and bottom panels,
choice sets differ across individuals and evolve across choice situations within individual. We simulate and
average results over 20 replications per scenario.

depend on the realizations of the error terms).39 In t = 1, CS⋆i1 contains those alternatives for which V (Xij11, θ )−cij ≥ 0.40

n any t > 1, individual i is assumed to be able to add to their choice set at most one alternative from CS
⋆

i,t−1 (i.e., either
add one alternative or nothing). Similar to the model of screening, once an alternative is considered in t , it will also be
in CS⋆it ′ for t ′ > t . In any t > 1, individual i decides to search for an additional alternative to be included in CSit only
when the expected net benefit from searching is greater than the expected maximal utility from CS⋆i,t−1 (i.e., what can be
achieved without any additional search):

max
jt∈CS

⋆
i,t−1

{
V (Xijt t , θ ) − cij

}
≥ ln

⎡⎣ ∑
kt∈CS⋆i,t−1

exp
(
V (Xikt t , θ )

)⎤⎦ , (D.1)

where CS
⋆

i,t−1 is the collection of alternatives not included in CS⋆i,t−1, the choice set including all the alternatives searched
for in the previous choice situations. When i searches in t , the alternative in CS

⋆

i,t−1 corresponding to the largest expected
net benefit from searching is included in CS⋆it .

Overall, Table 7 shows that when the choice set formation process is a function of the alternatives’ systematic utilities
and/or product characteristics, mistakenly ignoring it may have detrimental effects on the estimation of preference
parameters (first column). Clearly, if one had data on the true choice sets faced by each individual in each choice situation,
then neither choice set generating process would cause any estimation problem given that Assumption 1 still holds
(second column). Finally, the third column shows that the PPH SSL performs virtually as well as the true MNL (second
column), with the advantage of not requiring the econometrician to have any additional data on true choice sets or to
know much about the potentially complex details of the choice set generating process.

Appendix E. Confidence intervals for elasticity bounds

As an example of how to conduct inference on the identification regions described in Section 4.2, we construct
confidence intervals for the elasticity bounds following Imbens and Manski (2004). For notational simplicity, we limit our
discussion to a single elasticity term ξ

jk
it (Xit , θ ), although the same ideas can be extended to the collection of all elasticities.

39 Each Xijt t is distributed normal with mean 0 and variance 5. The individual-alternative specific search cost cij is distributed log-normal with
ean 3 and variance 1. Each ϵijt t error term is distributed Gumbel. Individuals have correct beliefs about the distribution of the error terms when
omputing expected utilities.
40 When computing expected utilities, we ignore the Euler constant. This is an approximation only in t = 1, for any t > 1 the constant does
ndeed drop out of rule (D.1). To prevent CS⋆i1 from being empty, a randomly selected alternative is included in CS⋆i1 when V (Xij11, θ )− cij < 0 for all
lternatives.
Please cite this article as: G.S. Crawford, R. Griffith and A. Iaria, A survey of preference estimation with unobserved choice set heterogeneity. Journal of
Econometrics (2020), https://doi.org/10.1016/j.jeconom.2020.07.024.
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Refer to the upper and lower bounds of ξ jkit (Xit , θ ) in (4.9) as to ξ jkit (Xit , θ ) and ξ
jk
it (Xit , θ ), respectively. Denote the elasticity

bounds of ξ jkit (Xit , θ ) by the 2 × 1 vector B
(
ξ
jk
it (Xit , θ )

)
=

[
ξ
jk
it (Xit , θ ), ξ

jk
it (Xit , θ )

]′

and the corresponding elasticity interval

from (4.9) by IN
(
ξ
jk
it (Xit , θ )

)
. Then, given Xit and our consistent θ̂ , we can estimate the elasticity bounds B

(
ξ
jk
it (Xit , θ )

)
by B

(
ξ
jk
it (Xit , θ̂ )

)
. We derive the corresponding 100 (1 − α) percent confidence interval CI1−α from condition:

inf
ξ
jk
it ∈IN

(
ξ
jk
it (Xit ,θ )

)
{
lim
I→∞

Pr
[
ξ
jk
it ∈ CI1−α

]}
≥ 1 − α. (E.1)

ince our estimator is consistent and asymptotically normal, i.e., θ̂
√
I

d
→ N (θ, Vθ ), by the delta-method:

B
(
ξ
jk
it (Xit , θ̂ )

)√
I

d
−→ N

⎛⎜⎝B
(
ξ
jk
it (Xit , θ )

)
,
∂B
(
ξ
jk
it (Xit , θ )

)
∂θ ′

Vθ
∂B
(
ξ
jk
it (Xit , θ )

)′

∂θ ′

⎞⎟⎠ . (E.2)

Refer to the 2 × 2 asymptotic variance–covariance matrix of B
(
ξ
jk
it (Xit , θ̂ )

)
as to Σ

B
(
ξ
jk
it

). It follows that, whenever

ft (Yi) ∪ {jt} = rit ∪ {jt} is a strict subset of Qit ∪ {jt} = qit ∪ {jt}, so that for any Xit and θ , ξ jkit (Xit , θ ) < ξ
jk
it (Xit , θ ),

condition (E.1) is satisfied by:

CI1−α =

[
ξ
jk
it (Xit , θ̂ ) − q1−α

√
Σ11

B
(
ξ
jk
it

), ξ jkit (Xit , θ̂ ) + q1−α
√
Σ22

B
(
ξ
jk
it

)
]
, (E.3)

here q1−α is the (1 − α)th quantile of the standard normal distribution.
In the extreme case in which ft (Yi) ∪ {jt} = rit ∪ {jt} = Qit ∪ {jt} = qit ∪ {jt}, ξ

jk
it (Xit , θ ) = ξ

jk
it (Xit , θ ) for any Xit and θ ,

and (E.3) is invalid. This is due to a discontinuity at ξ jkit (Xit , θ ) = ξ
jk
it (Xit , θ ), since in that case the coverage of the interval

is only 100 (1 − 2α) % rather than the nominal 100 (1 − α) %. (See Imbens and Manski, 2004 for a modification of (E.3)
that overcomes this problem.) However, note that (a) both ft (Yi) ∪ {jt} = rit ∪ {jt} and Qit ∪ {jt} = qit ∪ {jt} are always
erfectly observed by the econometrician, so that the appropriate CI1−α can always be implemented and that (b) in our
mpirical application ft (Yi) ∪ {jt} ⊂ Qit ∪ {jt} for every i and t .

ppendix F. Specification tests: Choosing among sufficient sets

In this Appendix, we first describe how Ruud (1984)’s Factorization Theorem can be used to construct specification tests
in the spirit of Hausman and McFadden, 1984) for SSL and ISSL models that are helpful to discriminate among different
ufficient sets. Second, we illustrate with some examples how to use these statistics to test for features of the choice set
ormation process and of unobserved preference heterogeneity. To keep notation simple, in what follows we focus on the
SL model with the understanding that the same results apply almost verbatim to the ISSL model.
Suppose that Assumption 1 holds, and that sufficient sets fL and fZ satisfy Condition 1, that fZ (Yi) ⊂ fL (Yi), Yi ∈ CS⋆i = c ,

and that i = 1, . . . , I . Define lL (θ) and lZ (θ) as the log-likelihood functions corresponding to the SSL models with sufficient
sets fL (Yi) and fZ (Yi), and denote by θ̂L and θ̂Z the corresponding MLEs. Then the following results hold:

1. The log-likelihood function lL (θ) can be written as lL (θ) = lZ (θ)+ l△ (θ).
2. Provided that θ is identified in l△ (θ), so that θ̂△ is a well defined MLE, then:

(a) θ̂Z and θ̂△ are asymptotically independent, and
(b) θ̂L is more efficient than θ̂Z .

3. Given result (2), then:

(a) All Hausman tests based on pairwise estimator comparisons among θ̂L, θ̂Z , and θ̂△ are equivalent,
(b) The Likelihood Ratio statistic LR = 2[lZ (̂θZ ) + l△ (̂θ△) − lL (̂θL)] is asymptotically equivalent to the Hausman

statistic comparing θ̂L and θ̂Z , and
(c) Var

(̂
θL − θ̂Z

)
= Var

(̂
θZ
)
− Var

(̂
θL
)
.

Please cite this article as: G.S. Crawford, R. Griffith and A. Iaria, A survey of preference estimation with unobserved choice set heterogeneity. Journal of
Econometrics (2020), https://doi.org/10.1016/j.jeconom.2020.07.024.
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roof of result (1). Starting from (3.5), we can re-write for every i the probability of the observed choice sequence j given
fZ (Yi) = z ⊂ fL(Yi) = l as:

Pr [Yi = j|fL(Yi) = l, θ ] =

∏T
t=1 exp(V (Xijt t , θ ))∑

k∈fL(Yi)=l
∏T

t=1 exp(V (Xikt t , θ ))

= Pr [Yi = j|fZ (Yi) = z, θ ]
(

Pr [Yi = j|fL(Yi) = l, θ ]
Pr [Yi = j|fZ (Yi) = z, θ ]

)

=

∏T
t=1 exp(V (Xijt t , θ ))∑

q∈fZ (Yi)=z
∏T

t=1 exp(V (Xiqt t , θ ))

∑
q∈fZ (Yi)=z

∏T
t=1 exp(V (Xiqt t , θ ))∑

k∈fL(Yi)=l
∏T

t=1 exp(V (Xikt t , θ ))

= Pr [Yi = j|fZ (Yi) = z, θ ] Pr [Yi ∈ fZ (Yi) = z|fL(Yi) = l, θ ] ,

here Pr [Yi ∈ fZ (Yi) = z|fL(Yi) = l, θ ] is the probability that a choice sequence belongs to the ‘‘smaller’’ set z relative to
he ‘‘larger’’ set l. By multiplying Pr [Yi = j|fL(Yi) = l, θ ] across all individuals and by taking the logarithm, result (1) follows
ith l△(θ ) =

∑I
i=1 ln (Pr [Yi ∈ fZ (Yi) = z|fL(Yi) = l, θ ]).

roof of result (2). Given result (1), results (2a) and (2b) follow from the Factorization Theorem of Ruud (1984, result (1),
.24).

roof of result (3). Given result (1), result (3a) follows from the Factorization Theorem of Ruud (1984, result (3), p.24),
hile result (3b) follows from (Ruud, 1984, pp. 28–9). Result (3c) can be proved as follows. Ruud (1984, result 2, p.24)
hows that θ̂L is asymptotically equivalent to Var

(̂
θL
)
Var

(̂
θZ
)−1

θ̂Z+Var
(̂
θL
)
Var

(̂
θ△
)−1

θ̂△. This implies that Cov
(̂
θL, θ̂Z

)
=

ov
(
Var

(̂
θL
)
Var

(̂
θZ
)−1

θ̂Z , θ̂Z

)
= Var

(̂
θL
)
Var

(̂
θZ
)−1 Var

(̂
θZ
)

= Var
(̂
θL
)
, where the first equality follows from result (2a).

onsequently, Var
(̂
θL − θ̂Z

)
= Var

(̂
θL
)
+ Var

(̂
θZ
)
− 2Cov

(̂
θL, θ̂Z

)
= Var

(̂
θZ
)
− Var

(̂
θL
)
.

The Likelihood Ratio statistic LR from result (3b) allows one to compare different SSL models derived from alternative
ssumptions on sufficient sets. It consists of the difference between an unrestricted log-likelihood function, lZ

(̂
θZ
)

+

△

(̂
θ△
)
, and a restricted one, lL

(̂
θL
)
.41 Even though LR requires the computation of a third estimator, θ̂△, it is simpler to

mplement than other Hausman statistics based on quadratic forms. For instance, the statistic LR is always non-negative,
ypassing the practical inconvenience of some estimated covariance matrices that fail to be positive definite. In contrast
o some other Hausman statistics, LR also makes very transparent the computation of the degrees of freedom of the
orresponding χ2 distribution: they equal the number of parameters in θ̂L. Result (3c) is of practical convenience, it
mplies that the computation of Var

(̂
θL − θ̂Z

)
, necessary for classical Hausman statistics, can proceed as in the standard

ase in which one of the compared estimators is fully efficient under the null hypothesis, even though no such efficiency
ssumption is required here.

.1. Practical examples of testing procedures

For simplicity of exposition, we limit our examples to the SSL model with the understanding that similar ideas readily
pply also to the ISSL model, for which the IIA is only assumed within each individual (but not across individuals). In
he context of SSL models, the examples of sufficient sets introduced in section 4.1 rely on the following economic
ssumptions:

• fCP : Choice set stability across T choice situations and possibility of IIA violations in the form of individual-alternative
specific fixed effects, δijt .

• fFPH : Choice set stability across T choice situations and IIA property.
• fPPH : Choice set evolution in the form of weakly growing choice sets (or, symmetrically, weakly shrinking choice

sets) across T choice situations and IIA property.42

There are two possibilities for making comparisons across SSL models based on different sufficient sets f ’s, and
ach presents ways of implicitly testing for some of the maintained economic assumptions embedded in the compared
ufficient sets. The first possibility is to compare fCP , fFPH , and fPPH for choice sequences of constant length T . The second
ossibility is to fix a specific f , say fCP , and to compare choice sequences with some of their sub-sequences: for example,
he sequence 1, 2, . . . , T L can be split into two mutually exclusive sub-sequences 1, 2, . . . , T Z and T Z

+ 1, . . . , T L, and
his gives rise to different fCP ’s, f ZCP and f LCP such that f ZCP (Yi) ⊂ f LCP (Yi) for any Yi ∈ CS⋆i = c . We now illustrate with some
xamples each testing possibility in turn.

41 As developed more fully in Ruud (1984), this form is common to many econometric tests, including incremental over-identifying (or Sargan)
ests commonly used to investigate the validity of subsets of instruments (Arellano, 2003, Section 5.4.4).
42 Importantly, the IIA requirement follows from the SSL model and it is not intrinsic in the fFPH and fPPH sufficient sets. Neither sufficient set
relies on the IIA property across individuals when employed in more general models such as the ISSL and the SSML discussed in Section 3.2.2.
Please cite this article as: G.S. Crawford, R. Griffith and A. Iaria, A survey of preference estimation with unobserved choice set heterogeneity. Journal of
Econometrics (2020), https://doi.org/10.1016/j.jeconom.2020.07.024.
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F.1.1. Comparisons of different f ’s with constant T
For choice sequences of a given length T , fCP (Yi) ⊆ fFPH (Yi) and fPPH (Yi) ⊆ fFPH (Yi) for any Yi ∈ CS⋆i = c. Suppose

Yi = (1, 3). Then fCP (1, 3) = P (1, 3) = {(1, 3) , (3, 1)}, fFPH (1, 3) = {1, 3} × {1, 3} = {(1, 1) , (3, 3) , (1, 3) , (3, 1)}, and
fPPH (1, 3) = {1}×{1, 3} = {(1, 1) , (1, 3)}. Note that there is no clear ‘‘inclusion’’ relationship between fCP (Yi) and fPPH (Yi).
Given the Factorization Theorem, the above relationships among sufficient sets lead to two possible classes of tests. The
first is about choice set stability and the second about deviations from the IIA property.

Choice set stability (given IIA property). In the context of SSL models, both fFPH and fPPH rely on the IIA property. However,
they rely on different assumptions regarding the evolution of choice sets across choice situations: fFPH assumes that
unobserved choice sets do not change along the whole choice sequence, while fPPH allows for the entry of new alternatives
in the unobserved choice set while comparing choice situation t to t +1. On the one hand, if unobserved choice sets were
stable, then both f ’s would give rise to consistent estimators θ̂FPH and θ̂PPH , but result (2b) tells us that θ̂FPH would be
more efficient than θ̂PPH . On the other hand, if unobserved choice sets were growing over choice situations, then only θ̂PPH
would be consistent: fFPH would not satisfy Condition 1, inducing violations of the IIA property as discussed in Section 2.2.
It follows that, under the maintained assumption of the IIA property, a test for H0: (choice set stability in 1, 2, . . . , T) is
LR = 2

[
lPPH

(̂
θPPH

)
+ l△

(̂
θ△
)
− lFPH

(̂
θFPH

)]
.

Departures from IIA property (given choice set stability). The sufficient sets fFPH and fCP are both based on the same
assumption of unobserved choice set stability in 1, 2, . . . , T . However, in the context of SSL models, they rely on
different assumptions regarding unobserved preference heterogeneity: fFPH relies on the IIA property, while fCP allows
for individual-alternative specific fixed effects. On the one hand, if the IIA property held, then both f ’s would give rise to
consistent estimators θ̂FPH and θ̂CP , but result (2b) tells us that θ̂FPH would be more efficient than θ̂CP . On the other hand, if
the IIA property were violated in ways encompassed by individual-alternative specific fixed effects, then only θ̂CP would
be consistent. It follows that, under the maintained assumption of choice set stability in 1, 2, . . . , T , a test for H0: (IIA
property) is LR = 2

[
lCP
(̂
θCP
)
+ l△

(̂
θ△
)
− lFPH

(̂
θFPH

)]
.

F.1.2. Comparisons of same f with different choice sub-sequences
It is always possible to split choice sequences of length 1, 2, . . . , T L into two (or more)mutually exclusive sub-sequences

1, 2, . . . , T Z and T Z
+ 1, . . . , T L. Then f ZCP (Yi) ⊂ f LCP (Yi) for any Yi ∈ CS⋆i = c . The same holds also for fFPH and fPPH . This

ethod of making comparisons allows one to test for choice set stability in several alternative ways, but it does not enable
ne to test for departures from the IIA property (the two SSL models compared are always either both satisfying or both
iolating the IIA property).

hoice set stability: fCP example. In what follows we will show with an example that f ZCP (Yi) ⊂ f LCP (Yi) for any Yi ∈ CS⋆i = c
and afterward we will discuss how to use this fact to construct tests of choice set stability.

Suppose J = 5, T L
= 4, and that individual i is observed to make the choice sequence Yi = (j1, j2, j3, j4) = (3, 5, 5, 4).43

By considering the observed choice sequence ‘‘at once’’, Yi = (3, 5, 5, 4) can be re-ordered in 12 different choice
sequences.44 Collect these sequences into the set f LCP (Yi) = l. Assume that Vi

(
Xijt t , θ

)
= δijt + Xijt tβ . Then, i’s likelihood

contribution given f LCP (Yi) = l is:

Pr
[
Yi = (3, 5, 5, 4)| f LCP (Yi) = l, β

]
=

exp ((Xi31 + Xi52 + Xi53 + Xi44) β)∑
(j1,j2,j3,j4)∈f LCP (Yi)=l

exp
((
Xij11 + Xij22 + Xij33 + Xij44

)
β
) . (F.1)

Differently, by splitting i’s observed choice sequence into two mutually exclusive pairs of choices Yi1 = (3, 5) and
Yi3 = (5, 4), we get f ZCP (Yi) = f ZCP (Yi1) × f ZCP (Yi3) where f ZCP (Yi1) = {(3, 5) , (5, 3)} and f ZCP (Yi3) = {(5, 4) , (4, 5)}. Then,
i’s likelihood contribution given f ZCP (Yi1) = z1 and f ZCP (Yi3) = z3 is:

Pr
[
Yi = (3, 5, 5, 4)| f ZCP (Yi) = z1 × z3, β

]
=

exp ((Xi31 + Xi52) β)
exp ((Xi31 + Xi52) β)+ exp ((Xi51 + Xi32) β)

×
exp ((Xi53 + Xi44) β)

exp ((Xi53 + Xi44) β)+ exp ((Xi43 + Xi54) β)
.

(F.2)

43 Alternative three in the first choice situation, alternative five in the second choice situation, etc.
44 These sequences are: (3, 5, 5, 4), (5, 3, 5, 4), (5, 5, 3, 4), (5, 5, 4, 3), (4, 3, 5, 5), (3, 4, 5, 5), (3, 5, 4, 5), (5, 3, 4, 5), (5, 4, 3, 5), (5, 4, 5, 3),
4, 5, 3, 5 , and 4, 5, 5, 3 .
Please cite this article as: G.S. Crawford, R. Griffith and A. Iaria, A survey of preference estimation with unobserved choice set heterogeneity. Journal of
Econometrics (2020), https://doi.org/10.1016/j.jeconom.2020.07.024.
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y multiplying the binomial logits in (F.2), we get:

Pri
[
Yi = (3, 5, 5, 4)| f ZCP (Yi) = z, β

]
=

exp ((Xi31 + Xi52 + Xi53 + Xi44) β)∑
(j1,j2,j3,j4)∈f ZCP (Yi)=z

exp
((
Xij11 + Xij22 + Xij33 + Xij44

)
β
) , (F.3)

here f ZCP (Yi) = z collects sequences: (3, 5, 5, 4), (3, 5, 4, 5), (5, 3, 5, 4), and (5, 3, 4, 5). Consequently f ZCP (Yi) = z ⊆

f LCP (Yi) = l. In this example, f ZCP only uses information about 4 of the 12 possible choice sequences in f LCP . This implies that
f unobserved choice sets were stable, then estimator β̂L

CP would be more efficient than β̂Z
CP .

Moreover, the CP SSL estimated on choice sub-sequences may ‘‘discard’’ some choice situations: in the current example
f sub-sequences of length two, whenever jt = jt+1 in Yit = (jt , jt+1), then ‘‘fragment’’ Yit of Yi will not be used in
stimation. For example, if i were observed to choose the sequence Yi = (3, 4, 5, 5), then only Yi1 = (3, 4) would

contribute to the likelihood function lZCP (β), while lLCP (β) would still use the whole sequence Yi = (3, 4, 5, 5). More
precisely, if Yi = (3, 4, 5, 5) were observed, then f LCP (3, 4, 5, 5) = f LCP (3, 5, 5, 4) = l would still contain the same 12
choice sequences, while model (F.2) would collapse to:

Pr
[
Yi = (3, 4, 5, 5)| f ZCP (Yi) = h1 × h3, β

]
=

exp ((Xi31 + Xi42) β)
exp ((Xi31 + Xi42) β)+ exp ((Xi41 + Xi32) β)

×
exp ((Xi53 + Xi54) β)
exp ((Xi53 + Xi54) β)

=
exp ((Xi31 + Xi42 + Xi53 + Xi54) β)

exp ((Xi31 + Xi42 + Xi53 + Xi54) β)+ exp ((Xi41 + Xi32 + Xi53 + Xi54) β)

= Pr
[
Yi = (3, 4, 5, 5)| f ZCP (Yi) = h, β

]
,

(F.4)

hich is also equivalent to Pr
[
Yi1 = (3, 4)| f ZCP (Yi1) = h1, β

]
. In this case, then, f ZCP (Yi1) = h1 ⊂ f ZCP (Yi) = z ⊂ f LCP (Yi) = l.

By result (2b), we can rank the corresponding estimators in terms of their relative efficiency. As a consequence, by splitting
up choice sequences into mutually exclusive sub-sequences, one can face also this further loss of efficiency.

Model (F.1) requires stronger assumptions than model (F.3) for its consistent estimation. Consistent estimation of
model (F.1) requires that alternatives {3, 4, 5} ⊆ CS⋆it = ct , t = 1, 2, 3, 4. However, consistent estimation of model (F.3)
only requires that {3, 5} ⊆ CS⋆it = ct , t = 1, 2 and that {4, 5} ⊆ CS⋆it = ct , t = 3, 4. In this example, if 4 /∈ CS⋆it = ct ,
t = 1 or 2, or 3 /∈ CS⋆it = ct , t = 3 or 4, then estimation of model (F.1) would not be consistent, while estimation of model
(F.3) would.

These differences in consistency and relative efficiency suggest a Hausman test for unobserved choice set stability. If
{3, 4, 5} ⊆ CS⋆it = ct , t = 1, 2, 3, 4, then estimation of both model (F.1) and model (F.3) would be consistent. However,
estimation of model (F.1) would be more efficient than estimation of model (F.3). If 4 /∈ CS⋆it = ct , t = 1 or 2 or
3 /∈ CS⋆it = ct , t = 3 or 4, then only estimation of model (F.3) would be consistent. It follows that, under the maintained
assumption of unobserved preference heterogeneity in a form encompassed by individual-alternative specific fixed effects,
a test for H0: (choice set stability in 1, 2, 3, and 4) is LR = 2

[
lZCP
(̂
βZ
PPH

)
+ l△

(̂
β△

)
− lLCP

(̂
βL
CP

)]
.

Appendix G. Specification tests: Nested logit and IIA

In this Appendix, we illustrate that with similar assumptions to those required by the MNL, sufficient sets can also be
used for the consistent estimation of the within-nest part of a nested logit model when choice sets are unobserved, and
that this is enough to implement a test for departures of the IIA along the lines of Hausman and McFadden (1984).

Suppose that the full collection of J alternatives is partitioned into N mutually exclusive nests nestn and that any
individual i’s choice set CS⋆it can be partitioned in N subsets of the N original nests, so that: CS⋆it = nesti1∪· · ·∪nestin∪· · ·∪

nestiN , where for any n, nestin is either nestin ⊆ nestn or empty. The econometrician knows nestn, n = 1, . . . ,N , but does not
know nestin, n = 1, . . . ,N , for any i. Note that, for simplicity, we are assuming that both the original nests and individual
i’s nest subsets are constant over t . At the expense of some additional notation, this can be relaxed as in the case of the
MNL. Denote by Yi = (Yi1, . . . , YiT ) individual i’s sequence of chosen alternatives and by Q ⋆

i =
(
Q ⋆
i1, . . . ,Q

⋆
iT

)
i’s sequence

of chosen nests, with Yit ∈ Q ⋆
it and Q ⋆

it ∈ {nesti1, . . . , nestiN}. Define Q⋆
i = ×

T
t=1Q

⋆
it and note that Q⋆

i ⊆ CS⋆i = ×
T
t=1CS

⋆
it , so

that for each t one has Q ⋆
it ⊆ CS⋆it . The econometrician observes the realization of Yi and knows to which of the original

nests each Yit belongs, for example Yit ∈ nestn, but does not know much about Q ⋆
it beyond the facts that Yit ∈ Q ⋆

it and that
Q ⋆
it = nestin ⊆ nestn.
Please cite this article as: G.S. Crawford, R. Griffith and A. Iaria, A survey of preference estimation with unobserved choice set heterogeneity. Journal of
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Assumption 4. Conditional on all V
(
Xijt t , θ

)
= Xijt tθ ’s and on CS⋆i = c , Pr

[
Yi = j,Q ⋆

i = q
⏐⏐ CS⋆i = c, θ, λ

]
=∏T

t=1 Pr
[
Yit = jt ,Q ⋆

it = qt
⏐⏐ CS⋆it = ct , θ, λ

]
is a product of T per-period nested logits as in Eq. (G.1) with λ = (λ1, . . . , λN)

being the nesting parameters associated to each nest.

Suppose that Yi = j, Q ⋆
i = q, and CS⋆i = c. The nested logit model can be expressed as:

Pr
[
Yi = j,Q ⋆

i = q
⏐⏐ CS⋆i = c, θ, λ

]
=

T∏
t=1

per-period nested logit  
Pr
[
Yit = jt ,Q ⋆

it = qt
⏐⏐ CS⋆it = ct , θ, λ

]

=

T∏
t=1

Pr
[
Yit = jt | CS⋆it = ct ,Q ⋆

it = qt , θ, λ
]
× Pr

[
Q ⋆
it = qt

⏐⏐ CS⋆it = ct , θ, λ
]

=

within-nest MNL  
T∏

t=1

Pr
[
Yit = jt |Q ⋆

it = qt , θ, λ
]
×

T∏
t=1

Pr
[
Q ⋆
it = qt

⏐⏐ CS⋆it = ct , θ, λ
]

  
between-nest MNL

=

T∏
t=1

exp
(
Xijt tθ/λqt

)∑
vt∈qt exp

(
Xivt tθ/λqt

) ×

T∏
t=1

Pr
[
Q ⋆
it = qt

⏐⏐ CS⋆it = ct , θ, λ
]
,

(G.1)

which is a function of the unobserved realizations q and c . When all the nesting parameters equal one, (λ1, . . . , λN) = 1,
then the nested logit in (G.1) simplifies to a standard MNL. In order to test for this hypothesis, it is enough to obtain a
consistent estimator of the (θ/λn)Nn=1 parameters of the within-nest MNL model:

Pr
[
Yi = j|Q⋆

i = ×
T
t=1qt , θ, λ

]
=

T∏
t=1

Pr
[
Yit = jt |Q ⋆

it = qt , θ, λ
]

=

T∏
t=1

exp
(
Xijt tθ/λqt

)∑
vt∈qt exp

(
Xivt tθ/λqt

)
(G.2)

nd check whether θ/λm = θ/λn for allm ̸= n.45 We define as a sufficient set for the within-nest MNL any correspondence
hat satisfies the following condition.

ondition 3. Given any choice sequence Yi ∈ Q⋆
i ⊆ CS⋆i , the correspondence f is such that Yi ∈ f (Yi) and f (Yi) ⊆ Q⋆

i ,
with f (Yi) = ×

T
t=1ft (Yi) and each ft (Yi) so that Yit ∈ ft (Yi) ⊆ Q ⋆

it .

In words, given any sequence of choices Yi, a sufficient set f enables the econometrician to define a corresponding
sequence of nest subsets f (Yi) = ×

T
t=1ft (Yi), where each ft (Yi) is a subset of the specific nestin chosen by i in t . Given

Assumption 4 and Condition 3, the within-nest MNL from (G.2) conditional on f (Yi) = r simplifies to:

Pr
[
Yi = j|Q⋆

i = ×
T
t=1qt , f (Yi) = r, θ, λ

]
= Pr [Yi = j| f (Yi) = r, θ, λ] , because r ⊆ ×

T
t=1qt

=

T∏
t=1

Pr [Yit = jt | ft (Yi) = rt , θ, λ] , because of Eq. (3.6)

=

T∏
t=1

exp
(
Xijt tθ/λrt

)∑
vt∈rt exp

(
Xivt tθ/λrt

) ,
(G.3)

hich, a part from the parameters of interest, only depends on observed quantities. Given the assumption of choice set
tability, a sufficient set compatible with Condition 3 is the Within(-nest) Full Purchase History, or WFPH. This is similar to
he FPH sufficient set, but now one should separately keep track of the alternatives purchased by i over choice situations
ithin each of the N nests. Define the set of alternatives ever purchased by i in nestn by Hn

i = ∪
T
t=1 {Yit | Yit ∈ nestn} for

45 The first equality in (G.2) follows from Eq. (3.6), because Q⋆
= ×

T q .
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n

4

= 1, . . . ,N . Note that, for any Yit ∈ nestin, Hn
i ⊆ Q ⋆

it = nestin. Then any observed sequence of chosen alternatives Yi will
enable one to construct the sufficient set fWFPH (Yi) = ×

T
t=1

{
Hn

i

⏐⏐ Yit ∈ nestn
}
.

The idea of the IIA test is then simple. For a given sufficient set f from Condition 3, one can estimate a variant of
the SSL with a different θn = θ/λn for each nest n = 1, . . . ,N . Similarly, one can estimate N separate SSL models, each
from the observed choices within each of the N nests. Then, if the estimated θm ̸= θn for at least two nests n ̸= m, the
econometrician will have evidence of violations of the IIA property. The validity of this testing procedure, similar to the
original one proposed by Hausman and McFadden (1984), rests on the maintained assumption that f is a valid sufficient
set.

Appendix H. Data appendix

In this Appendix, we describe in greater detail the data used in the empirical illustration in Section 5.

H.1. Purchase data

We use data from the Kantar Worldpanel (see Leicester and Oldfield, 2009, Dubois et al., 2018, and Dubois et al.,
2020). Kantar collects data on purchases made on-the-go from a random selection of individuals in the households that
participate in the Worldpanel. The Kantar Worldpanel on-the-go survey is collected from individuals who record purchases
that they make on-the-go for immediate consumption using their mobile phone.

H.2. Advertising data

To measure advertising exposure, we convert weekly advertising (‘‘flows’’) into an advertising ‘‘stock;’’ advertising
stocks are the depreciated accumulation of the flows. We use advertising data collected by AC Nielsen on TV advertising.
TV advertising accounts for 61.8% of total expenditure on chocolate bar advertising over this period.

For each TV ad, we have information on the time the ad was aired, the brand that was advertised, the TV station, the
duration of the ad, the cost of the ad, and the TV shows that immediately preceded and followed the ad. The time path
of advertising varies across brands, and all brands have some periods of zero advertising expenditure. These non-smooth
strategies are rationalized in the model of Dubé et al. (2005) when the effectiveness of advertising can vary over time.
This variation in the timing of adverts, coupled with variation in TV viewing behavior, generates household level variation
in exposure to brand level advertising.

Our advertising measure follows Goeree (2008) and Dubois et al. (2018) and measures advertising exposure at the
individual level. We use detailed information about when individual adverts were aired on television matched with self-
reported viewing information to construct individual level measures of exposure to brand advertising. We use data from
the Kantar media survey, an annual survey asking the main shopper in the household about their TV subscriptions and
TV viewing behavior. Households are asked ‘‘How often do you watch ...?’’ for 206 different TV shows, and can choose to
answer Never, Hardly Ever, Sometimes or Regularly. At least one ad for chocolate is shown before, during, or after 112 of
these shows (many of the shows with no chocolate advertising are on BBC channels, which are prohibited from showing
ads). From this information we define the variable:

wis =

{
1 i reports they ‘‘regularly’’ or ‘‘sometimes’’ watch show s
0 otherwise (H.1)

Households are also asked ‘‘How often do you watch ...?’’ 65 different TV channels and when they usually watch TV. In
particular, for weekdays, Saturday, and Sunday and for 9 different time periods,46 households are asked questions like ‘‘Do
you watch live TV on Saturdays at breakfast time (6.00–9.30 am)?’’ In each case, the household can answer Never, Hardly
Ever, Sometimes or Regularly. We use this information, along with information on where the household lives (some TV
channels are regional), to construct the variable:

wikc =

⎧⎪⎨⎪⎩
1 i says they ‘‘regularly’’ or ‘‘sometimes’’ watch on the day and time slot k

and ‘‘regularly’’ or ‘‘sometimes’’ watch channel c
and they live in the region in which c is aired (or the channel is national)

0 otherwise

(H.2)

We combine the data on household viewing behavior with the detailed data on individual ads to create a household-
specific measure of exposure to advertising. Variation in TV viewing behavior creates considerable variation in the timing
and extent of exposure an individual household has to ads of a specific brand. This leads to cross-household variation in
advertising exposure that is plausibly unrelated to idiosyncratic shocks to demand for chocolate products.

Denote by Tbskct the duration of time that an ad for brand b is shown during show s on day and time slot k on channel c
during week t . From the viewing data, we construct an indicator variable of whether household i was likely to be watching

46 Breakfast time 6.00 am–9.30 am, Morning 9.30 am–12.00 noon, Lunchtime 12.00 noon–2.00 pm, Early afternoon 2.00 pm–4.00 pm, Late afternoon
.00 pm–6.00 pm, Early evening 6.00pm-8.00pm, Mid evening 8.00 pm–10.30 pm, Late evening 10.30–1.00 am and Night time 1.00 am–6.00 am.
Please cite this article as: G.S. Crawford, R. Griffith and A. Iaria, A survey of preference estimation with unobserved choice set heterogeneity. Journal of
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channel c on day and time slot k during show s, wiskc . If show s is among the 206 specific shows households were asked
for viewing information we set wiskc = wis, otherwise we set wiskc = wikc . From this we define the household’s total
exposure to advertising of brand b during week t (their weekly advertising ‘‘flow’’) as:

sibt =

∑
s,c,k

wiskcTbskct . (H.3)

We define a household’s accumulated advertising stock to brand b in week t as the depreciated accumulation of these
advertising flows:

stockibt =

t∑
k=0

ηksibt−k (H.4)

where η = 0.75 This stock is measured in seconds (and is divided by 1000 when included in the regression). It is 0 for
individuals that do not watch TV, or only watch public TV (the BBC), and has a mean of 10 min of cumulated exposure
to adverts for a particular brand.

Finally, we follow Dubé et al. (2005) and allow for diminishing returns to advertising by transforming the stock of

advertising, stockibt , using the log inverse hyperbolic sine function, ln(aibt ) = ln
(
stockibt +

√
1 + stock2ibt

)
.
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