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VALUES OF HARMONIC WEAK MAASS FORMS ON HECKE ORBITS

DOHOON CHOI, MIN LEE, AND SUBONG LIM

Abstract. Let q := e2πiz, where z ∈ H. For an even integer k, let f(z) := qh
∏

∞

m=1(1 − qm)c(m)

be a meromorphic modular form of weight k on Γ0(N). For a positive integer m, let Tm be the mth
Hecke operator and D be a divisor of a modular curve with level N . Both subjects, the exponents
c(m) of a modular form and the distribution of the points in the support of Tm.D, have been widely
investigated.

When the level N is one, Bruinier, Kohnen, and Ono obtained, in terms of the values of j-
invariant function, identities between the exponents c(m) of a modular form and the points in
the support of Tm.D. In this paper, we extend this result to general Γ0(N) in terms of values of
harmonic weak Maass forms of weight 0. By the distribution of Hecke points, this applies to obtain
an asymptotic behaviour of convolutions of sums of divisors of an integer and sums of exponents
of a modular form.

1. Introduction

Let H be the complex upper half plane. For a positive integer N , let Y0(N) be the modular curve
of level N defined by Γ0(N)\H, and X0(N) denote the compactification of Y0(N) by adjoining the
cusps. Let J0(N) be the jacobian of a modular curve X0(N). We denote by Div(C) the divisor
group of a curve C. If f is a function on C and D =

∑
P∈C nPP is a divisor of C, we define

f(D) :=
∑

nPf(P ).

The mth normalized Hecke operator Tm acts on Div(Y0(N)), and it is denoted by Tn.D for D ∈
Div(Y0(N)). We call Tm.D the mth Hecke orbit of D. Especially, when D is a divisor corresponding
to i ∈ H, a point in the support of Tm.D is called a Hecke point. Hecke points have been
investigated from several perspectives such as their distribution on the fundamental domain for
Γ0(N) [13, 14, 17, 16] and the rank of a subgroup of J0(N) generated by Hecke points [21], and
so on. Let q := e2πiz, where z ∈ H. For an even integer k, let f(z) := qh

∏∞
m=1(1 − qm)c(m) be a

meromorphic modular form of weight k on Γ0(N). The exponents c(m) of a modular form were
investigated in various works (for examples, see [4, 5, 23]). For example, Borcherds [5] proved that
if f has a Heegner divisor, then the mth exponent c(m) is the m2th coefficient of a fixed modular
form of half integral weight. Bruinier, Kohnen, and Ono [9] obtained a connection between these
exponents of a modular form and the points in the support of Tn.D.
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2 DOHOON CHOI, MIN LEE, AND SUBONG LIM

For the modular invariant j, let J(z) := j(z)− 744. For positive integers k and m, let σk(m) :=∑
d|m d

k, and σf (m) :=
∑

d|m c(d). Bruinier, Kohnen, and Ono [9] proved the following identities

between values J(Tm.Df ) and sum of exponents in the product expansion of f :
∑

d|m

c(d)d = 2kσ1(m) + J(Tm.Df)

for every positive integer m, where Df denotes the divisor of f on X0(N). In other words, the
value J(Tm.Df ) can be expressed as the sum of the following values:

(1) a multiple of the divisor function σ1(m),
(2) the convolution of σ1(m) (sum of divisors) and σf (m) (sum of exponents).

They applied this result to prove the modularity of the generating series for σf (m) and to obtain
several p-adic properties of J(Tm.Df ) and exponents of a meromorphic modular form f . Based
on the argument in [9], the result was extended to several cases such as Γ0(N) with genus zero by
Ahlgren [2], Jacobi forms by Choie and Kohnen [12], and higher levels by the first author [11].

For general positive integers N , the first author studied in [11] the generalization of [9] to a
harmonic weak Maass form JN,1 of weight 0 defined as a Poincaré series (instead of a weakly
holomorphic modular form of weight 0). It was proved in [11] that the value JN,1(Tm.Df) can be
expressed as the sum of the following values:

(1) a linear combination of the divisor functions σ1(nm) for n|N ,
(2) the convolution of σ1(m) (sum of divisors) and σf (m) (sum of exponents),
(3) the regularized Petersson inner product Rf,N (m) of a meromorphic modular form and a

cusp form.

In this paper, we show that Rf,N(m), the value of the regularized Petersson inner product in
identities [11], is zero, and so we give explicit identities between values JN,1(Tm.Df) and sums of
exponents in the product expansion of f . As an application, we obtain an asymptotic behavior for
the convolution of σ1(m) (sum of divisors) and σf (m) (sum of exponents) as m→ ∞.

Recently, Bringmann, Kane, Löbrich, Ono, and Rolen [7] showed that for any fixed N the
generating series for JN,1(Tm.Df ) is basically modular. Moreover, their result implies that there is
a cusp form such that, for each m, Rf,N (m), the value of regularized Petersson inner product, is
given by the mth coefficient of a fixed cusp form.

Let F1 denote the usual fundamental domain for the action of SL2(Z) on H given by

F1 :=

{
z ∈ H

∣∣∣∣ |z| > 1, −
1

2
≤ Re(z) <

1

2

}
∪

{
z ∈ H

∣∣∣∣ |z| = 1, Re(z) ≤ 0

}

and
FN :=

⋃

γ∈SL2(Z)\Γ0(N)

γF1.

Here we choose coset representatives for SL2(Z)\Γ0(N) such that

FN ⊂

{
z ∈ H

∣∣∣∣ |Re(z)| ≤
1

2

}
.

Then, FN is a fundamental domain for the action of Γ0(N) on H. Let CN be the set of inequivalent
cusps of Γ0(N). Let k be an even integer and f be a meromorphic modular form of weight k on
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Γ0(N). For τ ∈ H∪{i∞}∪Q, let Qτ be the image of τ under the canonical map from H∪{i∞}∪Q

to X0(N). For τ ∈ H ∪ {i∞} ∪ Q, we denote by ν
(N)
τ (f) the order of zero of f at Qτ on X0(N).

Let us note

g(Tm.Df) =
∑

τ∈FN

ν(N)
τ (f)g(Tm.τ).

Moreover, for a divisor D =
∑
nzQz of X0(N), we can give a more explicit expression of Tm.D.

For γ = ( a b
c d ) ∈ GL2(R) with positive determinant, we define the action of γ for z ∈ H by

γz :=
az + b

cz + d
.

For a positive integer m prime to N , let

T (m) := {γ = ( a b
0 d ) | a, b, d ∈ Z, a > 0, ad = m, and 0 ≤ b < d}.

Then, we have

Tm.D =
∑

nz

∑

γ∈T (m)

Qγz .

Next, we define the Ramanujan theta-operator by

θ(f)(z) :=
1

2πi

d

dz
f(z).

Let

fθ(z) :=
θf(z)

f(z)
−

k

12
E2(z),

where E2 is the usual normalized Eisenstein series of weight 2 for SL2(Z).

Let N > 1 and Iv be the usual modified Bessel functions as in [1]. For a positive integer n, we
define the Poincaré series of weight 0 and index n by

FN,n(z, s) :=
∑

γ∈Γ0(N)∞\Γ0(N)

π |nIm(γz)|1/2 Is− 1
2
(|2πnIm(γz)|)e(−nRe(γz)),

where s ∈ C with Re(s) > 1 and e(z) := e2πiz. Let jN,n(z) be the continuation of FN,n(z, s) as
s → 1 from the right. Then, the function jN,n is a harmonic weak Maass form of weight 0 on
Γ0(N) (see [11, Section 2] for details). Let JN,n(z) := jN,n(z) − βN,n, where βN,n is the constant
term of the Fourier expansion of jN,n at the cusp i∞.

For square-free N , let D(N) be the number of divisors of N , and {d1, d2, . . . , dD(N)−1, N} be the
set of distinct divisors of N such that di1 < di2 if i1 < i2. Let AN be the (D(N)− 1)× (D(N)− 1)
matrix whose ij-entry aij is defined by

aij =

(
1−

gcd(di, dj)
2

dj

)
.

Let Af,j be a matrix obtained from AN by replacing the jth column of AN with a column matrix

whose ith component is ν
(N)
1/di

(f)− k
12
. With this notation, we state our main theorem.
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Theorem 1.1. Let k be an even integer and N > 1 be a positive integer. Suppose that

(1.1) f(z) = qh∞

∞∏

n=1

(1− qn)c(n)

is a meromorphic modular form of weight k on Γ0(N). Then

−
∑

τ∈FN

ν(N)
τ (f)−

∞∑

m=1

(∑

τ∈FN

ν(N)
τ (f)JN,m(τ)

)
qm = fθ(z)− E2(z),

where E2 is a modular form in the Eisenstein space of weight 2 on Γ0(N). Moreover, if N is square
free, then, for every positive integer m prime to N ,

(1.2) − JN,1(Tm.Df) =
∑

d|m

dc(d) + 24


 ∑

1≤j≤D(N)−1

det(Af,j)

det(AN)
+

k

12


 σ1(m).

Remark 1.2. The modular form E2 in Theorem 1.1 is determined by the order of zero or pole of
f at each cusp. In many cases, a modular form E2 can be expressed as a sum of explicit modular
forms. For example, if N is square free, then

E2(z) =
∑

1≤j≤D(N)−1

det(Af,j)

det(AN )
(E2(z)− djE2(djz)).

Let D :=
∑

z∈S nzQz be a divisor of Y0(N), where S is a finite set in FN . For a positive real
number r ≥ 1, we define a divisor D>r by

D >r =
∑

z∈S
Im(z̃)>r

nzQz̃.

Here, z̃ is a complex number in FN , which is equivalent to z under the action of Γ0(N). By
the argument of Duke [15] and equidistribution of Hecke points ([17], [13] and [14]), Theorem 1.1
implies the following theorem.

Theorem 1.3. Let k,N , and f be given as in Theorem 1.1. Assume that N is square free. Let m
be a positive integer prime to N , and hf denote the sum of the orders of zero or pole of f at Qτ

on Y0(N). Then

lim
m→∞

1

σ1(m)


24


 ∑

1≤j≤D(N)−1

det(Af,j)

det(AN)
+

k

12


 σ1(m)−

∑

d|m

dc(d)− e
(
− (Tm.Df ) >1

)



=
3hf

π[SL2(Z) : Γ0(N)]
lim
ǫ→0

∫

FN (ǫ)

JN,1(z)
dxdy

y2
,

where c(n) are complex numbers determined by (1.1). Here, FN(ǫ) is defined by FN −∪τ∈CNBτ (ǫ),
where Bτ (ǫ) is given in (3.1).

Recently, Ali and Mani [3] proved an upper bound for exponents c(m) in the product expansion
of f . The sum

∑
d|m dc(d) looks like a kind of convolution of σ1(m) (a sum of divisors) and σf(m)
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(a sum of exponents of f). The above inequality means that, as m → ∞, this convolution has a
similar asymptotic behavior as that of the sum of divisors of m except its main term.

The remainder of the paper is organized as follows. In Section 2, we introduce some preliminaries
for meromorphic 1-forms on X0(N). In Section 3, we provide some basic facts on regularized
Petersson inner product, and prove that fθ is orthogonal to every cusp form of weight 2 on Γ0(N)
with respect to regularized Petersson inner product if f is a meromorphic modular form on Γ0(N).
In Section 4, we recall some results related to the distribution of Hecke points for Γ0(N). In
Section 5, we prove our main theorems: Theorems 1.1 and 1.3.

2. Residues of a meromorphic 1-form on X0(N)

Let f be a meromorphic modular form of weight 2 on Γ0(N). Assume that t is a cusp of Γ0(N).
Let σt ∈ SL2(Z) be a matrix such that σt(i∞) = t, and Γ0(N)t denote the stabilizer of the cusp t
in Γ0(N). We define a positive integer αt by

σ−1
t Γ0(N)tσt =

{
±
(
1 ℓαt
0 1

)
: ℓ ∈ Z

}
,

and we call αt the width of Γ0(N) at the cusp t. The Fourier expansion of f at the cusp t is given
by

(f |2σt)(z) =
∑

at(n)q
n/αt ,

where |k denotes the usual weight k slash operator. If a cusp t is equivalent to i∞, the Fourier
coefficients at(n) of f at the cusp t are simply denoted by a(n).

For τ ∈ H ∪ {i∞} ∪Q, let Qτ be the image of τ under the canonical map from H ∪ {i∞} ∪ Q

to X0(N). Then, fdz can be considered as a meromorphic 1-form on X0(N). Thus, we denote
by ResQτfdz the residue of f at Qτ on X0(N). Let Resτf be the residue of f at τ on H. The
description of ResQτfdz is given in terms of Resτf . For τ ∈ H, let eτ be the order of the isotropy
subgroup of Γ0(N) at τ . Then, we have

(2.1) ResQτf dz =

{
1
eτ
Resτf, if τ ∈ H,

1
2πi
ατaτ (0), if τ ∈ CN .

Let us note that if k is an even integer and f is a meromorphic modular form of weight k on
Γ0(N), then fθ is a meromorphic modular form of weight 2 on Γ0(N). The residue of fθ at each
point on X0(N) is determined by the order of its zero or pole of f at that point. Let ordτ (f) be
the order of the zero or pole of f at τ on H. Since we have

(cz + d)−2E2

(
az + b

cz + d

)
= E2(z) +

12

2πi
·

c

cz + d

for all ( a b
c d ) ∈ SL2(Z), we obtain

(fθ|2σt)(z) =
θ(f |kσt)(z)

(f |kσt)(z)
−

k

12
E2(z)

for a cusp t. Thus, we have

(2.2) ResQτfθdz =

{
1

2πi
ν
(N)
τ (f) if τ ∈ H,

ατ

2πi

(
ν
(N)
τ (f)− k

12

)
if τ ∈ CN .
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3. Regularized Petersson inner product

Petersson defined an inner product of two cusp forms with the same weight. The Petersson
inner product was extended by Borcherds [6] to the case in which one of the two forms is a weakly
holomorphic modular form. In this section, following [6] and [11], we define regularized Petersson
inner product of a cusp form and a meromorphic modular form with the same weight. We prove
that if f is a meromorphic modular form on Γ0(N), then the regularized Petersson inner product
of fθ with any cusp form of weight 2 on Γ0(N) is zero.

Let k be an even integer and f be a meromorphic modular form of weight k on Γ0(N). Let
Sing(f) be the set of singular points of f on FN . For a positive real number ε, an ε-disk Bτ (ε) at
τ is defined by

(3.1) Bτ (ε) :=

{
{z ∈ H : |z − τ | < ε}, if τ ∈ H,
{z ∈ FN : Im(στz) > 1/ε}, if τ ∈ {i∞} ∪Q.

Let FN(f, ε) be a punctured fundamental domain for Γ0(N) defined by

FN(f, ε) := FN −
⋃

τ∈Sing(f)∪CN

Bτ (ε).

Let g be a cusp form of weight k on Γ0(N). The regularized Petersson inner product (f, g)reg of
f and g is defined by

(f, g)reg := lim
ε→0

∫

FN (f,ε)

f(z)g(z)
dxdy

yk−2
.

Then, we have the following proposition.

Proposition 3.1. Let k be an even integer, and f be a meromorphic modular form of weight k on
Γ0(N). Then, for every cusp form g of weight 2 on Γ0(N),

(fθ, g)reg = 0.

Proof. Let ∆(z) := q
∏∞

n=1(1− qn)24 be the unique normalized cusp form of weight 12 on SL2(Z).
Let

F (z) :=
f(z)12

∆(z)k
.

Then, we have

d((loge |F (z)|
2)g(z)dz) =

∂zF (z)F (z)

F (z)F (z)
g(z)dzdz =

∂zF (z)

F (z)
g(z)(−2i)dxdy.

Let us note that ∆ has no zeros and no poles on H. Therefore, according to [9, Theorem 1], we
have

θ(∆)

∆
= E2.

The function ∂zF (z)/F (z) is given as

∂zF (z)

F (z)
= 12

∂zf(z)

f(z)
− k

∂z∆(z)

∆(z)
= 12

∂zf(z)

f(z)
− k(2πi)E2(z) = (24πi)fθ(z).
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Thus, we have

(3.2) d((loge |F (z)|
2)g(z)dz) = (48π)fθ(z)g(z)dxdy.

In order to apply the Stokes theorem, we describe the boundary of FN . For a positive real
number ε, we define

γτ (ε) :=

{
{z ∈ H : |z − τ | = ε} if τ ∈ H,
{z ∈ FN : Im(στz) = 1/ε} if τ ∈ {i∞} ∪Q.

Assume that ε is sufficiently small. If ∂∗FN(f, ε) denotes the closure of the set ∂FN (f, ε)− ∂FN

in C, then

(3.3) ∂∗FN(f, ε) =
⋃

τ∈Sing(f)∪CN

γτ (ε),

where ∂D denotes the boundary of D for a subset D of C. From (3.2) and (3.3), the Stokes
theorem implies

∫

FN (fθ,ε)

fθ(z)g(z)dxdy =

∫

∂∗FN (fθ,ε)

1

48π
(loge |F (z)|

2)g(z)dz

=
∑

τ∈Sing(fθ)∪CN

∫

γτ (ε)

1

48π
(loge |F (z)|

2)g(z)dz.

For each γ ∈ SL2(Z), the absolute value |(g|2γ)(z)| exponentially decays as Im(z) → ∞, since g

is a cusp form. Thus, if τ ∈ CN , then limε→0

∫
γτ (ε)

1
48π

(loge |F (z)|
2)g(z)dz = 0.

To complete the proof, we assume that τ ∈ Sing(fθ). Then
∣∣∣∣
∫

γτ (ε)

1

48π
(loge |F (z)|

2)g(z)dz

∣∣∣∣

≤

∫

γτ (ε)

1

48π
|(loge |F (z)|

2)||g(z)||dz|

≤ max{|(loge |F (z)|
2)| : z ∈ γτ (ε)}M1

∫

γτ (ε)

|dz| (some constant M1)

≤ max{|(loge |F (z)|
2)| : z ∈ γτ (ε)}M1(2πε).

The function F (z) can be expressed around τ as

F (z) = (z − τ)12ν
(N)
τ (f)F0(z),

where F0(z) is a nowhere vanishing holomorphic function around τ . If ε is sufficiently small, then,
for any z ∈ γτ (ε) we have

|(loge |F (z)|
2)| ≤ |(loge |(z − z0)|

24ν
(N)
τ (f))|+ |(loge |F0(z)|

2)|

≤ |(loge |(z − z0)|
24ν

(N)
τ (f))|+M2 (some fixed constant M2)

= |24ν(N)
τ (f) loge ε|+M2.
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Thus, for sufficiently small ε, we have∣∣∣∣
∫

γτ (ε)

1

48π
(loge |F (z)|

2)g(z)dz

∣∣∣∣ ≤ (|24ν(N)
τ (f) loge ε|+M2)M1(2πε).

This implies that, for τ ∈ Sing(fθ),

lim
ε→0

∫

γτ (ε)

1

48π
(loge |F (z)|

2)g(z)dz = 0.

Thus, we complete the proof. �

4. Equidistribution of Hecke points

Let {uj}j≥0 be an orthonormal basis of the residual and cuspidal spaces of L2(Γ0(N)\H), i.e.,
u0 is a constant with the eigenvalue λ0 = 0 and uj is a Maass form for Γ0(N) with eigenvalue
λj = sj(1 − sj) for j ≥ 1. Further, assume that λj are ordered so that 0 < λ1 ≤ λ2 ≤ · · · . For
each cusp t ∈ Q ∪ {∞}, let Et(z, s) be the Eisenstein series at t for Re(s) > 1, which is given by

Et(z, s) =
∑

γ∈Γ0(N)t\Γ0(N)

(Im(σ−1
t γz))s.

Here, Γ0(N)t ⊂ Γ0(N) is the stability group of t. For the properties of Et(z, s), see [19, §15].

According to [19, Theorem 15.5], any f ∈ L2(Γ0(N)\H) has the spectral decomposition

f(z) =
∑

j≥0

〈f, uj〉 uj(z) +
∑

t∈CN

1

4π

∫

R

〈f, Et(∗, 1/2 + ir)〉Et(z, 1/2 + ir) dr

(valid in L2-sense) and converges absolutely and uniformly on compact sets if f and ∆f are smooth
and bounded.

We now follow the proof of [17, Theorem 3.1]. Let

fC = 〈f, u0〉 = the projection of f onto the constant subspace,

fM(z) =
∑

j≥1

〈f, uj〉uj(z),

fE(z) =
∑

t∈CN

1

4π

∫

R

〈f, Et(∗, 1/2 + ir)〉Et(z, 1/2 + ir) dr.

Note that

(4.1) fC = 〈f, u0〉 =

∫

FN

f(z) dµ(z),

where dµ(z) := 3
π[SL2(Z):Γ0(N)]

· dxdy
y2

is the normalized Haar measure; so,
∫
FN

dµ(z) = 1.

Let λj(n) be the nth Fourier coefficient of uj. By the Ramanujan conjecture, there exists θ ≥ 0
such that |λj(n)| ≤ cnθ+ǫ, for any ǫ > 0. So, we get

(4.2)
1

σ1(n)
‖TnfM‖2 ≤ cn− 1

2
+θ+ǫ‖fM‖2.

Note that the value of θ has been lowered to 7
64

by Kim and Sarnak [20, Appendix 2].
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In [22, §6, §7 and §8], an explicit change-of-basis formula between the Eisenstein series at-
tached to cusps and newform Eisenstein series attached to pairs of primitive Dirichlet characters is
described. The Eisenstein series attached to a Dirichlet character is an eigenfunction of Hecke op-
erators Tn for gcd(n,N) = 1, and the absolute values of the corresponding eigenvalues are bounded

above by σ0(n)n
− 1

2 . So, we get

(4.3)
1

σ1(n)
‖TnfE‖2 ≤ cn− 1

2
+ǫ‖fE‖2.

If we combine (4.1), (4.2), and (4.3), then we obtain the following theorem. For more general
result, see [13].

Theorem 4.1. Let f ∈ L2(Γ0(N)\H). For a positive integer n prime to N , we have
∥∥∥∥

1

σ1(n)
Tnf −

∫

FN

f(z) dµ(z)

∥∥∥∥
2

≤ cǫn
− 1

2
+θ+ǫ‖f‖2

for any ǫ > 0. The constant cǫ depends on ǫ.

The pointwise convergence can be derived from [14, Proposition 8.2]. Note that elliptic differen-
tial operators are differential operators that generalize the Laplace-Beltrami operator ∆. For an
integer m ≥ 2, assume that f,∆mf ∈ L2(Γ0(N)\H). Then, by [14, Proposition 8.2], for a compact
subset ω ⊂ FN , there exist constants C1(ω) and C2(ω) such that, for any z0 ∈ ω
∣∣∣∣

1

σ1(n)
Tnf(z0)−

∫

FN

f(z) dµ(z)

∣∣∣∣

≤ C1(ω)

∥∥∥∥
1

σ1(n)
Tnf −

∫

FN

f(z) dµ(z)

∥∥∥∥
2

+ C2(ω)

∥∥∥∥
1

σ1(n)
Tn(∆

mf)−

∫

FN

(∆mf)(z) dµ(z)

∥∥∥∥
2

.

So, we have the following corollary.

Corollary 4.2. Assume that f,∆2f ∈ L2(Γ0(N)\H). Take a compact ω ⊂ Γ0(N)\H and a positive
number ǫ. Then, there exists a constant Cω,ǫ depending on ω and ǫ, such that, for a positive integer
n prime to N , for any z0 ∈ ω,

∣∣∣∣
1

σ1(n)
Tnf(z0)−

∫

FN

f(z) dµ(z)

∣∣∣∣ ≤ Cω,ǫn
− 1

2
+θ+ǫmax{‖f‖2, ‖∆

2f‖2}.

5. Proofs

Let MEis
k (Γ0(N)) be the space of modular forms orthogonal to all the cusp forms of weight k

on Γ0(N), which is called the Eisenstein space of weight k on Γ0(N). In the following lemma,
we prove that if N is square-free, then, for a positive integer n prime to N , the nth coefficient of
a modular form in MEis

2 (Γ0(N)) is a multiple of σ1(n). Recall the notations D(N), dj , and AN

from Section 1. Now, we prove the following lemma related to properties for modular forms in an
Eisenstein space.

Lemma 5.1. Suppose that E2(z) :=
∑∞

n=0 b(n)q
n is a modular form in MEis

2 (Γ0(N)), and that N
is square free. Then, the following statements are true.
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(1) There exists a constant c such that for every positive integer n prime to N ,

b(n) = cσ1(n).

(2) Assume that the constant term of E2(z) at cusp 1/di is cdi. Let Aj be the matrix obtained
from A by replacing the jth column of A with a column matrix whose ith component is cdi.
Then

E2(z) =
∑

1≤j≤D(N)−1

det(Aj)

det(AN )
(E2(z)− djE2(djz)).

Proof. (1) We claim that there is a basis of MEis
2 (Γ0(N)) consisting of modular forms E2(z) −

dE2(dz), where d 6= 1 are the divisors of N . Assume that the claim is true. Then, E2(z) can be
expressed as a linear combination of E2(z)− djE2(djz) having the form

E2(z) =
∑

1≤j≤D(N)−1

aj(E2(z)− djE2(djz)).

Recall that E2 has the Fourier expansion of the form

(5.1) E2(z) = 1− 24

∞∑

n=1

σ1(n)q
n.

Then, the nth coefficient of E2(z) is given by

−24
∑

1≤j≤D(N)−1

aj(σ1(n)− djσ1(n/dj))

for n > 0, and aj does not depend on n. Here, σ1(n/d) = 0 if n is not divisible by d. Thus, we
have the proof of the lemma.

Now, we prove the claim. Suppose that
∑

1≤j≤D(N)−1

aj(E2(z)− djE2(djz)) = 0,

where aj are complex numbers. We assume that complex numbers aj are not all zero. Then, we
have ∑

1≤j≤D(N)−1

ajE2(z) =
∑

1≤j≤D(N)−1

ajdjE2(djz).

Comparing the nth coefficients of the forms on both sides for n prime to N , we have
∑

1≤j≤D(N)−1

ajE2(z) =
∑

1≤j≤D(N)−1

ajdjE2(djz) = 0.

Take the smallest positive integer dj0|N such that aj0 6= 0. Then, we have

−aj0dj0E2(dj0z) =
∑

1≤j≤D(N)−1

ajdjE2(djz)− aj0dj0E2(dj0z).

Comparing the dj0th coefficients of the forms on both sides, we have aj0 = 0. This is a contradiction.
Therefore, the modular forms E2(z)− dE2(dz), d|N and d 6= 1, are linearly independent.

Let us note
dimCM

Eis
2 (Γ0(N)) = D(N)− 1.
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since N is square free. Thus,

{(E2(z)− dE2(dz) : d | N and d 6= 1}

is a basis of MEis
2 (Γ0(N)). This completes the proof of the claim.

(2) From the proof of (1), we may assume that

E2(z) =
∑

1≤j≤D(N)−1

aj(E2(z)− djE2(djz)).

Let us note that E2(z) −
3

πIm(z)
is a non-holomorphic modular form of weight 2 on SL2(Z). By

direct computation, there are γ ∈ SL2(Z) and µj ∈ Z such that
(
dj 0
0 1

)(
1 0
di 1

)
= γ

(
1 µj

0 dj/ gcd(dj, di)

)(
gcd(dj, di) 0

0 1

)

Thus,

(E2(z)− djE2(djz))|2
(

1 0
di 1

)
= E2(z)−

gcd(dj, di)
2

dj
E2

(
gcd(dj, di)

2

dj
z +

µj gcd(dj, di)

dj

)
.

This implies that aj are the solution of the system

cdi =
∑

1≤j≤D(N)−1

(
1−

gcd(dj, di)
2

dj

)
aj

for 1 ≤ i ≤ D(N)− 1. Thus, the Cramer’s rule completes the proof. �

Now, we prove Theorem 1.1.

Proof. Note that

{E2(z)− dE2(dz) | d | N, d 6= 1}

forms a basis of MEis
2 (Γ0(N)) by the proof of Lemma 5.1. Therefore, we can take a modular form

E2 ∈ MEis
2 (Γ0(N)) such that the constant term of E2 at each cusp except cusps equivalent to i∞

is the same as that of fθ. Suppose that E2 has the Fourier expansion of the form

E2(z) =

∞∑

n=0

b(n)qn.

Note that, by (2.1) and (2.2), we have

2πi

eτ
Resτfθ = ν(N)

τ (f)

for τ ∈ FN . Thus, from [11, Lemma 3.1], we obtain

(5.2) (fθ − E2, ξ0(jN,m))reg = βN,m(aθ(0)− b(0)) + aθ(m)− b(m) +
∑

τ∈FN

ν(N)
τ (f)jN,m(τ),

where aθ(m) is the mth Fourier coefficient of fθ and ξ0 is a differential operator defined by

ξ0(f)(z) := 2i
∂

∂z̄
f(z).
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By the same argument in the proof of [11, Lemma 3.1], we have

(5.3) (fθ − E2, ξ0(JN,m))reg = aθ(m)− b(m) +
∑

τ∈FN

ν(N)
τ (f)JN,m(τ).

Note that ξ0(jN,m) = ξ0(JN,m) since JN,m(z) = jN,m(z) − βN,m. Therefore, from (5.2) and (5.3),
we have

(5.4) aθ(0)− b(0) =
1

βN,m

(
∑

τ∈FN

ν(N)
τ (f)JN,m(τ)−

∑

τ∈FN

ν(N)
τ (f)jN,m(τ)

)
= −

∑

τ∈FN

ν(N)
τ (f).

Proposition 3.1 implies that

(fθ − E2, ξ0(jN,m))reg = 0.

Therefore, from (5.3), we have

(5.5) aθ(m)− b(m) = −
∑

τ∈FN

ν(N)
τ (f)JN,m(τ)

for every positive integer m. Thus, from (5.4) and (5.5), we obtain

(5.6) fθ(z)− E2(z) = −
∑

τ∈FN

ν(N)
τ (f)−

∞∑

m=1

(∑

τ∈FN

ν(N)
τ (f)JN,m(τ)

)
qm.

By (1.1) and the Fourier expansion of E2 given in (5.1), fθ has the Fourier expansion of the form

(5.7) fθ(z) = h∞ +

∞∑

n=1

∑

d|n

dc(d)qn −
k

12
+ 2k

∞∑

n=1

σ1(n)q
n.

Let us note that the constant term of fθ at cusp t is ν
(N)
t (f)− k/12. Suppose that m is prime to

N . Then, Lemma 5.1 implies that

(5.8) b(m) = −24


 ∑

1≤j≤D(N)−1

det(Af,j)

det(AN)


 σ1(m).

Here, Af,j is a matrix obtained from AN by replacing the jth column of AN with a column matrix

whose ith component is
ν
(N)
1/di

(f)

α1/di

− k
12
. Let us note that if gcd(m,N) = 1, then JN,m = JN,1|Tm.

Therefore, by (5.5), (5.7), and (5.8), we have

−JN,1(Tm.Df) = −JN,m(Df) = −
∑

τ∈FN

ν(N)
τ (f)JN,m(τ) = aθ(m)− b(m)

=
∑

d|m

dc(d) + 24


 ∑

1≤j≤D(N)−1

det(Af,j)

det(AN)
+

k

12


 σ1(m).

�
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To prove Theorem 1.3, we follow the argument of the proof of [15, Proposition 3]. We fix ǫ > 0.
Let ψǫ : R>0 → R be a C∞ function with 0 ≤ ψǫ(y) ≤ 1 for all y ∈ R>0 and

ψǫ(y) =

{
0, if y ≤ 1,

1, if y > 1 + ǫ.

For a positive integer n, consider the Poincaré series defined by

(5.9) Pn,ǫ(z) :=
∑

γ∈Γ0(N)∞\Γ0(N)

ψǫ(Im(γz))e(−n(γz)).

From this, we obtain the following proposition.

Proposition 5.2. Let θ be given as in Section 4. Fix n ∈ Z≥1, ǫ > 0, and z0 ∈ H. For any
positive integer m prime to N and any ǫ′ > 0, we have
∣∣∣∣∣∣∣∣

1

σ1(m)





∑

ad=m,
b (mod d)

JN,n

(
az0 + b

d

)
−

∑

ad=m,
b (mod d)

Pn,ǫ

(
az0 + b

d

)




− lim
ǫ′′→0

∫

FN (ǫ′′)

JN,n(z) dµ(z)

∣∣∣∣∣∣∣∣

≤ Cz0,ǫ′m
− 1

2
+θ+ǫ′ max{‖Fn,ǫ‖2, ‖∆

2Fn,ǫ‖2},

where Fn,ǫ := JN,n − Pn,ǫ and Cz0,ǫ′ is the constant given as in Corollary 4.2.

Proof. For a positive integer n, let Pn,ǫ be the Poincaré series as in (5.9). From [11, Theorem 2.1],
it follows that Fn,ǫ ∈ L2(Γ0(N)\H) for a fixed n ≥ 1.

Recall that for φ ∈ L2(Γ0(N)\H) andm ≥ 1 with gcd(m,N) = 1, the normalized Hecke operator
Tm can be represented by

Tmφ(z) =
∑

γ∈T (m)

φ (γz) .

By Corollary 4.2, we find that for any ǫ′ > 0 and m

(5.10)

∣∣∣∣
1

σ1(m)
(TmFn,ǫ)(z0)−

∫

FN

Fn,ǫ(z) dµ(z)

∣∣∣∣ ≤ Cz0,ǫ′m
− 1

2
+ǫ′+θ max{‖Fn,ǫ‖2, ‖∆

2Fn,ǫ‖2}.

For z0 ∈ H, we have

(5.11)
1

σ1(m)
TmFn,ǫ(z0) =

1

σ1(m)





∑

ad=m,
b (mod d)

JN,n

(
az0 + b

d

)
−

∑

ad=m,
b (mod d)

Pn,ǫ

(
az0 + b

d

)



.

Note that

lim
ǫ′′→0

∫

FN (ǫ′′)

Pn,ǫ(z)
dx dy

y2
=

∫

Γ0(N)∞\H

ψǫ(y)e
−2πinz dxdy

y2
=

∫ ∞

0

ψǫ(y)e
2πny dy

y2
·

∫ 1

0

e2πinx dx = 0

for every positive integer n. So, we get

(5.12)

∫

FN

Fn,ǫ(z) dµ(z) = lim
ǫ′′→0

∫

FN (ǫ′′)

JN,n(z) dµ(z).
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If we combine (5.10), (5.11), and (5.12), then we get the desired result. �

We define

Q1,ǫ(z) := ψǫ(Im(z̃))e(−z̃)

for ǫ > 0. Then, we obtain the following proposition.

Proposition 5.3. For any m with gcd(m,N) = 1, we obtain

(5.13)

∣∣∣∣
1

σ1(m)
(JN,1(Tm.Df)−Q1,ǫ(Tm.Df))− hf lim

ǫ′′→0

∫

FN (ǫ′′)

JN,1(z)dµ(z)

∣∣∣∣

≤ HfC(f, ǫ
′)m− 1

2
+θ+ǫ′ max{‖F1,ǫ‖2, ‖∆

2F1,ǫ‖2},

where hf denotes the sum of the orders of zero or pole of f at Qτ on Y0(N).

Proof. Let ǫ > 0 be fixed. Note that

JN,1(Tm.Df ) =
∑

τ∈FN

ν(N)
τ (f)

∑

ad=m
b (mod d)

JN,1

(
aτ + b

d

)

and

P1,ǫ(Tm.Df ) =
∑

τ∈FN

ν(N)
τ (f)

∑

ad=m,
b (mod d)

P1,ǫ

(
aτ + b

d

)
.

Therefore, by Proposition 5.2, for any m with gcd(m,N) = 1, we have

(5.14)

∣∣∣∣
1

σ1(m)
(JN,1(Tm.Df)− P1,ǫ(Tm.Df ))− hf lim

ǫ′′→0

∫

FN (ǫ′′)

JN,1(z)dµ(z)

∣∣∣∣

≤ HfC(f, ǫ
′)m− 1

2
+θ+ǫ′ max{‖F1,ǫ‖2, ‖∆

2F1,ǫ‖2},

for any ǫ′ > 0, where Hf :=
∑

τ∈FN
|ν

(N)
τ (f)| and C(f, ǫ′) := max{Cτ,ǫ′ | τ ∈ FN , ν

(N)
τ (f) 6= 0}.

Recall that z̃ is a unique complex number in FN which is equivalent to z under the action of
Γ0(N). If Im(z̃) > 1, then for any γ ∈ Γ0(N), Im(γz̃) ≤ 1 unless γ ∈ Γ0(N)∞.

Suppose that Im(z̃) ≤ 1 and that there exists γ ∈ Γ0(N) such that Im(γz̃) > 1. Then, there
exists ℓ ∈ Z such that −1

2
< Re(γz̃) + ℓ ≤ 1

2
, and so

γz̃ + ℓ =

(
1 ℓ
0 1

)
γz̃ ∈ FN .

Since ( 1 ℓ
0 1 ) γ ∈ Γ0(N), we have γz̃ + ℓ = z̃, so Im(γz̃) = Im(z̃) ≤ 1, which is a contradiction.

Therefore, if Im(z̃) ≤ 1, then for any γ ∈ Γ0(N), we get Im(γz̃) ≤ 1.

Thus, we have

P1,ǫ(z) = P1,ǫ(z̃) =
∑

γ∈Γ0(N)∞\Γ0(N)

ψǫ(Im(γz̃))e(−γz̃) = Q1,ǫ(z).

Therefore, from (5.14), we obtain the desired result. �
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From Proposition 5.2 and Proposition 5.3, we obtain the following theorem. This gives the
distribution of values of JN,1 on Hecke orbits.

Theorem 5.4. We have

lim
m→∞

1

σ1(m)

(
JN,1(Tm.Df)− e

(
(Tm.Df) >1

))
=

3hf
π[SL2(Z) : Γ0(N)]

lim
ǫ′′→0

∫

FN (ǫ′′)

JN,1(z)
dxdy

y2
.

Proof. Let ǫ > 0 be fixed. For any positive integer m which is prime to N , we have

(5.15)

∣∣∣∣
1

σ1(m)

(
JN,1(Tm.Df)− e

(
(Tm.Df ) >1

))
− hf lim

ǫ′′→0

∫

FN (ǫ′′)

JN,1(z)dµ(z)

∣∣∣∣

≤

∣∣∣∣
1

σ1(m)
(JN,1(Tm.Df )−Q1,ǫ(Tm.Df ))− hf lim

ǫ′′→0

∫

FN (ǫ′′)

JN,1(z)dµ(z)

∣∣∣∣

+
1

σ1(m)
|Q1,ǫ(Tm.Df )− e

(
(Tm.Df) >1

)
|.

Note that

(5.16) |Q1,ǫ(Tm.Df)− e(−(Tm.Df))>1|

≤
∑

τ∈FN

ν
(N)
τ (f)6=0

∣∣ν(N)
τ (f)

∣∣ ∑

γ∈T (m)

{
|ψǫ(Im(γ̃τ )− 1| |e(−γ̃τ )|, if 1 < Im(γ̃τ) ≤ 1 + ǫ,

0, otherwise.

Now, we follow the proof of [15, Proposition 3]. Fix 0 < ǫ < 1
4
and consider the incomplete

Eisenstein series

gǫ(z) :=
∑

γ∈Γ0(N)∞\Γ0(N)

φǫ(Imγz),

where φǫ : R>0 → R is a smooth function supported in (1 − ǫ, 1 + 2ǫ) with 0 ≤ φǫ(y) ≤ 1 for all
y ∈ R>0 and φǫ(y) = 1 for 1 ≤ y ≤ 1+ ǫ. By Corollary 4.2, we see that for any ǫ′ > 0, z0 ∈ H, and
m with gcd(m,N) = 1,

(5.17)

∣∣∣∣
1

σ1(m)
Tmgǫ(z0)−

∫

FN

gǫ(z)dµ(z)

∣∣∣∣ ≤ Cz0,ǫ′m
− 1

2
+ǫ′+θ max{‖gǫ‖2, ‖∆

2gǫ‖2}.

Then, there exists a constant D(f, ǫ′) such that

(5.18)
1

σ1(m)
|Q1,ǫ(Tm.Df)− e(−(Tm.Df )>1)| ≤

e2π(1+ǫ)

σ1(m)

∑

τ∈FN

ν
(N)
τ (f)6=0

∣∣ν(N)
τ (f)

∣∣ (Tmgǫ)(τ)

≤ Cfe
2π(1+ǫ)

(∫

FN

gǫ(z) dµ(z) +D(f, ǫ′)m− 1
2
+θ+ǫ′ max{‖gǫ‖2, ‖∆

2gǫ‖2}

)
,

where Cf := #

{
τ ∈ FN

∣∣∣∣ ν
(N)
τ (f) 6= 0

}
×max

{∣∣∣ν(N)
τ (f)

∣∣∣
∣∣∣∣ τ ∈ FN

}
.
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Therefore, from Proposition 5.3 and (5.15), we have
(5.19)∣∣∣∣

1

σ1(m)

(
JN,1(Tm.Df)− e

(
(Tm.Df) >1

))
− hf lim

ǫ′′→0

∫

FN (ǫ′′)

JN,1(z)dµ(z)

∣∣∣∣

≤

(
HfC(f, ǫ

′)max{‖F1,ǫ‖2, ‖∆
2F1,ǫ‖2}+ Cfe

2π(1+ǫ)D(f, ǫ′)max{‖gǫ‖2, ‖∆
2gǫ‖2}

)
m− 1

2
+θ+ǫ′

+ Cfe
2π(1+ǫ)

∫

FN

gǫ(z) dµ(z).

For a fixed ǫ, taking m→ ∞, we get

(5.20) lim
m→∞

1

σ1(m)

(
JN,1(Tm.Df)− e

(
(Tm.Df) >1

))

= hf lim
ǫ′′→0

∫

FN (ǫ′′)

JN,1(z)dµ(z) + Cfe
2π(1+ǫ)

∫

FN

gǫ(z) dµ(z).

Note that (5.19) holds for any fixed 0 < ǫ < 1
4
. Since

∫

FN

gǫ(z)dµ(z) =
3

π[SL2(Z) : Γ0(N)]

∫ ∞

0

φǫ(y)
dy

y2
→ 0,

as ǫ→ 0, we get

lim
m→∞

1

σ1(m)

(
JN,1(Tm.Df )− e

(
(Tm.Df ) >1

))
= hf lim

ǫ′′→0

∫

FN (ǫ′′)

JN,1(z)dµ(z).

�

Finally, Theorem 1.3 comes from Theorem 5.4 and (1.2).
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