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SUMMARY

This article concerns a class of generalized linear mixed models for two-level grouped data, where
the random effects are uniquely indexed by groups and are independent. We derive necessary and suffi-
cient conditions for the marginal likelihood to be expressed in explicit form. These models are unified 10

under the conjugate generalized linear mixed models framework, where conjugate refers to the fact that
the marginal likelihood can be expressed in closed form, rather than implying inference via the Bayesian
paradigm. The proposed framework allows simultaneous conjugacy for Gaussian, Poisson and gamma
responses, and thus can accommodate both unit- and group-level covariates. Only group-level covariates
can be incorporated for the binomial distribution. In a simulation of Poisson data, our framework outper- 15

formed its competitors in terms of computational time, and was competitive in terms of robustness against
misspecification of the random effects distributions.

Some key words: Closed-form marginal likelihood; Longitudinal data; Multilevel model; Random effect; Unit-level
model.

1. INTRODUCTION 20

Generalized linear mixed models can account for the dependence structure of multilevel and longitudi-
nal data, where the responses of units within a group are correlated. The goal is to model the response as a
function of unit and group-level covariates while accounting for group-to-group variability. For example,
outcomes of patients within the same hospital are likely to be dependent due to similar risk profiles and a
common clinical management practice. Generalized linear mixed models provide a natural framework for 25

modelling dependencies by allowing for random group-specific effects. The random effects are typically
assumed to be Gaussian and additive with respect to the linear predictors.

Despite their popularity, generalized linear mixed models are computationally intensive to fit. Estima-
tion for generalized linear mixed models is typically likelihood-based, involving integrals which do not
usually have analytic expressions. Common estimation procedures include numerical quadrature (Rabe- 30

Hesketh et al., 2002), Monte Carlo methods, Laplace approximation (Tierney & Kadane, 1986), penalized
quasi-likelihood (Breslow & Clayton, 1993), hierarchical likelihood (Lee & Nelder, 1996), and simu-
lated maximum likelihood (Train, 2009, p.238–239). Some of these approaches apply an expectation-
maximization algorithm that treats the random effects as missing data (McCulloch, 1997). Certain gen-
eralized linear mixed models can also be fitted using softwares for generalized additive models (Wood, 35

2017, p.288).
For large-scale applications, it is important that models can be fitted in a reasonable time. Several

methods have been proposed in various specific settings. Zhang & Koren (2007) exploit the sparsity of
predictors to achieve speedup for Bayesian hierarchical models. Luts et al. (2014) fit variational approxi-
mation Bayesian hierarchical models for streaming data. Perry (2017) proposes a non-iterative moment- 40

based procedure. Scott et al. (2016) propose a fitting strategy based on the divide and recombine principle,
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where data are partitioned into manageable subsets and statistical analysis is performed separately on each
subset before combining the results. The methods of Perry (2017) and Scott et al. (2016) are well-suited
for the context of distributed computing.

This article proposes a new framework for analyzing multilevel and longitudinal data, where the45

marginal likelihood is tractable. Having an explicit marginal likelihood means that the models are more
computationally convenient. We focus on two-level grouped data, where the random effects are uniquely
indexed by groups and are independent.

2. EXPONENTIAL FAMILY AND CONJUGATE PRIOR

The likelihood of a one-parameter exponential family with dispersion can be written as50

fY |θ(y | θ, φ) = exp [{yθ − b(θ)}/φ+ c(y, φ)] , (1)

for some specified functions b(θ) and c(y, φ), where θ is the canonical parameter and can be expressed as
a function of the mean θ(µ), and φ is the dispersion parameter, assumed known.

For such an exponential family, there exists a family of prior distributions on θ such that the posterior
density lies in the same family as the prior. Such a conjugate prior for θ is defined as

fΘ(θ | χ, ν) = g(χ, ν) exp{χθ − νb(θ)}, (2)

where χ and ν are parameters and g(χ, ν) denotes the normalizing factor. The posterior density is of the55

form (up to a constant of proportionality)

fΘ|y(θ | y, χ, ν, φ) ∝ exp{c(y, φ)}g(χ, ν) exp{θ(χ+ y/φ)− b(θ)(ν + 1/φ)}, (3)

which has the same kernel as the prior but with different parameters. The kernel of a probability density
function is the form after the normalization factor is removed. The updated parameters, based on a single
observation y, are χ̃ = χ+ y/φ and ν̃ = ν + 1/φ. For n independent and identically distributed obser-
vations y1, . . . , yn, it is straightforward to show that conjugacy still holds and the updated parameters are60

χ̃ = χ+
∑n
j=1 yj/φ and ν̃ = ν + n/φ.

These are standard results for independent and identically distributed data in the Bayesian context. In
this article, we aim to compute an explicit marginal likelihood for generalized linear mixed models in the
frequentist setting. This is attained by connecting the posterior in the Bayesian paradigm and the marginal
likelihood in the frequentist paradigm, and relaxing the assumption of identical distribution. The result is65

a class of models which we refer to as the conjugate generalized linear mixed models, where unit-level
covariates can be conveniently incorporated while maintaining a closed-form marginal likelihood.

3. CONJUGATE GENERALIZED LINEAR MIXED MODELS

3·1. From Bayesian formalism to frequentist inference

We now move from the Bayesian paradigm, where θ is a parameter and its distribution is the prior, to70

the frequentist paradigm, where θ is a group-specific random effect and its distribution describes varia-
tion between groups. Consider the two-level setting where the responses yij(j = 1, . . . , ni) are grouped
within a higher-level structure indexed by i = 1, . . . , I . The responses are assumed to come from the same
exponential family. Random effects with a specified distribution are introduced at the group level. Within
each group, the responses are conditionally independent given the group-specific random effects.75

For this model setup, the marginal likelihood, obtained by integrating out the random effects, is

I∏
i=1

∫ ni∏
j=1

fY |θi(yij | θi, φ)fΘi(θi | χ, ν)dθi,

where the integrand for a single observation is proportional to the posterior in (3). Imposing a conjugate
prior distribution on the random effects would ensure that the integrand comes from a recognizable density
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function, which enable the marginal likelihood to be expressed in closed form. Here and for the rest of the
paper, we use the word prior in the frequentist setting for brevity. 80

Solving for the integral, the marginal likelihood contribution for the entire data is

I∏
i=1

 exp
{∑ni

j=1 c(yij , φ)
}
g(χ, ν)

g
(
χ+

∑ni

j=1 yij/φ, ν + ni/φ
)
 .

This is the formulation for group-level models in the absence of of unit-level covariates. Although the
random effects θi = θ(µi) are typically expressed in terms of a monotonic transformation of µi, interest
usually lies in the distribution of µi. Consonni & Veronese (1992) and Gutiérrez-Pẽna & Smith (1995)
showed that the conjugate distribution on µi coincides with the prior on µi induced by the conjugate 85

distribution on θi if and only if the exponential family has a quadratic variance function. This holds for
the Gaussian, Poisson, binomial, and gamma distributions (Morris, 1983), providing a convenient way to
incorporate group-level variables, for example, via the mean µi using a monotonic link function.

3·2. Relaxing the assumption of identical distribution: unit-level models

Relaxing the assumption of identical distribution, we consider the regression setting where each ob- 90

servation yij may have a separate parameter θij = θ(xij) that is a function of the covariates, while φ, if
present, is constant across all observations. We want to explore the most generic formulation that leads
to marginal likelihood simplification, so at this stage we leave open the functional dependence of θij
on xij . Denote θ0 = θ(x0) as the baseline parameter, where x0 is an arbitrary baseline covariate value.
Technically, θ0 is also indexed by i to reflect the group correlated data structure, but generally this can 95

be suppressed without ambiguity. Likewise, for ease of notation, the i and j indexing are suppressed for
most of the remaining article.

Remark 1. A common assumption is x0 = 0, but users can take any baseline appropriate for the prob-
lem at hand. With this formulation, within a group, we can think of units with covariate configurations that
deviate from the baseline characteristics as modifying θ0. This is as opposed to the standard formulation 100

of generalized linear mixed models, where for a given unit with a particular covariate configuration, it is
the group membership that modifies the linear predictor.

The log of the integrand of the marginal likelihood for a single observation is [yθ(x)− b{θ(x)}]/φ+
χθ0 − νb(θ0). A conjugate prior distribution is imposed on θ0, rather than explicitly on θij = θ(xij). The
integrand of the marginal likelihood lies in the same family as (2) in its dependence on θ0 if and only if 105

both θ(x) and b{θ(x)} are affine functions of θ0 and b(θ0), i.e., if there exist functions p, q, r, s, t and
u of x such that θ(x) = p(x)θ0 + q(x)b(θ0) + r(x) and b{θ(x)} = s(x)θ0 + t(x)b(θ0) + u(x). These
conditions can be combined to obtain

b {p(x)θ0 + q(x)b(θ0) + r(x)} = s(x)θ0 + t(x)b(θ0) + u(x). (4)

This is the key equation in deriving the functional solutions for p, q, r, s, t and u. We are interested
in families where θ(x) has non-trivial dependence on x, that is, at least one of p, q or r must depend on 110

x. When this occurs, the induced prior for θ(x) exhibits simultaneous conjugacy across all values of x,
and the resulting model is capable of incorporating unit-level covariates while maintaining a closed-form
marginal likelihood. This holds for Gaussian, Poisson, and gamma responses. For Gaussian responses,
the functional form of the mean is µ(x) is ζ1(x)µ0 + ζ2(x), where ζ1 and ζ2 are user-defined functions
of x, subject to ζ1(x0) = 1 and ζ2(x0) = 0. For gamma responses, µ(x) = µ0/ζ(x), where ζ(x) is a 115

user-specified function of x, subject to ζ(x0) = 1. Section 4·1 discusses Poisson data. For Gaussian data,
modelling under the conjugate generalized linear mixed model framework coincides with that of general-
ized linear mixed model framework. When the dependence of θ(x) on x is trivial, this formulation reduces
to the group-level models. See the Supplementary Material.
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Since θ0 = θ(x0) and b(θ0) = b{θ(x0)}, it is clear that p(x0) = 1, q(x0) = 0, r(x0) = 0, s(x0) = 0,120

t(x0) = 1 and u(x0) = 0. These constraints must be satisfied when choosing functional solutions for p,
q, r, s, t and u.

Under (4), the log of the integrand of the marginal likelihood for a single observation is θ0[χ+
{yp(x)− s(x)}/φ]− b(θ0)[ν + {t(x)− yq(x)}/φ] . Solving for this integral, the marginal likelihood
contribution for observations within a single group is125

exp
{∑ni

j=1 c(yij , φ)
}
g(χ, ν) exp

[∑ni

j=1 {r(xij)yij − u(xij)} /φ
]

g
[
χ+

∑ni

j=1 {yijp(xij)− s(xij)} /φ, ν +
∑ni

j=1 {t(xij)− yijq(xij)} /φ
] . (5)

For multiple groups, the marginal likelihood can be obtained by multiplying (5) across the group index i.

4. POISSON RESPONSES

4·1. Derivation

The Poisson density function can be written in the form exp(y logµ0 − µ0 − log y!), where µ0 > 0 is
the rate parameter. This can be written in the form of (1) if we write θ0 = logµ0, b(θ0) = eθ0 , φ = 1 and130

c(y, φ) = − log y!. To determine the conjugate distribution for θ0, we compute the normalization factor

g(χ, ν) =

[∫
exp {χθ0 − ν exp(θ0)} dθ0

]−1

=
νχ

Γ(χ)
,

where the integrand is the kernel of a log-gamma density function with shape A = χ > 0 and scale B =
ν−1 > 0, Γ(·) is the gamma function. This implies that µ0 = exp(θ0) ∼ Gamma(A,B).

Christiansen & Morris (1997) considered a similar model without covariates in the Bayesian setting.
Group-level covariates can be incorporated via the mean of µ0, by letting E(µ0) = AB ≡ exp(xTi β)135

for example. As a result, we replace B by Bi = exp(xTi β)/A. To incorporate unit-level covariates, (4)
requires b{θ(x)} = exp{p(x)θ0 + q(x) exp(θ0) + r(x)} ≡ s(x)θ0 + t(x) exp(θ0) + u(x), which gives
p(x) = 1, q(x) = 0, r(x) = ζ(x), s(x) = 0, t(x) = eζ(x), and u(x) = 0, where ζ(x) is a user-specified
function of x, subject to ζ(x0) = 0. This implies θ(x) = logµ(x) = θ0 + ζ(x), or equivalently, µ(x) =
µ0 exp ζ(x).140

Choosing ζ(x) = xTβ leads to µ(x) = µ0 exp(xTβ), where x does not include the constant 1 so that
ζ(x0) = 0, assuming x0 = 0. This choice gives rise to a sensible model as µ(x) is guaranteed positive.
Similar multiplicative models with unit-level covariates have been considered by Lee & Nelder (1996),
and Lee et al. (2017a,b) under various settings. An alternative formulation is to include the intercept but
with constraint E(µ0) = 1. Consequently, B = 1/A and var(µ0) = 1/A. We used the latter formulation in145

our simulation as it allows a direct comparison with Poisson generalized linear mixed models, since both
frameworks involve an intercept and a constraint on the random intercepts.

An estimator for var(µ0) can be inferred from the maximum likelihood estimate for A, Â, via 1/Â.
Predictions for the random effects can be obtained by minimizing the overall mean squared error of pre-
diction, resulting in the best predictor µ̂0i = (

∑ni

j=1 yij + Â)/{
∑ni

j=1 exp(xTij β̂) + Â}, where β̂ is the150

maximum likelihood estimate for β. Starting values for the fixed effects can be obtained by fitting a Pois-
son generalized linear model.

4·2. Simulation study

We conducted a limited simulation study to assess the performance of Poisson conjugate general-
ized linear mixed models: yij | µ0i ∼ Poisson{µ0i exp(xTijβ)}, µ0i ∼ Gamma(A, 1/A) versus general-155

ized linear mixed models: yij | bi ∼ Poisson{exp(xTijβ + bi)}, bi ∼ Gaussian(0, σ2) in terms of compu-
tational speed and inferential accuracy. Due to the intractable marginal likelihood of the Poisson general-
ized linear mixed models, various approximation methods were used to estimate the marginal likelihood.
These methods are implemented within the R package lme4 (Bates et al., 2017). Results for generalized
linear models are included for comparison. We generated data from the two models, and fitted each dataset160
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Table 1: Estimated fixed intercept β̂0, estimated fixed slope β̂1, estimated standard error of the random
effects σ̂, average deviance, and relative elapsed times for Poisson generalized linear models, conjugate
generalized linear mixed models, and generalized linear mixed models. The numbers are averages across
1000 simulations.

(a) True distribution: Gamma multiplicative random effects

GLM CGLMM GLMM
LAP AGQ2 AGQ5 AGQ10

β̂0 0.50 0.50 0.03 0.03 0.03 0.03
β̂1 1.00 1.00 1.00 1.00 1.00 1.00
σ̂ NA 1.00 1.02 1.01 1.02 1.03
Deviance 3.61 0.68 0.71 0.71 0.71 0.71
Relative time 0.02 1.00 1.95 2.56 2.35 2.94

(b) True distribution: Gaussian additive random effects

GLM CGLMM GLMM
LAP AGQ2 AGQ5 AGQ10

β̂0 1.00 1.00 0.50 0.50 0.50 0.50
β̂1 1.00 1.00 1.00 1.00 1.00 1.00
σ̂ NA 0.99 0.99 0.99 1.00 1.00
Deviance 6.12 0.65 0.68 0.68 0.68 0.68
Relative time 0.02 1.00 1.56 1.60 1.98 2.53

GLM, generalized linear models; CGLMM, conjugate generalized linear mixed models; LAP, Laplace approximation;
AGQ2, adaptive Gauss-Hermite quadrature with 2 quadrature points; AGQ5, adaptive Gauss-Hermite quadrature
with 5 quadrature points; AGQ10, adaptive Gauss-Hermite quadrature with 10 quadrature points; NA, not applicable.

using both Poisson models with multiplicative gamma and additive Gaussian random effects. Each dataset
consists of 50, 000 groups, two observations within each group, and a binary predictor. The true parameter
values are: β0 = 0.5, β1 = 1, and σ = 1. For models where the true random effects distribution is gamma,
the true value of A is implied by σ, that is, A = σ−2.

Table 1 presents the results averaged across 1000 simulations. The fixed intercept estimates are best 165

interpreted in conjunction with the random intercepts, as a bias in the fixed intercept may be corrected by
a consistent shift in the predicted random intercepts. The fixed slopes and the standard errors of the random
effects estimates are similar for both models, regardless of the true random effects distributions. We used
the average deviance to measure the overall inferential accuracy of the models. For Poisson responses,
the average deviance is 2n−1

∑I
i=1

∑ni

j=1{yij log(yij/µ̂ij)− yij + µ̂ij}, where µ̂ is the predicted mean 170

based on the estimated model parameters. If the model fits the data well, the observed values will be close
to their predicted values, resulting in a small average deviance. The average deviance was very similar
across the models even when the true random effects distribution is misspecified. This suggests that the
overall accuracy of the proposed Poisson conjugate generalized linear mixed models is comparable to
that of the Poisson generalized linear mixed models when the random effects distribution is misspecified, 175

at least within this simulation setting. The nature of the simulation study prevents us from looking at
the distribution of the predicted random effects closely, but it would be interesting to investigate this in
applications. The Poisson conjugate generalized linear mixed models took less time to run, even though
the calculations were done without careful optimization of code as in the competing lme4 package.

The simulation was designed with big data in mind. In particular, we simulated data with a large number 180

of groups and with few observations within each group. In practice, accuracy will depend on a number
of factors, including the number of observations within groups, and standard deviation of the random
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effects. See the 2017 University of Technology Sydney PhD thesis by Jarod Y. L. Lee for a comprehensive
simulation study.

5. REMARKS185

Group-level conjugate models have long been used in the context of Bayesian small area estimation and
disease mapping, the most common ones being the gamma-Poisson (Rao & Molina, 2015, p. 383) and the
beta-binomial models (Rao & Molina, 2015, p. 389). The primary advantage of the proposed modelling
framework is mathematical convenience, but the assumed conjugate random effect distribution may not
accurately reflect the real variation between groups. Other applications of the proposed framework include190

privacy preservation in large-scale administrative databases (Lee et al., 2017a) and the fitting of discrete
choice models (Lee et al., 2017b).

Except for Gaussian responses, our framework can only handle a single layer of random effects corre-
sponding to two levels of grouping, with a unique random effect per group. For multilevel models, one
may alleviate some computational complexity by imposing random effects via the conjugate generalized195

linear mixed models framework on the first layer, and then using Gaussian random effects for the remain-
ing layers. Similar strategy can be applied to models with more than one random effect per group, where
we can impose a distribution for the random intercepts via our framework, and then using Gaussian ran-
dom effects for the random slopes. For more complicated structures, such as crossed designs, the proposed
framework provides a computationally efficient way for obtaining sensible starting values.200

Some of the models derived from our conjugate generalized linear mixed models framework are similar
to those of the conjugate hierarchical generalized linear models framework proposed by Lee & Nelder
(1996). While conjugate in our framework refers to the fact that the marginal likelihood can be made
explicit, it has quite a different meaning in the hierarchical likelihood framework (Lee & Nelder, 1996,
p. 621), where it refers to the fact that a Bayesian conjugate prior is imposed on the random effects205

distribution, though this may not yield a closed-form marginal likelihood.
Molenberghs et al. (2010) consider models that can simultaneously accommodate both overdispersion

and correlation induced by grouping structures via two separate sets of random effects. Although they use
the conjugate distribution for a set of random effects, the resulting marginal likelihood is generally not
explicit.210
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SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes derivations for Gaussian, binomial and
gamma responses, and an illustrative example.
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