
                          Stolzenwald, J., & Mayol-Cuevas, W. (2019). Rebellion and Obedience: The
Effects of Intention Prediction in Cooperative Handheld Robots. Paper
presented at IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS 2019), Macau, China.

Peer reviewed version

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

https://research-information.bris.ac.uk/en/publications/rebellion-and-obedience(5f26f1fa-21ca-429b-a17d-8358fa2966ae).html
https://research-information.bris.ac.uk/en/publications/rebellion-and-obedience(5f26f1fa-21ca-429b-a17d-8358fa2966ae).html


Rebellion and Obedience: The Effects of Intention Prediction in
Cooperative Handheld Robots

Janis Stolzenwald and Walterio W. Mayol-Cuevas

Abstract— Within this work, we explore intention infer-
ence for user actions in the context of a handheld robot
setup. Handheld robots share the shape and properties of
handheld tools while being able to process task information
and aid manipulation. Here, we propose an intention
prediction model to enhance cooperative task solving. The
model derives intention from the combined information
about the user’s gaze pattern and task knowledge. Within
experimental studies, the model is validated through a
comparison of user frustration for the case where the robot
follows the predicted location of the user’s intended action
versus doing the opposite (rebellion). The proposed model
yields real-time capabilities and reliable accuracy up to 1.5 s
prior to predicted actions being executed.

I. INTRODUCTION

A handheld robot shares properties of powered hand
tools while being enhanced with autonomous motion
as well as the ability to process task-relevant infor-
mation and user signals. Since the robot holds task
knowledge, such a system could help cutting workers’
training times, as less user expertise is required for
task solving. At the same time, the robot benefits from
humans’ natural navigation and obstacle avoidance
capabilities. While this can arguably be beneficial for
the task performance, the high proximity between the
user and the robot also leads to codependencies that
create the need of communication methods between the
user and the robot for efficient collaboration.

Earlier work in this field explored robot-human com-
munication for improved cooperation [1], [2]. Such one-
way communication of task planning, however, is lim-
ited in that the robot has to lead the user and as users
exert their will and decisions, task conflicts emerge.
This, in turn, inflicts user frustration and decreases
cooperative task performance. We argue, that this is
due to a lack of human-robot communication.

As a starting point of addressing this problem, we
introduced extended user perception in earlier work on
handheld robot collaboration [3]. This allows the robot
to estimate the user’s point of attention via eye gaze in
3D space during task execution. While the estimation of
users’ visual attention helps just-in-time planning, we
lack an intention model which would allow the robot
to infer the user’s goal in the proximate future and go
beyond reacting to immediate decisions only.

In recent years, promising solutions for intention
inference have been achieved through observing user’s
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Fig. 1: This picture shows a participant within our user
intention prediction study who solves the assembly task and
is about to decide where to place the currently held block.
Using the eye tracker, the prediction system extracts the
user’s gaze pattern, which is used for action prediction.

eye gaze [4], body motion [5] or task objects [6].
These works target safe interactions between humans
and sedentary robots with shared workspaces. To our
knowledge, they were never tested in a setup of close
codependency, such as we face within handheld robotic
systems. Hence, this is explored in our research, which
is guided by the following research questions:
Q1 How can user intention be modelled in the context

of a handheld robot task?
Q2 To what extent does intention prediction of users

affect the cooperation with a handheld robot?
For our study, we use the open robotic platform,

introduced in [7], combined with an eye tracking sys-
tem as reported in [3]. The 3D CAD models of the
robot design are available from [8]. Within a simulated
assembly task, which was inspired by [9], eye gaze
information is used to predict subsequent user actions.
Figure 2 shows an overview of our proposed system.
The two principal parts of this study consist of mod-
elling user intention in section III-V, followed by its
validation through an assistive pick and place task in
section VI-VII. Our main contributions are summarised
as follows:
• We propose an online intention model, which pre-

dicts users’ interaction location targets based on
eye gaze and task states.
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Fig. 2: Overview of the intention prediction model and its use for the robot’s motion control.

• For data collection and model validation, we pro-
pose an experimental setup of a block copying task
to emulate an example of assembly.

• In the absence of universally accepted psychophys-
ical metrics, we propose to measure the frustration
induced through the robot’s rebellion to validate
intention predictions.

II. BACKGROUND AND RELATED WORK

In this section, we deliver a summary of earlier
work on handheld robots and its control based on user
perception. Furthermore, we review existing methods
for intention inference with a focus on human gaze
behaviour.

A. Handheld Robots

Early handheld robot work [1] uses a trunk-shaped
robot with 4-DoF to explore the effect of autonomy
on collaborative task performance and perceived task
load. This was later upgraded to a 6-DoF (joint space)
mechanism [7] and used gestures, such as pointing, to
study user guidance. These earlier works demonstrate
how users benefit from the robot’s quick and accurate
movement while the robot profits from the human’s
tactical motion. Furthermore, it was found that coop-
erative performance significantly increases when the
robot communicates its plans e.g. via a robot-mounted
display [2]. However, the work also demonstrates that
increased autonomy of the robot can lead to mis-
matches between user intention and the robot’s plan.
Sometimes, for example, the robot chose a valid goal,
at which time the user decided to move to a different
one. This led to irritation and frustration in users on
whom the robot’s plan was imposed.

Efforts towards involving user perception in the
robot’s task planning were made in our recent work
on estimating user attention [3]. Using a robot-mounted
remote eye gaze tracker, the system captures the user’s
visual attention during task execution. This informa-
tion is then used to bias the robot’s plans towards
objects the user focuses on. For tasks with higher
speed demands and thus high decision frequencies,
the attention-driven mode was rated more cooperative

compared to the case where the robot was fully au-
tonomous and was ignoring user attention.

As opposed to an intention model, the attention
model would react to the current state of eye gaze
information only, rather than using its history to make
predictions about the user’s future goals. We suggest
that intention prediction would be required for coop-
erative solving of complex tasks like assembly where
there is an increased depth of subtasks.

B. Intention Prediction
Intention estimation in robotics is in part driven

by the demand for safe human-robot interaction and
efficient cooperation. Ravichandar et al. investigated
intention inference based on human body motion [5].
Using Microsoft Kinect motion tracking as an input for
a neural network, reaching targets were successfully
predicted within an anticipation time of approximately
0.5 s prior to the hand touching the object. The model
was later improved using eye gaze tracking for pre-
filtering, which increased the anticipation time to 0.78 s
[10]. Similarly, Saxena et al. introduced a measure of
motion-based affordance to make predictions about hu-
man actions and reached 84.1%/74.4% accuracy 1 s/3 s
in advance, respectively [11].

Huang et al. used gaze information from a head-
mounted eye tracker to predict object selections. Us-
ing a support vector machine (SVM), an accuracy of
approximately 76% was achieved with an average pre-
diction time of 1.8 s prior to the verbal request [12]. In
subsequent work, Huang & Mutlu used the model as
a basis for a robot’s anticipatory behaviour, which led
to more efficient collaboration compared to following
verbal commands only [4].

We note that, while the above methods improve
cooperation in a turn-taking human-robot collaboration
setup, we lack knowledge about their effect on cooper-
ation performance within a shared control setup such
as we face with handheld robots.

C. Human Gazing Behaviour
The intention model presented in this paper is

mainly driven by eye gaze data. Therefore, we review
work on human gaze behaviour to inform the under-
lying assumptions of our model.



Land et al. found that fixations towards an object of-
ten precede a subsequent manual interaction by around
0.6 s [13]. Subsequent work revealed that the latency
between eye and hand varies between different tasks
[14]. Similarly, Johansson et al. [15] found that objects
are most salient for human’s when they are relevant
for task planning.

The purpose of preceding fixations in manual tasks
was furthermore explored through virtual [9] block
design tasks. The results show that humans gather
information through vision just in time rather than
memorising e.g. all object locations, which goes in line
with work on short-term memory processes [16].

The above work inspired the use of gaze data for
action prediction and form the basis of our assumptions
for the intention model, formulated in section III-B.

III. PREDICTION OF USER INTENTION

In this section, we describe how intention prediction
is modelled for the context of a handheld robot based
on an assembly task.

A. Data Collection

We chose a simulated version of a block copying
task, which has been used in the context of work
in hand-eye coordination [9]. Participants of the data
collection trials were asked to use the handheld robot
(cf. figure 3) to pick blocks from a stock area and place
them in the workspace area at one of the associated
spaces indicated by a shaded model pattern. The task
was simulated on a 40 inch LCD TV display and the
robot remained motionless during the data collection
task to avoid distraction. We drew inspiration from the
block-copy task presented in [9] and extended the block
design with black and white patterns, which adds com-
plexity due to the demand for matching orientation. An
overview of the task can be seen in figure 4.

To pick or place pieces, users have to point the
robot’s tip towards and close to the desired location
and pull/release a trigger in the handle. The position
of the robot and its tip is measured via a motion

Fig. 3: The handheld robot used in our study. It features a set
of input buttons and a trigger at the handle, a 6-DoF tip and
user perception through gaze tracking as reported in [3].

Fig. 4: This shows the layout of the block copy task on a TV
display and examples of possible moves for block 1 and 4.
Using the robot, a piece from the stock (left column) has to be
moved to an associated piece in the pattern (shaded blocks)
and match the model’s orientation to complete it.

tracking system1. Another button in the handle allows
the user to rotate a grabbed piece. Participants are
asked to solve the task swiftly and it is completed
when all model pieces are copied. Throughout the task
execution, we kept track of the user’s eye gaze using a
robot-mounted remote eye tracker in combination with
a 3D gaze model from [3]. Figure 1 shows an example
of a participant solving the puzzle.

For the data collection, 16 participants (7 females,
mage = 25, SD = 4) were recruited. Each completed
one practice trial to get familiar with the procedure,
followed by another three trials for data collection,
where stock pieces and model pieces were randomised
before execution. The pattern consists of 24 parts with
an even count of the 4 types. The task starts with 5 pre-
completed pieces to increase the diversity of solving
sequences leaving 19 pieces to be completed by the
participant. That way, a total amount of 912 episodes
of picking and dropping were recorded.

B. User Intention Model
In the context of our handheld robot task, we define

intention as the user’s choice of which object to interact
with next i.e. which stock piece to pick and on which
pattern field to place it.

Based on our literature review, our model design is
guided by the following assumptions:
A1 An intended object attracts the users’ visual atten-

tion prior to interaction.
A2 During task planning, the users’ visual attention is

shared between the intended object and other (e.g.
subsequent) task-relevant objects.

Moreover, as noted in [1], a mismatch between the
robot’s plans and the user’s intention inflicts user
frustration. Hence, with regards to the model’s experi-
mental validation (cf. section VI), we also assume that
A3 If the predicted intention is the true intention, a

robot that rebels against following the predicted
goals induces user frustration.

1OptiTrack: optitrack.com



Our method is constrained by the assumption that
full task knowledge is available to the system. This
includes information about task objects’ positions and
their relationships such as task-specific matching.

As a first step towards feature construction, the gaze
information for an individual object was used to extract
a visual attention profile (VAP), which is defined as the
continuous probability of an object being gazed. Let
xgaze be the 2D point of intersection between the gaze
ray and the TV screen surface and xi the 2D position
of the i-th object in the screen. Then the gaze position
can be compared to each object using the Euclidean
distance:

di(t) = ||xgaze − xi|| (1)

As a decrease of d implies an increased visual atten-
tion, the distance profile can be converted to a VAP
using the following equation:

Pgazed,i(t) = exp(
−di(t)2

2σ2 ) (2)

Here, σ defines the gaze distance resulting in a signif-
icant drop of Pgazed, which is set to 60 mm based on the
pieces’ size and tracking tolerance. The intention model
uses the VAP of the interval Tanticipate = 4 s before
the point in time of the prediction. Due to the data
update frequency of 75 Hz, the profile is discretised into
a vector of 300 entries (cf. example in figure 5).

The prediction for picking and placing actions was
modelled separately as they require different feature
sets. As mentioned above, earlier studies about gaze
behaviour during block copying [9] and assembly [16]
suggest that the eye gathers information about both
what to pick and where to place it prior to initialising
manual actions. For this reason, we combined pattern
and stock information for picking predictions for each
available candidate, resulting in the features selection:

F1 The VAP of the object itself.
F2 The VAP of the matching piece in the pattern. If

there are several, their VAPs are combined using
the element-wise maximum function.

This goes in line with our assumptions A1, A2. Both
features are vectors of real numbers between 0 and 1
with a length of n = 300. For the prediction of the
dropping location, A2 is not applicable as the episode
finishes with the placing of the part, hence why only
F1 (a vector with length n = 300) is used for prediction.
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Fig. 5: Illustration of changing visual attention over time
within the anticipation window of the prediction model for
an individual object.

Note that this feature contains implicit information
about fixation durations as well as saccade counts.

An SVM [17] was chosen as a prediction model as
this type of supervised machine learning model was
used for similar classification problems in the past, e.g.
[12]. We divided the sets of VAPs into two categories,
one where the associated object was the intended object
(labelled as chosen = 1) and another one for the
objects that were not chosen for interaction (labelled as
chosen = 0). Training and validation of the models
were done through 5-fold cross-validation [18].

The accuracy of predicting the chosen label for indi-
vidual objects is 89.6% for picking actions and 98.3% for
placing. However, sometimes the combined decision is
conflicting e.g when several stock pieces are predicted
to be the intended ones. This is resolved by selecting
the one with the highest probability P(chosen = 1) in
a one-vs-all setup [19]. This configuration was tested
for scenarios with the biggest choice e.g. when all
4 stock parts (random chance = 25%) would be a
reasonable choice to pick or when the piece to be
placed matches 4 to 6 different pattern pieces (random
chance = 17-25%). This validation set Xvaild includes
540 picking samples and 294 placing samples. The one-
vs-all validation results in a correct prediction rate of
87.9% for picking and 93.25% for placing actions.

IV. RESULTS OF INTENTION MODELLING

The analysis of the intention model’s performance is
divided into two parts, a quantitative analysis and a
qualitative assessment.

A. Quantitative Analysis

Having trained and validated the intention pre-
diction model for the case where VAPs range over
Tanticipate prior to t0, the time of interaction with the
associated object, we are now interested in knowing
to what extent the intention model predicts accurately
at some prior time tprior < t0. To answer this ques-
tion, we extend our model analysis by calculating a
tprior-dependent prediction accuracy where respective
predictions are based on data from the time interval
[tprior−Tanticipate, tprior]. Within a 5-fold cross-validation
setup, tprior is gradually decreased while predictions
are calculated using the trained SVM model and com-
pared against the ground truth at t0 to determine
the accuracy. The validation is based on the afore-
mentioned set Xvaild so that the random chance of
correct prediction would be ≤ 25%. The shift of the
anticipation window over the data set is done with a
step width of 1 frame (13 ms). This is done for both the
case of predicting which piece is picked up next as well
as inferring intention concerning where it is going to be
placed. For the time offsets tprior = 0, 0.5 and 1 seconds,
the prediction of picking actions yields an accuracy
apick of 87.94%, 72.36% and 58.07%. The performance of
the placing intention model maintains a high accuracy



over a time span of 3 s with an accuracy aplace of
93.25%, 80.06% and 63.99% for the times tprior = 0, 1.5
and 3 seconds. In order to interpret these differences
in performance, we investigated whether there is a
difference between the mean duration of picking and
placing actions. We applied a two-sample t-test and
found that the picking time (mean = 3.61 s, SD = 1.36 s)
is significantly smaller than the placing time (mean =
4.65 s, SD = 1.34 s), with p < .001, t = −16.12.

As the prediction model of the picking actions im-
plements the novel aspect of adding the VAPs of
related objects, its comparison to existing methods is
of particular interest. Figure 6 shows a comparison of
the proposed model (where both features F1 and F2
are used) against the case where F1 is the single basis
for a prediction, such as the model recently explored
in [12]. It can be seen that both models well exceed
the chance of picking randomly. Notably, the proposed
model outperforms the existing one shortly after the
subject ends the preceding move and presumably starts
planning the next one. To further investigate the effect
of the chosen model on the prediction performance, a
two-factorial ANOVA was applied where the predic-
tion time t relative to the action and the model were
set as the independent factors and the performance
as dependent variable, which reveals that the correct
prediction rate of the proposed model is significantly
higher (p < .001) than the one of the existing model.
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Fig. 6: This diagram shows the performance of predicting pick
up actions averaged over 912 samples for two models: our
proposed model (red) and an SVM (black), which is based
on the feature F1 only, such as proposed by Huang et al.
[12]. It can be seen how both models perform better than
chance (dashed black) and predict the actions with increasing
accuracy as the prediction time t approaches the time of the
action’s execution t = 0. tmean (with temporal SD tSD) is the
mean time of completing the last block and hence the earliest
meaningful time of predicting picking as a subsequent action.

B. Qualitative Analysis
For an in-depth understanding of how the inten-

tion models respond to different gaze patterns, we
investigate the prediction profile i.e. the change of the
prediction over time, for a set of typical scenarios.

1) One Dominant Type: A common observation was
that the target object perceived most of the user’s
visual attention before interactions, which goes in line
with our assumption A1. An example of these one type

dominant samples can be seen in figure 7a. A subset
of this category is the case where the user’s eye gaze
alters between the piece to pick and the matching
place in the pattern i.e. where to put it (cf. figure 7b),
which supports our assumption A2. For the majority
of these one type dominant samples both the picking
and placing prediction models predict correctly.

2) Trending Choice: While the anticipation time of
the pick-up prediction model lies within a second and
is thus rather reactive, the placing intention model is
characterised by a slow increase of likelihood during
the task i.e. it shows a low-pass characteristic. Figure
8 demonstrates that the model is robust against small
attention gaps and intermediate glances at competitors,
however, the model requires an increased time window
to build up confidence.

3) Incorrect Predictions: There is a number of reasons
for an incorrect prediction. Most commonly, a close-
by neighbour received more visual attention and was
falsely classified as the intended object. In other cases,
it was impossible to predict the intended object using
our model due to missing saccades towards it or faulty
gaze tracking.

V. DISCUSSION OF INTENTION MODELLING

In addressing research question Q1, we proposed
a user intention model based on gaze cues for the
prediction of actions, which was assessed in a pick and
place task. As a novel aspect introduced through this
study, the predictions are not only based on saccades
and fixation durations of an individual object but also
on those of related objects. In other words, assessing the
attention on objects in the workspace helps to predict
which piece outside the current workspace is needed
next. When the subject turns his/her attention towards
the piece, the model interprets this as a confirmation
rather than the start of a selection process. This helps
to cut the time required for the model to gather relevant
gaze information and makes predictions more reliable
than traditional models.

We showed that, within this task, the prediction of
different actions has different anticipation times i.e.
the model allows predictions 500 ms before picking
actions (71.6% accuracy) and 1500 ms prior to drop-
ping actions (80.06% accuracy). This can partially be
explained by the fact that picking episodes are shorter
than placing episodes. More importantly, we observed
that users planned the entire pick-place cycle rather
than planning picking and placing actions separately.
This becomes evident through the qualitative analysis,
which shows altering fixations between the piece to
pick and where to place it. That way, the placing
prediction model can already gather information at the
time of picking.

In terms of the system’s limitations, we point out that
it is unclear how well the model generalises and per-
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Fig. 7: These diagrams show examples of correct predictions for one type dominant samples. (a) shows, how long fixation times
(blue) results into a high probability value (red) e.g. for a location to place a piece. Similarly, (b) shows, how the prediction
model links the VIPs of related objects. The subject’s gaze alters between two related objects e.g. a piece to pick up and a
matching location to place it (cf. orange and blue VAPs) leading to a high probability estimation (red) for this piece being the
user-intended one.
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Fig. 8: These two examples illustrate how the visual attention (blue) of an object builds up during the user’s decision process
in which case the intention prediction (red) remains undecided (Pchosen < 0.5) for a longer time compared to the case where
no competition receives fixations (cf. fig 7).

forms for new tasks as the differences in performances
for the two example actions (picking and dropping)
indicate that the model is task-dependent.

The results are encouraging for testing the prediction
model in a real-time application. Therefore, we proceed
with an experimental study where the intention model
is used for cooperative behaviour.

VI. INTENTION PREDICTION MODEL VALIDATION

In the second part of our study, we validate the
proposed intention model for the case where it is used
to control the robot’s behaviour and motion. While the
aforementioned experiments and analysis demonstrate
that the intention model is capable of predicting users’
short term goals while having full control over the
robot’s tip, it is unclear whether this is true for the
case where the robot reacts to these predictions. For ex-
ample, users might adapt their intention to the robot’s
plans just by seeing it moving towards a target that
might differ from their initially intended move. That
way, labelling the robot’s predictions as being correct
or incorrect in the same way as we did in the first study
becomes invalid due to the lack of ground truth. For
this reason, we propose to assess the intention model
indirectly instead by observing users’ reactions to the
predictions with a focus on frustration. Therefore, we
base our experimental validation on assumption A3
and use frustration as a measure of correct predictions.

A. Intention Affected Robot Behaviour

For the experimental validation of the intention
model, we used the aforementioned block copy task
and introduced an assistive behaviour to the robot,
which is controlled based on the predictions of a user’s
intended subsequent move. We created 3 different
behaviour modes: Follow Intention, Rebel and Random.
Where we note that rebellion itself, as a mode of
operation, has been argued as a useful concept for
constructive purposes [20]. For each mode, the robot
retreats to a crouched position while there is a low
probability for each available target. When the proba-
bility of the target with the highest probability reaches
a threshold, the robot reacts as follows:

• Follow Intention: The robot moves towards the
target with the highest predicted intention.

• Rebel: The robot avoids the target with the highest
prediction and moves towards the target with the
lowest predicted intention instead.

• Random: The robot choses a random valid target.

As per assumption A3, we argue, that an observed
reduction of user frustration in the Follow Intention
mode compared to the Rebel mode would validate that
the predicted user intention went in line with the true
intention. A demo of the behaviour modes can be seen
in the supplementary video of this paper and on our
webpage [8].



B. Experiment Execution

We recruited 20 new participants (6 females, mage
= 26, SD = 4) for the validation study of which 2
were later removed from the set for data analysis due
to malfunctioning gaze tracking. Each was asked to
first complete the task without the robot moving for
familiarisation with the rules and the robot handling.
This practice session was followed by 3 trials where,
for each, the robot’s behaviour was set to a different
behaviour mode. The block pattern to complete as well
as the order of the behaviour modes were randomised.
Furthermore, 5 (out of 24) randomly chosen blocks
were pre-completed to stimulate some diversity in
solving strategies e.g. to prevent repeated line-by-line
completion.

The participants were told to solve the trial tasks
swiftly and that their performance was recorded. They
did not receive any information about the behaviour
modes, but were told that the robot will move and try
to help them with the task. Each trial was followed by
the completion of a NASA Task Load Index (TLX) form
[21] and 3 min resting time.

VII. RESULTS AND DISCUSSION: MODEL VALIDATION

To determine the effect of the robot’s behaviour mode
on the subjects’ frustration level, we performed an
analysis of variance (ANOVA) with the mode as the
independent variable and the frustration component
of the TLX as a dependent variable. As the analysis
yielded a significant effect (p = .023), it was further
explored using a post-hoc pairwise t-test with applied
Bonferroni correction. The frustration mean for the
Rebel group was identified as being significantly higher
than in the Follow Intention group (p = .019). No sig-
nificant mean differences were found when comparing
the Random group to the others. The results can be seen
in table 1 and figure 9.

We extended our analysis to both, the combined
TLX results, which serve as an indicator for perceived
task load, and the measured performance, which is
defined as the number of completed blocks per minute.
However, an applied ANOVA did not yield an effect of
the robot’s behaviour mode, neither on the combined
TLX nor on the performance.
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Fig. 9: Perceived frustration from the TLX results for each
of the tested behaviour modes. The mean values of starred
groups yield a significant difference (cf. table 1).

Follow Intention Random
Rebel p = .019 * p = .495
Random p = .469 -

TABLE 1: Bonferroni corrected p-values of pairwise t-test
results for the differences in mode depended frustration
means. The starred value is significant (p < .05).

As part of a qualitative review of the robot’s be-
haviour we found that in the Rebel mode, participants
perform an increased number of corrective moves com-
pared to the Follow Intention scenario. Figure 10 shows
how the robot’s aim matches the user’s intention in the
Follow Intention mode whereas in the Rabel example,
the user rushes towards the intended aim but needs to
correct his move as the robot aims for a different piece.

Some participants commented on the behaviour
modes. The Follow Intention mode was often preferred
(e.g. “I liked being in charge and the robot was helpful”
and “The robot followed my decisions”) whereas the
Random mode lead to irritation in some users (e.g.
“First I thought it would go where I wanted but then
it started moving unpredictably”). For the Rebel mode,
we observed divergent reactions. While some subjects
struggled because of the mismatch between the robot’s
motion and their plans, others started following the
robot’s lead. This was also reflected in the comments
e.g. “Now the robot does its own thing, I don’t like it”
versus “It was easier because I did not have to think
much”.

The observed difference in frustration ratings be-
tween the mode where the robot supports the user’s
predicted intention versus avoiding it is evidence for
most of the intention predictions matching the true
intention. This validates the proposed intention model
and its application in assisted reaching. With regards to
Q2, our interpretation of the results is that during the
Follow Intention trials, the robot did follow the users’
preferred sequence rather than the users adapting it
to the robotic motion. That way, the intention model
enhances cooperation concerning action anticipation
between collaborators. While this is an important co-
operation characteristic, there are more layers to it
such as intention communication and the adaptation
to other user preferences, which leaves space for future
exploration.

Mean frustration for the Random mode being be-
tween the other two modes is expected, given the
robot’s choices contain both predicted and non-
predicted targets. The effect size is too small for a
reliable distinction within this group size. Our analysis
furthermore shows that user frustration is more sensi-
tive to the robot’s intention prediction than perceived
task load and performance. Therefore, we suggest that
collaborative agents should follow user intention when
there are subtasks with similar priorities for enhanced
cooperation.



(a) Prediction of the red piece
during placing of the purple
piece.

(b) The robot’s motion goes
in line with the user’s inten-
tion as it adapts its plans.

(c) Prediction of the pink
piece while placing the pur-
ple one.

(d) Avoiding user intent
leads to a mismatch with
the user’s tactical motion.

Fig. 10: These figures illustrate the systems’ underlying intention estimation and how the different modes affect cooperation.
The users’ eye gaze model is represented as a yellow line while the estimated probability for a piece to be chosen by the user
is indicated by its size. It can be seen how following the intention prediction assists the user with his/her choice (a,b) while
avoiding the intended object (c,d) forces the user to adapt his/her plan to the robot’s motion.

VIII. CONCLUSION

We investigated the use of gaze information to infer
user intention within the context of a handheld robot.
A pick and place task was used to collect gaze data
as a basis for an SVM-based prediction model. Results
show that depending on the anticipation time, picking
actions can be predicted with up to 87.94% accuracy,
500 ms ahead and dropping actions with an accuracy
of 93.25%, 1500 ms ahead. We show that merging gaze
information with respect to objects that are linked to
the same task in a single model helps to increase the
prediction performance. The introduction of frustration
via rebellion was used to measure the usually com-
plex aspect of effectiveness of intention prediction in
human-robot interaction. An approach that, together
with the model proposed, could be useful in other
cooperative robot studies.
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