

Marchetti, B., Karsili, T. N. V., & Ashfold, M. N. R. (2019). Exploring Norrish type I and type II reactions: an ab initio mechanistic study highlighting singlet-state mediated chemistry. *Physical Chemistry Chemical Physics*, 21, 14418-14428. https://doi.org/10.1039/C8CP07292B, https://doi.org/10.5523/bris.1shnooapazkr528t0hgrffg82v

Peer reviewed version

License (if available): Other

Link to published version (if available): 10.1039/C8CP07292B 10.5523/bris.1shnooapazkr528t0hgrffg82v

Link to publication record in Explore Bristol Research PDF-document

This is the accepted author manuscript (AAM). The final published version (version of record) is available online via The Royal Society of Chemistry at https://doi.org/10.1039/C8CP07292B . Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/user-guides/explore-bristol-research/ebr-terms/

Electronic Supplementary Information for:

Exploring Norrish Type I and Type II Reactions: An *ab initio* Mechanistic Study Highlighting Singlet-State Mediated Chemistry.

Barbara Marchetti^{†,‡}, Tolga N. V. Karsili^{¥,*} and Michael N. R. Ashfold[‡]

[†]Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA [‡]School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK [¥]Department of Chemistry, University of Louisiana, Lafayette, LA 70503, USA Figure S1: Full set of orbitals included in thw CASSCF/CASPT2 active space (10 electrons in 8 orbitals) of 5-MHONE for various points of the LIIC along R_{C-C} . The corresponding geometries are also depicted. The predominant electronic excitations contributing to each excited singlet and triplet states are tabulated below.

	Excited State					
R _{C-C} / Å	S ₁	S ₂	S ₃	T_1	T ₂	T ₃
1.53 (S ₀ min)				Ш.Т		
1.80	$\Box \to \Gamma$	$\square \to \square^{\pm} \square$	$\square \rightarrow \square \top Z$	$\Box \to \Gamma$	$\Box - \to \Gamma$	$\Box \to \Box_{\perp} I$
2.07				$H\toL$	$H \rightarrow L+1$	$H \rightarrow L+2$
2.34	$\Box \to \Gamma$	$\square \to \square^{\pm} \square$	□-1 → L	$H\toL$	$H \rightarrow L+2$	$H \rightarrow L+1$
2.61	$H \rightarrow L$	$H \rightarrow L+2$	Н	$H \rightarrow L$	$H \rightarrow L+1$	
	$H \rightarrow L+1$			$H \rightarrow L+1$	$H \rightarrow L$	$H \rightarrow 1+2$
2.88 (Cl _{C-C})	$H \rightarrow L$	$H \rightarrow L+2$	н	$H \rightarrow L$	$H \rightarrow L+1$	
	$H \rightarrow L+1$			$H \rightarrow L+1$	$H \rightarrow L$	

Figure S2: Full set of orbitals included in thw CASSCF/CASPT2 active space (10 electrons in 8 orbitals) of 5-MHONE for various points of the LIIC along Q_2 (PT coordinate). The corresponding geometries are also depicted. The predominant electronic excitations contributing to each excited singlet and triplet states are tabulated below.

 Q_2 0.0 0.2

0.4

0.6

0.8

1.0

	Excited State					
Q2	S ₁	S ₂	S ₃	T ₁	T ₂	T ₃
0.0 (S ₀ min)						
0.2						
0.4	$H \rightarrow L$	$H \rightarrow L+1$	$H \rightarrow L+2$	$H\toL$	$H-1 \rightarrow L$	$H \rightarrow L+1$
0.6	-					
0.8						
1.0 (СІ _{О-Н})	Н	$H \rightarrow L+2$	$H \rightarrow L+1$	$H \rightarrow L$	$H \rightarrow L+2$	$H \rightarrow L+1$

Table S1: Cartesian coordinates of the optimised critical structures of 5-MHONE.

Ground state parent -Atom х У Ζ С -2.62504 -0.17205 0.195945 С -1.94423 -1.50435 -0.12494 Н -2.70886 -2.21138 -0.48622 Н -1.58112 -1.92381 0.831562 С -1.38742 -0.77227 -1.1247 Н -0.07688 -0.61873 -0.75391 Н -0.22261 -2.34499 -1.14492 С -1.17947 -1.02354 -2.57921 н -1.75762 -0.0862 -2.53888 0 -2.12107 0.934593 -0.15194 С -3.93273 -0.23067 0.975905 Н -3.80889 -0.81941 1.896555 Н -4.24873 0.787525 1.228581 Н -4.71427 -0.71602 0.372301 С -0.76219 0.086768 -3.4311 Н -0.18344 -0.4736 -4.45742 Н 0.690727 0.045923 -2.99395 Н 0.708836 -1.66982 -3.48332 С -2.05666 -2.11719 -3.2362 Н -1.5141 -3.07554 -3.26671

-2.99914

-2.31085

Η

- Cl_{C-C}

Н

Atom	Х	V	Z
C	-2.65292	0.784557	0.752372
С	-1.8263	-1.85256	-0.0785
Н	-2.72079	-2.37487	-0.37133
Н	-1.46746	-2.0809	0.911383
С	-0.8134	-1.45831	-1.114
Н	-0.25136	-0.61246	-0.72794
Н	-0.08688	-2.26321	-1.25044
С	-1.39812	-1.08296	-2.48539
Н	-2.19119	-0.35605	-2.31973
0	-1.60458	1.297616	0.422714
С	-4.00718	0.21077	0.887942
Н	-3.96197	-0.60236	1.600048
Н	-4.70087	0.955724	1.266638
Н	-4.38949	-0.17807	-0.0479
С	-0.32903	-0.41723	-3.35653
Н	-0.73185	-0.13191	-4.32407
Н	0.062213	0.47709	-2.88191

-2.27385

-1.83647

-2.69246

-4.26889

Н	0.504793	-1.09268	-3.53306
С	-1.99934	-2.29074	-3.21211
Н	-1.2373	-3.04142	-3.40723
н	-2.78882	-2.76507	-2.63853
Н	-2.42363	-1.99612	-4.16758

- TS 1

Atom	Х	У	Z
С	-1.83075	0.824508	0.066375
С	-2.37832	-1.84421	-0.22241
Н	-3.3815	-1.95441	-0.62746
Н	-2.14908	-2.48579	0.623182
С	-1.32813	-1.41688	-1.0667
Н	-1.15875	-0.22778	-0.57697
Н	-0.34265	-1.84777	-0.85947
С	-1.60664	-1.16386	-2.54239
Н	-2.57359	-0.64242	-2.60792
0	-2.10285	1.925149	-0.23684
С	-3.24073	-0.21371	1.050926
Н	-3.51337	-1.13867	1.558961
Н	-3.03476	0.51133	1.843067
Н	-4.08807	0.137727	0.460105
С	-0.53745	-0.26653	-3.16426
Н	-0.7403	-0.08916	-4.22527
Н	-0.49168	0.704548	-2.6612
Н	0.448552	-0.73779	-3.08498
С	-1.72368	-2.4839	-3.30607
Н	-0.78194	-3.04047	-3.24524
Н	-2.51437	-3.11204	-2.8861
Н	-1.94545	-2.30903	-4.36447

- TS 2

Х	у	Z
-2.33175	0.899019	2.474947
-2.79521	-1.46321	-0.75249
-3.84036	-1.40473	-1.06271
-2.52332	-2.37671	-0.22203
-1.77118	-0.77875	-1.60008
-2.0435	0.278292	-1.7383
-0.79463	-0.7831	-1.09332
-1.58451	-1.40369	-3.00153
-2.56233	-1.38213	-3.50338
-1.16305	0.798391	2.718534
-3.25935	0.331616	1.48073
-2.7939	-0.37634	0.74943
	x -2.33175 -2.79521 -3.84036 -2.52332 -1.77118 -2.0435 -0.79463 -1.58451 -2.56233 -1.16305 -3.25935 -2.7939	xy-2.331750.899019-2.79521-1.46321-3.84036-1.40473-2.52332-2.37671-1.77118-0.77875-2.04350.278292-0.79463-0.7831-1.58451-1.40369-2.56233-1.38213-1.163050.798391-3.259350.331616-2.7939-0.37634

н	-4.0641	-0.18068	2.022252
Н	-3.71972	1.163889	0.93398
С	-0.60144	-0.57338	-3.82536
Н	-0.48611	-0.98354	-4.83409
Н	-0.93742	0.464622	-3.91748
Н	0.385759	-0.56791	-3.34966
С	-1.12513	-2.85593	-2.90692
Н	-0.16421	-2.91732	-2.38238
Н	-1.84851	-3.46862	-2.36234
Н	-0.99153	-3.29095	-3.90292

- TS 3

Atom	x	V	Z
C	1.84186	1.411355	0.045379
C	2.54339	-2.40756	-0.54303
Н	-3.5845	-2.17483	-0.78226
н	2.37355	-2.91696	0.406107
С	1.48055	-1.53979	-1.11248
Н	1.39513	-0.55737	-0.59951
Н	0.49815	-2.01698	-0.97552
С	1.67642	-1.227	-2.60212
Н	-2.6738	-0.77262	-2.71373
0	1.40355	2.495951	-0.18054
С	2.99585	0.892969	0.843895
Н	2.73247	0.979713	1.903041
Н	3.88159	1.502126	0.644091
Н	3.18711	-0.16141	0.606865
С	0.63713	-0.21803	-3.08849
Н	0.79276	0.035726	-4.14232
Н	0.67654	0.709714	-2.50643
Н	0.37154	-0.6348	-2.98933
С	1.63755	-2.50223	-3.43861
Н	0.65368	-2.97812	-3.351
Н	2.38761	-3.2172	-3.09047
Н	1.81497	-2.28829	-4.49842

Atom	х	У	Z
С	-0.76517	2.29228	-0.34617
С	-2.2151	-1.93655	0.035893
Н	-2.76803	-2.7586	-0.43306
Н	-1.7842	-2.35133	0.955518
С	-1.06523	-1.49236	-0.87198
Н	-0.44738	-0.76857	-0.32304
Н	-0.4172	-2.35623	-1.08014

С	-1.47211	-0.86439	-2.20899
Н	-2.05573	0.041842	-1.99996
0	-0.00704	3.066421	-0.73443
С	-3.179	-0.80888	0.399646
Н	-3.90963	-1.14292	1.142692
Н	-2.6373	0.046332	0.814937
Н	-3.73469	-0.45675	-0.47384
С	-0.22697	-0.44423	-2.98985
Н	-0.49562	0.046399	-3.9312
Н	0.38958	0.250426	-2.40998
н	0.388323	-1.31865	-3.23011
С	-2.33427	-1.80607	-3.04782
н	-1.80105	-2.7453	-3.23594
Н	-3.27911	-2.04801	-2.5533
н	-2.57205	-1.35581	-4.01715

- Product 2

Atom	X	У	Z
С	-2.5427	0.291878	0.750647
С	-0.96446	1.151424	-2.79686
Н	-0.88539	2.242199	-2.73761
Н	-0.89493	0.866808	-3.84999
С	0.120811	0.4852	-1.95359
Н	-0.06944	0.698319	-0.89467
Н	0.05575	-0.60643	-2.06508
С	1.549667	0.924359	-2.28727
Н	1.596783	2.017442	-2.17275
0	-1.60631	0.695353	1.347317
С	-3.58946	-0.15857	0.083756
Н	-1.95786	0.866447	-2.43871
Н	-3.66066	-1.21125	-0.14957
Н	-4.36856	0.528636	-0.21362
С	2.538991	0.302607	-1.30251
Н	3.561384	0.641166	-1.49932
Н	2.286738	0.564386	-0.26991
Н	2.525154	-0.79002	-1.38633
С	1.940522	0.579839	-3.72367
Н	1.861373	-0.50088	-3.88997
Н	1.302599	1.082371	-4.45549
Н	2.975156	0.874831	-3.92653

Atom	X	У	Z
С	-1.38007	0.837178	1.004612
С	-2.8017	-2.8578	-0.6253

Н	-3.61728	-3.31756	-1.17744
Н	-2.72804	-3.10417	0.429723
Н	-1.92529	-2.0402	-1.22434
Н	-1.09131	0.486138	2.016373
Н	-1.11465	-1.59974	-0.64144
С	-1.95421	-1.66081	-2.67679
Н	-2.75587	-2.2325	-3.16459
0	-0.51967	1.016547	0.150539
С	-2.85181	1.028704	0.778437
Н	-3.31343	1.526655	1.636094
Н	-3.01633	1.602443	-0.13412
Н	-3.318	0.042771	0.668141
С	-2.25322	-0.16618	-2.83379
Н	-2.22399	0.127415	-3.88851
Н	-3.24581	0.07253	-2.43965
Н	-1.51709	0.430848	-2.28628
С	-0.62366	-2.02128	-3.34316
Н	0.197481	-1.46478	-2.87864
Н	-0.41083	-3.08979	-3.24473
Н	-0.64154	-1.76969	-4.40856

- СІ_{О-Н}

Atom	х	У	Z
С	-2.61154	-0.28663	-0.05348
С	-1.96952	-1.64959	-0.10964
Н	-2.71713	-2.39407	-0.39093
Н	-1.64045	-1.92509	0.88809
С	-0.78253	-1.70182	-1.07989
Н	0.02248	-1.09704	-0.67275
Н	-0.40709	-2.72462	-1.13861
С	-1.13903	-1.18823	-2.46815
Н	-2.03995	-0.09140	-1.92436
0	-2.68689	0.45193	-1.19997
С	-3.69473	0.01266	0.93579
Н	-3.40121	-0.29587	1.93396
Н	-3.90753	1.07509	0.95242
Н	-4.61971	-0.50855	0.68760
С	-0.00536	-0.54802	-3.23680
Н	-0.35849	-0.08935	-4.15490
Н	0.49366	0.21613	-2.64964
Н	0.74554	-1.29086	-3.51264
С	-2.03366	-2.08580	-3.29617
Н	-1.49102	-2.97592	-3.61957
Н	-2.90642	-2.41983	-2.74611
<u>н</u>	-2.38226	-1.57651	-4.18887

- TS(S

Atom	X	У	Z
C	-2.40900	-0.28921	0.58580
С	-1.55984	-1.52005	0.21084
Н	-2.23860	-2.35864	0.09839
Н	-0.92292	-1.75380	1.06004
С	-0.65977	-1.35508	-1.02653
Н	0.02677	-0.53514	-0.83856
Н	-0.04566	-2.24975	-1.11461
С	-1.36363	-1.10795	-2.36955
Н	-2.03666	-0.23343	-2.25199
0	-1.67321	0.86254	0.66133
С	-3.81946	-0.06563	0.09661
Н	-4.05050	-0.68248	-0.76477
Н	-4.54099	-0.30063	0.87336
Н	-3.96797	0.97080	-0.18671
С	-0.33392	-0.74655	-3.44465
Н	-0.81537	-0.54409	-4.39677
Н	0.23354	0.13586	-3.16556
Н	0.37082	-1.56021	-3.59764
С	-2.20642	-2.30448	-2.82312
Н	-1.58280	-3.18453	-2.95978
Н	-2.98218	-2.56012	-2.10915
Н	-2.69390	-2.09662	-3.77091

- TS 4

Atom	Х	У	Z
С	-1.57310	0.19790	0.37012
С	-1.23766	1.38487	-0.25396
Н	-0.70740	2.12904	0.329786
Н	-1.83514	1.76101	-1.08006
С	0.58320	0.67168	-1.12663
Н	0.13023	0.15463	-1.97082
Н	0.86178	1.70292	-1.33078
С	1.30671	-0.06967	-0.18009
Н	0.27171	-0.18667	0.806427
0	-0.75844	-0.22226	1.321987
С	-2.52358	-0.80849	-0.21276
Н	-3.07966	-1.29996	0.590041
Н	-3.23243	-0.34091	-0.90095
Н	-1.96937	-1.58795	-0.75086
С	1.53596	-1.55013	-0.42907
Н	1.68882	-2.09550	0.507608
Н	0.68183	-1.99937	-0.94425
Н	2.42605	-1.70416	-1.05227
С	2.38199	0.63761	0.621253

Н	2.09226	1.66962	0.843064
Н	2.56700	0.12962	1.573317
Н	3.33072	0.66322	0.070698

Atom	Х	У	Z
С	-3.26594	-0.34602	0.25725
С	-2.60459	-0.40791	-1.1288
Н	-2.28423	0.61310	-1.38347
Н	-3.37108	-0.69889	-1.8526
С	-1.38492	-1.34499	-1.23795
Н	-0.62344	-1.04457	-0.51272
Н	-1.69368	-2.36360	-0.97607
С	-0.70153	-1.42347	-2.62632
Н	-4.10293	1.31917	-0.25294
0	-4.32036	0.56672	0.330475
С	-3.61575	-1.61481	0.972916
Н	-2.71970	-2.21491	1.160822
Н	-4.07912	-1.37776	1.934702
Н	-4.32111	-2.22532	0.393943
С	0.42730	-2.40878	-2.74708
Н	0.80322	-2.71631	-1.76298
Н	0.11545	-3.32307	-3.27092
Н	1.27187	-1.99039	-3.308
С	-0.75749	-0.25607	-3.56711
Н	-0.11234	0.57077	-3.23482
Н	-0.41955	-0.55077	-4.56655
н	-1.77292	0.14448	-3.66638

Atom	х	У	Z
С	-2.37534	-0.69941	-0.31820
С	-2.37652	-2.02849	-0.06151
Н	-1.54294	-2.67486	-0.33410
Н	-3.22181	-2.49354	0.43838
С	1.05512	-2.167141	-2.41263
н	1.98441	-1.72656	-2.04867
Н	0.82127	-3.17196	-2.05735
С	0.25354	-1.51737	-3.29646
Н	-0.59417	-0.65294	-1.22209
0	-1.30914	-0.02649	-0.96505
С	-3.47016	0.27591	0.03054
Н	-4.29902	-0.24106	0.52956
Н	-3.08218	1.05813	0.69677
Н	-3.84708	0.76548	-0.87760

С	0.57874	-0.12178	-3.80926
Н	-0.20537	0.58845	-3.50707
Н	1.54008	0.23233	-3.41226
Н	0.63399	-0.11571	-4.90850
С	-1.03642	-2.13104	-3.82087
Н	-1.01528	-2.19666	-4.91937
Н	-1.19072	-3.14033	-3.41518
Н	-1.89936	-1.50871	-3.53961

Atom	Х	У	Z
С	-2.75068	-0.76943	-0.71474
С	-2.60841	-2.17650	-0.06871
Н	-3.28361	-2.88498	-0.56397
Н	-2.74944	-2.24157	1.018184
С	-1.14517	-2.24762	-0.63299
Н	-0.40288	-1.89842	0.100135
Н	-0.80664	-3.20495	-1.0512
С	-1.51849	-1.11610	-1.6672
Н	-4.14588	0.29409	-1.72886
0	-4.06260	-0.61303	-1.36087
С	-2.51240	0.38344	0.269321
Н	-1.58998	0.23354	0.846631
Н	-2.43072	1.34627	-0.25902
Н	-3.35896	0.43411	0.967719
С	-0.46419	-0.02817	-1.9244
Н	-0.88420	0.79757	-2.52114
Н	-0.07298	0.38786	-0.9855
Н	0.38285	-0.45155	-2.48594
С	-2.00300	-1.72371	-3.00072
Н	-1.14686	-2.15848	-3.53931
Н	-2.75359	-2.50705	-2.83779
Н	-2.45932	-0.95212	-3.63768

Figure S3: Intrinsic reaction paths associated with the various transition states.

Reaction 2

Reaction 4

