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Abstract. Social capital is the value that can be derived from connections be-
tween individuals in a social network. The most common forms are bonding
and bridging social capital, resulting from connections with similar and diverse
groups of individuals respectively. In this paper we propose a novel community-
based model for measuring bonding and bridging social capital in a social net-
work. Some previous measures of bonding and bridging capital depend on node
attributes, which are often difficult to obtain. Other measures overcome this limi-
tation by relying purely on network structure but are limited to direct connections
only for bonding capital and indirect connections only for bridging capital. Our
structural measures for bonding and bridging capital are independent of attributes
and account for both direct and indirect connections. We experimentally validate
our measures on a collaboration network extracted from DBLP, and our results
show a strong correlation with standard measures of academic success.

Keywords: social capital, community detection, social network analysis

1 Introduction

At its simplest, social capital is the value that can be placed on the connections between
individuals [1], providing insight into the ways in which both societies and individuals
prosper [2].

The two most widely acknowledged and implemented forms of social capital are
the duals of bonding and bridging capital [3]. Putnam [4] described bonding as being
social connections amongst similar groups of individuals and bridging as social connec-
tions with diverse groups of individuals. Some have focused on diversity and similarity
in terms of the structure of the graph [5], others in terms of the characteristics of indi-
viduals from hobbies to their role in a workplace [4]. Those who previously developed
algorithms to measure social capital in graphs continued this focus on bonding and
bridging. Subbian et al. [6] took a distance based approach, where direct connections
were considered as bonding capital and indirect connections as bridging capital. The
series of works by Smith et al. [7,8] and Sharma et al. [9] focused on characteristics,
for example Smith et al. making use of blog.

An issue with taking a characteristic based approach is the difficulty involved in ex-
tracting those characteristics of an individual that are not directly available. Approaches
such as analysing the content that an individual generates have the potential to be com-
putationally intensive as well as being domain-dependent. Furthermore while Subbian
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et al. overcome these restrictions in their work, they solely differentiate between indi-
viduals based on the distance between each other in the network.

Communities have been recognised as being important structural components in
social networks that impart valuable information about the structure and function of the
networks [10]. This in addition with our intuition that individuals cluster together on
the basis of some set of characteristics, would indicate that community membership is
a useful way of characterising individuals given that membership could then be as a
proxy for these core characteristics.

We propose a methodology that makes use of the community membership of in-
dividuals as the basis for similarity and diversity to avoid the need for attributes. Our
approach is therefore to make the conceptualisation that:

– Bonding capital is resultant from connections between those who are members of
the same community.

– Bridging capital results from connections between those who are members of dis-
parate communities.

From this conceptualisation we propose a new model of social capital and develop a
multi-stage algorithm to calculate the bonding and bridging capital for the individuals in
a social network. We then go on to extensively test on a academic collaboration network
extracted from DBLP data. Our contributions can be summarised as:

1. The development of an attribute-independent social capital model.
2. The development of structural measures for bonding and bridging capital that ac-

count for both direct and indirect connections.
3. Evaluation against various measures of academic success at both individual and

group levels.

The rest of the paper is structured as follows: Section 2 describes the related work.
Section 3 presents our proposed social capital model. We describe our experimental
validation in Section 4. Finally Section 5 concludes with proposals for future work.

2 Related Work

One of the challenges in capturing social capital in a computational model is the variety
of conceptualisations proposed over the years. From Putnam’s popularisation of the
concept [1], the focus has been on differentiating between bonding social capital and
bridging social capital.

Within computer science there have only been two core sets of works attempting
to extract social capital from social networks, firstly those by Smith et al. [7] then fol-
lowed by Subbian et al. [6]. Their approaches can be separated by their interpretation
of the similarity and diversity that bonding and bridging social capital is based upon
respectively.

Smith et al. [7] whose focus was initially on the determination of social capital
in blogging networks, took a characteristic based approach to bonding and bridging
capital. Their approach combines the use of an explicit affinity network containing the
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explicit relationships between people and an implicit affinity network (IAN), mapping
the underlying characteristic based affinities between people.

Subbian et al. [6] took a very different structural interpretation of bonding and bridg-
ing capital. They proposed a value allocation approach, which calculates the social cap-
ital value contained within the network based upon the sum of the benefits derived
from the shortest paths between all pairs of individuals in the network, with the bene-
fits decaying exponentially to path length. This results in a measure of the density of
connections throughout the network. Social capital value is allocated to individuals in
the network on the basis of the frequency that they can be found on the shortest paths
between individuals relative to the lengths of the paths, representing their fractional con-
tribution. The bonding capital of an individual in the network is captured by the benefits
resultant from their immediate neighbours. On the other hand the bridging capital of an
individual is captured by benefits resulting from their non-immediate neighbours, as
well as in the allocation function. Though Subbian et al. [6] account for bonding and
bridging capital, the output of their algorithm is a combined measure of social capital
assigned through their value allocation.

Smith et al are restricted in their model by the difficulty of extracting character-
istic information. The advantage of their approach over Subbian et al’s work is how
it makes explicit the importance of similarity and diversity. Our work overcomes the
limitations of both works with explicit conceptualisation of similarity and diversity and
being independent of extracted characteristics.

3 Community-based Social Capital Measures

In this section, we formulate the problem of measuring an individual’s bonding and
bridging social capital in a social network. First, we define a graph model of social net-
works. Second, we define communities in a social network. Third, we define community-
based measures for similarity and diversity between individuals in a social network.
Finally, we define measures for bonding and bridging social capital based on similarity
and diversity measures.

3.1 Social Network Model

An undirected graph is a tuple G = (V,E), where V is a set of nodes and E is a set
of undirected edges E = {{ni,n j} | ni,n j ∈ V}. A social network is represented as an
undirected graph G = (V,E), where each node n ∈V represents an individual and each
edge {ni,n j} ∈ E represents a social tie between nodes ni and n j in the social network
hence ni 6= n j.

Given an undirected graph, G = (V,E), a path, p, between two nodes n ∈ V and
n′ ∈V is defined as a sequence of nodes as follows:

1. If there exists an edge between n1 and n2, i.e. {n1,n2} ∈ E, then p = (n1,n2) is a
path, and p is said to be of length 1.

2. If p = (n1,n2, ...,nm) is a path, and there exists an edge between nm and nm+1, i.e.,
{nm,nm+1} ∈ E and nm+1 6= ni for i = 1, ...,m−1, then p′ = (n1,n2, ...,nm,nm+1) is
a path, p′ is said to be of length m.
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The set of edges in path p = (n1, ...,nm+1) is defined as E(p) = {{ni,ni + 1} | i =
1, ...,m}. Let P denote the set of paths in G = (V,E), we use P(n,n′) ⊆ P to denote
the set of paths from node n to node n′. The path length between nodes n and n′,
PathLength(n,n′), is defined as the length of the shortest path in P(n,n′).

3.2 Community Detection

The concept of communities is intuitive as society offers a wide variety of possible
forms of communities: families, groups of friends on social networks, colleagues in
the same department, villages, cities, sports clubs, online forums, etc. A community is
traditionally thought of as a tightly-knit group of nodes with more connections amongst
its members than between its members and the other part of the network (Girvan and
Newman, 2002).

In this paper we take a probabilistic view of communities in social networks. Instead
of comparing the densities of edges inside and outside communities in a social network,
we focus on the probability that nodes share edges within a community. The existence
of communities implies that nodes interact more strongly with the other members of
their community than they do with the members of the other communities. This is the
reason why edge densities end up being higher within communities than between them.
We can formulate this modern view in a probabilistic way; a node of a community has
a higher probability to form edges with the other nodes of the community than with the
nodes in the other communities.

Definition 1 (Community). Let G = (V,E) be a graph representing a social network.
We say V1 ∈V is a community in G if and only if for any node ni ∈V1, p(n j ∈V1|{ni,n j}∈
E)> p(n j /∈V1|{ni,n j}∈E), where p(n j ∈V1|{ni,n j}∈E) and p(n j /∈V1|{ni,n j}∈E)
represent the probabilities that n j ∈V1 and n j /∈V1 respectively, given that there exists
an edge {ni,n j} ∈ E.

Fig. 1: Communities detected in a graph.

In this paper, we are particularly interested in how individuals interact inside a com-
munity and across communities. In real life situations an individual could be a member
of multiple communities. For example, in a workplace an individual may be involved in
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multiple friendship groups formed around various different interests that they have. As
shown in Figure 1, it is possible for individuals to be members of multiple communities
up to the total number of communities in the graph as with nodes a1 and a2.

3.3 Similarity and Diversity

Communities are groups of individuals that share some common set of characteristics.
Our intuition for similarity is that the more communities two individuals share, the
more characteristics of those communities they share and the more similar they are.
The inverse would hold true for diversity, the more disjoint communities they have, the
more of their characteristics are disjoint.

Definition 2 (Similarity). Let G = (V,E) be a social network with Ai the set of com-
munities that have node ni ∈ V as a member and A j the set of communities that have
node n j ∈V as a member. Similarity is a function Sim : V ×V → [0,1] defined as:

Sim(ni,n j) =
|Ai∩A j|
|Ai∪A j|

(1)

In this definition, the Jaccard coefficient [11] captures the number of communities
ni and n j share relative to the total number of communities that ni and n j are mem-
bers of. The similarity between ni and n j ranges from 0 to 1, where 0 signifies that ni
and n j share no communities hence completely dissimilar, while 1 shows that they are
members of the exact same communities hence completely similar.

Example 1. As shown in Fig. 2, given that C = {V1,V2,V3} is a set of communities
such that V1 = {n1,n5}, V2 = {n1,n2}, and V3 = {n3,n4}, we have: Sim(n1,n5) = 0.5,
Sim(n3,n4) = 1.0, and Sim(n2,n4) = 0.0.

Definition 3 (Diversity). Let G = (V,E) be a social network with Ai the set of commu-
nities that have node ni ∈ V as a member and and A j the set of communities that have
node n j ∈V as a member. Diversity is a function Div : V ×V → [0,1] defined as:

Div(ni,n j) =
|(Ai∪A j)\ (Ai∩A j)|

|Ai∪A j|
= 1−Sim(ni,n j) (2)

In this definition, the Jaccard distance [11] captures the proportion of non-overlapping
communities out of the total number of communities between ni and n j. The diversity
between ni and n j ranges between 0 and 1, where 0 signifies that ni and n j are com-
pletely similar, while where 1 shows that they are completely diverse.



6 Christopher Spratt et al.

Fig. 2: Example graph with 3 communities

Example 2. As shown in Fig. 2, given that C = {A,B,C} is a set of communities such
that A= {n1,n5}, B= {n1,n2}, and C = {n3,n4}, we have: Div(n1,n5)= 0.5, Div(n3,n4)
= 0.0, and Div(n2,n4) = 1.0.

3.4 Bonding and Bridging Social Capital

Social capital can take many forms [12]. In this paper, we focus on bonding and bridg-
ing social capital due to their prominence and conceptual accessibility. There have been
many different definitions of these concepts but core to the majority is that bonding capi-
tal is resultant from the connections between a group of similar individuals and bridging
between those who are in diverse groups. This has been popularised by Putnam [4] who
described bonding as social capital that “enforces exclusive identities and homogeneous
groups” where bridging “encompass[es] people across diverse social cleavages”.

We define connectivity between a pair of nodes in a social network as a measure of
the impact each of them has on the other on a social capital measure. We now define
one possible interpretation of such impact as a function of the distance between the pair
of nodes.

Definition 4 (Connectivity). Let G = (V,E) be a social network. Connectivity is a
function Con : V ×V → R+ defined as follows:

Con(ni,n j) = e−λPathLength(ni,n j) (3)

where λ ∈ [0,1] be a decay constant and PathLength(ni,n j) is the length of the shortest
path between ni and n j.

Intuitively, the connectivity between a pair of nodes in a social network decays
exponentially to the distance between the pair in the network. How quickly the connec-
tivity decays over distance is controlled by the decay constant, λ .

Example 3. As shown in Fig. 1, with λ = 0.1, the connectivity between nodes n5 and n3
can be calculated as such: PathLength(n5,n3)= 3, Con(n5,n3)= e−0.1×3, Con(n5,n3)=
0.74
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We define bonding capital as a social capital measure of how well an individual in
a social network is connected to a group of similar individuals in the network.

Definition 5 (Bonding Capital). Let G = (V,E) be a social network. Bonding social
capital is a function Λ : V → R+ defined as:

Λ(ni) = ∑
n j∈V\{ni}

Sim(ni,n j)×Con(ni,n j) (4)

The bonding capital of an individual, ni, in a social network is calculated as the
sum of similarities between ni and every other individual, n j, in the network where the
similarity between the pair, Sim(ni,n j), is weighted by the connectivity between the
pair, Con(ni,n j).

Example 4. As shown in Fig. 2, with λ of 0.1, the Bonding Capital for node n5 can be
calculated as follows:

Λ(n5) = Sim(n5,n1)×Con(n5,n1)+ Sim(n5,n2)×Con(n5,n2)+ Sim(n5,n3)×
Con(n5,n3)+ Sim(n5,n4)×Con(n5,n4) = 0.5×0.9+0×0.81+0∗0.74+0×0.74 =
0.45

We define bridging capital as a social capital measure of how well an individual in
a social network is connected to diverse groups of individuals in the network.

Definition 6 (Bridging Capital). Let G = (V,E) be a social network. Bridging social
capital is a function M : V → R+ defined as:

M(ni) = ∑
n j∈V\{ni}

Div(ni,n j)×Con(ni,n j) (5)

The bridging capital of an individual in a social network is calculated as the sum
of diversities between ni and every other individual, n j, in the network where the di-
versity between the pair, Div(ni,n j), is weighted by the connectivity between the pair,
Con(ni,n j).

Example 5. As shown in Fig. 2, with λ = 0.1, the Bridging Capital for node n5 can be
calculated as follows:

M(n5) = Div(n5,n1)×Con(n5,n1)+ Div(n5,n2)×Con(n5,n2)+ Div(n5,n3)×
Con(n5,n3)+ Div(n5,n4)×Con(n5,n4) = 0.5×0.9+1×0.81+1×0.74+1×0.74 =
2.74

4 Experiments

In the absence of ground truth of social capital in an existing social network, we in-
directly evaluated our model through the benefits resulted from bonding and bridging
social capital. We used a dataset created from the DBLP database with additional cita-
tion data from ACM [13]. The dataset contains approximately 2.2M papers published
between 1936 and 2013.
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We extracted a collaboration network from the dataset, in which each node repre-
sents an author of one of the papers from the dataset and each edge represents a co-
authorship between two nodes if they have co-authored at least one paper together. The
network contains roughly 1.4M undirected edges and 400K nodes. For every author we
calculated the total number of citations from all of their papers, and the total number of
citations from all of their papers published at each of the publication venues.

From this collaboration network we took two random 10K samples of nodes, and
calculated their bonding and bridging social capital values. We tried to establish the
relationships between social capital values of these nodes and the measures of their
success in the dataset, including the total number of citations and the H-index for each
node in the dataset.

Given social capital is viewed as as both an individual and collective property, we
also examined our social capital measures at the group level. In the context of the DBLP
dataset the most readily available groupings of individuals are the publication venues
of the papers in the dataset. Based on the total number of citations, and H-Index of each
paper published at a publication venue, we created two similar measures of success for
each publication venue, including the total number of citations and H-index for each
venue by aggregating the number of citations for each paper published at the venue,
and then calculated the H-Index for each venue. For the two sample sets, there are
approximately 2,500 publication venues.

Using the same 10K random samples we calculated the total bonding and bridging
capital scores for each publication venue in the dataset by aggregating the bonding and
bridging capital scores of each author published at the venue.

4.1 Implementation

For community detection we primarily made use of the BIGCLAM model as intro-
duced by Leskovec and Yang [14]. BIGCLAM assumes that the probability of an edge
between two nodes being generated in a social network is reflected in the commonal-
ity of their affiliations with communities, fitting the probabilistic view of communities.
BIGCLAM views overlapping communities as being densely connected, as opposed to
prior work on detecting overlapping communities which views overlapping communi-
ties as being sparsely connected.

A matrix of affiliation strengths between nodes and communities is fitted through
an optimisation process that minimises the difference between the network that matrix
would generate, and the observed network. The matrix is then transformed into a set
of hard affiliations by only counting those nodes which exceed a strength threshold as
members of a communities. The threshold is set such that if two nodes belong to a
community then the probability that an edge forms between them is higher than the
background edge probability. The background edge probability is a small probability
that any two nodes that can be connected in a global community of all nodes ε .

We also examined how the model performed with communities detected by Blondel
et al.’s [15] Louvain Community Detection Method as a benchmark. Louvain is both
highly scalable to large networks and has been widely studied. It is a comparatively
simple method which depends on the density of interaction between nodes to assign
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its communities. More specifically it optimises the modularity of the communities con-
tained within a network, the number of edges between members of a community against
the number of edges the members have with nodes outside the community. Though the
technique does not allow for the detection of overlapping communities, it does not in-
validate our definition of communities given that a non overlapping technique can be
viewed as solving the same problem but at a lower level of granularity.

The implementation of our model was a simple breadth first exploration of the graph
for each node, calculating the total bonding and bridging social capital based on pre-
generated community assignments. To reduce the run-time of our social capital algo-
rithm we placed a connectivity limit on the algorithm’s exploration. This prevented the
algorithm from exploring those nodes in the network that have a minimal impact on the
node under examination.

4.2 Results

We performed experiments with a connectivity limit of 0.01 and λ = 1, BIGCLAM
(implemented in C++ as part of the the SNAP package 3) set to detect 4000 communi-
ties (on average one community per 100 nodes), and Louvain community detection as
implemented in the Python-Louvain package4.

We examined a number of hypotheses. At an individual level we examined whether
the bonding or bridging social capital of a node had a positive correlation with their
total number of citations and H-Index. At the group level we tested whether there was a
strong correlation between the total bonding and bridging social capital of a publication
venue, and the total number of citations and H-index of the venue. The results of these
can be seen in Table 1 and 2 respectively, with the values being Pearson’s correlation
coefficients between the sets of data for the samples of nodes.

As can be seen in Table 1 we found that the correlation between our bonding and
bridging measures and the number of citations an individual has received was rela-
tively weak, where the correlation between the measures and an individual’s H-Index
was stronger. Consistently across all community detection techniques and the sample
datasets we found that bridging had a higher correlation with the success measures than
bonding. This would suggest that collaborations are good indicators of success, inter-
community collaborations can lead to greater prospects. Furthermore we found similar
strength of correlation across the two random sample datasets. This indicates that we
are capturing a wider trend in the dataset.

Interestingly we found that the Louvain based social capital measures consistently
outperformed those using BIGCLAM detected communities across the samples. This
suggests that the granularity of information on the structure of the network provided
by the much larger number of communities detected through Louvain (circa 23,000)
outweighs the information gained by a smaller, overlapping set of communities detected
through BIGCLAM.

As shown in Table 2, we found that the correlations between success measures
for publication venues and their aggregated social capital were consistently stronger.

3https://github.com/snap-stanford/snap
4https://python-louvain.readthedocs.io/en/latest/

https://github.com/snap-stanford/snap
https://python-louvain.readthedocs.io/en/latest/
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Total Citations Total Citations H Index H Index
/Bonding /Bridging /Bonding /Bridging

Sample 1 Louvain 0.217 0.344 0.307 0.571
Sample 2 Louvain 0.193 0.261 0.323 0.586
Sample 1 BIGCLAM 0.142 0.200 0.337 0.351
Sample 2 BIGCLAM 0.125 0.166 0.349 0.367

Table 1: Individual Level R-Values

Total Citations Total Citations H Index H Index
/Bonding /Bridging /Bonding /Bridging

Sample 1 Louvain 0.644 0.697 0.669 0.737
Sample 2 Louvain 0.601 0.679 0.634 0.733
Sample 1 BIGCLAM 0.616 0.649 0.662 0.697
Sample 2 BIGCLAM 0.609 0.641 0.667 0.696

Table 2: Group Level R-Values

Once again the Louvain based measures had a higher degree of correlation to those
produced using BIGCLAM. We also found a slightly stronger degree of correlation be-
tween bridging capital and the success measures than between bonding capital and the
success measures at both individual and group levels. These results are not unexpected
given the link between bridging social capital and advancement, and the link bonding
social capital and support. The academic success measures we chose can be considered
as being more directly connected as to the advancement of individuals.

5 Conclusions

In this paper we proposed a novel community based model for measuring bonding and
bridging social capital in a social network. We developed community-based similar-
ity and diversity measures, independent of extracted attributes that unlike prior works
recognises the similarity and diversity between indirectly connected nodes in a commu-
nity and cross communities in a social network respectively. These measures allowed us
to have a closer interpretation of Putman’s original definitions of an individual’s bond-
ing and bridging social capital in a social network. This interpretation recognises that
the bonding social capital of an individual results from their social connections with a
similar group of people in the same community, and the bridging social capital of an
individual results from diverse groups of people outside the individual’s own commu-
nities.

The correlations between our social capital measures with academic success at both
individual and organisational levels indicate that we are indeed capturing social capital
as we are able to detect its associated benefits. The trends in our experimental results
also indicate that bridging capital yields better results than bonding capital in terms of
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academic success, which as mentioned in the previous section is not unexpected given
bridging social capital’s stronger links to advancement.

Our current model of social capital provides community-based measures for bond-
ing and bridging social capital, which provides a good basis for a more elaborate so-
cial capital model when the characteristics of individuals in a social network are avail-
able. In such a case, characteristic based similarity and diversity can be combined with
community-based similarity and diversity to create more elaborate similarity and di-
versity measures. A further direction we intend to explore is to use machine learning
techniques to learn a predictive social capital model, which can predict an individual’s
social capital given a set of features capturing various structural properties of an indi-
vidual in a social network.
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