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ON THE STRUCTURE OF AXIAL ALGEBRAS

S.M.S. KHASRAW, J. MCINROY, AND S. SHPECTOROV

Abstract. Axial algebras are a recently introduced class of non-associative
algebra motivated by applications to groups and vertex-operator algebras. We

develop the structure theory of axial algebras focussing on two major topics:

(1) radical and simplicity; and (2) sum decompositions.

1. Introduction

Axial algebras are a new class of non-associative algebra introduced by Hall,
Rehren and Shpectorov [7]. They axiomatise some key properties of vertex oper-
ator algebras (VOAs). VOAs were first introduced by physicists but particularly
became of interest to mathematicians with Frenkel, Lepowsky and Meurman’s [4]
construction of the moonshine VOA V \ whose automorphism group is the Monster
M , the largest sporadic finite simple group. The rigorous theory of VOAs was
developed by Borcherds [1] and it was instrumental in his proof of the monstrous
moonshine conjecture.

An axial algebra is a commutative non-associative algebra A generated by a set of
axes X. These axes are idempotents whose adjoint action decomposes the algebra
as a direct sum of eigenspaces and the multiplication of eigenvectors satisfies a
certain fusion law. Jordan and Matsuo algebras are examples of axial algebras with
one of the simplest (and strongest) fusion laws. A slight relaxation of this fusion
law adds the Griess algebra for the Monster M and other interesting examples.

Such axial algebras are of interest because the fusion law is Z2-graded and this
leads to a naturally associated automorphism group. In this paper, we use a more
general concept of a T -grading of a fusion law F = (F , ?) by an abelian group
T . For an axis a ∈ X, this induces a T -grading A =

⊕
t∈T At on the algebra

and there are natural automorphisms τa(χ), for χ ∈ T ∗, associated to a, which we
call Miyamoto automorphisms. The group generated by the set of all such τa(χ),
for a ∈ X and χ ∈ T ∗, is called the Miyamoto group and it is a subgroup of the
automorphism group of A.

We define an equivalence relation on sets of axes in an axial algebra. A set X
of axes is closed if it is closed under the action of the Miyamoto group G defined
by X; that is, X̄ = X, where X̄ := XG. Two sets X and Y are equivalent if their
closures X̄ and Ȳ are equal. We say that a property of an axial algebra is stable if
it is invariant under equivalence of axes. In this paper, we introduce several new
properties of axial algebras and we show that they, and some existing well-known
properties, are stable. Firstly, we show that generation of axial algebras is stable.
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2 S.M.S. KHASRAW, J. MCINROY, AND S. SHPECTOROV

That is, equivalent sets of axes generate the same algebra. The Miyamoto group of
an axial algebra is also stable.

We introduce the radical R(A,X) of an axial algebra A with axes X as the
largest ideal of A not containing any axes from X. We show that this concept is
well-defined and that the radical is stable, too.

This gives us a way to partition ideals of A into two classes, so that we may
consider separately those which are contained in the radical and those which contain
an axis. We introduce the projection graph on the set of axes X and show how this
determines which axes are contained in a proper ideal.

A Frobenius form on an axial algebra is a non-zero (symmetric) bilinear form
(·, ·) which associates with the algebra product. That is, (a, bc) = (ab, c) for all
a, b, c ∈ A. All currently known axial algebras admit such a form. Comparing our
notion of the radical with that of the form, we have the following.

Theorem. Let A be a primitive axial algebra with a Frobenius form. Then the
radical A⊥ of the Frobenius form coincides with the radical R(A,X) of A if and
only if (a, a) 6= 0 for all a ∈ X.

In particular, when an axial algebra has a Frobenius form, we can use the above
theorem as an easy way to find the radical R(A,X). We also give an application
of the above theorem to show that all the Norton-Sakuma algebras apart from 2B
are simple.

In the second half of the paper, we discuss pairwise annihilating sum decomposi-
tions of axial algebras. That is, when A is a (vector space) sum of a set {Ai : i ∈ I}
of (not necessarily axial) subalgebras such that AiAj = 0 for i 6= j. We denote
this by A = �i∈IAi. We show that when the Ai are pairwise annihilating, the
condition of A being the sum of Ai can be weakened to being generated by the
Ai. We write 〈〈Y 〉〉 for the subalgebra generated by the set Y ; hence the weaker
condition is A = 〈〈Ai : i ∈ I〉〉.

It is clear from our definition of the radical that the annihilator Ann(A) ⊆
R(A,X). As we will see, if A has a decomposition A = �i∈IAi and Ann(A) = 0,
then A is the direct sum of the Ai, which we denote �i∈IAi.

Theorem. Suppose that A = �i∈IAi is a primitive axial algebra generated by the
set of axes X. Let Xi := X∩Ai be the set of axes which are contained in Ai. Then,
the Xi partition X and A = �i∈IBi where Bi = 〈〈Xi〉〉.

Moreover, this decomposition is invariant under arbitrary changes of axes (not
just equivalence). That is, if A = 〈〈X〉〉 = 〈〈Y 〉〉 for two sets of primitive axes X
and Y , then 〈〈Xi〉〉 = 〈〈Yi〉〉 for all i ∈ I.

This suggests the following definition.

Definition. The non-annihilating graph ∆(X) of an axial algebra A with gener-
ating axes X is the graph with vertex set X and, for a 6= b, an edge a ∼ b if and
only if ab 6= 0.

It is clear that if A = �i∈IAi, where the Ai are axial algebras, then the cor-
responding Xi are unions of connected components of ∆(X). It is natural to ask:
is it not true that the finest pairwise annihilating sum decomposition of an axial
algebra arises when each Xi is a single connected component of ∆? In particular,
we make the following conjecture.
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Conjecture. The finest pairwise annihilating sum decomposition of an axial alge-
bra A of Monster type arises when each Xi is just a single connected component of
∆.

We show that the Miyamoto groups do indeed respect this decomposition of the
axes.

Theorem. Let A be a T -graded axial algebra with 0 ∈ F1T and the components of
∆(X) be Xi for i ∈ I. Then, G(X) is a central product of the G(Xi).

However, for the algebra, the picture is more complicated and we give a partial
result in this direction. In order to do so, we introduce a new concept. A subspace
I ≤ A is a quasi-ideal if I is invariant under multiplication with the axes X. We
show that a quasi-ideal is stable and G(X)-invariant. The spine of A is defined as
the quasi-ideal Q(A,X) generated by the axes X. The algebra A is called slender if
A = Q(A,X). We prove that the spine of an axial algebra is stable. The conjecture
above holds subject to a technical condition.

Theorem. Let A be an axial algebra with a Seress fusion law and Ai = 〈〈Xi〉〉 be the
axial subalgebra generated by the connected component Xi of ∆. If all but possibly
one Ai are slender, then A = �i∈IAi.

The definition of a Seress fusion law will be given later, but we note here that
the Monster fusion law is Seress. An axial algebra A is m-closed if A is spanned
by products in the axes of length at most m. Note that the spine is spanned by
products in the axes of the form x1(x2(. . . (xk−1xk) . . . ). So, in particular, every
3-closed algebra is slender. Hence, we should expect the above result to apply to a
large class of Seress axial algebras.

The paper is organized as follows. In Section 2, we recall the definition of axial
algebras and review some basic properties. We discuss automorphisms and the
Miyamoto group in Section 3. Here, we also introduce equivalence of sets of axes,
stability and show that generation of axial algebras and the Miyamoto group are
stable. Section 4 introduces the radical R(A,X) and we show that it is stable. We
also introduce the projection graph and use it to prove results about ideals. The
Frobenius form is introduced and we prove some important properties. The main
theorem in this section is that the radical of the form coincides with the radical
of the algebra. In Section 5, we discuss pairwise annihilating sum decompositions
of axial algebras and show when they are direct and axial. Finally, in Section
6, we introduce the non-annihilating graph ∆ and our conjecture on connected
components of ∆. We introduce quasi-ideals and the spine Q(A,X) and show they
are both stable. Finally, we prove results about the decomposition with respect to
∆.

We would like to thank Jonathan I. Hall and the referee for useful comments.

2. Axial algebras

2.1. Fusion laws. Throughout the paper F is an arbitrary field.

Definition 2.1. A fusion law1 over F is a finite set F of elements of F together
with a symmetric map ? : F × F → 2F . We call a single instance (λ, µ) 7→ λ ? µ a
fusion rule.

1In previous papers on axial algebras [7, 8, 9, 11, 14] and before for Majorana algebras [13],
this has been called fusion rules which led to singular/plural problems.



4 S.M.S. KHASRAW, J. MCINROY, AND S. SHPECTOROV

Since the values of ? can be arranged in a symmetric square table, similar to a
multiplication table, we sometimes call a fusion law a fusion table. We will often
abuse notation and just write F for the fusion law (F , ?).

1 0

1 1

0 0

1 0 η

1 1 η

0 0 η

η η η 1, 0

1 0 α β

1 1 α β

0 0 α β

α α α 1, 0 β

β β β β 1, 0, α

Figure 1. Fusion laws A, J (η), and M(α, β)

In Figure 1, we see three examples of fusion laws that have appeared in the
literature. In the tables, we abuse notation by neglecting to write the set symbols.
We also leave the entry blank to mean the empty set.

In the first example, the fusion law A consists of just the elements 1 and 0 of F.
Hence this is defined over every field F. In the second example, J (η) = {1, 0, η},
where η ∈ F and 1 6= η 6= 0. So this can be defined for any field F except F2.
Similarly, in the third example, M(α, β) = {1, 0, α, β}, where α, β ∈ F, α, β 6∈
{1, 0}, and α 6= β. Hence, for this to make sense, the field F must have at least four
elements.

Given a fusion law F and a subset H ⊆ F , F induces fusion rules on H by
defining

λ ◦ µ := (λ ? µ) ∩H for λ, µ ∈ H.
We call such a fusion law on H a restriction of F . We say that H is a sublaw if
λ ◦ µ = λ ? µ for all λ, µ ∈ H, that is, if H is closed for ?. For example, A is a
sublaw of both J (η) andM(α, β). We see that J (η) is a restriction ofM(α, β) in
two ways: when η = α and when η = β. However, it is a sublaw only when η = α.
We will see some motivation for this definition in the next section.

2.2. Axes and axial algebras. Let A be a commutative non-associative (that is,
not necessarily associative) algebra over F. Recall that we write 〈〈Y 〉〉 to denote
the subalgebra of A generated by the set of elements Y to differentiate it from the
subspace 〈Y 〉 spanned by Y . The adjoint of a ∈ A, denoted by ada, is the linear
endomorphism of A defined by b 7→ ab for b ∈ A. For λ ∈ F, let Aλ(a) denote the
λ-eigenspace of ada. That is, Aλ(a) = {b ∈ A : ab = λb}. Clearly, Aλ(a) 6= 0 if and
only if λ is an eigenvalue of ada. For Λ ⊆ F, we write AΛ(a) =

⊕
λ∈ΛAλ(a).

Definition 2.2. For a fusion law F , an element a ∈ A is an F-axis if the following
hold:

(A1) a is an idempotent; that is, a2 = a;
(A2) ada is semisimple and all eigenvalues of ada are in F ; that is, A = AF (a);
(A3) the fusion law F controls products of eigenvectors: namely,

Aλ(a)Aµ(a) ⊆ Aλ?µ(a) for λ, µ ∈ F .



ON THE STRUCTURE OF AXIAL ALGEBRAS 5

Note that, a being an idempotent, 1 is an eigenvalue of ada. For this reason, we
will always assume that 1 ∈ F . We also allow for the possibility that Aλ(a) is 0 for
some λ ∈ F .

Definition 2.3. An F-axis a is primitive if A1(a) = 〈a〉.

If a is a primitive axis then A1(a)Aλ(a) = Aλ(a), for all λ 6= 0, and A1(a)A0(a) =
0. Therefore, for primitive axes, we only need to consider fusion rules F satisfying
1 ? λ = {λ} for λ 6= 0 and 1 ? 0 = ∅, provided that 0 ∈ F . All three fusion laws in
Figure 1 possess this property.

Definition 2.4. An F-axial algebra is a pair A = (A,X), where A is a commutative
non-associative algebra generated by the set X of F-axes. An axial algebra (X,A)
is primitive if each axis in X is primitive.

We will usually abuse notation and just refer to A as being an axial algebra
without making reference to F and X where they are clear. We will also often
consider just primitive axial algebras and so we will often skip this adjective.

A subalgebra B ≤ A is an axial subalgebra if there exists Y ⊆ X such that
B = 〈〈Y 〉〉. That is, if there exists Y ⊆ X such that (B, Y ) is itself an axial
algebra. Let H ⊆ F be a sublaw. Since H is closed, AH(a) is a subalgebra of A,
for all a ∈ X. However, it will not usually be an axial subalgebra as generation by
axes is not guaranteed. A restriction of a fusion law does not in general lead to a
subalgebra.

It is easy to show that in the class of primitive axial algebras, associative axial
algebras are the same as A-axial algebras [8, Corollary 2.9]. Furthermore, these are
exactly the direct sum algebras F⊕ . . .⊕F. So we call A the associative fusion law.

Given any 3-transposition group (G,D), one can define a Matsuo algebra which
has basis given by the elements of D and multiplication depending on the order
of the product of the involutions. These are examples of J (η)-axial algebras. For
more details see the text before Example 4.12.

Every idempotent in a Jordan algebra satisfies the fusion law J ( 1
2 ). This is

known as the Peirce decomposition. Hence Jordan algebras generated by primitive
idempotents are examples of J ( 1

2 )-axial algebras. For this reason, we call J (η) the
fusion law of Jordan type η.

Finally, the 196, 884-dimensional real Griess algebra [5], whose automorphism
group is the sporadic simple Monster group M , is an example of an axial algebra
with fusion lawM( 1

4 ,
1
32 ). This fact was first discussed by Miyamoto in the context

of VOAs in [16] and was checked directly in the Griess algebra by Ivanov in [13,
Lemma 8.5.1]. In this paper, we call an axial algebra with this fusion law an axial
algebra of Monster type, although this terminology is not yet stable and has also
been used for an axial algebra with fusion law M(α, β).

Historically, the axiomatics for axial algebras appeared as a generalisation of the
axioms for Ivanov’s Majorana algebras [13, Section 8.6], which in our terms are
axial algebras of Monster type over R, satisfying certain additional properties. In
turn, Majorana algebras were defined to generalise properties of the Griess algebra
and the moonshine VOA.
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3. Automorphisms

3.1. Axis subgroup. The fusion laws F which particularly interest us are those
where the axes lead to automorphisms of the algebra. Let us extend the operation
? to arbitrary subsets Λ and M of the fusion table F via Λ ?M := ∪λ∈Λ,µ∈Mλ ? µ.

Definition 3.1. Suppose T is an abelian group. A T -grading of a fusion table F
is a partition F = ∪t∈TFt of F satisfying Fs ? Ft ⊆ Fst for all s, t ∈ T .

Note that we allow the possibility that some part Ft is the empty set. Suppose
that F is T -graded. Let A be an F-axial algebra and a ∈ X an axis. For t ∈ T , we
set At(a) = AFt(a) =

⊕
λ∈Ft Aλ(a). Clearly, we have A =

⊕
t∈T At(a). It follows

from the above definition that As(a)At(a) ⊆ Ast(a), that is, we have a T -grading
of the algebra A for each axis a. Note that, since Ft may be empty, At may be
trivial for some t ∈ T .

Let T ∗ be the group of linear characters of T over F, that is, the set of all
homomorphisms from T to the multiplicative group of F. For an axis a and χ ∈ T ∗,
consider the linear map τa(χ) : A→ A defined by

u 7→ χ(t)u for u ∈ At(a)

and extended linearly to A. Since A is T -graded, this map τa(χ) is an automor-
phism of A and we call it a Miyamoto automorphism (see the footnote below).
Furthermore, the map sending χ to τa(χ) is a homomorphism from T ∗ to Aut(A).

Definition 3.2. We call the image Ta of the map χ 7→ τa(χ), the axis subgroup of
Aut(A) corresponding to a.

Usually, Ta is a copy of T ∗, but occasionally, when some subspaces At(a) are
trivial, Ta can be isomorphic to a factor group of T ∗ over a non-trivial subgroup.

We will often consider fusion laws where T is the cyclic group C2 of order two.
If char(F) = 2, then T ∗ = 1 and we get no automorphisms. So, we will normally
assume that char(F) 6= 2 when T = C2. In this case, T ∗ = {χ1, χ−1} where χ1 is
the trivial character. The automorphism τa(χ−1) is (usually) non-trivial; we will
denote it by τa and call it a Miyamoto involution2. Then Ta = 〈τa〉 ∼= C2.

Indeed, among our examples of fusion laws in Figure 1, the fusion tables J (η)
and M(α, β) are C2-graded. Writing C2 = {+,−}, the grading for J (η) is given
by J (η)+ = {1, 0} and J (η)− = {η}. For M(α, β), the grading is given by
M(α, β)+ = {1, 0, α} and M(α, β)− = {β}. Hence in these cases the axis sub-
groups are of order 2 (or 1 if A−(a) = 0).

Recall that the Griess algebra A is an axial algebra with fusion law M( 1
4 ,

1
32 ).

For an axis a ∈ A, the subgroup Ta = 〈τa〉 has order two. It was Norton who first
studied axes in the Griess algebra and his results were recorded by Conway in [2].
In particular, he shows that the involutions τa belong to the conjugacy class 2A in
the Monster M . The fact that the mapping a 7→ τa is a bijection is implicit in [2],
a proof was sketched by Miyamoto in [16] and given by Höhn in [10].

Recall now that every axial algebra A comes with a set of generating axes X. In
the following definition we slightly relax conditions on X by allowing it to be an
arbitrary set of axes from A.

2It was Miyamoto who first defined, in the context of VOAs, such an involution τa from a
C2-graded fusion law [16].
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Definition 3.3. The Miyamoto group G(X) of A with respect to the set of axes
X is the subgroup of Aut(A) generated by the axis subgroups Ta, a ∈ X.

Since the 2A involutions generate the Monster, for the Griess algebra, we have
G(X) = M where X is the set of 2A-axes.

3.2. Closed sets of axes. If a is an axis and g ∈ Aut(A), then ag is again an axis.
Indeed, it is easy to check that Aλ(ag) = Aλ(a)g and, hence, for λ, µ ∈ F , we have
Aλ(ag)Aµ(ag) = Aλ(a)gAµ(a)g = (Aλ(a)Aµ(a))g ⊆ Aλ?µ(a)g = Aλ?µ(ag).

Definition 3.4. A set of axes X is closed if Xτ = X for all τ ∈ Ta with a ∈ X.
Equivalently, XG(X) = X.

It is easy to see that the intersection of closed sets is again closed and so every
X is contained in the unique smallest closed set X̄ of axes. We call X̄ the closure
of X.

Lemma 3.5. For a set of axes X, we have that X̄ = XG(X) and, furthermore,
G(X̄) = G(X).

Proof. Since X ⊆ X̄, we have that G(X) ≤ G(X̄). Hence XG(X) ⊆ X̄G(X̄) = X̄.
To show the reverse inclusion, it suffices to prove that XG(X) is closed.

Suppose that b ∈ XG(X). Then b = ag for some a ∈ X and g ∈ G(X). Note
that τag (χ) = τa(χ)g and so Tb = Tag = T ga . Since Ta ≤ G(X) and g ∈ G(X), we
have that Tb = T ga ≤ G(X)g = G(X). Hence, G(XG(X)) = G(X). Clearly, XG(X)

is invariant under G(X) = G(XG(X)). This means that XG(X) is closed, proving
that X̄ = XG(X) and also G(X̄) = G(XG(X)) = G(X). �

Turning again to the example of the Griess algebra, it is well-known (see for
example the tables in [17]) that the Monster M can be generated by three 2A
involutions, say, τa, τb, and τc, for axes a, b, c ∈ A. Setting X = {a, b, c}, we have
that G(X) = 〈Ta, Tb, Tc〉 = 〈τa, τb, τc〉 = M . Hence X̄ = XG(X) = XM is the
set of all axes of A, since {τa, τb, τc}M is clearly all of 2A. (Recall that the map
sending an axis to the corresponding 2A involution is bijective.) So here X̄ (of size
approximately 9.7× 1019 [3]) is huge compared to the tiny X.

Definition 3.6. We say that sets X and Y of axes are equivalent (denoted X ∼ Y )
if X̄ = Ȳ .

Clearly, this is indeed an equivalence relation on sets of axes.

Definition 3.7. A property of an axial algebra is called stable if it is invariant
under equivalence of axes.

In this paper, we will show that several properties of axial algebras are stable.
Lemma 3.5 gives us the first of these.

Corollary 3.8. The Miyamoto group of an axial algebra is stable.

Since X̄ = XG(X) and, similarly, Ȳ = Y G(Y ), we have the following.

Lemma 3.9. Sets X and Y of axes are equivalent if and only if the following two
conditions hold:

1. G := G(X) = G(Y ).
2. Every x ∈ X is G-conjugate to some y ∈ Y and, vice versa, every y ∈ Y is
G-conjugate to some x ∈ X. �



8 S.M.S. KHASRAW, J. MCINROY, AND S. SHPECTOROV

3.3. Invariance. Let a ∈ X be an axis and W be a subspace of A invariant under
the action of ada. Since ada is semisimple on A, it is also semisimple on W , and so
W =

⊕
λ∈F Wλ(a), where Wλ(a) = W ∩Aλ(a) = {w ∈W : aw = λw}.

Let us note the following important property of axis subgroups Ta.

Lemma 3.10. For an axis a, if a subspace W ⊆ A is invariant under ada then W
is invariant under every τa(χ), χ ∈ T ∗. (That is, W is invariant under the whole
Ta.)

Proof. We have already observed that if W is invariant under ada then W =⊕
λ∈F Wλ(a). Recall that Wλ(a) is a subspace of Aλ(a). Since τ = τa(χ) acts

on Aλ(a) as a scalar transformation, it leaves invariant every subspace of Aλ(a). In
particular, Wλ(a)τ = Wλ(a) for every λ, and so W τ = W . �

For example, ideals of A are invariant under ada for all axes a. Hence we have
the following:

Corollary 3.11. Every ideal I of A is G(X)-invariant for any set of axes X in A.

Let us now prove the following important property. We denote by 〈〈X〉〉 the
subalgebra of A generated by the set of axes X.

Theorem 3.12. Suppose that X ∼ Y . Then 〈〈X〉〉 = 〈〈Y 〉〉. In particular, if X
generates A then so does Y . Hence, generation of axial algebras is stable.

Proof. Let B = 〈〈X〉〉 and C = 〈〈Y 〉〉. Note that B is invariant under ada for every
a ∈ X. Hence B is G(X)-invariant. Clearly, this means that X̄ = XG(X) ⊆ B.
Therefore, Y ⊆ Ȳ = X̄ ⊆ B, proving that C ⊆ B. Symmetrically, also B ⊆ C, and
so B = C. �

We note that the converse does not hold. That is, there exist sets of axes X and
Y which are inequivalent, but which both generate the same axial algebra A. For
example, there is an axial algebra of dimension 9 which is generated by a closed set
of 6 axes (and has shape 3C2A and Miyamoto group S4) [15, Table 40]. However,
it is also generated (in fact, spanned by) a closed set of 9 axes. Since both sets are
closed but of different sizes, they are clearly inequivalent.

Recall from Section 3.2 that the Monster can be generated by three 2A invo-
lutions. This means that there exist three axes a, b, and c in the Griess algebra
A such that M = 〈τa, τb, τc〉. Setting B = 〈〈a, b, c〉〉, we see that B is invariant
under M . Recalling from Section 3.1 that there is a bijection between axes and
2A involutions, we see that all axes are conjugate under M . This shows that B
contains all axes from A, that is, B = A, since A is generated by axes. We have
shown that A = 〈〈a, b, c〉〉, which means that, despite its large dimension, A can be
generated by just three axes.

4. Ideals, the radical and the Frobenius form

Throughout this section, suppose that A is an axial algebra with fusion law F
over a field F and let X be the set of primitive axes which generate A.

4.1. The radical. Recall that if W is a subspace invariant under the action of ada
for an axis a then W =

⊕
λ∈F Wλ(a), where Wλ(a) = W ∩Aλ(a).

Lemma 4.1. Let a ∈ X be a primitive axis and W be a subspace of A invariant
under the action of ada. Then, a ∈W if and only if W1(a) = W ∩A1(a) is not 0.
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Proof. Since a is primitive, A1(a) = 〈a〉 is 1-dimensional. In particular, we have
the dichotomy: either a ∈ W and W1(a) = A1(a) = 〈a〉, or W1(a) = 0, and so
W ⊆ AF\{1}(a). �

In particular, the above lemma holds for ideals. We begin by considering those
ideals which do not contain any axes from X.

Lemma 4.2. Let Y be a set of primitive axes. There is a unique largest ideal that
contains no axes from Y .

Proof. By Lemma 4.1, an ideal, which is clearly invariant under the action of ada for
all a ∈ Y , contains no axes from Y if and only if it is contained in ∩a∈YAF\{1}(a).
Clearly, the sum of all such ideals is again contained in this intersection and so it
does not contain any axes from Y . Hence there is indeed a unique largest ideal
containing no axes from Y . �

In light of this lemma, we make the following definition.

Definition 4.3. The radical R(A,X) of A with respect to the generating set of
primitive axes X is the unique largest ideal of A containing no axes from X.

Because the concept of the radical requires the axes to be primitive, we will
assume primitivity whenever we talk about the radical. Abusing notation, we will
drop either A or X where it is clear from context. The radical R(A,X) of an axial
algebra A is defined with respect to a given generating set of axes X. What if we
take a different generating set?

Theorem 4.4. If X ∼ Y are two equivalent sets of primitive axes, then R(A,X) =
R(A, Y ). That is, the radical of an axial algebra is stable.

Proof. We show that R(A,X) = R(A, X̄). Clearly, the ideal R(X̄) does not contain
any axis from X, and so R(X̄) ⊆ R(X). Conversely, by Corollary 3.11, every ideal
of A is invariant under G(X). Since R(X) contains no axis from X, it follows
that R(X) contains no axis from XG(X) = X̄. So R(X) ⊆ R(X̄) and therefore
R(X̄) = R(X).

If Y is equivalent to X, by Theorem 3.12, Y also generates A and so R(Y ) is
defined. Furthermore, R(Y ) = R(Ȳ ) = R(X̄) = R(X). �

This shows that our notion of the radical behaves well under the natural changes
of generating sets of axes.

4.2. Frobenius form. Sometimes an F-axial algebra also admits a bilinear form
which behaves well with respect to the multiplication in the algebra.

Definition 4.5. A Frobenius3 form on an F-axial algebra A is a (non-zero) bilinear
form (·, ·) : A×A→ F which associates with the algebra product. That is,

(a, bc) = (ab, c) for all a, b, c ∈ A.

Note that we do not place any restriction on the value of (a, a) for axes a ∈ X.
This differs from definitions given in previous papers [7, 8, 11]. However, several
key facts still hold. A Frobenius form is still necessarily symmetric [7, Proposition
3.5]. We also have the following important property:

3The term Frobenius form is borrowed from Frobenius algebras which are associative algebras
with such a bilinear form, called there a Frobenius form.
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Lemma 4.6. For an axis a, the direct sum decomposition A =
⊕

λ∈F Aλ(a) is
orthogonal with respect to every Frobenius form (·, ·) on A.

Proof. Suppose u ∈ Aλ(a) and v ∈ Aµ(a) for λ 6= µ. Then λ(u, v) = (λu, v) =
(au, v) = (ua, v) = (u, av) = (u, µv) = µ(u, v). Since λ 6= µ, we conclude that
(u, v) = 0. �

Let a be a primitive axis. Then we may decompose u ∈ A with respect to a
as u =

∑
λ∈F uλ, where uλ ∈ Aλ(a). We call uλ the projection of u onto Aλ(a).

Focusing on the projection u1, as a is primitive, u1 = φa(u)a for some φa(u) in F.
It is easy to see that φa is linear in u.

Lemma 4.7. Let (·, ·) be a Frobenius form on a primitive axial algebra A. Then,
(a, u) = φa(u)(a, a) for any axis a ∈ X and u ∈ A.

Proof. We decompose u =
∑
λ∈F uλ with respect to a, where uλ ∈ Aλ(a). Now, by

Lemma 4.6, (a, u) = (a,
∑
λ∈F uλ) = (a, u1) = φa(u)(a, a). �

Let us now explore the connection of the Frobenius form to the radical of A. We
write A⊥ for the radical of the Frobenius form; that is,

A⊥ = {u ∈ A : (u, v) = 0 for all v ∈ A}

Lemma 4.8. The radical A⊥ is an ideal of A.

Proof. If u ∈ A⊥ and v, w ∈ A, then (uv,w) = (u, vw) = 0 and so uv ∈ A⊥. Since
(·, ·) is also bilinear, A⊥ is an ideal. �

It follows from Lemma 4.6 that a primitive axis a is contained in A⊥ if and only
if (a, a) = 0. Therefore, A⊥ contains no axes from the generating set X if and only
if (a, a) 6= 0 for all a ∈ X. The following is a generalisation of Proposition 2.7 in
[8].

Theorem 4.9. Let A = (A,X) be a primitive axial algebra with a Frobenius form.
Then, the radical A⊥ of the Frobenius form coincides with the radical R(A,X) of
A if and only if (a, a) 6= 0 for all a ∈ X.

Proof. Let R = R(A,X). If A⊥ = R then A⊥ contains no axes from X, and so, by
Lemma 4.7, we have that (a, a) 6= 0 for all a ∈ X.

Conversely, suppose that (a, a) 6= 0 for all a ∈ X. Then A⊥ contains no axes
from X. Hence A⊥ ⊆ R. It remains to show that R ⊆ A⊥, that is, that R is
orthogonal to the entire A. Since X generates A, the algebra A is linearly spanned
by all (non-associative) products w of the axes from X. Hence we just need to show
that R is orthogonal to each product w. We prove this property by induction on
the length of the product w.

If the length of w is one then w = a is an axis from X. Since a 6∈ R, we have that
R ⊆ AF\{1}(a), which by Lemma 4.6 means that R is orthogonal to w, as claimed.
Now suppose that the length of w is at least two. Then w = w1w2 for products
w1 and w2 of shorter length. By the inductive assumption, we know that R is
orthogonal to both w1 and w2. Therefore, (w,R) = (w1w2, R) = (w1, w2R) = 0, as
R is an ideal. So, R ⊆ A⊥ and hence R = A⊥. �

It is often additionally required that the Frobenius form satisfy (a, a) = 1 for
each axis a. In view of Lemma 4.7, we call the Frobenius form satisfying (a, a) = 1



ON THE STRUCTURE OF AXIAL ALGEBRAS 11

for all generating axes a the projection form. We will see later that the projection
form, when it exists, is unique.

The existence of a projection form is included in the axioms of Majorana algebras
by Ivanov [13]. He further requires the projection form to be positive-definite.
(Recall that Majorana algebras are defined over F = R.) In particular, we have the
following.

Corollary 4.10. Every Majorana algebra has trivial radical; that is, every non-zero
ideal contains one of the generating primitive axes.

Proof. Indeed, since the Frobenius form is positive definite, we have that (u, u) > 0
for every u 6= 0. In particular, this is true for axes, and so, by Theorem 4.9, the
radical of the algebra is the same as the radical of the Frobenius form, which is
zero. �

For J (η)-axial algebras, which are called axial algebras of Jordan type η, we do
not need to assume the existence of a projection form. Every primitive axial algebra
of Jordan type automatically admits a projection form [11]. Hence, we can state
the following.

Corollary 4.11. The radical of every primitive axial algebra of Jordan type coin-
cides with the radical of its projection form.

We wish to give an example, but first we must define the class of Matsuo algebras.
For any group of 3-transpositions (G,D), we define the Matsuo algebra A with
respect to (G,D) which has basis D and multiplication ◦ given by

a ◦ b =


a if a = b

0 if o(ab) = 2
η
2 (a+ b− c) if o(ab) = 3, where c = ab = ba

(Clearly here the field should not be of characteristic two.) By [8, Theorem 1.5],
all Matsuo algebras with η 6= 0, 1 are examples of axial algebras of Jordan type η.
It can be seen that the projection Frobenius form for A is given by

(a, b) =


1 if b = a

0 if o(ab) = 2
η
2 if o(ab) = 3

Using the basis D, the form has Gram matrix

F = I + η
2M

where I is the identity matrix and M is the adjacency matrix of the non-commuting
graph on D. The form has a radical precisely when F is not of full rank. From
the above equation for F , we see this occurs if and only if η = − 2

λ for a non-
zero eigenvalue λ of M . Furthermore, the radical of the form coincides with the
λ-eigenspace of F . For example, the valency κ of the non-commuting graph is an
eigenvalue of M and the corresponding eigenspace is 1-dimensional spanned by the
all-one vector. Hence, when η = − 2

κ , the projection form has 1-dimensional radical.
In general, since M has finitely many eigenvalues, there are only finitely many

values of η, for which the Frobenius form on the Matsuo algebra has a non-zero
radical.

Here is a concrete example.
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Example 4.12. The group G = S5 with the conjugacy class D of transpositions
is a 3-transposition group and so leads to a Matsuo algebra A. By calculation (for
example, see [12]), M has eigenvalues 6, 1,−2. The value λ = −2 leads to η = 1, so
this may be discarded. When λ = κ = 6, η = − 1

3 and the radical is spanned by the
element r :=

∑
a∈D a. When λ = 1, η = −2 and we have a 4-dimensional radical

spanned by elements of the form

(i, j) + (i, k) + (i, l)− (m, j)− (m, k)− (m, l)

where {i, j, k, l,m} = {1, 2, 3, 4, 5}.

4.3. Ideals and the projection graph. Having considered ideals which do not
contain any axes, we now turn our attention to ideals I that do contain an axis
a. What other axes does I contain? Suppose b is another primitive axis of A.
Recall that A =

⊕
λ∈F Aλ(b) and so a =

∑
λ∈F aλ for unique aλ ∈ Aλ(b). Since

I is invariant under adb, we have I =
⊕

λ∈F Iλ(b) and hence aλ ∈ I for each
λ ∈ F . In particular, the projection a1 is in I. Since b is primitive, a1 = φb(a)b is
a scalar multiple of b. Hence, if a1 6= 0 then b ∈ I. This motivates the following
construction.

Definition 4.13. Let A be a primitive axial algebra. We define the projection
graph Γ to be the directed graph with vertex set X and a directed edge from a to
b if the projection a1 of a onto b is non-zero. That is, if φb(a) 6= 0.

Given a directed graph Γ, the out set Out(Γ, Y ) of a subset of vertices Y is the
set of all the vertices v reachable from Y by a directed path from x ∈ Y to v.

The following lemma follows from the discussion above.

Lemma 4.14. Let A be a primitive axial algebra and Γ be its projection graph. If
Y is a set of axes contained in an ideal I then Out(Γ, Y ) is also fully contained in
I.

Recall that a directed graph Γ is strongly connected if every vertex is reachable
by a directed path from any other.

Corollary 4.15. Let A be a primitive axial algebra with a strongly connected pro-
jection graph. Then every proper ideal of A is contained in the radical.

Recall from Corollary 3.11 that every ideal is invariant under the Miyamoto group
G. Hence, as a further improvement, when X = X̄ is closed, we may quotient out
by the action of G to form the quotient graph Γ̄ := Γ/G. It has as vertices orbits
of axes with a directed edge from aG to bG if there exist axes a′ ∈ aG and b′ ∈ bG
such that the projection a′1 of a′ onto b′ is non-zero. We call Γ̄ the orbit projection
graph.

Corollary 4.16. Let A be a primitive axial algebra with a strongly connected orbit
projection graph. Then every proper ideal of A is contained in the radical.

We now consider the properties of the projection graph Γ when there is a Frobe-
nius form.

Lemma 4.17. Let A be a primitive axial algebra that admits a Frobenius form.
Suppose that (a, a) 6= 0 6= (b, b) for a, b ∈ X. The following are equivalent:

1. There is a directed edge a→ b in Γ.
2. There is a directed edge a← b in Γ.
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3. (a, b) 6= 0.

Proof. By Lemma 4.7, (a, b) = φa(b)(a, a), where the projection b1 = φa(b)a. Since
the form is symmetric, the result follows. �

In light of the above result, when A is a primitive axial algebra that admits a
Frobenius form that is non-zero on the axes, we may consider Γ to be an undirected
graph.

4.4. Uniqueness of the Frobenius form. The same concept of the projection
graph is useful when we want to establish uniqueness of the Frobenius form.

Lemma 4.18. A Frobenius form on a primitive axial algebra A is uniquely deter-
mined by its values (a, a) for a ∈ X.

Proof. If two Frobenius forms have the same values of (a, a) for all a ∈ X then
their difference (which also associates with the algebra product) satisfies (a, a) = 0
for all a ∈ X. Hence it suffices to show that the latter condition forces the form to
be zero.

Clearly, A is spanned by products of axes and so we just need to show that
(u, v) = 0 for all u and v that are products of axes. We use induction on the length
of the products of axes for v. If v has length one, it is itself an axis in X. By
Lemma 4.7, (u, v) = φv(u)(v, v) = 0. Suppose now that v has length at least two,
which means that we may write v = v1v2, where v1 and v2 are shorter products.
Then (u, v) = (u, v1v2) = (uv1, v2). By induction, the latter value is zero. �

In particular, for the form to be non-zero, at least one value (a, a) must be non-
zero. Clearly, we can scale the form so that (a, a) takes any non-zero value we
like, say (a, a) = 1. By Lemma 4.7, φa(b)(a, a) = (b, a) = (a, b) = φb(a)(b, b). If

φb(a) 6= 0, we can deduce (b, b) = φa(b)
φb(a) (a, a); that is, the value of (b, b) can be

determined from the value of (a, a).
Recall that in the projection graph Γ on X we have a directed edge from a to b

exactly when φb(a) 6= 0. Hence the known values on a subset Y ⊂ X allow us to
deduce all values on the out set Out(Γ, Y ). In particular, we have the following.

Proposition 4.19. If the projection graph Γ of a primitive axial algebra A is
strongly connected then the Frobenius form on A, if it exists, is unique up to scaling.

The equation (b, b) = φa(b)
φb(a) (a, a) means also that, for the Frobenius form to be a

projection form (up to scaling), we must have φa(b)
φb(a) = 1 for every edge of Γ; that is,

φa(b) = φb(a). Note that this condition may not be satisfied. For example, recent
work of Joshi on double axes in Matsuo algebras [14] unearthed examples of axial
algebras with fusion lawM(2η, η), where the unique (up to scaling) Frobenius form
is not a projection form.

Let us now discuss when the Frobenius form onA is invariant under the Miyamoto
group G(X). Clearly, this requires that (ag, ag) = (a, a) for all a ∈ X. It turns out
that this condition is also sufficient.

Proposition 4.20. The Frobenius form (·, ·) is invariant under the action of G(X)
if and only if (ag, ag) = (a, a) for all a ∈ X and g ∈ G(X).

Proof. We have already mentioned that if the form isG(X)-invariant then (ag, ag) =
(a, a) for all a ∈ X and g ∈ G(X). Conversely, suppose that (ag, ag) = (a, a) for all
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a ∈ X and g ∈ G(X). Fixing g, define a second form (·, ·)′ by (u, v)′ := (ug, vg). It
is straightforward to check that (·, ·)′ is bilinear and, furthermore, Frobenius. Since
(a, a)′ = (ag, ag) = (a, a) for each a ∈ X, we deduce from Proposition 4.18 that
(u, v)′ = (u, v) for all u, v ∈ A. That is, (ug, vg) = (u, v), proving that the form is
G(X)-invariant. �

Finally, if we are only interested in G(X)-invariant Frobenius forms then the
uniqueness of such form can be checked via the orbit projection graph.

Proposition 4.21. Let A be a primitive axial algebra with a strongly connected
orbit projection graph. Then a G(X)-invariant Frobenius form on A, if it exists, is
unique up to scaling.

4.5. An application: Norton-Sakuma algebras. The 2-generated primitive
axial algebras of Monster type with a Frobenius form are well-known and have
been completely classified. There are nine such algebras, known as Norton-Sakuma
algebras. For the Griess algebra, the list was obtained by Norton [2] and known to
be complete after the uniqueness proof for the Monster [6]. The general result was
shown in the context of OZ-type VOAs by Sakuma [18] and was proved for axial
algebras of Monster type with a Frobenius form by Hall, Rehren and Shpectorov
in [7]. All the Norton-Sakuma algebras arise as subalgebras of the Griess algebra
and their isomorphism type is determined by the conjugacy class of τaτb, where a
and b are two axes which generate the algebra. For this reason, they are usually
labelled 1A, 2A, 2B, 3A, 3C, 4A, 4B, 5A and 6A. For a full description of these
see, for example, [13]. We note that the known Frobenius forms on Norton-Sakuma
algebras are inherited from the Griess algebra and, as such, they are positive definite
projection forms invariant under the respective Miyamoto groups.

Proposition 4.22. All the Norton-Sakuma algebras, except 2B, are simple and
have unique Frobenius form (up to scaling).

Proof. It follows from the table on page 213 in [13] that φa(b) = 0 if and only if a
and b generate a 2B algebra; that is, ab = 0. In particular, for the algebras 2A, 3A,
3C, 4B, 5A, and 6A the projection graph is a complete (unoriented) graph. For
the algebra 4A, the projection graph is the complete graph K4 minus a matching;
that is, a 4-cycle. Hence for all these algebras the projection graph is unoriented
and connected and hence strongly connected.

On the one hand, Corollary 4.15 now implies that every proper ideal is contained
in the radical, and the latter is trivial by Corollary 4.10. Hence the algebra is simple.

On the other hand, Proposition 4.19 tells us that the Frobenius form is unique
up to scaling. �

Note that 2B ∼= R⊕R and so it is not simple and, furthermore, the values (a, a)
and (b, b) for the primitive axes in this algebra can be chosen arbitrarily. So a
Frobenius form on 2B is definitely not unique up to scaling.

5. Sum decompositions

If our definition of radical is good then we can expect that axial algebras with a
trivial radical are semisimple, that is, direct sums of simple axial algebras. Hence
it is natural to discuss here decompositions of axial algebras.
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5.1. Sums of algebras. Suppose A is a commutative non-associative algebra and
{Ai : i ∈ I}, are subalgebras of A , for some indexing set I. Recall that we say A
is the sum of the subalgebras Ai, written A =

∑
i∈I Ai, if it is a sum of the Ais as

a vector space. In particular, every element u ∈ A can be written as u =
∑
i∈I ui,

where ui ∈ Ai for all i. As usual, if the decomposition u =
∑
i∈I ui is unique for

each u ∈ A, we call A the direct sum of the subalgebras Ai and write A =
⊕

i∈I Ai.

Lemma 5.1. If A is generated by a set {Ai : i ∈ I} of pairwise annihilating
subalgebras, then A =

∑
i∈I Ai is the sum of the subalgebras.

Proof. We must show that
∑
i∈I Ai is the whole of A. Taking two elements u =∑

i∈I ui and v =
∑
i∈I vi of the subspace

∑
i∈I Ai, we see that uv = (

∑
i∈I ui)(

∑
j∈I vj) =∑

i∈I uivi, since all other pairwise products are zero. Hence
∑
i∈I Ai is closed with

respect to multiplication and so it is a subalgebra. Since it also contains all Ai, we
conclude that

∑
i∈I Ai coincides with 〈〈Ai : i ∈ I〉〉 = A. �

In light of the above result, from now on, we will write A = �i∈IAi when
A is a sum of pairwise annihilating subalgebras {Ai : i ∈ I} and say it has a
pairwise annihilating sum decomposition. In addition, if this sum is direct, we
write A = �i∈IAi. In this case, A is isomorphic to the external direct sum defined
as the Cartesian product

∏
i∈I Ai taken with the entrywise operations.

Recall the following standard definition.

Definition 5.2. The annihilator of a commutative algebra A is

Ann(A) := {u ∈ A : uA = 0}.

Manifestly, Ann(A) is an ideal. Returning to the axial algebra case, recall that
the radical is the largest ideal R(A,X) of A not containing any axes x ∈ X.

Lemma 5.3. For an axial algebra A, Ann(A) ⊆ R(A,X).

Proof. Clearly, Ann(A) does not contain any axes in X as a · a = a 6= 0 for
a ∈ X. �

The next example shows that the annihilator does not necessarily equal the
radical of an axial algebra.

Example 5.4. Recall the Matsuo algebra for the group S5 from Example 4.12. If
η = − 1

3 , then the radical is spanned by∑
a∈D

a

which is easy to check is also in the annihilator. So for η = − 1
2 , R(A,X) = Ann(A).

However, for η = −2, the radical is 4-dimensional and is spanned by elements of
the form

(i, j) + (i, k) + (i, l)− (m, j)− (m, k)− (m, l)

where {i, j, k, l,m} = {1, 2, 3, 4, 5}. However, a simple calculation shows that such
a vector is not in the annihilator. Furthermore, these vectors span an irreducible
submodule, so this implies the annihilator must be trivial. Hence, for η = −2,
0 = Ann(A) $ R(A,X).

Proposition 5.5. If A = �i∈IAi, then

1. Ai ∩ (�j 6=iAj) ⊆ Ann(Ai)
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2. Ann(A) = �i∈IAnn(Ai)

Proof. Suppose that u ∈ Ai ∩ (�j 6=iAj) and let a ∈ A. We may decompose a =∑
j∈I aj . We have ua =

∑
j∈I uaj = uai +

∑
j 6=i uaj . Since u ∈ �j 6=iAj , we see

that uai = 0. On the other hand, u is in Ai and hence
∑
j 6=i uaj = 0 too. Therefore

uA = 0 and u ∈ Ann(A) ∩Ai ⊆ Ann(Ai).
Since AiAj = 0 for all j 6= i, Ann(Ai) ⊆ Ann(A). Hence �i∈IAnn(Ai) ⊆

Ann(A). Conversely, if u =
∑
j∈I uj ∈ Ann(A) then, taking v ∈ Ai, we get that

0 = uv = (
∑
j∈I uj)v =

∑
j∈I ujv = uiv. So uiv = 0 for all v ∈ Ai; that is,

ui ∈ Ann(Ai). Therefore, Ann(A) ⊆ �i∈IAnn(Ai) and so we have equality. �

Suppose we take two different decompositions of an element u and consider how
these can differ.

Lemma 5.6. Suppose A = �i∈IAi and u ∈ A. For any two decompositions u =∑
i∈I ui =

∑
i∈I u

′
i of u, the difference di = ui − u′i lies in Ann(Ai) for each i.

Proof. Clearly, di ∈ Ai. On the other hand, di =
∑
j 6=i(u

′
j − uj) = −

∑
j 6=i dj ∈

�j 6=iAj . So di ∈ Ai ∩�j 6=iAj . By Proposition 5.5, di ∈ Ann(Ai). �

In particular, the following is true.

Corollary 5.7. If A = �i∈IAi and Ann(A) = 0, then A = �i∈IAi.

Recall that, for a primitive axial algebra A, Ann(A) ⊆ R(A,X) and hence the
assumption that the annihilator is trivial is satisfied when the radical R(A,X) is
trivial.

5.2. Idempotents. Axial algebras are generated by idempotents. So let us take a
look at idempotents when our algebra has a pairwise annihilating sum decomposi-
tion.

Lemma 5.8. Suppose A = �i∈IAi and a ∈ A is an idempotent. Then a can be
written as a =

∑
i∈I ai, where every ai ∈ Ai is an idempotent.

Proof. Consider first an arbitrary decomposition a =
∑
i∈I a

′
i and set ai = (a′i)

2.

Note that a = a2 = (
∑
i∈I a

′
i)

2 =
∑
i∈I(a

′
i)

2 =
∑
i∈I ai. By Lemma 5.6, di =

ai − a′i ∈ Ann(Ai). Therefore, a2
i = (a′i + di)

2 = (a′i)
2 + 2a′idi + d2

i = (a′i)
2 = ai.

Hence each ai is indeed an idempotent. �

Recall that we call an axis a primitive when the 1-eigenspace of ada coincides
with 〈a〉. Similarly, we call a non-zero idempotent a ∈ A primitive when the 1-
eigenspace of ada is 1-dimensional.

Lemma 5.9. Let A = �i∈IAi. Then

1. Every idempotent of A is contained in at most one Ai.
2. Every primitive idempotent is contained in exactly one Ai.

Proof. First of all, note that a non-zero idempotent cannot lie in two summands.
Indeed, if a ∈ Ai and a ∈ Aj with i 6= j then a ∈ Ai ∩ Aj ⊆ Ann(Ai). Hence
a = a2 = 0; a contradiction.

Write a =
∑
i∈I ai, where every ai ∈ Ai is an idempotent. Note that aai =

(
∑
j∈I aj)ai = aiai = ai = 1ai. Hence all ai are contained in the 1-eigenspace

of ada. By primitivity, if two components, ai and aj , are non-zero then ai =
λaj for some λ ∈ F×. Then, ai ∈ Ai ∩ Aj and so by the first part, ai = 0, a
contradiction. �
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Theorem 5.10. Suppose that A = �i∈IAi is a primitive axial algebra with a set of
axes X. Let Xi := Ai∩X be the set of axes in Ai and let Bi = 〈〈Xi〉〉. Then the Xi

partition X and A = �i∈IBi is the sum of pairwise annihilating axial subalgebras.

Proof. By Lemma 5.9, every axis from X lies in one and only one set Xi; that is,
the sets Xi form a partition of X.

Clearly, for i 6= j, we have BiBj ⊆ AiAj = 0. So we just need to show that
the subalgebras Bi generate A. Since X generates A, the algebra is spanned by all
products of axes. Hence it suffices to show that each product is contained in some
Bi. Clearly, if all axes involved in a product are from the same part Xi then the
product lies in Bi. Hence we just need to consider the case where the product w
involves axes from two different parts Xi and Xj . In this case we will show that the
product is zero by induction on the length of the product. Clearly the length of w
is at least two, and so we have w = w1w2, where w1 and w2 are shorter products.
If, say, w1 involves axes from two different parts then w1 = 0 by induction and so
w = 0. Hence we can assume that w1 only contains axes from one part, say Xi.
Similarly, we can assume that w2 only contains axes from Xj . However, this means
that w1 ∈ Bi and w2 ∈ Bj , and so w = w1w2 ∈ BiBj = 0. So indeed every product
lies in some summand Bi and so the subalgebras Bi generate (in fact, span) A. �

This means that if an axial algebra decomposes as a sum of pairwise annihilating
subalgebras, it also decomposes as a sum of pairwise annihilating axial subalgebras.
Furthermore, the summands come from partitions of the generating set X satisfying
XiXj = 0 for all i 6= j.

Theorem 5.11. Suppose that A = �i∈IAi is a primitive axial algebra such that
A = 〈〈X〉〉 = 〈〈Y 〉〉 for two different generating sets of axes X and Y . Let Xi =
Ai ∩X and Yi = Ai ∩Y and define Bi = 〈〈Xi〉〉 and Ci = 〈〈Yi〉〉 as the axial algebras
generated by the Xi and Yi respectively. Then, Bi = Ci for all i ∈ I.

Proof. By Theorem 5.10, A has a decomposition A = �i∈IBi and another decom-
position A = �i∈IAi. By Lemma 5.9, each axis y ∈ Y is contained in a unique Ai
and a unique Bi. However, since Ai is a subalgebra, Bi = 〈〈Xi〉〉 ≤ Ai for all i ∈ I.
So, for each each y ∈ Y there exists a unique i ∈ I such that y ∈ Bi ≤ Ai. Hence,
Ci = 〈〈Yi〉〉 ≤ Bi and by symmetry the result follows. �

Corollary 5.12. The decomposition of a primitive axial algebra into a sum of
pairwise annihilating axial subalgebras is stable under arbitrary changes of axes.

6. The non-annihilating graph ∆(X)

We can view the results above in a graph-theoretic way.

Definition 6.1. The non-annihilating graph ∆(X) has vertex set X and an edge
a ∼ b between a 6= b if ab 6= 0.

Such a graph was introduced for axial algebras of Jordan type in [9]. In the case
of Matsuo algebras, ∆(X) is also the non-commuting graph of the transpositions
X. We will compare the non-annihilating graph to the projection graph introduced
earlier in Section 4. In order to make the comparison, we consider all the edges in
the non-annihilating graph to be directed edges in both directions.

Lemma 6.2. The projection graph is a subgraph of the non-annihilating graph.
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Proof. Let a 6∼ b in the non-annihilating graph. Then ab = 0 and so the projection
of a onto b and b onto a are both zero. �

Lemma 6.3. For primitive axial algebras of Monster type which admit a Frobenius
form which is non-zero on each axis, the non-annihilating graph is the same as the
projection graph.

Proof. For these algebras, every subalgebra 〈〈a, b〉〉 is a Norton-Sakuma algebra and,
by inspection, only the subalgebra 2B has zero projections. �

We note that the condition that the algebra admits a Frobenius form which is
non-zero on each axis holds in all known examples.

Suppose that A = �i∈IAi. Then by Theorem 5.10, we may partition X into a
union of Xi and A = �i∈IBi, where each Bi is an axial algebra generated by Xi.
In particular, if a ∈ Xi and b ∈ Xj , i 6= j, then ab ∈ BiBj = 0. This means that
each Xi is a union of connected components of ∆(X). It seems natural to ask: is it
not true that the finest annihilating sum decomposition of A arises when each Xi is
just a single connected component of ∆? For the Monster fusion law, we conjecture
that this is indeed the case:

Conjecture 6.4. The finest pairwise annihilating sum decomposition of a primitive
axial algebra A of Monster type arises when each Xi is just a single connected
component of ∆.

Equivalently, set Xi to be the ith connected component of ∆(X). Then certainly
ab = 0 for a ∈ Xi, b ∈ Xj , whenever i 6= j. Define Ai = 〈〈Xi〉〉. The above
conjecture means that A decomposes as a sum of the Ai. The argument as in
Theorem 5.10 above shows that the Ai generate A. What is missing is the claim
that AiAj = 0 for i 6= j.

For axial algebras of Jordan type η (those with fusion law J (η)), the above
conjecture holds and is Theorem A in [9]. We note that axial algebras of Jordan
type are 1-closed and their fusion law is Seress.

While we do not have any examples to the contrary, we cannot prove Conjecture
6.4 in full generality. We give a partial result, but before that we show that the
groups behave well with respect to the finest sum decomposition.

Before we do so, we make an observation. So far we have completely ignored the
fusion law F for A. However, if ∆(X) does have more than one component, then
in particular there exists two axes a, b ∈ X such that ab = 0. So at the very least
we must have that 0 ∈ F .

6.1. Miyamoto group. Suppose that our axial algebra A is T -graded, so that it
has a Miyamoto group G. Recall that Ft denotes the part of the grading partition
corresponding to t ∈ T . For example, F1T is the part corresponding to the identity
element 1T ∈ T . We always have that 1 ∈ F1T .

Lemma 6.5. Let a, b ∈ X such that ab = 0. Then 0 ∈ F1T and [Ta, Tb] = 1.

Proof. Suppose 0 ∈ Ft for some t ∈ T . Then 0 ∗ 0 ⊆ Ft2 . On the other hand, Note
b ∈ A0(a) and b2 = b. This means that t2 = t, and so t = 1T . We have shown that
0 ∈ F1T .

Now, since 0 ∈ F1T , b ∈ A0(a) is fixed by τa(χ) for all χ ∈ T ∗. Therefore,
τb(χ

′)τa(χ) = τbτa(χ)(χ′) = τb(χ
′) and hence [Ta, Tb] = 1. �
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Theorem 6.6. Let A be a T -graded axial algebra and the components of ∆(X) be
Xi for i ∈ I. Then, G(X) is a central product of its subgroups G(Xi).

Proof. The Miyamoto group G(Xi) is generated by all Ta with a ∈ Xi. By Lemma
6.5, [Ta, Tb] = 1 for all a ∈ Xi, b ∈ Xj , i 6= j. Hence, every element of G(Xi)
commutes with every element of G(Xj). Since G(X) = 〈G(Xi) : i ∈ I〉, it is a
central product of the G(Xi). �

So under the mild assumption that 0 is in the trivially graded part, the finest
sum decomposition of the non-annihilating graph induces a central product of the
corresponding Miyamoto groups.

6.2. Quasi-ideals. Before we consider the algebra decomposition, we first intro-
duce a new concept.

Definition 6.7. Suppose A is an axial algebra generated by a set X of axes. A
quasi-ideal in A with respect to the generating set X is a subspace I ⊆ A such that
aI ⊆ I for all a ∈ X.

Clearly, every ideal is a quasi-ideal. The converse is not true as we will see from
the example given at the very end of the paper.

The above definition of a quasi-ideal I depends on a particular set of generating
axes. Suppose the fusion law F is T -graded. Since I is invariant under each ada,
a ∈ X, Lemma 3.10 implies that I is invariant under the action of each Ta, and
hence it is invariant under G(X). Therefore, for every b = ag ∈ X̄, we have that
bI = agIg ⊆ (aI)g = Ig = I and so I is also a quasi-ideal with respect to the
closure X̄ of X. We have the following.

Proposition 6.8. Let I ⊆ A and X and Y be two sets of axes.

1. If I is a quasi-ideal with respect to X, then it is invariant under the action
of G(X).

2. If X ∼ Y , then I is a quasi-ideal with respect to X if and only if it is a
quasi-ideal with respect to Y . That is, being a quasi-ideal is stable.

So the concept of quasi-ideals behaves well with respect to natural changes of
generators. We now introduce an important example of a quasi-ideal.

Definition 6.9. The spine of an axial algebra A is the quasi-ideal Q(A,X) gener-
ated by all axes X. If Q(A,X) = A, then we say that A is slender.

It is clear that the spine contains the axes X and is spanned by all products of
the form x1(x2(. . . (xk−1xk) . . . ) where xi ∈ X. Recall that A is m-closed if it is
spanned by products of axes of length at most m.

Lemma 6.10. If A is a 3-closed axial algebra, then A is slender.

Proposition 6.11. Let A be an axial algebra and X ∼ Y be two equivalent sets of
axes. Then, Q(A,X) = Q(A, Y ). That is, the spine of an axial algebra is stable.

Proof. It suffices to show equality of Q(A,X) and Q(A, X̄). Clearly, Q(A,X) ⊆
Q(A, X̄). On the other hand, by Proposition 6.8, Q(A,X) is invariant under G(X),
which means that X̄ ⊂ Q(A,X). Hence Q(A, X̄) ⊆ Q(A,X), and hence we have
equality. �
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6.3. Algebras with Seress fusion laws. As we noted before, 0 ∈ F . How-
ever, if A were to have annihilating sum decompositions, then this imposes further
constraints on F . If an axis a lies in the summand Ai then every Aj , j 6= i, is
contained in the 0-eigenspace of ada, since aAj = 0. In particular, as Aj is a sub-
algebra, 0 ∈ 0 ? 0. In order to show our partial result, we will, in fact, require a lot
more than this.

Definition 6.12. The fusion law F is Seress if 0 ∈ F and for any λ ∈ F we have
0 ? λ ⊆ {λ}.

Note that for 1, we already have that 1 ? λ ⊆ {λ}. So, for Seress fusion laws, it
follows that 1 ? 0 ⊆ {1} ∩ {0} = ∅. Also note that 0 ? 0 ⊆ {0} implies that A0(a) is
a subalgebra for every axis a.

The following lemma was first given by Seress for the Monster fusion law (hence
the name Seress for the property of the fusion law). Hall, Rehren and Shpectorov
noticed that the same proof holds in a more general setting.

Lemma 6.13 (Seress Lemma). [7, Proposition 3.9] If F is Seress, then every axis
a associates with A1(a) + A0(a). That is, for x ∈ A and y ∈ A1(a) + A0(a), we
have that

a(xy) = (ax)y.

In other words, ada and ady commute.

Proof. Since the associativity identity is linear in y, we may consider y ∈ A1 and
y ∈ A0 separately. Associativity is also linear in x, so, since we may decompose x
with respect to A =

⊕
λ∈F Aλ(a), it suffices to check for x ∈ Aλ. As F is Seress,

1 ? λ, 0 ? λ ⊆ {λ} and so xy ∈ Aλ for y ∈ A1, or y ∈ A0. Hence,

a(xy) = λxy = (λx)y = (ax)y. �

Suppose A is generated by the set of axes X = Y1 ∪ Y2, where for all a ∈ Y1 and
b ∈ Y2 we have ab = 0. (We write Y1Y2 = 0.) Let Ai = 〈〈Yi〉〉.

Theorem 6.14. Let A be an axial algebra with X = Y1 ∪ Y2 satisfying Y1Y2 = 0.
If the fusion law is Seress, then Q(A1, Y1) annihilates A2.

Proof. First of all, note that, for x ∈ Y1, since A0(x) is a subalgebra and Y2 ⊆ A0(x),
we have that xA2 = 0. This means that Y1 ⊆ U , where U := {u ∈ A1 : uA2 =
0} = Ann(A2) ∩ A1 is the annihilator of A2 in A1. Now, for u ∈ U and v ∈ A2,
by Seress’s Lemma, (xu)v = x(uv) = x0 = 0. So, xu ∈ U . Since this is true for
all x ∈ Y1, U is a quasi-ideal. Therefore, U is a quasi-ideal containing Y1, implying
that Q(A1, Y1) ⊆ U . �

Corollary 6.15. Suppose that A is an axial algebra such that X = Y1 ∪ Y2 is a
disjoint union of axes and the fusion law is Seress. If A1 is slender, then A =
A1�A2.

We can now state our partial result for the conjecture about the non-annihilating
graph.

Theorem 6.16. Let A be an axial algebra with a Seress fusion law and let Xi be
the components of ∆(X) with Ai = 〈〈Xi〉〉. If all but possibly one Ai are slender,
then A = �i∈IAi.

Proof. This follows from Corollary 6.15 using induction on |I|. �
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Recall that a 3-closed axial algebra is slender, so the above theorem holds when
all but at most one Ai are 3-closed.

As noted above, an axial algebra A of Jordan type η is 1-closed and Seress. So,
by Corollary 6.16, A = �i∈IAi, where Xi are the connected components of ∆(A).
This is part (2) of Theorem A in [9].

The Ising fusion lawM(α, β), of which the Monster fusion law is a special case,
is also Seress. Most of the examples we know for M( 1

4 ,
1
32 ) are 2-closed, while a

few are 1- or 3-closed [15, Table 4]. So we should expect the above decomposition
theorem to apply to a wide class of examples.

However, there exist examples of axial algebras with fusion law M( 1
4 ,

1
32 ) that

are not 3-closed. In [15], we found an 18-dimensional primitive axial algebra with
Miyamoto group S3 × S3, which is 4-closed, but not 3-closed. In fact, in this
example, 17 = dim(Q(A,X)) < dim(A) = 18. So this algebra is not slender. Note
also that, since it is 4-closed and Q(A,X) $ A, there exists some product of axes of
the form (ab)(cd) that completes a basis for Q(A,X) to a basis for A. Indeed this
shows that Q(A,X) is not an ideal and hence that not all quasi-ideals are ideals.

Finally, we note that none of the proofs in this last section required primitivity.
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