Platt, D. J., \& Morrill, T. (2021). Robin's inequality for 20 -free integers. INTEGERS: Electronic Journal of Combinatorial Number Theory, 21, [28]. https://arxiv.org/pdf/1809.10813v3.pdf

Publisher's PDF, also known as Version of record
License (if available):
CC BY

Link to publication record in Explore Bristol Research
PDF-document

This is the final published version of the article (version of record). It first appeared online via Integers at http://math.colgate.edu/~integers/cgi-bin/get.cgi .Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

ROBIN'S INEQUALITY FOR 20-FREE INTEGERS

Thomas Morrill ${ }^{1}$
Department of Mathematics and Physics, Trine University, Angola, Indiana
David John Platt ${ }^{2}$
School of Mathematics, University of Bristol, Bristol, UK

Received: 9/19/20, Accepted: 2/19/21, Published: 3/23/21

Abstract

In 1984, Robin showed that the Riemann Hypothesis for ζ is equivalent to demonstrating $\sigma(n)<e^{\gamma} n \log \log n$ for all $n>5040$. Robin's inequality has since been proven for various infinite families of power-free integers: 5 -free integers, 7 -free integers, and 11-free integers. We extend these results to cover 20 -free integers.

In 1984, Robin gave an equivalent statement of the Riemann Hypothesis for ζ involving the divisors of integers.

Theorem 1 (Robin [11]). The Riemann Hypothesis is true if and only if for all $n>5040$,

$$
\begin{equation*}
\sigma(n)<e^{\gamma} n \log \log n \tag{RI}
\end{equation*}
$$

where $\sigma(n)$ is the sum of divisors function and γ is the Euler-Mascheroni constant.
Since then, (RI) has become known as Robin's inequality. There are twenty-six known counterexamples to (RI), of which 5040 is the largest [5].

Robin's inequality has been proven for various infinite families of integers, in particular the t-free integers. Recall that n is called t-free if n is not divisible by the t th power of any prime number, and t-full otherwise. In 2007, Choie, Lichiardopol, Moree, and Solé [4] showed that (RI) holds for all 5 -free integers greater than 5040. Then, in 2012, Planat and Solé [12] improved this result to (RI) for 7-free integers greater than 5040, which was followed by Broughan and Trudgian [3] with (RI) for 11-free integers greater than 5040 in 2015. By updating Broughan and Trudgian's work, we prove our main theorem.

Theorem 2. Robin's inequality holds for 20-free integers greater than 5040 .

[^0]Since there are no 20-full integers less than 5041, we may give a cleaner statement for Robin's theorem.

Corollary 1. The Riemann Hypothesis is true if and only if (RI) holds for all 20-full integers.

1. A Bound for t-free Integers

Solé and Planat [12] introduced the generalised Dedekind Ψ function

$$
\Psi_{t}(n):=n \prod_{p \mid n}\left(1+p^{-1}+\cdots+p^{-(t-1)}\right)=n \prod_{p \mid n} \frac{1-p^{-t}}{1-p^{-1}}
$$

Since

$$
\sigma(n)=n \prod_{p^{a} \| n}\left(1+p^{-1}+\cdots+p^{-a}\right)
$$

we see that $\sigma(n) \leq \Psi_{t}(n)$, provided that n is t-free. Thus, we study the function

$$
R_{t}(n):=\frac{\Psi_{t}(n)}{n \log \log n}
$$

By Proposition 2 of [12], it is sufficient to consider R_{t} only at the primorial numbers $p_{n} \#=\prod_{k=1}^{n} p_{k}$ where p_{k} is the k th prime. Compare this to the role of colossally abundant numbers in (RI) by Robin [11].

Using equation (2) of Broughan and Trudgian [3], we have for $n \geq 2$

$$
R_{t}\left(p_{n} \#\right)=\frac{p_{n} \# \prod_{p \leq p_{n}} \frac{1-p^{-t}}{1-p^{-1}}}{p_{n} \# \log \log p_{n} \#}=\frac{\prod_{p>p_{n}}\left(1-p^{-t}\right)^{-1}}{\zeta(t) \log \vartheta\left(p_{n}\right)} \prod_{p \leq p_{n}}\left(1-p^{-1}\right)^{-1}
$$

where $\vartheta(x)$ is the Chebyshev function $\sum_{p \leq x} \log p$.
In Sections 2 and 3, we construct two non-increasing functions, $g_{B}(w ; t)$ and $g_{\infty}(w ; t)$ such that for some constants x_{0}, B we have for $x_{0} \leq p_{n} \leq B$

$$
g_{B}\left(p_{n} ; t\right) \geq R_{t}\left(p_{n} \#\right) \exp (-\gamma)
$$

and for $p_{n}>B$

$$
g_{\infty}\left(p_{n} ; t\right) \geq R_{t}\left(p_{n} \#\right) \exp (-\gamma)
$$

For a given $t \geq 2$, if we can show that all t-free numbers $5040<n \leq p_{k} \#$ satisfy (RI), that $g_{B}\left(p_{k} ; t\right)<1$ and that $g_{\infty}(B ; t)<1$, then we are done.

2. Deriving $g_{B}\left(p_{n} ; t\right)$

We start with some lemmas.
Lemma 1. Let ρ be a non-trivial zero of the Riemann zeta function with positive imaginary part not exceeding $3 \cdot 10^{12}$. Then $\Re \rho=1 / 2$.

Proof. See Theorem 1 of [7].
Lemma 2. Let $B=2.169 \cdot 10^{25}$. Then we have

$$
|\vartheta(x)-x| \leq \frac{1}{8 \pi} \sqrt{x} \log ^{2} x \quad \text { for } 599 \leq x \leq B
$$

Proof. Given that one knows the Riemann Hypothesis to height T, [1] tells us that we may use Schoenfeld's bounds from [10] but restricted to B such that

$$
4.92 \sqrt{\frac{B}{\log B}} \leq T
$$

Using $T=3 \cdot 10^{12}$ from Lemma 1 we find $B=2.169 \cdot 10^{25}$ is admissible.
Lemma 3. Let $\log x \geq 55$. Then

$$
|\vartheta(x)-x| \leq 1.388 \cdot 10^{-10} x+1.4262 \sqrt{x}
$$

or

$$
|\vartheta(x)-x| \leq 1.405 \cdot 10^{-10} x
$$

Proof. From Table 1 of [6] we have for $x>\exp (55)$

$$
|\psi(x)-x| \leq 1.388 \cdot 10^{-10} x
$$

so that by Theorem 13 of [9] we get, again for $x>\exp (55)$, that

$$
|\vartheta(x)-x| \leq 1.388 \cdot 10^{-10} x+1.4262 \sqrt{x}
$$

The second bound follows trivially.
Lemma 4. Take B as above and define

$$
C_{1}=\int_{B}^{\infty} \frac{(\vartheta(t)-t)(1+\log t)}{t^{2} \log ^{2} t} d t
$$

Then $C_{1} \leq 2.645 \cdot 10^{-9}$.

Proof. We split the integral at $X_{0}=\exp (2000)$, apply Lemma 3 and consider

$$
1.405 \cdot 10^{-10} \int_{B}^{X_{0}} \frac{1+\log t}{t \log ^{2} t} \mathrm{~d} t \leq 1.430 \cdot 10^{-10} \int_{B}^{X_{0}} \frac{\mathrm{~d} t}{t \log t} \leq 5.055 \cdot 10^{-10}
$$

For the tail of the integral, we use

$$
|\vartheta(x)-x| \leq 30.3 x \log ^{1.52} x \exp (-0.8 \sqrt{\log x})
$$

from Corollary 1 of [8], valid for $x \geq X_{0}$. We can then majorise the tail with

$$
30.3 \int_{X_{0}}^{\infty} \frac{\log t \exp (-0.8 \sqrt{\log t})}{t} \mathrm{~d} t
$$

which is less than $2.139 \cdot 10^{-9}$.

Lemma 5. Take B, C_{1} as above and let $599 \leq x \leq B$. For $t>1$, define

$$
w(t)=\frac{(\log t+3) \sqrt{B}-(\log B+3) \sqrt{t}}{4 \pi \sqrt{t B}}
$$

Then

$$
\prod_{p \leq x}\left(1-\frac{1}{p}\right) \geq \frac{\exp (-\gamma)}{\log x} \exp \left(\frac{1.02}{(x-1) \log x}+\frac{\log x}{8 \pi \sqrt{x}}+C_{1}+w(x)\right)
$$

Proof. Let M be the Meissel-Mertens constant

$$
M=\gamma+\sum_{p}(\log (1-1 / p)+1 / p)
$$

Then by 4.20 of [9] we have

$$
\left|\sum_{p \leq x} \frac{1}{p}-\log \log x-M\right| \leq \frac{|\vartheta(x)-x|}{x \log x}+\int_{x}^{\infty} \frac{|\vartheta(t)-t|(1+\log t)}{t^{2} \log ^{2} t} \mathrm{~d} t
$$

Since $599 \leq x \leq B$ we can use Lemma 2 to bound the first term with

$$
\frac{\log x}{8 \pi \sqrt{x}}
$$

We can split the integral at B and over the range $[B, \infty)$ use the bound from Lemma 4. This leaves the range $[x, B]$ where we can use Lemma 2 and a straightforward integration yields a contribution of

$$
\frac{(\log x+3) \sqrt{B}-(\log B+3) \sqrt{x}}{4 \pi \sqrt{x B}}=w(x)
$$

We then simply follow the method used to prove Theorem 5.9 of [6] with our bounds in place of

$$
\frac{\eta_{k}}{k \log ^{k} x}+\frac{(k+2) \eta_{k}}{(k+1) \log ^{k+1} x} .
$$

We also need Lemma 2 of [12].
Lemma 6 (Solé and Planat [12]). For $n \geq 2$,

$$
\prod_{p>p_{n}} \frac{1}{1-p^{-t}} \leq \exp \left(2 / p_{n}\right)
$$

Putting all this together, we have the following.
Lemma 7. Let $w(t)$ be as per Lemma 5. Now define

$$
g_{B}\left(p_{n} ; t\right)=\frac{\exp \left(\frac{2}{p_{n}}+\frac{1.02}{\left(p_{n}-1\right) \log p_{n}}+\frac{\log p_{n}}{8 \pi \sqrt{p_{n}}}+C_{1}+w\left(p_{n}\right)\right) \log p_{n}}{\zeta(t) \log \left(p_{n}-\frac{\sqrt{p_{n}} \log ^{2} p_{n}}{8 \pi}\right)}
$$

Then for $t \geq 2$ and $599 \leq p_{n} \leq B=2.169 \cdot 10^{25}$ we have $g_{B}\left(p_{n} ; t\right)$ non-increasing in n and $R_{t}\left(p_{n} \#\right) \leq \exp (\gamma) g_{B}\left(p_{n} ; t\right)$.

3. Deriving $g_{\infty}\left(p_{n} ; t\right)$

We will need a further bound.
Theorem 3. For $x \geq 767135587$,

$$
\prod_{p \leq x} \frac{p}{p-1} \leq e^{\gamma} \log x \exp \left(\frac{1.02}{(x-1) \log x}+\frac{1}{6 \log ^{3} x}+\frac{5}{8 \log ^{4} x}\right)
$$

Proof. This is the last display on page 245 of [6] with $k=3$ so that $\eta_{k}=0.5$.
We can now deduce
Theorem 4. Define

$$
g_{\infty}\left(p_{n} ; t\right)=\frac{\exp \left(\frac{2}{p_{n}}+\frac{1.02}{\left(p_{n}-1\right) \log p_{n}}+\frac{1}{6 \log ^{3} p_{n}}+\frac{5}{8 \log ^{4} p_{n}}\right) \log p_{n}}{\zeta(t) \log \left(p_{n}-1.338 \cdot 10^{-10} p_{n}-1.4262 \sqrt{p_{n}}\right)}
$$

Then for $t \geq 2$ and $\log p_{n} \geq 55$ we have

$$
R_{t}\left(p_{n} \#\right) \leq e^{\gamma} g_{\infty}\left(p_{n} ; t\right)
$$

and $g_{\infty}\left(p_{n} ; t\right)$ is non-increasing in n.

4. Computations

The proof rests on Briggs' work [2] on the colossally abundant numbers, which implies (RI) for $5040<n \leq 10^{\left(10^{10}\right)}$. We extend this result with the following theorem.

Theorem 5. Robin's inequality holds for all $5040<n \leq 10^{\left(10^{13.11485}\right)}$.
Proof. We implemented Brigg's algorithm from [2] but using extended precision (100 bits) and interval arithmetic to carefully manage rounding errors. The final n checked was

$$
\begin{aligned}
29996208012611 \# \cdot & 7662961 \# \cdot 44293 \# \cdot 3271 \# \cdot 666 \# \cdot 233 \# \cdot 109 \# \cdot 61 \# \\
\cdot & 37 \# \cdot 23 \# \cdot 19 \# \cdot(13 \#)^{2} \cdot(7 \#)^{4} \cdot(5 \#)^{3} \cdot(3 \#)^{10} \cdot 2^{19} .
\end{aligned}
$$

Corollary 2. Robin's inequality holds for all $13 \# \leq n \leq 29996208012611 \#$.
We are now in a position to prove Theorem 2. We find that

$$
g_{B}(29996208012611 ; 20)<1
$$

and

$$
g_{\infty}(B ; 20)<1
$$

and the result follows.

5. Comments

In terms of going further with this method, we observe that both

$$
g_{B}(29996208012611 ; 21)>1
$$

and

$$
g_{\infty}(B ; 21)>1
$$

so one would need improvements in both. We only pause to note that one of the inputs to Dusart's unconditional bounds that feed into g_{∞} is again the height to which the Riemann Hypothesis is known ${ }^{3}$, so the improvements from Lemma 1 could be incorporated.

Finally, we observe that if $R_{t}\left(p_{n} \#\right)$ could be shown to be decreasing in n, then our lives would have been much easier.

[^1]Acknowledgements. The authors would like to thank Pierre Dusart and Keith Briggs for helpful conversations and Keith Briggs for sharing his code. We are also grateful to the anonymous referee for their careful reading of our submission.

References

[1] Jan Büthe, Estimating $\pi(x)$ and related functions under partial RH assumptions, Math. Comp. 85(301), 2483-2498.
[2] Keith Briggs, Abundant numbers and the Riemann hypothesis, Experiment. Math. 15(2), 251-256.
[3] Kevin A. Broughan and Tim Trudgian, Robin's inequality for 11-free integers, Integers 15, \#A12.
[4] YoungJu Choie, Nicolas Lichiardopol, Pieter Moree, and Patrick Solé, On Robin's criterion for the Riemann hypothesis, J. Théor. Nombres Bordeaux 19(2), 357-372.
[5] Geoffrey Caveney, Jean-Louis Nicolas, and Jonathan Sondow, Robin's theorem, primes, and a new elementary reformulation and the Riemann hypothesis, Integers 11, \#A33.
[6] Pierre Dusart, Explicit estimates of some functions over primes, Ramanujan J. 45(1), 227-251.
[7] David J. Platt and Tim Trudgian, The Riemann hypothesis is true up to $3 \cdot 10^{12}$, Bull. Lond. Math. Soc. To appear.
[8] David J. Platt and Tim Trudgian, The error term in the Prime Number Theorem, Math. Comp. To appear.
[9] J. Barclay Rosser and Lowell Schoenfeld, Approximate formulas for some functions of prime numbers. III, J. Math. 6, 64-94.
[10] Lowell Schoenfeld, Sharper bounds for the Chebyshev Functions $\theta(x)$ and $\psi(x)$. II, Math. Comp. 30(134), 337-360.
[11] G. Robin, Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann, J. Math. Pures Appl. (9), 63(2), 187-213.
[12] Patrick Solé and Michel Planat, The Robin inequality for 7-free integers, Integers $\mathbf{1 2 (2) ,}$ 301-309.

[^0]: ${ }^{1}$ Supported by Australian Research Council Discovery Project DP160100932
 ${ }^{2}$ Supported by DP160100932 and EPSRC Grant EP/K034383/1.

[^1]: ${ }^{3}$ Dusart uses $T \geq 2445999556030$.

