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Abstract

The near-wall region in turbulent Eulerian-Eulerian (E-E) simulations has hitherto

received little to no attention. A standard approach to modelling this region is

through the employment of single-phase wall-functions in the fluid-phase and it is

unclear whether such an approach is capable of capturing the turbulent fluid-particle

interaction in the near-wall region. In order to both investigate and alleviate E-E

models reliance on single-phase wall-functions we propose an E-E elliptic relaxation

model to account for the near-wall non-homogeneity which arises in wall-bounded

flows. The proposed model is derived within an E-E framework and enables the

full resolution of the boundary layer and arbitrary wall sensitivity. The model is

then compared against the conventional kf − εf turbulence model with standard

single-phase wall-functions. Additionally, the modelling is compared against a low-

Re number turbulence model. The elliptic relaxation model is implemented within

the open-source CFD toolbox OpenFOAM, applied to a vertical downward-facing

channel and validated against the benchmark experimental data of Kulick et al.
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[20]. Model results show marked improvements over the conventional turbulence

model across mean flow and turbulence statistics predictions. The use of conven-

tional single-phase wall functions were shown to negatively impede on the prediction

of the velocity covariance coupling term and as a result the particle fluctuation en-

ergy. Moreover, this also lead to an underestimation of the near-wall volume fraction

accumulation. Finally, the elliptic relaxation model, E-E model and accompanying

validation cases are made open-source.
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1. Introduction1

Many researchers have investigated turbulent wall-bounded fluid-particle flow2

through experimentation [4, 11, 15, 20, 23, 49]. Owing to their turbulent nature such3

flows exhibit complex physical behaviour giving rise to turbulence modulation which4

can be caused by: particle-particle, fluid-particle and/or particle-wall interactions.5

Thus, research has been ongoing to understand and model these phenomena; most6

of which are common in engineering processes, e.g. pneumatic conveyance and coal7

particle combustion. The aforementioned experimental studies provide invaluable8

physical insights and validation data for the development of predictive models. One9

notable study is that of Kulick et al. [20] which has received considerable attention10

from researchers developing, predominantly Euler-Lagrange (E-L), models [19, 25, 42,11

47, 51, 52, 54]. This study is particularly attractive as there are several particle classes12

giving rise to various particle-fluid and particle-wall interactions which contribute to13

turbulence modulation.14

Having identified the aspects of physical behaviour which are significant in these15

flows, researchers can investigate them separately in a reductionist approach. We16

now highlight some studies that contribute to the understanding of particle behaviour17

within the case of Kulick et al. [20]; starting with the so-called feedback-force of the18

particle phase on the fluid turbulence in the flow. Vreman [51] recently examined the19

effect of the mean feedback-force and how it is exacerbated by wall roughness. An20

increase in wall roughness enhances turbulence attenuation i.e. a reduction in fluid-21

phase velocity fluctuations. This explains the over prediction of the mean particle22

velocities seen in previous studies Kubik and Kleiser [19], Wang and Squires [52],23
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Yamamoto et al. [54] as smooth walls were simulated.24

Another phenomenon that has been investigated is turbophoresis, which refers to25

the tendency of particles in the flow to migrate towards regions of lower turbulence.26

The turbophoresis force is responsible for particles drifting from regions of high tur-27

bulence intensity to low turbulence intensity [27, 35], which often results in particles28

accumulating in the near-wall region characterised by low-speed streaks [32, 34].29

This accumulation in the near-wall region is referred to as deposition and has been30

researched numerically by [24, 27, 28, 30]. One of the first models for particle deposi-31

tion by Young and Leeming [55] showed that the turbophoretic velocity depends on32

the gradient of wall-normal fluctuating velocities and provided one of the first physi-33

cal basis for explaining the turbophoresis force. Strömgren et al. [47] investigated the34

effect of the turbophoresis force within an Eulerian-Eulerian (E-E) framework and35

found that even for small volume fractions, αp = 2x10−4, two-way coupling effects36

are non-negligible and the near-wall region may require special attention. This is due37

to the accumulation of particles in the near-wall region i.e viscous sub layer, leading38

to higher volume fractions in which two-way coupling effects become more relevant39

[14].40

In turbulent single-phase simulations the near-wall region is typically modelled.41

Wall functions are applied to turbulence quantities, εf & νft with a zero gradient42

condition given to kf , in order to avoid the computational overhead of detailed reso-43

lution of the flow in the near-wall region. Such wall functions are based on the law-44

of-the-wall, which is that the dimensionless velocity, u+ varies through some function45

expressed generically as, u+ = flog(y
+). The function flog is logarithmic representing46
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the outer log-law region of the turbulent boundary layer. This corresponds to the47

constant-stress layer in which the turbulent shear stress is proportional to the fric-48

tion velocity [45]. In turbulent quantity terms this means that the production and49

dissipation of turbulent kinetic energy are equal.50

The law-of-the-wall is assumed to be universal and is found through dimensional51

reasoning, this then leads to a description of the near-wall region through dimen-52

sionless variables i.e. velocity and wall-normal coordinates. The dimensionless wall-53

normal coordinate is defined as y+ = yuτ/νf and the log-law is applicable in the54

range of 30 < y+ < 300, this then gives a universal relation that can be applied to55

turbulent wall-bounded flows. This criterion places a requirement on the first com-56

putational cell i.e. the distance of the cell centre must be further than y+ > 30. As57

can already be deduced, the calculation of y+ depends on the friction velocity, which58

is not known a priori. Hence, this quantity is estimated prior to calculation using59

standard skin friction relations and informs mesh generation. This approach then60

sacrifices near-wall resolution for a computationally cheaper simulation. An impor-61

tant assumption about the nature of the law-of-the-wall has been made throughout62

i.e. its universal nature. This is in fact not true as it has been shown experimen-63

tally that the boundary layer is affected by adverse pressure gradients and geometric64

changes [16].65

The viability of single-phase wall functions applied to multiphase simulations has66

attracted some interest from researchers. A theoretical study by Rizk and Elghobashi67

[40] showed that increasing volume fraction can adversely effect the mean profile pre-68

diction. It was found that with increasing particle volume fraction the log layer broke69

5



down resulting in an overestimation. Interestingly, a similar relationship between an70

increasing mass loading and a reduction in the mean log-layer momentum was re-71

cently found experimentally by Saber et al. [44]. Benyahia et al. [2] included the72

effect of the particle phase directly into the wall function. An additional term that73

contains the drag and velocity fluctuation covariance is introduced in the log-law re-74

lation. This formulation allows the presence of the particles to influence the velocity75

profile, although when extended to more complex geometries the short-comings of76

single-phase wall functions remain.77

Attempts to circumvent the reliance on single-phase wall functions have been78

made by several authors [3, 6, 40, 57] in which a low-Re number turbulence model79

is used. This allows the transport equations to be integrated up to the wall. This80

approach has proven fruitful for numerous authors as without the use of wall func-81

tions, the presence of the particles within the boundary layer can exert their influence82

[40, 57]. The low-Re turbulence model uses a damping function and a near wall cor-83

rection of Kolmogorov scaling [31]. The damping of the viscosity can be somewhat84

arbitrary and validated on relatively simple flow leading to a range of different mod-85

els [5, 21, 41, 46] with an extensive summary found in Patel et al. [31]. The damping86

functions used in Patel et al. [31] are often non-linear and can lead to numerical87

stiffness further complicating their application.88

Durbin [8] proposes another way of accounting for wall-induced non-homogeneity.89

The quantity v2
f , which represents the turbulence-stress normal to streamlines, is in-90

troduced. This quantity is derived from the exact Reynolds-stress transport equation91

and contains a source term that accounts for the redistribution of turbulence kinetic92
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energy. This inclusion explicitly accounts for the wall-induced non-homogeneity and93

enables the wall-normal component to be dampened. The energy redistribution is94

governed by an elliptic relaxation equation f , that is free of geometric dependence95

or arbitrary fitting. The v2
f − f elliptic relaxation model has been validated across96

various challenging single-phase flows [1, 7, 26, 29, 48] highlighting the benefit of97

such a modelling technique.98

There are two closely linked issues with the current E-E modelling approaches:99

the modelling of the near-wall region, through single-phase wall functions, and the100

subsequent consequences of such an approach i.e. the prediction of turbulence mod-101

ulation and turbophoresis. In this work we seek to investigate this by carrying out102

a side-by-side comparison of a conventional E-E simulation method with a newly-103

derived elliptic relaxation model in which the near-wall region has been resolved.104

The main aim then is to reveal the consequences of modelling the near-wall region105

whilst proposing new modelling to circumvent these consequences.106

We begin at a recently proposed E-E model, namely the Reynolds-Averaged Two-107

Fluid Model of Fox [13]. This approach has proven particularly fruitful in modelling108

high Re number flows due to the inclusion of particle inertia induced energy sep-109

aration (see Février et al. [12], Fox [13]) and has lead to a high level of validation110

[38, 39]. The elliptic relaxation model of Durbin [8] is derived within the RA-TFM111

framework and applied to the vertical downward facing channel of Kulick et al. [20].112

The elliptic relaxation model alleviates the use of wall functions and/or the use of113

ad-hoc damping functions and their geometric dependency. To ascertain the con-114

sequences of a conventional E-E simulation, the RA-TFM with the solution of the115
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kf − εf model, and is compared and contrasted against the newly proposed elliptic116

relaxation model, v2
f − f . Moreover, results are also compared against the low Re117

number model of Launder and Sharma [21] in order to facilitate a boundary layer118

resolved comparison.119

2. Numerical model120

We begin at the RA-TFM of Fox [13], and as we are interested in extending the121

fluid-phase turbulence modelling we present the fluid- and particle-phase governing122

equations as well as the particle-phase fluctuation energy equations in Table 1. We123

have neglected coupling through buoyancy due to the high density ratios simulated124

in this work and therefore, we begin at the fluid-phase turbulence equations.125

The turbulent kinetic energy transport equation for the fluid-phase takes the126

form:127

∂(αfρfkf )

∂t
+∇ · (αfρfkfuf ) = ∇ ·

(
µt +

µft
σfk

)
∇kf + αfρfΠf − αfρfεf

+2β(kfp − kf ).
(1)

The turbulent kinetic energy dissipation transport equation reads:128

∂(αfρfεf )

∂t
+∇ · (αfρfεfuf ) = ∇ ·

(
µt +

µft
σfk

)
∇εf +

εf
kf

[
C1αfρfΠf − C2αfρfεf

]
+2C3β(εfp − εf ).

(2)

The first term on the RHS is the fluid-phase turbulent kinetic energy/dissipation129

flux. The second term, Πf is the kinetic energy production due to mean shear with130
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the third term being the turbulent kinetic energy dissipation. The remaining term131

is the coupling terms due to velocity covariance (see Table 9) and is a measure of132

how correlated the two phases are. This provides the primary coupling mechanism133

in this work as the two phases are only coupled through drag.134

These two equations make up the conventional kf − εf turbulence model with135

model constants, largely taken from compressible turbulence modelling [43], found136

in Table 3. The complete set of equations that make up the RA-TFM are found in137

Table 1 and the equations associated with the low Re number model of Launder and138

Sharma [21] can be found in Table 2.139
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Table 1: RA-TFM governing equations and the particle fluctuation energy equations.

∂(αpρp)

∂t
+∇ · (αpρpup) = 0 (3)

∂(αfρf )

∂t
+∇ · (αfρfuf ) = 0 (4)

∂(αpρpup)
∂t

+∇ · (αpρpupup) = ∇ ·
(

2(µp + µpt)Sp

)
+ β

[
(uf − up)−

νft
Scfsαpαf

∇αp
]

−∇pp − αp∇pf + αpρpg
(5)

∂(αfρfuf )
∂t

+∇ · (αfρfufuf ) = ∇ ·
(

2(µf + µft)Sf

)
+ β

[
(up − uf ) +

νft
Scfsαpαf

∇αp
]

−αf∇pf + αfρfg
(6)

∂(αpρpkp)

∂t
+∇ · (αpρpkpup) = ∇ ·

(
µp +

µpt
σpk

)
∇kp + αpρpΠp − αpρpεp

+2β(kfp − kp)
(7)

∂(αpρpεp)

∂t
+∇ · (αpρpεpup) = ∇ ·

(
µp +

µpt
σpε

)
∇εp +

εp
kp

[
C1αpρpΠp − C2αpρpεp

]
+2C3β(εfp − εp)

(8)

3

2

[∂(αpρpΘp)

∂t
+∇ · (αpρpΘpup)

]
= ∇ ·

(
κΘ +

3µpt
2Prpt

)
∇Θp + 2µpSp : Sp

−pp∇ · up + αpρpεp − 3βΘp − γ
(9)
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Table 2: Low Re number turbulence model of Launder and Sharma [21].

∂(αfρfkf )

∂t
+∇ · (αfρfkfuf ) = ∇ ·

(
µf +

µft
σfk

)
∇kf + αfρfΠf − αfρfεf

+2β(kfp − kf )
(10)

∂(αfρf ε̃)

∂t
+∇ · (αfρf ε̃uf ) = ∇ ·

(
µf +

µft
σfε

)
∇ε̃+ C1αfρfΠf

ε̃f
kf
− C2αfρff2

ε̃2

kf

+E + 2C3β(εfp − ε̃f )
(11)

where

µft = cµfµρf
k2
f

ε̃

εf = ε̃+D

fµ = exp
( −3.4

(1 +RT/50)2

)
f2 = 1− 0.3exp(−R2

T )

D = 2µf (∇
√
kf )

2

E = 2µfµft(∇2uf )
2

RT =
k2
f

νf ε̃

Table 3: kf − εf model constants.

C1 C2 C3 βk βε Cfµ Cpµ σfε σfk
1.44 1.92 1 1 1 0.09 0.09 1.3 1
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2.1. Fluid-phase elliptic relaxation model140

We begin at the exact RA Reynolds stress transport equation for the fluid-phase141

and for the sake of brevity the derivation is presented in the Appendix. The equation142

then reads:143

∂〈αf〉〈u′′′f ⊗ u′′′f 〉f
∂t

+∇ · 〈αf〉〈uf〉f ⊗ 〈u′′′f ⊗ u′′′f 〉f = −∇ · 〈αf〉〈u′′′f ⊗ u′′′f ⊗ u′′′f 〉f

−〈αf〉(〈u′′′f ⊗ u′′′f 〉f · ∇〈uf〉f )︸ ︷︷ ︸
Production

+
1

ρf
∇ · 〈σf ⊗ u′′′f 〉 −

1

ρf
∇〈pfu′′′f 〉

+
1

ρf
〈pf∇u′′′f 〉︸ ︷︷ ︸

pressure strain, φyy

− 1

ρf
〈σf · ∇u′′′f 〉︸ ︷︷ ︸

dissipation, εyy

+〈αf〉β(〈u′′′f ⊗ u′′p〉p − 〈u′′′f ⊗ u′′′f 〉p︸ ︷︷ ︸
velocity correlations

).

(12)

Firstly, as we intend to arrive at a transport equation for an ‘imaginary’ wall-normal144

stress component a caveat is worth mentioning. If one considers the production145

term in any classic eddy-viscosity model, the production term is proportional to the146

mean flow gradient - importantly in the stream-wise direction. This means that147

the turbulent kinetic energy is produced by the stream-wise mean flow gradients.148

Consequently, in the wall-normal direction the production term vanishes.149

The velocity correlations which arise due to phase coupling are modelled analo-150

gously to those terms found in the kf−εf transport equations. We set the covariance151

of the fluctuations 〈u′′′f ⊗u′′p〉p = v2
fp = βv

√
v2
pv

2
f , where v2

p = 2/3kp owing to its defi-152

nition. The correlation factor, βv = 1 along with the correlation factors found in the153

transport equations for turbulent kinetic energy and dissipation (see Table 9) are all154

set to 1. This is a crude first approximation and the correlation factor should depend155

on both mass loading and Stokes number. This is out of the scope of this work but156

only a weak dependency through the relatively low mass loadings is expected.157
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Following the approach used in classic eddy-viscosity turbulence models, the di-158

vergence terms appearing in the transport equation are closed by the eddy-viscosity159

approximation [33]. This reads as:160

∇ ·
[
µft
σfk
∇〈u′′′f ⊗ u′′′f 〉f

]
≈ −∇ · 〈αf〉〈u′′′f ⊗ u′′′f ⊗ u′′′f 〉f +

1

ρf
∇ · 〈σf ⊗ u′′′f 〉

− 1

ρf
∇〈pfu′′′f 〉.

(13)

Finally, the terms left to close are the pressure strain and dissipation terms. These161

terms are explicitly modelled in the v2
f − f model equations and are grouped into a162

source term denoted kff ,163

kff = φyy︸︷︷︸
pressure strain

− εyy︸︷︷︸
dissipation

+ αfρf6
v2
f

kf
εf . (14)

The source term effectively redistributes turbulence energy from the stream-wise164

Reynolds stress component to the wall-normal component. This is intuitive as pre-165

viously discussed, when one considers a fully developed turbulent boundary layer166

as the wall-normal Reynolds stress component’s production is zero due to the mean167

stream-wise flow gradient. This means that turbulence energy can only enter the168

wall-normal component through redistribution. The original form of the source term169

has been shown to overproduce in regions relatively far away from the wall and the170

correction of Davidson et al. [7] is thus employed, this then reads171

v2
f source

= min
{
kff, −

1

T

[
(C1 − 6)v2

f −
2kf
3

(C1 − 1)
]

+ C2Πf

}
. (15)

Finally, setting the wall-normal component of the fluid-phase Reynolds stress172

13



tensor 〈u′′′f ⊗ u′′′f 〉f to v2
f a transport equation can be written as:173

∂(αfρfv2
f )

∂t
+∇ · (αfρfv2

fuf ) = ∇ ·
(
µf +

µft
σfk

)
∇v2

f + v2
f source

− αfρf6
v2
f

kf
εf

+2β(v2
fp − v2

f ).

(16)

The reader should note that the third term on the RHS is a sink term that is174

used to balance the source term kff . This is a modification proposed by Lien and175

Kalitzin [26] and ensures that the source term kff → 0 as it approaches the wall.176

Equation 16 contains no sensitivity to the wall, this is introduced through a177

modified Helmholtz equation which forms an elliptic relaxation equation. The form178

of this equation accounts for anisotropy close to walls and is also independent of179

Reynolds number and y+ value which reads:180

L2∂
2f

∂x2
− f =

C1

T

(
v2
f

kf
− 2

3

)
︸ ︷︷ ︸

φyy,S

−C2
Πf

kf︸ ︷︷ ︸
φyy,R

− 1

T

(
6
v2
f

kf
− 2

3

)
.

(17)

The terms φyy,S and φyy,R are the so-called slow and rapid pressure-strain terms181

[22, 33] with the final term being used to ensure far field behaviour i.e. that the182

elliptic relaxation function diminishes away from walls.183

In the original formulation of this equation as given by Durbin [8] the boundary184

condition for f contains the wall distance to the fourth power in its denominator.185

This lead to computational stiffness and numerical oscillations in the near-wall region.186

This issue was resolved by Lien and Kalitzin [26] by introducing 6
v2f
kf

as a sink and187

source in the kff source term, the v2
f transport equation and the elliptical relaxation188

equation, f . This ensures that f tends to 0 at the wall enabling a Dirichlet boundary189
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condition to be prescribed. The turbulent viscosity is calculated from the solution190

of the v2
f − f model and a correction is employed to ensure the correct velocity scale191

is used as the wall is approached. The correction of Davidson et al. [7] is employed192

and the definition of the turbulent viscosity now reads193

νft = min
{
Cfµk

2
f/εf , Cµv

2
fT
}
, (18)

194

where the turbulent time and length scales are defined as195

T = max
(
kf
εf
, 6

√
νf
εf

)
, (19)

L = max
(
k

3/2
f

εf
, Cη

ν
3/4
f

ε
1/4
f

)
. (20)

196

Both time and length scales are limited in regions close to the wall. This is achieved197

by introducing a dependency on Kolmogorov scales which are only active in regions198

very close to the wall i.e. y+ < 5. This ensures that a singularity is not introduced199

into the solution matrix and that the scales collapse at the wall. Another modification200

close to the wall is to modify the “constant” Cε1 by damping it in the near-wall region201

by employing the following formulation202

Cε1 = 1.4
(

1 + 0.05
√
kf/v2

f

)
. (21)

To summarise, the v2
f − f model equations can be found in Table 4 with the203
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turbulence modelling constants, taken from the original model [8], found in Table 8.204

The complete set of equations that make up the RA-TFM with the v2
f − f model is205

then the equations found in Table 1 and the aforementioned equations.206

Table 4: v2f − f model equations.

∂(αfρfkf )

∂t
+∇ · (αfρfkfuf ) = ∇ ·

(
µf +

µft
σfk

)
∇kf + αfρfΠf − αfρfεf

+2β(kfp − kf )
(22)

∂(αfρfεf )

∂t
+∇ · (αfρfεfuf ) = ∇ ·

(
µf +

µft
σfε

)
∇εf +

εf
kf

[Cε1αfρfΠf − Cε2αfρfεf
T

]
+2C3β(εfp − εf )

(23)

∂(αfρfv2
f )

∂t
+∇ · (αfρfv2

fuf ) = ∇ ·
(
µf +

µft
σfk

)
∇v2

f + v2
f source

− αfρf6
v2
f

kf
εf

+2β(v2
fp − v2

f )

(24)

L2∂
2f

∂x2
− f =

C1

T

(
v2
f

kf
− 2

3

)
− C2

Πf

kf
− 1

T

(
6
v2
f

kf
− 2

3

)
(25)

Table 5: v2f − f model parameters.

Cµ C1 C2 CL Cη Cε2 C3 βk βε βv Cfµ σk σfε
0.22 1.4 0.3 0.23 70 1.9 1 1 1 1 0.09 1 1.3

Wall boundary conditions for εf can be found by a Taylor expansion around the207

no-slip condition at the wall [33] which reads as:208

εf → 2νf
kf
y2

(26)
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For the remaining fluid-phase model variables the following boundary conditions209

at the wall are prescribed, uf = kf = v2
f = f = 0. For the particulate phase210

a Neumann boundary condition is prescribed for the velocity and all turbulence211

statistics. For the simulations with the kf −εf model the standard wall functions for212

both turbulence statistics are employed. At the inlet the velocity of both the fluid-213

and particle-phase are set at 9.4ms−1. A Neumann boundary condition is used for f214

together with Dirichlet boundary conditions for all turbulent statistics. At the outlet215

the a Dirichlet boundary condition for pressure is set whilst a Neumann boundary216

condition is prescribed for all remaining variables. Both kp and εp are initialised as217

1/3rd of their fluid counterpart with Θp = 1.0 x 10−8m2s−2.218

The RA-TFM and the recently derived v2
f − f turbulence model is implemented219

into the open-source toolbox OpenFOAM [53] and is denoted as ratfmFoam [36, 37]220

which is made available for public use. To handle the pressure-velocity coupling the221

Pressure Implicit with Splitting Operators (PISO) algorithm [10, 17] is used. The222

volume fraction is solved using Multi-dimensional Universal Limiter with Explicit223

Solution (MULES) [56] which is a flux-corrected transport algorithm which ensures224

robustness, stability and convergence. Time derivative terms are discretised using the225

first order accurate implicit Euler, gradients are discretised using the Gauss-Green226

scheme, convective terms are discretised using the first-order upwind scheme Finally,227

Laplacian schemes are discretised with the second order accurate central differencing228

scheme.229
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2.2. Simulation cases230

Table 6: Table of simulated cases

Case Material dp [µm] ρp [kg m−3] Mass loading, φ St
1 glass 50 2500 2% 0.57
2 copper 70 8800 10% 3

The cases used throughout are based on two experiments from Kulick et al. [20]231

which include separately both glass and copper particles, the details of which can232

be found in Table 6. For both cases the the channel half-width is H = 0.02m with233

a corresponding length of 5.2m and a wall friction velocity uτ = 0.49ms−1. The234

viscosity of gas is νf = 15.11 x 10−5m2s−1 with a density of ρf = 1.2kg m−3 The flow235

is orientated vertically with a uniform body force of gravity acting in the direction236

of the flow (g = 9.8m s−2), this configuration resulted in a centerline velocity of237

Ucl = 10.5ms−1. The mass loading is defined as φ = αpρp
αfρf

, and assuming uniform238

velocity at the inlet.239

Table 7: Properties of each mesh, fx, fy refer to mesh stretching with Mesh 1 [fx = 1.1, fy = 1.1]
and Mesh 2 [fx = 1.2, fy = 1.2].

Mesh ∆xmin,∆xmax[m] ∆ymin,∆ymax[m] Mesh size Comp time
1 1.2× 10−3, 0.02 1.2× 10−5, 1.2× 10−3 202,761 32 hrs
′′ ′′ ′′ ′′ 20 hrs
2 7× 10−4, 9× 10−4 7× 10−4, 9× 10−4 66,481 4 hrs

Owing to the different modelling approaches used throughout two different meshes240

are employed and are detailed in Table 7. Mesh 1 is associated with the v2
f−f model241

and the low Re Number model of Launder and Sharma [21] and is resolved to y+ < 1242
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ensuring that the resolution of the boundary layer is captured. Mesh 2 is associated243

with the kf−εf model and is resolved up to y+ > 30 ensuring that the wall functions244

can be applied across the correct section of the boundary layer (i.e. log-layer). The245

final column refers to the computational time spent for a typical run consisting of 30246

seconds of real flow time. For ease of reference the v2
f−f formulation will hereafter be247

referred to as V2F, the low Re number formulation as LE and the kf−εf formulation248

as KE.249
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3. Results and Discussion250

3.1. Mean fluid stream-wise velocity profiles251
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Figure 1: C1 - Mean fluid velocity profile.
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Figure 2: C2 - Mean fluid velocity profile.

Figures 1 & 2 show the mean fluid velocity profiles for each case. It is evident252

from both plots that the prediction of both V2F & KE models are in good agreement253

with the experimental data of Kulick et al. [20]. For both C1 & C2 the mean fluid ve-254

locity profile remains unchanged, behaviour that is consistent with the experimental255

observations. Moreover, the experimental uncertainty was reported by the authors256

to be ≈ 2% and it can be seen that across both profiles the numerical prediction lies257

well within this range.258

This behaviour is not apparent in the predictions from the LE model as there is259

an underestimation of the fluid velocity. It is interesting to observe that the LE and260

KE predictions are similar outside the range of 10 < y+ < 100 across both plots.261

Over the transition region i.e. buffer layer to log-layer, the damping function tends262
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to over-predict the turbulence viscosity. The ‘kink’ is not reproduced leading to a263

flattening of the velocity profile but despite this the overall prediction is satisfactory.264

When comparing both the V2F & KE model predictions there is only a small dis-265

crepancy between each result. This disparity is at its most obvious across the viscous266

and buffer layer i.e. y+ < 20 in Fig. 1. Owing to the wall function the turbulence267

statistics are integrated to the wall, with a presumed log-layer relationship, from the268

first computational cell at y+ ≈ 30. This resulted in an over-prediction of turbulence269

viscosity which is felt as an under-prediction in the mean velocity profile. This trend270

is seen across the profile for both plots as the KE consistently under-predicts the271

mean velocity profile in comparison with V2F although this difference is small.272

3.2. Mean particle stream-wise velocity profiles273
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Figure 3: C1 - Mean particle velocity profile.
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Figure 4: C2 - Mean particle velocity profile.

The mean particle velocity profiles are shown in Figs. 3 & 4. Focusing on the274

former it can be seen that V2F, LE & KE models accurately predict the trend seen275
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in the experimental observations. The trend is characterised by a flatter profile as276

the particles approach the wall. As the particle velocities need not be zero at the277

wall unlike in the fluid-phase, a large slip value exists. The particles deviate from the278

fluid-phase velocities at around y+ < 100 and maintain their momentum, leading to279

a flattening of the profile as the wall is approached.280

In Fig. 3 the profile predicted by the V2F model is in good agreement with281

the experimental data. This is also true for the KE and LE models up until the282

near-wall region is approached. Over the range y+ < 100 the KE prediction deviates283

from the experimental results as the momentum is over-predicted. The contrary284

is true for the LE model in which the particles remain correlated with the carrier285

flow up until y+ ≈ 50 and then begin to deviate resulting in a under-estimation286

of the particle velocities. The cause of this behaviour is attributed to the particle287

fluctuation energy calculation. For the KE model this results is an underestimation288

of the energy exchange and for the LE model an overestimation, this behaviour will289

be discussed further in Sec. 3.5.290

Looking at Fig. 4 it can be seen that there is an over-estimation in the mean291

particle velocities across all three models. This discrepancy was also predicted in the292

E-L results of Yamamoto et al. [54] and Wang and Squires [52]. A recent study by293

Vreman [51] suggests that this global reduction in the particle velocities is due to294

the so-called “non-uniform feedback force” which is exacerbated by wall roughness.295

This results in an additional drag force exerted on the particles leading to increased296

turbulence attenuation.297

This additional force would result in a much flatter profile as shown in Vreman298
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[51] and lead to results that closely align with the experimental data in Fig. 4. As299

wall roughness has not been modelled in this study, and similar results have been300

reported by other researchers using higher resolution methods i.e. E-L [54, 52], it is301

plausible to conclude that this is the source of the overestimation. It is instructive302

to note that despite this, the qualitative behaviour of the profile is captured by the303

numerical models resulting in a comparable trend across the profile.304

3.3. Fluid stream-wise turbulence intensity305
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Figure 5: C1 - Fluid stream-wise turbulence
intensity profile.
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Figure 6: C2 - Fluid stream-wise turbulence
intensity profile.

Figures 5 & 6 show the fluid-phase turbulence intensity for each case. When306

comparing the V2F & KE model across both cases it is apparent that there is a clear307

difference between the two. The V2F model is capable of predicting a strong peak308

at y+ ≈ 20 and then dissipating off into the core of the channel. This is, of course,309

not seen in the KE model result as the first computational cell is placed at y+ > 30.310
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This then omits the presence of the peak and results in a near constant value of311

ufrms as the wall is approached. In the core of the flow, over the region (y+ > 70),312

there is better agreement with the experimental data as the transport terms begin313

to dominate.314

The LE model performs well in comparison with the experimental data. Resolving315

the near wall region enables the peak to be predicted although it is not as pronounced316

or concentrated as the peak predicted by the V2F model. There is a “spreading” of317

the turbulent kinetic energy across the range, 10 < y+ < 100, smearing the transition318

region. This is suspected to be the cause of the degradation of the mean velocity319

profile in Figs. 1 & 2. This could be improved through tweaking of the damping320

function but as highlighted in the introduction this is an inherit shortcoming of the321

approach and there are several different ad-hoc solutions to dampening the viscosity322

but the underlying issues remain.323

The KE models dependency on the wall function results in a deterioration of the324

turbulence intensity prediction. This will be shown to have important consequences325

when predicting the particle fluctuation energy behaviour. The V2F model shows326

excellent agreement across both plots with the under prediction being confined to the327

turbulence peak and dissipation towards the wall. It has been suggested [9, 8] that328

the v2
f − f model performs best at high Re number. In this work a relatively low Re329

number of 14,000 is simulated which could be the cause of the under-prediction. This330

could be improved with a manipulation of the turbulence constant i.e. C2 although331

this remains out of the scope of this study.332

Kulick et al. [20] reports turbulence attenuation in C2. As discussed in Sec. 3.2333
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this is due to the lack of wall roughness modelled in this work. Across both Figs.334

the behaviour is similar with the velocity covariance terms contributing little to the335

prediction. This finding is also consistent with those of Yamamoto et al. [54], Wang336

and Squires [52] in which negligible attenuation was reported.337

3.4. Fluid wall-normal turbulence intensity338
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Figure 7: C1 - Fluid wall-normal turbulence
intensity profile.
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Figure 8: C2 - Fluid wall-normal turbulence
intensity profile.

Figures 7 & 8 show the fluctuating wall-normal component. This component is339

explicitly modelled in the V2F model as v2
f and is crucial in enabling the resolution340

of the boundary layer. As it can be seen from Fig. 7 the distribution is in good341

agreement with the experimental predictions. The V2F model shows the correct342

dampening of the wall-normal component through the elliptic relaxation equation343

and enables a strong turbulence production peak as seen in Sec. 3.3. For C2 the344

wall-normal intensity was also attenuated in the same way the stream-wise intensity345
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was. As previously discussed no attenuation was reported in these results.346

3.5. Particle fluctuation energy347
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Figure 9: C1 - Particle fluctuation energy
profile.
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Figure 10: C2 - Particle fluctuation energy
profile.

In the RA-TFM we explicitly account for two contributions to the particle fluctu-348

ation energy [12], κp = 3Θp+kp where Θp represents the small-scale kinetic collisional349

energy i.e. uncorrelated energy and kp represents the large-scale turbulent kinetic350

energy i.e. correlated energy. Broadly speaking Θp is relevant at high St number351

and high mass loading, and kp is relevant at low St number and low mass loading.352

This distinction has already proven crucial in the literature [12, 18, 38, 39, 50].353

Figures 9 & 10 show the particle fluctuation energy for each case. As is evident354

from both plots the V2F model outperforms the KE model. This is a direct con-355

sequence of the poor prediction in the fluid turbulent kinetic energy. Owing to the356

relatively low St number in the core of the flow the particles are tightly correlated357
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therefore they are governed by the velocity covariance term which arises due to cou-358

pling through drag. The fluctuation energy distribution is dominated by kp up until359

the near-wall region is approached - this is confirmed by comparing the distribution360

with that of Fig. 5. For C2 this is not strictly true as the St number is larger in361

the core of the flow resulting in a contribution acting across the half-width of the362

channel, this can be seen by comparing the two figures.363

In the near-wall region the St number increases dramatically. This ensures that364

the particles become uncorrelated with the main carrier flow and Θp is produced365

in the region y+ < 10. Additionally, an energy cascade exists in which the large-366

scale particle turbulent kinetic energy dissipation, εp appears in the Θp transport367

equation through a source term. The particle turbulence kinetic energy dissipation368

is then highest in the near-wall region thus contributing to the loss of correlation369

with the carrier flow.370

The LE model overestimates the fluctuation energy in C1 and the profile begins371

to flatten out as the wall is approach. As shown in §3.2, the particle velocity profile372

was under predicted which is in line with the behaviour of the particle fluctuation373

energy. This was caused by an overproduction of Θp as the energy transfer was374

overproduced, this resulted in an excessively large value of Θp in the near-wall region.375

It is not obvious why this occurred as the velocity profile predicted for C2 is in good376

agreement with the experimental data. It can be speculated that the source of the377

error is the velocity covariance term as we set the correlation factor to 1 or the378

kinetic theory constitutive equations as we have employed standard expressions from379

the literature, although this is far from conclusive.380
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3.6. Volume fraction distribution381

0.5

1

1.5

0 0.25 0.5 0.75 1

α
p
/α

p

y/H

LES
KE
LE

V2F

Figure 11: C1 - Volume fraction distribution
normalised by mean values. The E-L results of
Yamamoto et al. [54] displaying the normalised
particle number density function.
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Figure 12: C2 - Volume fraction distribution
normalised by mean values. The E-L results of
Yamamoto et al. [54] displaying the normalised
particle number density function.

Figures 11 & 12 show the volume fraction distribution for both cases. Addi-382

tionally, the E-L results of Yamamoto et al. [54] have been displayed for qualitative383

understanding. Across both plots the predictions found herein are at odds with the384

E-L results. Some similarities can be drawn e.g. an accumulation in the near-wall385

region in C2 but in general it is difficult to draw any conclusions from the data. The386

volume fraction is a difficult statistic to predict in E-L and E-E simulations so this387

result is not unexpected.388

It is clear from both plots that the V2F model predicts an accumulation of parti-389

cles in the near-wall. The particles tend to drift across the channel width and reside390

in the near-wall region - characteristic behaviour of turbophoresis. As the force is391

determined by the fluctuating wall normal component, of which is explicitly modelled392
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in the V2F model and coupled to the particle-phase correlated energy, the particles393

are able to drift down the gradients of turbulent kinetic energy.394

The KE model predictions reveal a slightly different picture. In C1 an accumula-395

tion of particles in the near-wall region is seen but the sharp peak is not replicated,396

instead these particles are found in the main core of the flow. The prediction for C2397

reveals a breakdown in the volume fraction distribution in comparison to the V2F398

model. The particles are nearly uniformly distributed with a higher concentration399

in the main core of the flow. Due to the higher St number in C2 the particles are400

less correlated with the carrier flow, therefore in order to migrate towards the wall a401

larger dispersion is required. As the wall-normal component has not been explicitly402

modelled the particles can not overcome the turbulent kinetic energy gradient and403

remain in the main core of flow. Moreover, this can be a symptom of the mesh404

resolution as the wall function constraint ensures the near-wall region can not be405

resolved. The LE model results show no accumulation for C1 but do so for C2. The406

second result corroborates the findings from the V2F model in that the resolution of407

the boundary layer can lead to an accumulation of particles in the boundary layer.408
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4. Conclusions409

This work has proposed a generic approach for accounting for near-wall induced410

non-homogeneity in Eulerian-Eulerian simulations. An E-E elliptic relaxation model,411

namely the v2
f − f model, has been derived with in a Reynolds-Averaged Two-Fluid412

model framework and applied to a downward-facing vertical channel. Predictions413

are validated against the benchmark experimental data of Kulick et al. [20] and414

compared against the conventional kf − εf turbulence model. From this work the415

following conclusions can be drawn:416

1. The E-E elliptic relaxation model shows improved prediction of fluid- and417

particle-phase turbulence statistics when compared with the conventional kf −418

εf formulation;419

2. The new modelling has been validated against benchmark experimental data420

with differing mass loading and Stokes number as well as being corroborated421

with Euler-Lagrange results;422

3. The elliptic relaxation model has shown a high level of validation, in line with423

those from Euler-Lagrange, offering a viable way of achieving accurate results424

at a lower computational cost;425

4. The use of single-phase wall functions in E-E simulations can result in an426

under-prediction of the velocity covariance coupling term which impedes on427

the particle fluctuation energy prediction. This is expected to be exacerbated428

with increasing mass loading;429

5. The elliptic relaxation model enabled the migration of particles towards the430
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near-wall region, a result that was not replicated using the conventional tur-431

bulence model;432

6. The approach presented herein offers a novel way of accounting for the near-wall433

region in E-E simulations.434

5. Code repository435

The source code of the ratfmFoam solver and the supplementary data used in this436

work can be downloaded from [36].437

6. Acknowledgements438

This work has benefited from a PhD Scholarship from the College of Engineering,439

Mathematics and Physical Sciences at the University of Exeter. The authors would440

also like to acknowledge the time used on ISCA HPC and Advanced Computing441

Facility at the University of Exeter.442

31



7. Appendix443

We begin at the fluid-phase momentum equation derived from a collisional Boltz-444

mann equation like the one presented in Fox [13]. Here we couple the phases through445

drag and include a body force due to gravity. This results in the equation,446

∂(αfuf )
∂t

+∇ · (αfuf ⊗ uf + αfPf ) =
αpρp
ρf
A+ αfg (27)

Taking the Reynolds-Average (RA) of Eq. 27 gives:447

∂〈αf〉〈uf〉f
∂t

+∇ ·
(
〈αf〉〈uf〉f ⊗ 〈uf〉f + 〈αf〉〈u′′f ⊗ u′′f〉f + 〈αf〉〈Pf〉

)
=
〈αp〉ρp
ρf
〈A〉f + 〈αf〉g

(28)

where 〈αf〉 represents the RA fluid-phase volume fraction and 〈uf〉f = 〈αfuf〉/〈αf〉448

is the Phase-Averaged (PA) fluid-phase velocity. Now grouping the stress terms as,449

〈Pf〉f = 〈Pf〉f + 〈u′′′f ⊗u′′′f 〉f and multiplying through by the PA fluid-phase velocity450

one arrives at:451

∂〈αf〉〈uf〉f ⊗ 〈uf〉f
∂t

+∇ ·
(
〈αf〉〈uf〉f ⊗ 〈uf〉f ⊗ 〈uf〉f + 〈αf〉〈uf〉f ⊗ 〈Pf〉f

)
=
〈αp〉ρp
ρf
〈uf〉f ⊗ 〈A〉f + 〈αf〉〈uf〉f ⊗ g

(29)

As we want to derive an equation for the Reynolds stress tensor we now find the452

transport equation for the fluid-phase velocity tensor product. Note this is prior to453

Reynolds-Averaging. Beginning at Eq. 27 we can multiply through by the fluid-phase454

velocity, which reads as:455

∂(αfuf ⊗ uf )
∂t

+∇ · (αfuf ⊗ uf ⊗ uf + αfuf ⊗Pf ) =
αpρp
ρf

uf ⊗A+ αfuf ⊗ g

(30)
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Now invoking the relation for the fluid-phase pressure-stress tensor,456

Pf =
1

ρfαf
(pfI− σf ), 〈Pf〉 =

1

ρfαf
(〈pf〉I− 〈σf〉) (31)

and the momentum coupling,457

A =
1

τp
(up − uf ), 〈A〉f =

1

τp
(〈up〉f − 〈uf〉f ) (32)

and then subtracting Eq. 29 from the RA of Eq. 30, the transport equation for458

the fluid-phase Reynolds-Stress can be written as459

∂〈αf〉〈u′′′f ⊗ u′′′f 〉f
∂t

+∇ · 〈αf〉〈uf〉f ⊗ 〈u′′′f ⊗ u′′′f 〉f = −∇ · 〈αf〉〈u′′′f ⊗ u′′′f ⊗ u′′′f 〉f

−〈αf〉(〈u′′′f ⊗ u′′′f 〉f · ∇〈uf〉f )︸ ︷︷ ︸
Production

+
1

ρf
∇ · 〈σf ⊗ u′′′f 〉 −

1

ρf
∇〈pfu′′′f 〉

+
1

ρf
〈pf∇u′′′f 〉︸ ︷︷ ︸

pressure strain, φyy

− 1

ρf
〈σf · ∇u′′′f 〉︸ ︷︷ ︸

dissipation, εyy

+〈αf〉β(〈u′′′f ⊗ u′′p〉p − 〈u′′′f ⊗ u′′′f 〉p︸ ︷︷ ︸
velocity correlations

)

(33)

where the fluid-phase velocity fluctuations are defined as u′′′f = uf − 〈uf〉f .460
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Nomenclature461

Ucl centreline velocity, [ms−1]
CD drag coefficient, [−]
g gravity, [ms−2]
n unit vector normal to the wall, [−]
Rep particle Reynolds number, [−]
dp particle diameter, [m]
ui velocity, [ms−1]
u′′p particle velocity fluctuation w.r.t PA velocity, [ms−1]
u′′′f fluid velocity fluctuation w.r.t PA velocity, [ms−1]
pi pressure, [Pa]
g0 radial distribution coefficient, [−]
t time, [s]
ki turbulent kinetic energy, [m2s−2]

Greek letters462

αi volume fraction, [−]
αp,max maximum particle volume fraction, [−]
β momentum exchange coefficient, [kgm−3s−1]
∆x length of the cell in the x direction, [m]
∆y length of the cell in the y direction, [m]
εi turbulent kinetic energy dissipation, [m2s−3]
Θp granular temperature, [m2s−2]
κp particle fluctuation energy, [m2s−2]
κΘs diffusion coefficient for granular energy, [kgm−1s−1]
µi shear viscosity, [kgm−1s−1]
µi,t turbulent shear viscosity, [kgm−1s−1]
νi kinematic viscosity, [m2s−1]
νi,t turbulent kinematic viscosity, [m2s−1]
ρi density, [kgm−3]
σf fluid phase stress tensor,[kgm−1s−2]
σp particle phase stress tensor, [kgm−1s−2]
τp particle relaxation time, [s]
τf characteristic flow time, [s]
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Subscripts463

f fluid
i general index
p particle
x x direction
y y direction
yy wall normal component
z z direction

Superscripts464

′′ PA particle velocity fluctuation
′′′ PA fluid velocity fluctuation

Special notation465

〈·〉 Reynolds averaging operator
〈·〉i phase averaging operator associated with phase i
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Table 8: Model characteristics & turbulence variables.

β =
ρpαp
τd

=
3

4

αpαfρfur
dp

Cd

Cd =

{
24
Rep

[
1 + 0.15Re0.287

p

]
if Rep < 1000

0.44 if Rep ≥ 1000

κp = kp + 3/2Θp

uprms =
√

(2/3)κp

ufrms =
√

(2/3)kf

τp =
ρpd

2
p

18ρfνf

τf =
kf
εf

St = τd/τf

e = 0.9

Πp = 2νptSp : Sp +
2

3
kp∇ · up

Πf = 2νftSf : Sf +
2

3
kf∇ · uf
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Table 9: Definition of variables.

κp = kp + 1.5Θp

µf = ρfνf

µft = αfρfνft = αfρfCfµ
k2
f

εf

µp = αpρpνp =
2µpdil

(1 + e)g0

[
1 +

4

5
(1 + e)g0αp

]2
+

4

5
α2
pρpdpg0(1 + e)

(Θp

π

)1/2

µpdil =
5
√
π

96
ρpdpΘ

1/2
p

µpt = αpρpνpt = αpρpCpµ
k2
p

εp

pp = ρpαpΘp + 2(1 + e)ρpα
2
pg0Θp

γ =
12(1− e2)go√

πdp
α2
pρpΘ

3/2
p

κΘ =
2

(1 + e)g0

[
1 +

6

5
(1 + e)g0αp

]2
κΘ,dil + 2α2

pρpdpg0(1 + e)
(Θp

π

) 1
2

κΘ,dil =
75

384

√
πρpdpΘ

1/2
p

g0 =
[
1−

( αp
αp,max

) 1
3
]−1

Sp =
1

2
[∇up + (∇up)T ]− 1

3
∇ · upI

Sf =
1

2
[∇uf + (∇uf )T ]− 1

3
∇ · ufI

kfp = βk
√
kfkp

εfp = βε
√
εfεp
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