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Abstract

Companies tend to set their master production schedule weekly, even when
producing and shipping on a daily basis—the term for this is staggered deliveries.
This practice is common even when there is no marginal cost of setting a new
schedule. This paper argues that the practice is sound for companies that use
the ubiquitous order-up-to (OUT) policy to control production of products with
a significant capacity cost. Under these conditions, the length of the order cycle
(time between schedule updates) has a damping effect on production, while a
unit (daily) order cycle can cause significant capacity costs. We call this the
capacity cost trap.

Developing an analytical model based on industrial evidence, we derive
capacity and inventory costs under the staggered OUT policy, showing for this
policy there is an optimal order cycle possibly greater than unity. To improve
on this solution, we consider three approaches to smoothing: either levelling
within the cycle, deferring excess production or idling to future cycles via a
proportional OUT policy, or increasing the length of the cycle. By deriving
exact cost expressions we compare these approaches, finding that smoothing by
employing the proportional OUT policy is sufficient to avoid the capacity cost
trap.
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1. Introduction

In many global supply chains production planning and shipping cycles are
synchronised. That is, production planning cycles are generated once a week and
containers of product are shipped to the customer once a week via a scheduled
liner service. Most of our stylized production and inventory control studies
make this assumption. However, in many local supply chains, especially those
operating in lean or just-in-time mode, production plans are generated weekly,
but trucks leave for the customer at the end of each day, loaded with the days
production1. It then follows that an inventory deviation occurring just after a
plan has been set will not be corrected as quickly as one occurring just before
the plan is set. When each plan contains a sequence of deliveries we are said
to use staggered deliveries [14], a setting rarely studied in the literature. We
show how staggered deliveries complicate production smoothing, as capacity and
inventory costs are related to the length of the order cycle, overtime work or
idling can be deferred to future cycles, and the overtime or idling within the
present cycle must be determined.

Present-day order cycle lengths tend to be one week, occasionally one month
(see Table 1), but the conundrum of selecting an order cycle length can be
traced back to 1924, when Alfred P. Sloan decided that General Motors (GM)
Corporation’s production plans should be reviewed every ten days instead of
once every three months as was done before. During the 1920’s GM managed
to increase its total inventory turnover from 2 to nearly 71/2 times per annum
by streamlining its production and distribution network [29]. Toyota Motor
Corporation also considered fast reordering as important [23, p. 51] making a
detailed forecast for a month at a time, but using an order cycle of ten days,
while considering moving to weekly or even daily cycles [27, p. 129]. In the same
vein, Burbidge [3] declared short order cycles as one of his “five golden rules to
avoid bankruptcy”.

1.1. Literature review

The theory of staggered deliveries and the selection of an appropriate order
cycle length is only partially resolved by the literature. Flynn and Garstka [14]
identified that a staggered, traditional order-up-to (STOUT) policy is optimal
under piecewise-linear inventory costs and a once-per-cycle audit cost. Here
demand was assumed to be independent and identically distributed (i.i.d.).
Building on these results, Flynn and Garstka [15] proved the existence of an
optimal order cycle length, and outlined a procedure for identifying it. The
model was extended to a multi-product scenario in [12], while [11] showed a
staggered (S,s) policy to be optimal when a fixed cost for non-zero orders was

1In a company setting that motivated this study, the production planner also occasionally
received urgent requests from customers during the week, causing an in-week reschedule. As
this effect is rare, and near impossible to model analytically, we defer this aspect to future
work.
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Company Country Industry Order cycle When

Tescoa UK Grocery 8h or 24h 2005
Lexmarkb USA Printer Weekly 2013
Harman Kardon UK Audio

equipment
Weekly 2001

P&G Global Household
goods

Weekly 2014

Princes UK Fruit Juice Weekly 2003
TRW Global Automotive Weekly 1999
BATc Global Consumer

goods
Monthly 2012

Hotai Motor Cod Taiwan Automotive Monthly 2001
Renishaw UK, India Measuring

equipment
Monthly 2014

a Reported in Potter and Disney [25] ; b Reported in Disney et al. [10] ;
c Reported in Hedenstierna [17] ; d Reported in Chiang [4].

Table 1: Examples of industrial order cycles (Source: Authors)

added. Another extension investigated a heuristic for finding the optimal order
cycle length [13].

The inventory-optimal policy for autocorrelated demand was derived in
Hedenstierna and Disney [16], who also identified the optimal order cycle length,
and demonstrated that optimal ordering causes the fill rate to fluctuate over
the cycle, while the availability remains constant. A related problem was
investigated by Prak et al. [26] where inventory inspections and deliveries occurred
continuously.

The staggered delivery problem was approached from a different angle by
Chiang [4], who demonstrated that staggering deliveries via lot splitting reduces
cycle stock in comparison to non-staggered models. Bradley and Conway [2] also
considered the effect of cyclic scheduling on inventories, finding that lot-splitting
can destroy value when set-up times are significant.

The link between staggering and stable production rates was studied by
Chiang [5], where overtime work was allocated to the beginning of the cycle.
Here orders were allowed to vary in the first few periods of each cycle, but were
bounded by some upper value in the remaining periods of the cycle. Modigliani
and Hohn [21] investigated how economic production plans can be made when
demand is known in advance (i.e. in a make-to-order setting). They found that
an order cycle should be no longer than one seasonal cycle, and shorter in cases
with high inventory costs.

The problem of total inventory and overtime costs in a deterministic setting
was studied by Kaku and Krajewski [20], who explored this relationship for
Period Batch Control systems. They study how set-up times affect overtime
costs, finding that short order cycles could lead to unnecessary costs. Nathan
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and Venkataraman [22] investigated a specific industrial case with overtime costs.
Using mixed integer goal programming, they found an optimum order cycle
length of two months.

To recap: A handful of industrialists have called for short order cycles, albeit
rarely of less than one week. Indeed, most of the companies in Table 1 have an
order cycle of one week, but Tesco, a retailer with low capacity costs, manages
to reschedule up to three times per day. The literature supports order cycles
greater than unity when a fixed cost per order cycle is involved, but there is no
knowledge of the impact of the order cycle length on capacity costs.

Systems with staggered deliveries are reasonably well understood from the
perspective of inventory costs, under which the STOUT policy is optimal (Flynn
and Garstka [14]; Prak et al. [26]; Hedenstierna and Disney [16]). Here we
expand the analysis to include capacity costs: First we investigate how the
inventory-optimal STOUT policy performs when both piecewise-linear capacity
costs and inventory costs are present. Then we investigate the performance of a
more general policy, termed the staggered proportional order-up-to (SPOUT),
which does not correct the entire inventory deficit or surplus in the current order
cycle, but only a fraction thereof. The SPOUT policy is an extension of the
proportional order-up-to-policy implemented at Lexmark, [10]. It is also viable
to distribute inventory deviations evenly over all orders in a cycle, as was done
by Chiang [4]. We call these variations STOUT-E and SPOUT-E, the additional
E denoting equal over-time. Figure 1 characterizes these four strategies. Table 2
summarises the staggered delivery literature, highlighting its relation to our four
staggered strategies.
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Figure 1: Categorization of the policies in this paper. Note: z is the nominal capacity available
without idling or overtime.
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1.2. Contribution

The main contribution of this paper is the consideration of capacity costs
in staggered delivery systems, the identification of the order cycle length as a
smoothing mechanism, and the evaluation of three distinct types of production
smoothing: deferring overtime work to a future order cycle, levelling overtime
work or idling within the cycle, and extending the length of the order cycle. The
last two means of smoothing are exclusively available to systems with staggered
deliveries and are not studied in the literature. A major result is the realization
that companies using the STOUT policy will see increased capacity costs as the
order cycle is shortened, but that it is sufficient to implement the SPOUT policy
to avoid this cost increase.

Four propositions highlight our findings: Proposition 1 finds that under
i.i.d. demand (of arbitrary distribution), it is optimal to absorb all the demand
fluctuation by over-time or idling in the first period of the order cycle. Propo-
sitions 2 and 3 use an inverse function approach to identify the optimal order
cycle length under the STOUT and STOUT-E policy. Proposition 4 shows that
the optimal cycle length under the SPOUT policy is unity and this is always the
lowest cost solution (arbitrary distribution). Propositions 2–4 hold for normally
distributed demand.

1.3. Paper structure

We proceed with a description of the basic mechanism of our staggered
delivery inventory setting, including a discussion on safety stocks and inventory
costs, as well as on capacity levels and capacity costs. Section 3 defines the
inventory optimal STOUT policy and its optimal order cycle length when
capacity costs are incorporated into the objective function. We also consider
the allocation of overtime and idling within the order cycle. Section 4 considers
a more general replenishment policy, the SPOUT policy, capable of smoothing
production across cycles. Section 5 provides numerical examples and illustrates all
of our theoretical contributions which fully characterize our considered scenarios.
Section 6 provides managerial insights, section 7 concludes. The proofs to all
Lemmas, Propositions, and Corollaries are housed in the Appendix A. While we
have been careful to define notation on first use, Appendix B provides a list of
notation for convenience.

2. Model development

Consider a single-product inventory system operating in discrete time, where
the integer t indexes time, counted in days. In each day there is a demand
of dt units. We assume dt = µ + εt, where µ is the mean demand and εt is a
zero mean i.i.d. random variable with a variance of σ2

d, drawn from an arbitrary
distribution unless otherwise stated. Negative demand represents returns from
customers.
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At the integer moments of time t, the sequence of events is as follows. To
the last period’s ending inventory it−1, receive rt from production, then satisfy
demand dt, thereafter tally the inventory it.

it = it−1 + rt − dt. (1)

Here, rt and dt reflect the completed production and consumption, respectively,
in the time-span between the successive observations it−1 and it. Note that rt
are the production orders released to the shop floor L + 1 periods ago where
L is the physical production lead-time. For a simpler analytical treatment, we
use the double subscript notation, it,k, to denote a set of P inventory levels,
indexed by k ∈ {1, 2, 3, ..., P}, determined periodically when t/P ∈ Z, e.g.
it,k = {it+k+L|t/P ∈ Z}. To avoid clutter we suppress the conditional statement
{·|t/P ∈ Z}, whenever we use the double subscript on a state variable.

We assume that a sequence of P orders are placed once every P periods.
Specifically, order quantities are decided when t/P is an integer, i.e. in the periods
t = {0, P, 2P, . . . }. Immediately after observing it, the P order quantities, ot,k,
are decided, with k giving the release sequence of the orders. The first order
planned at time t is immediately released to production, the second order is
released in the next period, t + 1, the kth order is released at time t + k − 1,
and the final order at time t + P − 1. The orders are registered as received
in inventory L + 1 periods after they were released, i.e. in period t + k + L,
i.e. the order quantities and their corresponding receipts ot,k = rt+k+L are first
recorded as received in it+k+L. The smallest possible physical lead time, L = 0,
results in the first order of a cycle being determined at t, released for production
immediately, and first included in the inventory tally it+1. While L represents
the physical lead time, k + L is the effective lead time for each order. Figure 2
portrays the order generation, production releases, and inventory receipts in our
staggered delivery system.

Returning to the inventory balance equation (1), we use induction to express
the inventory level in an arbitrary period as

it+k+L = it +
k+L∑
n=1

(rt+n − dt+n) , when t/P ∈ Z. (2)

This formulation is helpful when planning ot,k = rt+k+L, as the inventory it and
all preceding orders {. . . , rt+k+L−1} are known. Define

xt,k = {it +
∑k+L

n=1
rt+n|t/P ∈ Z}, (3)

as the inventory position after placing ot,k. As it,k = it+k+L, it is possible to
express the inventory level as

it,k = xt,k −Dt,k, (4)

where Dt,k = {
∑k+L
n=1 dt+n|t/P ∈ Z} is the effective-lead-time demand, and xt,k

is a decision variable as it includes ot,k. We have left the precise mechanism
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Figure 2: Sequence of events in a staggered delivery system (P = 7, L = 4).

for generating the orders, ot,k, unspecified, to be treated in subsequent sections.
Next, we shall introduce a cost model that acts on the production–inventory
system, along with optimal inventory and capacity levels.

2.1. Inventory costs

Consider linear inventory holding costs, h, and backlog costs, b, following

j(it,k) = h(it,k)+ + b(−it,k)+. (5)

where (x)+ = max(x, 0), and the inventory level it,k is a random variable defined
on the probability space (Ω,A,P). We shall see that for arbitrary distributions of
the inventory level, resulting from an optimal or a suboptimal policy, there exists
an inventory position, and a corresponding safety stock setting, that minimizes
the inventory costs as far as the policy in question permits. We refer to this as
the optimal inventory position, x∗k = E [xt,k], and the optimal safety stock as
i∗k = E [it,k].

Lemma 1 (Patterned on Churchman et al., 1957, p. 212). For the ar-
bitrarily distributed random variable it,k, the inventory costs are minimized
when

i∗k = F−1i,k

(
h

b+ h

)
, (6)

where F−1i,k is the inverse cumulative density function (CDF) of the inventory
level in period t+ k + L.
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Remark Lemma 1 restates the standard newsvendor model in a manner that
explicitly captures the safety stock and inventory costs in each period of the cycle.
This is required as we later show that the inventory levels are heteroskedastic in
staggered delivery systems.

The optimal safety stock, i∗k, implies an optimal setting for xt,k, namely

x∗k = i∗k + E [Dt,k] = i∗k + µ(k + L). (7)

This criterion applies to arbitrary policies. Although x∗k is known as the base
stock, or order-up-to level, it is applicable to any policy where the costs follow (5).
A practical interpretation of the optimality criterion is that the long-run average
of xt,k, xt+P,k, xt+2P,k, · · · should equal x∗k, regardless of the policy selected.
When xt,k = x∗k and the demand is normally distributed, (A.1) simplifies to

E [j(it,k)] = σi,k (b+ h)ϕ

[
Φ−1

(
b

b+ h

)]
, (8)

where ϕ(·) is the probability density function (PDF) of the standard normal
distribution and Φ−1(·) is the inverse CDF of the standard normal distribution.
Averaged over a cycle, the expected inventory cost per period is

JP =
1

P

P∑
k=1

E [j(it,k)] = (b+ h)σ̄i,Pϕ

[
Φ−1

(
b

b+ h

)]
, (9)

where σ̄i,P = P−1
∑P
k=1 σi,k is the average standard deviation of the inventory

level. Observe that the average standard deviation does not equal the square
root of the average inventory variance due to Jensen’s inequality. For the same
reason, the standard deviation of the inventory level (sampled over all k) differs
from σ̄i,P .

2.2. Capacity costs

Workers are guaranteed compensation for a daily output of up to zk products
at the normal rate of u dollars per product; when the production quantity is
greater than zk, the excess is paid for at an overtime rate of v dollars per product.
Assuming that it is incurred in the same period as goods are received (t+ k+L),
the capacity cost can be expressed as

a(ot,k) = uzk + v(ot,k − zk)+, (10)

where the order quantity ot,k is an arbitrarily distributed random variable defined
on the probability space (Ω,A,P). If ot,k < zk the workers are still paid for their
guaranteed hours (uzk). Thus zk is the available labour capacity in the nominal
working day when ot,k enters production. While we use the term capacity limit
to denote zk, this is only the limit of capacity before overtime is used to produce
the remaining quantity (ot,k − zk)

+
. In effect, we assume that there is no limit

on the amount of over time available; either there is sufficient overtime to meet
peak demands, or peak demands can be directed to a subcontractor who can
process items with same lead time and quality at a unit cost of w.
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Lemma 2 (Patterned on Hosoda and Disney, 2012). For the arbitrarily
distributed random variable ot,k, the expected capacity costs, (10), are minimized
when

z∗k = F−1o,k

(
v − u
v

)
, (11)

where F−1o,k (x) is the CDF of ot,k, i.e. the CDF of the k’th order placed in a
cycle.

Remark We later show that the orders in staggered delivery systems are
heteroskedastic, hence we have specified in Lemma 2 the capacity requirements
and capacity costs in each period of the cycle.

While Lemma 2 remains true regardless of the distribution the demand, under
normally distributed demand the optimal capacity level is z∗k = σo,kΦ−1 [(v − u)/v]+
x∗k − x∗k−1, where σo,k is the variance of ot,k, i.e. the variance of the orders on

the kth period of the cycle [18]. In addition, Hosoda and Disney [18] provide
an expression for expected capacity cost that can be readily adapted to our
staggered setting when z∗k is used under normal demand,

E [a(ot,k)] = vσo,kϕ

[
Φ−1

(
v − u
v

)]
+ u

(
x∗k − x∗k−1

)
. (12)

The average capacity cost per period is

AP =
1

P

P∑
k=1

E [a(ot,k)] = vσ̄o,Pϕ

[
Φ−1

(
v − u
v

)]
+ uµ, (13)

where σ̄o,P = P−1
∑P
k=1 σo,k is the average standard deviation of the orders.

The total average cost per period is then CP = JP +AP , including both inventory
costs and capacity costs.

3. The staggered traditional order-up-to policy (STOUT)

The order-up-to (OUT) policy is a popular replenishment policy for pro-
duction planning and inventory control in practice as it is available native in
many ERP/MRP systems. The OUT policy is the optimal policy for controlling
inventory related costs in non-staggered settings. The staggered equivalent of
the OUT policy is also optimal when only inventory costs are present [16]. Under
i.i.d. demand, it places all stochastic corrections (overtime or idling) in the
first period of the cycle, with the remaining periods having deterministic order
quantities. The STOUT order quantity is

ot,k = x∗k − xt,k−1. (14)

Note, xt,0 = it +
∑L
n=1 rt+n. When orders follow (14), the inventory position is

immediately raised to the optimal OUT level, x∗k, following xt,k = xt,k−1 +ot,k =
x∗k. Inserting xt,k into (4) provides

it+k+L = x∗k −Dt,k, (15)
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revealing that the inventory level is the difference between the constant term x∗k
and the random (not necessarily normal) variable Dt,k. With this, we are able
to prove:

Lemma 3. For the STOUT policy,

(a) the inventory variance is

σ2
i,k = σ2

d (k + L) ; (16)

(b) the order variance is

σ2
o,k =

{
σ2
dP when k = 1,

0 otherwise.
(17)

Remark The variance expressions in (16) and (17) (and all the other vari-
ance expressions in this paper) hold when the i.i.d. demand is drawn from
any distribution; we only require normally distributed demand when we are
considering economic performance.

We notice that the inventory cost optimal policy, STOUT, accounts for all of
the stochastic components of the cycle demand in the first order of the cycle.
A natural question now arises; what are the consequences of absorbing this
stochastic component in other periods of the cycle? This is explored in the
following proposition.

Proposition 1. When capacity and safety stock levels are optimal, and the
planned overtime or idling brings the inventory position closer to its target, i.e.
x∗0−xt,0 ≥

∑P
n=1 ot,n−E [ot,n] ≥ 0, the total cost is minimized when all overtime

is allocated to the first period of each cycle.

Although the intuition behind this proposition is simply that an hour of
overtime costs the same on Mondays as on any other weekday, it also captures the
changes in the optimal safety stock and capacity levels as overtime is reallocated
via qk.

Having fully specified the STOUT policy, we observe that the inventory
variance increases with k. We also note the following Corollary,

Corollary 1. (a) The average standard deviation of the orders, σ̄o,P = σd
√
P−1,

is decreasing in P . (b) The average standard deviation of the inventory, σ̄i,P =

σdP
−1∑P

k=1

√
k + L, is increasing in P .

Corollary 1 shows that the order cycle contains a crude mechanism for
production smoothing, and implies that the optimal reorder period may be
greater than unity. This brings into question the belief in ever-shortening order
cycles, and motivates the search for the P that minimizes the costs generated by
the STOUT policy.
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The P ∗ optimization problem is non-convex, but can be solved with an
inverse-function approach. First, we write the total cost as

CP (λ) = ψ [σ̄i,P + λ (σ̄o,P − σ̄i,P )] + µu, (18)

where ψ is a scaling factor,

ψ = vϕ

[
Φ−1

(
v − u
v

)]
+ (b+ h)ϕ

[
Φ−1

(
b

b+ h

)]
, (19)

and

λ =
vϕ
{

Φ−1 [(v − u)/v]
}

ψ
, (20)

provides the balance between inventory costs and overtime costs. The setting
λ = 1 represents capacity costs only (b = 0, or h = 0, or b+ h = 0) and λ = 0
indicates an absence of overtime costs (v = 0, or u = v). The important result
from (18) is that the total cost is a linear function of λ for any fixed P .

Proposition 2. The order cycle length P minimizes the total cost CP (λ∗) for
λ∗ ∈ [λP−1, λP ], where λ0 = 0, and

λP =
∆i

∆i + ∆o
, (21)

where ∆i = σ̄i,P+1 − σ̄i,P and ∆o = σ̄o,P − σ̄o,P+1.

We can exploit (21) to find the cost balances λ for which a given P is optimal.
As λP is increasing in P , there is never any doubt if the optimum is greater
than, equal to, or less than some candidate value of P . The values of λ for
which P ∗ < 30 are plotted in Figure 3, illustrating two properties that follow
from (A.6): P ∗ is increasing in L and in λ. λ = 1 implies zero cost of inventory
deviations, only capacity costs are present. Since the capacity cost is decreasing
in P , P ∗ →∞ as λ→ 1. Intuitively, as the cycle length increases, more temporal
aggregation (pooling) and smoothing occurs. In cases when λ→ 1, the optimal
cycle length, P ∗ increases.

3.1. The staggered order-up-to policy with equal overtime (STOUT-E)

In the STOUT policy, overtime work is concentrated to the first period of
each order cycle. We may also be interested to see the effects of distributing
the overtime work evenly over every period in the cycle compares to all-at-the-
beginning-of-the-cycle allocation; not because it is more economical (Proposition
1 revealed that the all-at-the-beginning allocation is most economic), but to see
how much money could be taken off the table from moving away from the practice
of evenly distributed overtime. Starting with the production requirements of the
STOUT policy, we divide the overtime work into P equal parts. This provides
the STOUT-E policy:

ot,k = x∗k − x∗k−1 + P−1 (x∗0 − xt,0) , (22)
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Figure 3: Optimal order cycle lengths (P ∗) under the STOUT policy.

where x∗0 = E [xt,0] = x∗P − µP is the observed inventory position at the start
of the cycle before any orders have been placed. New values of x∗k must be
computed as the variances of the inventory and the orders differ from the
variances generated by the STOUT policy.

Lemma 4. For the STOUT-E policy,

(a) the inventory variance is

σ2
i,k = σ2

d

[
k + L+

(P − k)
2

P

]
; (23)

(b) the order variance is
σ2
o,k = σ2

d/P for all k. (24)

The inventory variance of the STOUT-E policy (23) is greater than that of
STOUT. Note that σ̄o,P is identical for STOUT and STOUT-E. As a result, the
realized capacity cost will be the same, despite the difference in overtime strategy.
Thus for any relative weighting of inventory and capacity costs, the STOUT policy
dominates the STOUT-E policy. Notably, the STOUT-E inventory variance is
sometimes decreasing in k, and is minimized when k = P/2 for even P , or when
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k = (P ± 1)/2 for odd P . See Figure 4 for an example with P = 5. If one uses
a constant safety stock, the heteroskedastic inventory variance will cause the
availability to fluctuate. Availability is defined as the probability of satisfying
all demand from stock in a period, S1 = Φ(i∗k/σi,k). Figure 5 illustrates the
availability fluctuations when the safety stock is a constant based on the standard
deviation of the end-of-cycle inventory, σ2

i,P . Although not optimal, constant
safety stocks are common practice in industry. When safety stocks are set to
minimize the expected inventory costs in each period, the availability is constant
over the cycle.

Proposition 3. The STOUT-E policy has a minimum cost when λ ∈ [λP−1, λP ].

Note, while the STOUT-E policy has an optimal P ∗ given by the same approach
as the STOUT policy, P ∗|STOUT-E ≥ P ∗|STOUT due to the increased inventory
variance.
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Figure 4: The heteroskedasticity of inventory levels depends on the overtime strategy used
when P = 5, L = 0.

4. The staggered proportional order-up-to policy (SPOUT)

We have seen that the STOUT policy can exploit the order cycle length P
to strike a favourable balance between the different cost drivers. The balance
between inventory and capacity costs can also be managed by a proportional
order-up-to policy (POUT) [28], which corrects a fraction α of the inventory
position’s error each time reordering takes place. This policy has a long history
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Figure 5: Availability fluctuations following a (suboptimal) constant safety stock setting.

in the non-staggered setting, see for example, Deziel and Eilon [8], John et al.
[19], Dejonckheere et al. [7], and Balakrishnan et al. [1]. This replenishment
policy was implemented for monthly planning at the Eastman Kodak Company
[28], for weekly planning at Lexmark [10], and for the thrice daily planning at
Tesco [25]. These examples do not specify how overtime work was allocated; for
this policy, we assume that all of the overtime work is done as soon as the plan
is released to production; perhaps by extending or adding a shift, as Proposition
1 continues to hold in this setting.

To obtain the SPOUT policy, we add a proportional control parameter, α,
to the first period of the STOUT policy. Using the definition x∗0 = x∗P − µP ; the
SPOUT policy is

ot,k =

{
x∗1 − x∗0 + α (x∗0 − xt,0) , when k = 1,

x∗k − x∗k−1, otherwise.
(25)

The SPOUT orders are stationary if 0 ≤ α < 2, and the inventory is stationary
if 0 < α < 2 [9]. The variances of this policy are as follows:

Lemma 5.

(a) The inventory variance under the SPOUT policy is

σ2
i,k = σ2

d

[
k + L+

P (1− α)
2

α (2− α)

]
; (26)

(b) the variance of the orders is

σ2
o,k =

{
σ2
dαP
2−α , when k = 1,

0, otherwise.
(27)
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As SPOUT is a generalization of STOUT, several properties are inherited:
The inventory variance increases linearly with σ2

d, k, L and P . However, it is
a convex decreasing function of α. The order variance (27) decreases with P ,
and increases with α. SPOUT cannot achieve a lower inventory variance than
STOUT (they are identical when α = 1), but it can always achieve a lower order
variance. Thus, the SPOUT policy can always perform at least as well as the
STOUT policy in the presence of both inventory and capacity costs.

4.1. Finding the optimal smoothing setting α∗

We have established that the STOUT policy can smooth production by
extending the order cycle length. SPOUT also has this property, but addition-
ally can smooth production via its feedback parameter α. To compare these
approaches, we shall find the optimal α for the non-staggered (P = 1) SPOUT
policy, and compare this to the STOUT policy with an optimal order cycle length.
To obtain the optimal α for P = 1, we differentiate the total cost function under
the SPOUT policy, C1|SPOUT, with respect to α,

dC1|SPOUT

dα
=

(α+ λ− 1)(2αλ− α− λ+ 1)

λ2
− (2− α)α3L. (28)

From (28), we may observe that the optimal α∗ is independent of the mean and
standard deviation of demand. In addition, we obtain:

Corollary 2. The optimal smoothing parameter α∗ is (a) a decreasing function
of L, and (b) a decreasing function of λ.

Setting dC1|SPOUT/dα = 0, and solving for α leads to a very large expression
when L > 0, as it is a quartic function of α. However, the trivial case L = 0
provides α∗ = 1 − λ, with λ defined in (20). Figure 6 shows the results of
numerically solving for α∗ at different values of L, which confirms that α∗ ≤ 1−λ,
and that the required damping increases with the lead time. For the special case
{P = 1, L = 0} the optimal total cost is C∗1 = ψσd

√
1− λ2 + uµd. Whenever

λ > 0, this cost is lower than the minimum cost obtainable via STOUT. This
results from Proposition 4, which uses the following notation for brevity: A
SPOUT(P, α) policy is defined as a SPOUT policy with arbitrary order cycle P
and smoothing parameter α, with C|SPOUT(P,α) representing the total cost (18).
When comparing two policy settings, say SPOUT(P, α) and SPOUT(Q, β), we
assume that the remaining variables (λ, ψ, L, µ, σd) are constant and identical
between the configurations compared.

Proposition 4. There exists a variable α, such that the expected cost of a
SPOUT(1, α) policy never exceeds the expected cost of a SPOUT(P, β) policy,
i.e. C|SPOUT(1,α) ≤ C|SPOUT(P,β).

Remark Proposition 4 shows it is more economical to embed production smooth-
ing in the order policy via SPOUT than to acquire smoothing by manipulating
the order cycle length. Proposition 4 also shows that the SPOUT policy is
sufficient to avoid a capacity cost trap from short planning cycles in the absence
of fixed planning costs.
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Figure 6: Optimal values for the feedback controller α for the SPOUT policy when P = 1.

Corollary 3. The smoothing parameter α∗ → 1 as P →∞.

Remark Corollary 3 implies that when P becomes large the SPOUT policy
degenerates into the STOUT policy.

4.2. The staggered proportional policy with equal overtime

Just as the STOUT policy has an equal-overtime variant, so can one be
identified for SPOUT; we study it for the same reasons. We define the SPOUT-E
policy as

ot,k = x∗k − x∗k−1 + αP−1 (x∗0 − xt,0) . (29)

The variances required to calculate costs and availability are given below.

Lemma 6. For the SPOUT-E policy,
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(a) the inventory variance is

σ2
i,k = σ2

d

[
k + L+

(P − αk)
2

αP (2− α)

]
; (30)

(b) the order variance is

σ2
o,k =

σ2
dα

P (2− α)
. (31)

Proposition 1 still holds, indicating equal capacity costs between SPOUT
and SPOUT-E, but the inventory cost of the latter is higher, rendering the
equal-overtime policy inferior to SPOUT. When k is specified, SPOUT-E has an
inventory variance no less than STOUT-E. The minimal inventory occurs when
k = P/2 for even P , or when k = (P ± 1)/2 for odd P , just as we observed with
the STOUT-E policy. Corollary 3 also holds for SPOUT-E.

The propositions presented thus far describe how these ordering policies
operate, how they compare to each other, and how they should be configured in
terms of order cycle length, smoothing, and safety stock settings. We shall now
put these into context with a numerical study, where the features suggested by
the propositions are highlighted.

5. Numerical study

To further explore the consequences of the four policies, consider the set-up
{µ = 10, σd = 1, L = 5, b = 9, h = 1, u = 40, v = 60}2. With these settings,
the optimal SPOUT[-E] setting is {P ∗ = 1, α∗ = 0.06}, following Proposition 4
and (28). The total cost of each strategy is illustrated in Figure 7, where safety
stocks and capacity levels have been set to minimise per period costs, and α∗

has been optimized numerically for STOUT[-E] configurations where P > 1.
The SPOUT policy gives the lowest total cost, regardless of P (Proposition

4). The cost advantage that can be gained from improving the ordering policy
depends on P , as the adoption of production smoothing has a significant economic
impact when P is small. When P is large, savings can instead be realized by
changing the overtime strategy so that overtime production is collected to the
start of the order cycle (Proposition 1).

The STOUT[-E] policy does not smooth production, and therefore suffers
from impaired efficiency. Furthermore, when these policies are used, the order
cycle length plays an important role in the balancing of capacity and inventory

2It seems reasonable to assume the v = 1.5u, reflecting the practice that overtime work
to remunerated on a time-and-a-half basis. The ratio b = 9h ensures that 90% availability is
achieved when the safety stock has been set to minimize inventory costs. The relationship
between h = 1 and u = 40 reflects that per period inventory holding costs are 2.5% of the
production cost in regular hours.
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Figure 7: Total variability cost under the four policies for different order cycle lengths.

costs. If the order cycle is too long, inventory costs dominate; if it is too
short, capacity costs inflate. The STOUT policy has an optimal P at P ∗ = 23
(Proposition 2). The STOUT-E has an optimal P at P ∗ = 17 (Proposition 3).

When the order cycle is short, the production strategies without smoothing
(STOUT[-E]) suffer from high costs, while both of the smoothing policies perform
better (Proposition 4). In this case, the economic potential of smoothing
production across cycles is greater than that of the changing overtime strategy
(smoothing within cycles). The opposite holds true when the order cycle is long,
as smoothing then has less impact on the total cost (Proposition 1). In these
cases, a smart allocation of overtime within the cycle is more important.

Irrespective of demand variability and cost factors, the production control
policy should collect the inventory corrections to a short period at the beginning
of the order cycle. It is then desirable to react in a moderate but timely fashion
to keep the overtime costs in check, hence the need for production smoothing
(Propositions 1 and 4).

We shall now detail how the four policies are applied in practice.

Example 1. Suppose we are to place orders for a system with the same pa-
rameter settings as the preceding numerical example with the additional setting
of P = 5 and an initial observed inventory position of x0,0 = 47. As machine
precision should be used, the numerical calculations below are truncated instead
of rounded. The calculations below are for the STOUT policy; corresponding
calculations for the other policies appear in Table 5.

To calculate the orders in a cycle we take the following steps:

1. Determine the target inventory positions, x∗k, in the cycle. From (7) we
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obtain x∗k = µ(k + L) + σi,kΦ−1 [b/(b+ h)] = 10(k + 5) +
√
k + 5Φ−1(0.9).

For the first period, inserting k = 1 gives x∗1 = 63.13. Increment k in the
same calculation to obtain the remaining values of x∗k. For policies other
than STOUT, σi,k is calculated differently: for STOUT-E, use (23) for
SPOUT, use (26); and for SPOUT-E, use (30).

2. Obtain the deterministic production requirement by calculating the differ-
ence between the target inventory positions of consecutive periods. Take
x∗k−x∗k−1 for every value of k. For k = 1 this is x∗1−x∗0 = 63.13− 54.05 =
9.08, continuing with k = 2, x∗2−x∗1 = 10.25, and so forth. For each period
k (and for every policy), order the deterministic production requirement.

3. Calculate the deficit between the target and the actual inventory position,
x∗0 − xt,0 = 63.13− 47 = 16.13. Depending on the policy in use,

STOUT: Add the entire deficit to the first order (ot,1).

STOUT-E: Divide the deficit by P ; add to every order (ot,1 to ot,P ).

SPOUT: Multiply the deficit by α; add to the first order.

SPOUT-E: Multiply the deficit by α; divide by P , add the resulting
amount to every order.

Complete calculations for all strategies appear in Table 2.

Example 2. To find P ∗ under STOUT:

1. Identify the necessary cost parameters. In this numerical study, they are:
b = 9, h = 1, u = 40, and v = 60.

2. Calculate λ by first calculating ψ using (19) as a preliminary step before
calculating (20). In this case ψ = 60ϕ

[
Φ−1 (0.33)

]
+ 10ϕ

[
Φ−1 (0.9)

]
=

23.57. Then λ = 60ϕ
[
Φ−1(0.33)

]
/23.57 = 0.9255.

3. Inspect the L = 5 line in Figure 3 to see that λ = 0.9255 corresponds
to P ∗ = 23. If P ∗ cannot be identified on the graph, enumerate λP
from unity to some large value. When there are two successive λP values
such that λP−1 ≤ λ < λP then P ∗ has been found. In this example,
λ23 ≤ λ < λ24, or equivalently 0.92409 ≤ 0.9255 < 0.927538, demonstrating
that P ∗ = 23.

Remark. Mathematica enumerated all values of λP for P < 100 and L < 100 in
less than 1 second on an Intel i7-4600U CPU @ 2.10GHz. Should this enumeration
be computationally expensive, one may search for a value λP such that λ < λP ;
then perform a binary search.

Example 3. Using the procedures outlined above we have collected the results
for all policies under two sets of cost parameters in Table 4 for comparative
purposes. As the inventory holding and backlog costs increases, λ decreases and
α∗ increases in the SPOUT[-E] policies (as per Figure 6) and the optimal cycle
length, P ∗, in the STOUT[-E] policies decrease (as per Propositions 2 and 3).
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Period t 5 6 7 8 9 10 11

Index k 5 1 2 3 4 5 1
S

T
O

U
T

x∗k – 63.13 73.39 83.62 93.84 104.05 –

x∗k − x∗k−1 – 9.08 10.25 10.23 10.21 10.20 –

x∗0 − x0,0 – 7.05 ↓ ↓ ↓ ↓ –

o0,k – 16.13 10.25 10.23 10.21 10.20 –

S
T

O
U

T
–E

x∗k – 63.88 73.80 83.80 93.88 104.05 –

x∗k − x∗k−1 – 9.83 9.91 10 10.08 10.16 –

(x∗0 − x0,0)/P – 1.41 1.41 1.41 1.41 1.41 –

o0,k – 11.24 11.32 11.41 11.49 11.57 –

S
P

O
U

T
a

x∗k – 64.77 74.94 85.10 95.26 105.41 –

x∗k − x∗k−1 – 9.35 10.16 10.16 10.15 10.15 –

α(x∗0 − x0,0) – 8.41 ↓ ↓ ↓ ↓ –

o0,k – 17.77 10.16 10.16 10.15 10.15 –

S
P

O
U

T
–E

b x∗k – 65.45 75.44 85.44 95.45 105.47 –

x∗k − x∗k−1 – 9.98 9.99 10 10.00 10.01 –

α(x∗0 − x0,0)/P – 1.69 1.69 1.69 1.69 1.69 –

o0,k – 11.67 11.68 11.69 11.70 11.70 –

Dashes (–) refer to values unrelated to the present ordering decision. a α∗ = 0.217944
b α∗ = 0.211445; numerically optimized.

Table 3: Calculating the orders to be received in periods 6–10, when L = 5, P = 5.

6. Managerial implications

We have considered three approaches to production smoothing: (1) extending
the order cycle length; (2) deferring overtime or idling to another cycle; and
(3) smoothing overtime work or idling within the current cycle. Manipulating
the order cycle length allows managers to control the balance between inventory
and capacity costs. Increasing the cycle length decreases capacity costs at the
expense of increased inventory costs. If the STOUT policy is used, cycle length
increases are an indirect way to implement production smoothing. On the other
hand, if SPOUT is used and properly configured, the order cycle should be set
to unity (i.e. daily planning) and all smoothing should be effected through a
well-tuned feedback parameter.

The option to defer overtime to future cycles is the preferred way of smoothing,
as it leads to a lower total cost than smoothing via the order cycle length.
Higher capacity costs relative to inventory costs require more smoothing, as do
production systems where the order cycle length is reduced.

The third kind of smoothing, level allocation within a cycle, is entirely
detrimental. An hour of overtime costs the same regardless of the weekday it
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Costs {h = 1, b = 9, u = 40, v = 60} {h = 10, b = 90, u = 40, v = 60}
Scaling factors {λ = 0.9255, ψ = 23.571} {λ = 0.5541, ψ = 39.3658}
Policy P ∗ α∗ P ∗ α∗

SPOUT[-E] 1 0.0600 1 0.2993
STOUT 23 — 4 —
STOUT-E 17 — 2 —

Table 4: Comparison of our staggered policies as the inventory cost increase

is worked, so this kind of smoothing has no effect on capacity costs. Inventory
costs are however minimized by correcting all deviations as soon as possible, i.e.
doing all overtime or idling at the start of each cycle.

In summary, a well-tuned proportional policy is best, where the order cycle
is as short as possible, and where all overtime is done at the start of the cycle.
Ideally, the order cycle length should be unity, removing staggering altogether.

In practice, we often find that companies use a STOUT or STOUT-E policy
with order cycles of a week or more, as these policies are natural extensions of
the ubiquitous order-up-to policy. The ideal state is however a combination of
smoothing and a short order cycle length. To reach this state, the appropriate
course of action is first to implement smoothing and proper overtime allocation
(via SPOUT), and thereafter to reduce the order cycle length. This sequence
ensures that the total cost of production decreases as one implements the changes.
Should one reduce the order cycle length before smoothing is implemented,
capacity costs may soar as the smoothing effect of the order cycle length is lost:
We may call this the capacity cost trap associated with the order cycle length.
This, along with the preferred improvement path is illustrated in Figure 8.

Alternatively, current planning practice may be to chase daily demand in a
pure pull or pass-on-orders mode. This is equivalent to STOUT with unit cycle
length (i.e. OUT) and is optimal in the presence of inventory only costs. In the
presence of capacity costs, level scheduling (with the level recalculated every
P periods via the STOUT-E policy) dominates the OUT policy. This strategy
is, in turn, dominated by level scheduling and accounting for all stochastic
deviations as quickly as possible via the STOUT policy, which may have a
different planning cycle length. However, the level schedule route is in fact a
dead end; it is sufficient to keep the unit cycle length and smooth the demand
variability with the SPOUT policy.

7. Concluding remarks

Cyclical planning affords production systems new ways for production smooth-
ing. In particular, the length of the order cycle has an intrinsic smoothing effect
that appears even when a conventional staggered OUT policy is used. The other
type of smoothing comes from reallocating overtime within the cycle, but this is
ineffective. Instead, excessive overtime or idling should be shifted across cycles,
into the future.
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Figure 8: Avoid the capacity cost trap by improving the order policy before reducing the order
cycle length.

These findings rely on two fundamental assumptions: (1) that demand is i.i.d.,
and (2) that the capacity cost includes an installed (fixed) capacity cost and the
opportunity to pay overtime for output beyond the installed base. When the
first assumption is relaxed, as with autocorrelated demand, a different overtime
allocation within the same cycle may be beneficial [16]. The second assumption,
of piecewise linear capacity costs, is central to the conclusions, but it only applies
to production contexts where the marginal cost of overtime is fixed, meaning
that we effectively can extend a shift and pay per minute of overtime work.

Although this applies to the companies that inspired the study, other compa-
nies may require that a whole shift of overtime be worked, even if the required
production is only one unit. Other companies have an overtime cost that is the
same as for normal production. Then smoothing becomes a non-issue, and the
STOUT policy prevails. In short, the capacity cost function determines how one
should approach production smoothing, and it is not only determined by the
process type, but varies between countries and industrial contexts.

In some situations, peak demands could be met by a subcontractor with
an effectively limitless capacity, in others only a limited amount of overtime is
available in-house; there will also be cases where hard capacity limits prohibit
the production of peak orders. In general terms, the impact of hard capacity
constraints is complex with few analytical results. Ponte et al. [24] used simulation
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to show the capacity constraint had a smoothing effect on the orders with the
OUT policy; furthermore the available capacity could be considered to be a
decision variable, balancing the cost of inventory and order variability. One
might conjecture that this behaviour would also be observed in a staggered
delivery setting; we leave this for future work.

Our ultimate recommendation to managers is that they do not consider the
order cycle as just another lead time, but as a lever for balancing the variability
of inventory and production. We recommend reducing the order cycle length
only if a policy capable of smoothing across cycles is in place.
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Appendix A. Technical proofs

Proof of Lemma 1

This is essentially a newsvendor problem. The expected inventory cost in period
t+ k + L is

E [j (it,k)] = hE [xt,k −Dt,k] + (b+ h)

∫
it,k<0

(Dt,k − xt,k) dP. (A.1)

Differentiating with respect to our decision variable xt,k, setting the result equal
to zero, and solving for xt,k gives the optimality criterion h/(b+h) = P(it,k < 0).
Applying F−1i,k (·) to both sides gives (6). �

Proof of Lemma 2

Taking the expectation of (10) over ot,k gives

E [a(ot,k)] = uzk + v

∫
ot,k>zk

(ot,k − zk) dP. (A.2)

Differentiating with respect to zk, setting this equal to zero, and solving for
zk gives (v − u)/v = P(ot,k ≤ zk). Applying F−1o,k (·) to both sides gives (11),
completing the proof. �
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Proof of Lemma 3

(a) Taking the variance of (4) provides

σ2
i,k = var(xt,k) + var (Dt,k) = σ2

d (k + L) , (A.3)

as demand is i.i.d., and therefore future demand is uncorrelated with the
inventory position. For this policy xt,k = x∗k is constant over time (for each
k), providing var(xt,k) = 0.

(b) From (14), (4), and the definition ot,k = rt+k+L, we obtain

ot+P,1 = x∗1 − it+P = x∗1 −

(
x∗P −

P∑
n=1

dt+n

)
, (A.4)

which leads to σ2
o,1 = σ2

dP . For the remaining periods with k > 1, ot,k =
E [ot,k] = x∗k − x∗k−1, and therefore σ2

o,k = 0, completing the proof. �

Proof of Proposition 1
Let qk ≥ 0,

∑P
k=1 qk = 1 represent the allocation of overtime or idling within each

cycle, such that ot,k = qk
∑P
n=1 ot,n. The variance is σ2

o,k = q2k var
(∑P

n=1 ot,n

)
which leads to

σ̄o,P =
1

P

P∑
k=1

√
q2kvar

(∑P

n=1
ot,n

)
=

1

P

√
var

(∑P

n=1
ot,n

)
, (A.5)

revealing that qk has no influence on the capacity cost. To minimize the inventory
cost JP , we minimize the inventory variance of each period. It is obtained through
(4) as σ2

i,k = var (xt,k) + var (Dt,k), of which only var (xt,k) may be influenced.

As xt,k = xt,0 +
∑k
m=1 qm

∑k
n=1 ot,n, we find that var (xt,k) is minimized when

q1 = 1, which also minimizes σ̄i,P , JP , and hence CP . �

Proof of Corollary 1

(a) Is obvious.

(b) It is sufficient to show that ∀P,
∑P
k=1

√
k + L > P . Without further

consequences, consider the case when L = 0. The first addend of the sum is√
k = 1 = 1; subsequent addends are increasing and ∀P,

∑P
k=1

√
k + L > P .

Therefore σ̄i,P is increasing in P . �

Proof of Proposition 2
Let λP be the point at which we are indifferent between the choice of P or
P + 1, occurring when CP (λP ) = CP+1 (λP ). Solving for λP gives (21), which
is equivalent to

λP = 1−
[
1 +

(√
P +

P√
P + 1

)
σi,P+1 − σ̄i,P

σd

]−1
. (A.6)

From this expression, it is clear that λP is increasing in P . Therefore, P
minimises costs under the STOUT policy when λ ∈ [λP−1, λP ]. �
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Proof of Lemma 4

(a) From (4) and (22) we see that xt,P = x∗P . Consequently, xt,0 = x∗P −∑P
n=1 dt−P+n. The inventory position can then be expressed as

xt,k = x∗k −
P − k
P

P∑
n=1

(dt−n − µ) , (A.7)

which provides the variance of the inventory position,

var (xt,k) = σ2
d

(P − k)
2

P
. (A.8)

Recall that future demand is uncorrelated with the inventory position:

σ2
i,k = var(xt,k) + var (Dt,k) = σ2

d

[
k + L+

(P − k)
2

P

]
, (A.9)

and the first part of the proof is complete.

(b) Note that xt,0 = x∗0 −
∑P
n=1 (dt−P+n − µ), which when inserted in (22)

provides

ot,k = x∗k − x∗k−1 +

P∑
n=1

dt−P+n − µ
P

. (A.10)

Taking the variance of (A.10) gives σ2
o,k = σ2

d/P , completing the proof. �

Proof of Proposition 3

This follows by showing that λP is increasing. From (21), we observe that λP is
increasing if ∆i ≥ ∆o. Since ∆o|STOUT = ∆o|STOUT-E, it remains to be shown
that ∆i|STOUT-E ≥ ∆i|STOUT. The latter inequality can be rearranged as

σ̄i,P+1|STOUT-E − σ̄i,P+1|STOUT ≥ σ̄i,P |STOUT-E − σ̄i,P |STOUT. (A.11)

As this inequality compares successive values of P , the inequality holds if
σ̄i,P |STOUT-E − σ̄i,P |STOUT is increasing in P . The right hand side of (A.11)

is an average of square root terms: P−1
(∑P

k=1

√
k + L+ (P−k)2

P −
√
k + L

)
.

This can be seen to be increasing by differencing the term (P−k)2
P , providing

(P+1−k)2
P+1 − (P−k)2

P = P 2+P−k2
P (P+1) , which is positive for P ≥ k. As the average of

an increasing function is also increasing, the inequality in (A.11) holds. �

27

Hedenstierna, C.P.T., and Disney, S.M., (2018), "Avoiding the capacity cost trap: Three means of smoothing under cyclical production planning", 
International Journal of Production Economics, 201, 149-162. DOI: 10.1016/j.ijpe.2018.04.008.



Proof of Lemma 5

(a) First, we express xt,0 in terms of xt−P,0

xt,0 = xt−P,0 +
k∑

n=1

ot−P,n − dt−P+n

= xt−P,0 + x∗P − x∗0 + α (x∗0 − xt−P,0)−
P∑
n=1

dt−P+n

= (1− α)xt−P,0 + αx∗0 −
P∑
n=1

εt−P+n.

(A.12)

Continuing the recursion q cycles back gives

xt,0 = (1− α)
q
xt−qP,0 +

q∑
m=1

(1− α)
m−1

[
αx∗0 −

P∑
n=1

εt−mP+n

]
. (A.13)

When q →∞ we obtain

xt,0 = x∗0 −
P∑
n=1

∞∑
m=1

(1− α)
m−1

εt−mP+n, (A.14)

which reveals the expectation E [xt,0] = x∗0. As xt,k = xt,0 +
∑k
n=1 ot,n

xt,k = x∗k −
P∑
n=1

∞∑
m=1

(1− α)
m
εt−mP+n, (A.15)

taking the variance of xt,k and adding the variance of lead-time demand
gives

σ2
i,k = σ2

d

[
k + L+

P (1− α)
2

α (2− α)

]
,

completing this part of the proof.

(b) Inserting (A.14) in (25) provides

ot,1 = x∗1 − x∗0 + α
P∑
n=1

∞∑
m=1

(1− α)
m−1

εt−mP+n. (A.16)

Taking the variance gives

σ2
o,1 =

σ2
dαP

2− α
.

For k 6= 1, the orders are constant, therefore ∀k > 1, σ2
o,k = 0, and the proof

is complete. �
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Proof of Corollary 2

(a) Differencing the first-order criterion (28) with respect to L provides

α3(α− 2), (A.17)

which is negative and decreasing in α, meaning that α∗ must be reduced
when incrementing L for the first-order condition to be maintained.

(b) Define the functions f(α) = σ̄o,1 and g(α) = σ̄i,1. Then, the total cost
C1 ∝ λf(α) + (1− λ)g(α), provides the first-order condition for α,

λf ′(α) + (1− λ)g′(α) = 0. (A.18)

Rearranging the first-order condition for λ yields

λ =
−g′(α)

f ′(α)− g′(α)
. (A.19)

Taking the derivative of λ w.r.t. α yields,

dλ

dα
=

σo,1(1 + Lα(3(1− α) + α2)

(α− 2)
√
ασi,1(σo,1(1− α) +

√
α3σi,1)2

, (A.20)

which is always negative, indicating λ is decreasing in α; equivalently α is
decreasing in λ. �

Proof of Proposition 4

Consider two SPOUT policy configurations, SPOUT(1, α), and SPOUT(P, β), for
the same underlying demand variance, lead time, and cost parameters. Assuming
that β and P are arbitrary, we shall set α such that the capacity cost is equal
for the two configurations, which results in a higher inventory cost for the (P, β)
configuration.

Setting the capacity cost to be equal, A|SPOUT (1,α) = A|SPOUT (P,β) using
(13), provides

1

P

√
Pβ

(2− β)
=

√
α

2− α
, (A.21)

which results in the following expression for α,

α =
2β

β + P (2− β)
. (A.22)

Using (A.22) and (26), we can express the difference in the inventory variances
for a given k, ∆P = σ2

i,1|SPOUT(1,α) − σ2
i,k|SPOUT(P,β), as

(P − 1) [β + (3β − 4)P ]

4P (β − 2)
− k. (A.23)
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Differencing (A.23) by taking ∆P+1 −∆P gives

β + P (P + 1)(3β − 4)

4P (β − 2)(P + 1)
, (A.24)

which is the increase in inventory variance experienced when P increases for
a fixed k. On the permissible parameter range {0 < β ≤ 2, P ∈ Z+}, the
supremum of (A.24) is ½, as β → 0, which may be verified by differentiating
(A.24) with respect to β. As σ2

i,1|SPOUT(1,α) = σ2
i,1|SPOUT(1,β), the supremum of

(A.24) implies that σ2
i,1|SPOUT(1,α)−σ2

i,k|SPOUT(P,β) ≤ k−1/2, and by extension

that σ2
i,1|SPOUT(1,α) − σ2

i,2|SPOUT(P,β) ≤ k − P/2. This further implies that
C|SPOUT(1,α) ≤ C|SPOUT(P,β) if for positive m,

P∑
k=1

√
m+ 1/2 + P/2 ≤

P∑
k=1

√
m+ k, (A.25)

which is true as a consequence of Jensen’s inequality. Note, here m is a constant
term related to the costs and the normal distribution, see (9) and (13). This
completes the proof. �

Proof of Corollary 3

The total cost C is a weighted sum of σ̄o,P and σ̄i,P . First we observe that
limP→∞ σ̄o,P = 0, eliminating the influence of σ̄o,P . Remaining is σ̄i,P , which
can be minimized by minimizing σ2

i,k, providing arg minα σ
2
i,P = 1. �

Proof of Lemma 6

(a) In Lemma 5(a), replacing the SPOUT orders (25) with the SPOUT-E
orders (29), produces the same expression for xt,0, which is (A.14). As

xt,k = xt,0 +
∑k
n=1 ot,n we obtain

xt,k = x∗k − x∗0 +
αk

P
(x∗0 − xt,0)

= x∗k −
P∑
n=1

∞∑
m=1

P − αk
P

(1− α)
m−1

εt−mP+n.

(A.26)

Taking the variance of xt,k and adding the variance of lead-time demand,
σ2
d (k + L), gives (30) completing this part of the proof.

(b) Inserting (A.14) into (29) provides

ot,k = x∗k − x∗k−1 +
P∑
n=1

∞∑
m=1

α

P
(1− α)

m−1
εt−mP+n. (A.27)

Taking the variance gives (31), completing the proof. �

Appendix B. Table of notation
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Symbol Domain Description
·|POLICY — Any variable conditional on the POLICY
α [0,2) The proportional smoothing parameter
α∗ [0,2) An optimal proportional smoothing parameter
δi, δo R The change in σ̄ from incrementing P
λ [0,1] The relative weighting of capacity costs to inventory costs
λP [0,1] The relative weighting of capacity costs to inventory costs

in a policy with cycle length P
µ R Mean demand
Φ(·) R CDF of the standard normal distribution
Φ(·)−1 R Inverse CDF of the standard normal distribution
ψ R A cost scaling factor
σ2
i,k R Variance of the inventory observed after the kth receipt

in a cycle
σ2
o,k R Variance of the kth production order in a cycle

σ2
d R Variance of demand
σ̄i,P R Average standard deviation of the inventory level
σ̄o,P R Average standard deviation of production orders
εt R Random deviation from the mean of period t’s demand
ϕ(·) R Probability density function of the standard normal

distribution
a(ot,k) R Single-period capacity cost for order quantity ot,k with

installed capacity zk
AP R Expected long-run capacity cost per period
b R+ Inventory backlog cost per unit and period
CP R The expected long-run cost of capacity and inventory in

a policy with cycle length P
Dt,k R Total demand from order placement to receipt
dt R Demand in period t
F−1it,k

R Inverse CDF of it,k
F−1ot,k

R Inverse CDF of ot,k
h R+ Inventory holding cost per unit and period
i∗k R Optimal target inventory level, when the kth order is

received for a given policy
it,k R On-hand inventory recorded as received in period

t+ k + L
it R On-hand inventory in period t
j(it,k) R The single-period inventory cost for inventory level it,k
JP R Expected long-run inventory cost per period
k Z+ Index of production order, as in the kth placed in period t
L Z0 The lead time from order release until produced and

accounted for as inventory
ot,k R The production amount ordered for the kth order placed

in period t
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Symbol Domain Description
P Z+ Order cycle length, i.e. periods between two successive

ordering occasions
qk R The fractional allocation of a cycle’s overtime or idling to

the kth order
rt R Receipts from production, recorded as inventory in period t
t N Time period
u R+ Capacity cost under regular production
v R+ Unit capacity cost under overtime production
x∗k R Optimal inventory position associated with the kth order

of a cycle for a given policy
xt,0 R The inventory position in period t before any order is

placed
xt,k R The inventory position in period t after placing the kth

order
z R Capacity reserved at the regular price
zk R Capacity reserved at the regular price for the kth order

in a cycle
Table B.5: Summary of notation
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