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Abstrat

We study the impat of stohasti lead times with order rossover on inventory

osts and safety stoks in the order-up-to (OUT) poliy. To motivate our researh we

present global logistis data whih violates the traditional assumption that lead time

demand is normally distributed. We also observe that order rossover is a ommon

and important phenomena in real supply hains. We present a new method for

determining the distribution of the number of open orders. Using this method we

identify the distribution of inventory levels when orders and the work-in-proess

are orrelated. This orrelation is present when demand is auto-orrelated, demand

foreasts are generated with non-optimal methods, or when ertain ordering poliies

are present. Our method allows us to obtain exat safety stok requirements for

the so-alled proportional order-up-to (POUT) poliy, a popular, implementable,

linear generalization of the OUT poliy. We highlight that the OUT replenishment

poliy is not ost optimal in global supply hains, as we are able to demonstrate

the POUT poliy always outperforms it under order rossovers. We show that

unlike the onstant lead-time ase, minimum safety stoks and minimal inventory

variane do not always lead to minimum osts under stohasti lead-times with

order rossover. We also highlight an interesting side e�et of minimizing inventory

osts under stohasti lead times with order rossover with the POUT poliy�an

often signi�ant redution in the order variane.

Keywords: Stohasti lead-times; Safety stok; Order ross-over; Order-Up-To poliy;

Global supply hains.
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1 Introdution

Global souring often allows aess to low-ost supply but is frequently assoiated with

long and variable lead times. These longer and more variable lead times bring with them a

number of ompliations and potential pitfalls, from both a ost and a servie perspetive

(Stalk 2006). In partiular, inventory planners must now aount for unertainty in both

demand and lead time when determining safety stok levels (Warburton & Stratton 2002).

We add to the literature on planning with stohasti lead times by formulating and

testing a alulation of safety stok that re�ets these real-world ompliations. Our

method allows for order rossover and orrelation between pipeline inventory and re-

plenishment orders, a fator often ignored. We introdue a novel approah to better

understand the distribution of outstanding orders when lead times are unertain.

This researh was motivated by both pratial and analytial issues. Pratially,

we have traked and analyzed logistis data for global supply hains for both major

forwarders and retailers, and were struk by the violations of the lead time normality

assumption see Fig. 1. Furthermore, most inventory models do not allow for order

rossover where shipments are reeived in a di�erent sequene from whih they were

dispathed, yet variable shipment delays, lerial errors, and random ustom inspetions

an easily delay a shipment long enough for others to pass it. Robinson et al. (2001) also

provide real-world examples of order rossover. Another investigation we have onduted

is summarised in Figs. 2 and 3. Fig. 2 shows the distribution lead time between a supplier

in Colorado, USA and a ustomer in Shenzhen, China. Fig. 3 traks how many queue

positions eah shipment gained or lost between the date-sorted list of dispathes and the

date-sorted list of arrivals. There are learly a signi�ant amount of order rossovers

nearly 40% of orders ross.

From the analytial perspetive, two presriptions for inventory management are

widely disseminated. These approahes use either an average (or maximum) lead time

in the onstant lead time reorder point solution or assume that the demand during the

lead time is normally distributed and then use the mean and variane of a random sum

of random variables to determine the reorder point. Neither approah is well-suited to

global supply hains with long transit times and multiple hand-o�s. Rationalizations

have been made for what is learly a suspet assumption (Chopra et al. 2004, Eppen &

Martin 1988, Tyworth & O'Neill 1997).

This paper develops an exat theoretial treatment of the impat of the stohasti

lead times with order rossover on the probability density funtion (pdf) of the net stok

levels. As we progressed in our investigations, we also began questioning the well-known

assertion (Kaplan 1970) that the order-up-to (OUT) model is always a good �t for global

supply hains. We �nd that, when there is order rossover, lower average inventories are

possible when the ordering strategy follows the linear proportional order-up-to (POUT)
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then study the POUT poliy and present a new method for determining the pdf of the

inventory levels in Setion 4.3. This method allows for order rossover and is required

as the orders and the WIP beome orrelated in the POUT poliy. Setion 5 presents a

numerial example. Setion 6 applies our theory to the empirial lead time distributions

in Fig. 1 and Fig. 2. Setion 7 onludes.

2 Literature Review

As with other reent treatments of these issues, we work in the periodi review, base

stok inventory management framework (Bishak et al. 2014, Muharremoglu & Yang

2010, Srinivasan et al. 2011). Several streams of researh are partiularly relevant to our

goal of better understanding the e�ets of stohasti lead times that are virtually ertain

to ome up in global supply hains.

1. Determining order quantities: Simon (1952) outlined a mehanism for determining

order quantities based on information about demand, inventory, WIP, lead times,

and demand variability. Later, Kaplan (1970) proved that the so-alled base stok

or OUT inventory proedures were ost-optimal for stohasti lead times with no

order rossover and independene between lead times and the number and size of

open orders. This result is still widely ited and used today. In this paper, we

suggest an alternative proedure for sizing orders based on a linear generalization

of the OUT poliy (Dejonkheere et al. 2003).

2. Determining safety stoks: Replenishment systems require safety stok targets, T ,

to be spei�ed; T is the average inventory level. This is usually ahieved with

T = Φ−1[α]σ
√
1 + k, where σ is the standard deviation of demand, k is the replen-

ishment lead time, and Φ−1[α] is the inverse of the normal umulative distribution

funtion the `safety fator' that ahieves an availability of α. This mainstream

formula expliitly inorporates demand variability, but does not do the same for

lead time variability. As lead times lengthen and proess omplexity inreases

with globalization, ignoring lead time variability seems ill-advised at best. Order

rossover and orrelation between orders and WIP, in partiular, are real possibili-

ties (Bradley & Robinson 2005, Muharremoglu & Yang 2010, Robinson et al. 2001,

2008, Srinivasan et al. 2011).

3. Charaterizing variability : Reorder points and safety stok levels in a variable lead

time setting are often based on the variane of a random sum of random vari-

ables. This seond order moment is then used to set safety stok requirements via

T = Φ−1[α]
√

k̄σ2 + µ2σ2
k where {k̄, σ2

k} is the mean and variane of the lead time

and {µ, σ2} is the mean and variane of the demand. This approah assumes that
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the inventory levels are normally distributed. It is also a popular approah, despite

having been shown to result in lear errors for even simple systems (Chopra et al.

2004, Eppen & Martin 1988, Tadikamala 1984, Tyworth & O'Neill 1997) and some-

what more sophistiated treatments being available (Cahon & Terwiesh 2009,

Silver et al. 1998).

Textbooks treatments of inventory planning and ordering poliies generally start with

purely deterministi models, suh as the eonomi order quantity model, that posit on-

stant demand and lead times. Typially, they then progress to `probabilisti' models,

suh as Reorder Point, (Q,R) and OUT models, that aount for demand variability

and foreast errors by inorporating safety stok alulations into the setting of reorder

points.

A few textbooks then try to add provisions for understanding lead time variability,

usually through the well-known formula for omputing the variane of a random sum of

random numbers (Brown 1963, Feller 1966). Textbooks often then emphasize the need

to have su�ient inventory on hand and on order, to over ustomer demands until the

next order arrives. Thus, they all out the ritial issue of the demand during the lead

time. Unfortunately, many texts simply assume that lead times are stable enough to

be onsidered onstant or that an unertain demand ombined with an unertain lead

time will result in a normal distribution of demand during the lead time. This has the

advantage of resulting in a fairly simple safety stok alulation, but its reliability is

in question. Others, (Axsäter 2000, for example) separate the problem into two lasses:

those without order rossover, whih an be modeled using queuing theory, and those with

rossover whih an be approximated by the random sum of random variables approah.

With longer global supply hains, these assumptions beome less tenable. Robinson

et al. (2001) laimed that order rossover is atually fairly ommon, and our experiene

is onsistent with their assertion (see Fig. 3). They found that using the shortfall

distribution for planning purposes, rather than the distribution of lead time demand,

results in better inventory performane. Although in later papers they aknowledge the

usefulness of approximations (Robinson et al. 2008, Bradley & Robinson 2005), their

fundamental insight is one that we build on in this researh. Another important stream

of researh on order rossover involves the onept of an e�etive lead time (Hayya et al.

2011). This refers to the fat that the order rossover has the e�et of reduing the

average lead time.

There are pratial issues that introdue unertainty and variability into lead times

from multiple soures. These inlude: oean issues (Saldanha et al. 2009), import issues

(Leahman & Jula 2012, Jula & Leahman 2011), transit reliability (Caplie & Kalkani

2012, Kalkani & Caplie 2012), ontainers (Fransoo & Lee 2012), and general issues

(Stalk 2006).
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There are also a number of ommon inventory approahes to studying the stohasti

lead time problem. They an be lassi�ed as follows:

1. Lead times desribed by distribution funtions (Baghi et al. 1986, Bishak et al.

2014, Chopra et al. 2004, Eppen & Martin 1988, Hayya et al. 2008, 2011, Kim et al.

2006, Mentzer & Krishnan 1985).

2. OUT and base stok poliies and proedures (Bishak et al. 2014, Hayya et al. 2011,

Kaplan 1970).

3. Correlated and non-i.i.d. lead times (Bishak et al. 2014, Muharremoglu & Yang

2010).

4. Order rossovers (Bishak et al. 2014, Hayya et al. 2011, Muharremoglu & Yang

2010, Robinson et al. 2001, 2008, Srinivasan et al. 2011).

5. E�etive lead times with order rossover (Bishak et al. 2014, Hayya et al. 2011).

6. Stohasti lead times and the bullwhip e�et (Chat�eld et al. 2004, Kim et al.

2006).

7. Endogenous lead times, where there may also be orrelation between the orders and

the WIP (Boute et al. 2014, So & Zheng 2003).

3 Safety Stoks, Lead Times and Demand

Kaplan (1970) found that the OUT poliy will result in an optimal inventory ost if

inoming orders do not ross. A natural question then arises: Is this still the ase when

the OUT poliy is used in the presene of stohasti lead times with rossovers? We

show that it is not as we are able to �nd a linear poliy that outperforms the OUT

poliy. Whilst our poliy may not be the optimal poliy itself (see Srinivasan et al. 2011,

where harateristis of the optimal non-linear poliy are disussed), it is a linear poliy

that is well understood and implementable.

Our objetive is always to minimise the sum of the unit inventory holding ost (h)

and the unit baklog ost (b) as given J ,

J = h(It)
+ + b(−It)

+, (1)

where It is the inventory levels at time t. It is well known that this ost is minimised

when the safety stok is set so availability equals b/(h + b) (Brown 1963). The term

availability is de�ned as:

Availability =
Number of periods without a stok-out

Total number of periods

. (2)
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Availability targets vary widely by produt type. Basi produts with no inventory

risk an be sold over long periods and tend to have high availability. On the other hand,

produts with short life yles may have stok-out rates of 50% or more (Warburton

& Stratton 2002). Low availability does not neessarily imply a low �ll rate, whih

diretly measures the proportion of ustomer demand ful�lled from stok (Chopra et al.

2004). The �ll rate is probably a more popular metri, espeially in high-volume settings.

However, due to its analytial omplexity resulting from the double aounting of baklogs

and the orrelation between demand and the net stok (Disney et al. 2015), we have not

pursued this approah herein.

3.1 Lead Times

From a pratial perspetive, the de�nition of the lead time deserves some thought. While

it is straightforward to de�ne lead time as the time from order to reeipt, in the real-

world this inludes many fators. The lead time may inlude manufaturing, shipment to

port, ship transit time, unloading (possibly with transfer to another ship), transfer to rail

and/or truk, and unloading. Within that proess are often ustoms learanes, both at

outbound export and inbound import. Any of these fators an introdue variation into

the lead time. If the produt is not too bulky, many ompanies order some fration to be

delivered quikly via air, with the remainder to be delivered by sea. It is hoped that the

availability of air transport for emergeny shipments an redue the risk of a stok-out.

Real-world logistis data typially inlude the time taken by all of the above ativities,

and any analysis is ompliated by additional issues. Companies typially ship produts

in individual ontainers, but a ship transports many suh ontainers, whih then all

experiene the same transit time and, possibly, delays. Also, ustoms learane depends

on the type of argo, random inspetions, and the port at whih it ours. For example,

learane in a busy port (e.g., Los Angeles) an take a week, while in a small port (e.g.,

Providene) it may take less than a day. This is further exaerbated by the extremely

large (and growing) ontainer liner ships that frequent the busier ports. In addition,

industrial ation an have a major impat on port performane (O'Marsh 2014).

Fig. 1 presents a olletion of data on lead times for shipments of produt in ontainers

from a port in China to a port in the United States. The �gure plots the time from the

COB to COT dates, highlighting the variability of the shipping delay. The COB is the

date a ontainer was on�rmed on-board a ship at the port of origin. The COT refers to

the ontainer out date, whih is the time that a ontainer leaves its destination port. The

key observation from Fig. 1 is that the lead time distribution is rarely normal, or even

lose to normal, and it often has a long tail. Also, this lead time atually represents only a

part of the total lead time between a fatory in China and the ustomer's warehouse in the

U.S. The time required to get the produts from the fatory, into a ontainer, delivered

8

 
Disney, S.M., Maltz, A., Wang, X., and Warburton, R.D.H., (2016), “Inventory management for stochastic lead times with order crossovers”, 

European Journal of Operational Research, 248, 473–486. ISSN: 0377-2217. DOI: 10.1016/j.ejor.2015.07.047.



to the port, through port operations, and onto a ship is not inluded. Also not inluded

are the ativities needed to get the ontainer from the destination port to the ustomer's

warehouse and to unload the ontainer. These in-bound and out-bound ativities may

take a onsiderable amount of time, and may also be quite variable. As there is little

reason to suspet that this variability is in any way orrelated to the variability in the

COB to COT lead times, we an only suppose that this variability will add to the shipping

variability.

Another ompliation in the de�nition of the lead time that ours in global supply

hains is the inlusion of the time to manufature produts `to order'. For example, many

Chinese manufaturers will not shedule the prodution of an order until it has been paid

for. In that ase, the replenishment lead time may inlude the time to shedule and

manufature the produt.

Rather than just the port-to-port lead times shown in Fig. 1, Fig. 2 gives the door-

to-door lead times between a supplier in Colorado and a manufaturer in Shenzhen,

China. This is the omplete lead time from the moment the produt leaves the fatory

in Colorado to the time it arrives and is booked in at the Shenzhen fatory. This gives

a more omplete view of the lead time than that given by Fig. 1. We were also able to

arefully investigate the timing of the dispathes and arrivals, and determined that order

rossovers were atually quite frequent. In Fig. 3, we have illustrated how many queue

positions eah shipment gained or lost in sequenes of dispathes and arrivals. Note that

when one order gains (or loses) one position in the queue another must have lost (or

gained) a position. However, if one order gains (or loses) several positions in the queue,

one or more orders may have lost (or gained) one or more positions in the queue.

3.2 Demand

While some question the use of the normal distribution to represent demand (see Stri-

jbosh et al. (2002)) the assumption of normally distributed demand has been adopted

frequently in inventory management literature (Shneeweiss 1974, Disney & Towill 2003,

Sobel 2004). We later show that under stohasti lead times the inventory distribution

is made up of a weighted sum of sub-proesses. The normally distributed demand, to-

gether with a linear system assumption means that these sub-proesses are also normally

distributed. If we further assume that demand is i.i.d., then the equations desribing the

�rst and seond moments of the inventory levels are relatively simple.

Although most real demand patterns are likely to be autoorrelated over time, i.i.d.

demands are observed in pratie. Fig. 4 shows a demand series that we have ol-

leted from an industrial equipment manufaturer and it is both normally distributed

and temporally independent. This series of data has passed the K-S test for normality

hypothesis at signi�ane of 0.1 (p = 0.1326). The property of independene an be veri-
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orreted. This approah is ommon in hardware ontrol and has a long history in both

physial systems and inventory ontrol systems (Simon 1952, Nise 2011). 0 ≤ β < 2 is

required for stability. When β = 1 the POUT poliy degenerates into the OUT poliy.

The POUT poliy has been shown to attenuate the bullwhip e�et (Disney & Towill

2003, Dejonkheere et al. 2003, Disney et al. 2004), and is relatively easy to implement

in real supply hains; see Potter & Disney (2010) and Disney et al. (2013) for two ase

studies reporting how it has been implemented in pratie. We an arrange (5) into the

following form

Ot = β(Dt − µ) + (1− β) (Ot−1 − µ) + µ. (6)

showing that the POUT poliy generates orders that are a onvex ombination of the

stohasti omponent of the demand and the previous order (Balakrishnan et al. 2004,

Boute & Van Mieghem 2014).

The term T in (5) is the target net stok the safety stok the average inventory

level. T is a deision variable to be optimized to minimize inventory holding and baklog

osts via the newsvendor priniple. k̄ is the average lead time (when a onstant lead

time exists, k̄ = k). The WIP is the inventory on order the orders plaed but not yet

reeived, the in-transit inventory and is given by

Wt =
k
∑

i=1

Ot−i = Wt−1 +Ot−1 − Rt. (7)

When k = 0, there is no WIP, as orders are reeived before the next order is generated.

With the POUT poliy, with arbitrary but onstant lead-times, i.i.d. demand and MMSE

foreasting the following expressions hold for the variane of the orders,

σ2
O =

σ2β

2− β
(8)

and the net stok variane,

σ2
I = σ2

(

k +
1

β(2− β)

)

, (9)

Disney & Towill (2003). Fig. 6 plots the bullwhip ratio (σ2
O/σ

2), and the net stok

variane ratio, NSAmp (σ2
I/σ

2), minus k as the in�uene of k is independent of β. The

bullwhip ratio is unity at β = 1, zero at β = 0,∞ at β = 2, stritly inreasing, and onvex

in β. Note that the bullwhip ratio and order variane are not a�eted by the (possibly

stohasti) lead time. The inventory variane is minimal (and equal to 1+k) when β = 1,

∞ at β = {0, 2}, and onvex in β. As the lead time k in�uenes the inventory variane,

the stohasti lead time will have an e�et on the inventory distribution. However, for
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(T ∗

POUT |α<0.5) < (T ∗

OUT |α<0.5) < 0. (13)

Note that when α > 0.5 (α < 0.5), the safety stok is positive (negative). The

onsequenes of (12) and (13) will mean that there will be levels of availability where

tighter ontrol of inventory variane redues safety stoks and levels of availability where

tighter ontrol of inventory variane inreases safety stok requirements. Redutions in

safety stok result from minimising variane when the ritial fratile lays on a leading

(inreasing) edge of the pdf; when the ritial fratile lays on a trailing (falling) edge of

the pdf, one should not minimise variane to redue safety stok. Later we will show

that the inventory pdf is multi-modal and this will lead to ases when the the ritial

fratile swaps from leading to trailing edges (and vie versa) of the pdf. This e�et was

also notied by Chopra et al. (2004).

4.2 The State of the WIP Pipeline

In the stohasti lead time ase the probability of a lead time of k periods is denoted by

pk. The minimum lead time is k = 0 and the maximum lead time is k+
. The average

lead time (Zalkind 1978) is given by

k̄ =

k+
∑

k=0

pkk. (14)

The key to understanding the impat of the stohasti lead time is to onsider the

number of open replenishment orders in the WIP pipeline. Open orders are those that

have been plaed but not yet reeived. Notie that we are not desribing the quantity of

produts on order, but the number of open orders. All orders plaed k+
or more periods

ago are guaranteed to have been reeived. However, those plaed later than k+−1 periods

ago may either be open (not yet reeived, denoted by a `1') or losed (reeived, denoted

by `0'). Sine eah of the k+
positions in the pipeline is either open or losed, this means

that there are 2k
+

possible states of the WIP pipeline.

The probability that the pipeline is in state i is denoted qi. The relationship between

pk and qi is rather omplex. To explain the relationship, onsider a ase where the lead

time possibilities are p0 = 0, p1 = 1/3, p2 = 1/2 and p3 = 1/6. Note that the probabilities

sum to unity and the maximum lead time is k+ = 3.

Table 1 desribes all of the eight possible states to the WIP pipeline. The �rst olumn

lists the state index, i. The next 4 olumns denote the probability that order plaed in

period t− x has been reeived. The �nal olumn is the produt of the four probabilities

and denotes the probability that the WIP pipeline is in a partiular state, qi.

Consider state 1. In this state all four positions in the WIP pipeline have been losed.

This is denoted by mi,j and made spei� in the �rst row with binary digits. In the seond
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row we have enumerated qi,j whih is the probability of that binary state ourring. This

means that the probability of the last order (plaed in period t−1) being reeived is zero,

q1,1 = 0 as p0 = 0. The probability of the order plaed two periods ago (at t− 2) being

reeived is q1,2 = p0 + p1, the probability of the order plaed three periods ago being

reeived is q1,3 = p0 + p1 + p2. The order plaed four period ago, at t− 4 are guaranteed

to be losed as q1,4 = p0 + p1 + p2 + p3 = 1. These probabilities are listed in the seond

row of information about the state. As there is no hane that the lead time k = 0 (as

p0 = 0), then q1, the probability of the pipeline being in state one is zero. This is also

true for states two through four.

Now onsider state 8. In this state the �rst three positions of the pipeline are open,

the fourth is losed. Reall, an open order has yet to be reeived, a losed order has been

reeived. The probability of the �rst position being open is q8,1 = 1 − p0, the seond

position being open is q8,2 = 1− (p0+p1), the third being open is q8,3 = 1− (p0+p1+p2).

The order plaed four periods ago is still guaranteed to be losed, q8,4 = 1 as before. The

probability that the pipeline is in state 8 is q8 = (1 + p0)(1 − (p0 + p1))(1 − (p0 + p1 +

p2))(p0 + p1 + p2 + p3) =
1
9
.

The omplete set of pipeline states are shown in Table 1. It should also be lear from

the proess that leads to Table 1, that the sequene in whih the orders atually arrive

does not a�et the alulation of probabilities, revealing that qi is independent of the

state of the pipeline.

We now formalize our methodology desribed above. Reall, qi is the probability that

the pipeline is in state i. Let M be a binary matrix with j = 1 to k+
olumns and i = 1

to 2k
+

rows. Assign the (i, j) element of M a value aording to

mi,j =
1 + (−1)υ

2
(15)

where υ =
⌈

2j−k+i
⌉

. Eah row of the M matrix represents a k+
-tuple of binary digits

that desribes the state of the WIP pipeline. A zero in elementmi,j of matrixM indiates

that for state i, the order plaed j−1 periods ago has been reeived (the order is losed),

unity indiates that the order plaed j − 1 periods ago has not yet been reeived (it is

open). Note, the order plaed k+
periods ago is always losed, thus j indexes through 1

to k+
to represent the lead times k = 0 to k+ − 1. There are 2k

+

rows to M, one for eah

possible state of the order pipeline. The probability that the WIP pipeline is in state i

is given by

qi =
1

2k+

k+
∏

j=1

[

1 + (−1)υ

(

2
k+
∑

k=j

pk − 1

)]

(16)

One an derive (16) by observing that in the ith pipeline state, the probability that

an order plaed j periods ago is open/losed an be expressed universally as
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Table 1: The ombinations of open orders and their assoiated probabilities.

State i t− 1, j = 1 t− 2, j = 2 t− 3, j = 3 t− 4, j = 4
Probability,

qi =
∏4

j=1 qi,j

1

0 0 0 0

q1 = 0
0 0 + 1

3
0 + 1

3
+ 1

2
0 + 1

3
+ 1

2
+ 1

6

2

0 0 1 0

q2 = 0
0 0 + 1

3
1− (0 + 1

3
+ 1

2
) 0 + 1

3
+ 1

2
+ 1

6

3

0 1 0 0

q3 = 0
0 1− (0 + 1

3
) 0 + 1

3
+ 1

2
0 + 1

3
+ 1

2
+ 1

6

4

0 1 1 0

q4 = 0
0 1− (0 + 1

3
) 1− (0 + 1

3
+ 1

2
) 0 + 1

3
+ 1

2
+ 1

6

5

1 0 0 0

q5 =
5
18

1− 0 0 + 1
3

0 + 1
3
+ 1

2
0 + 1

3
+ 1

2
+ 1

6

6

1 0 1 0

q6 =
1
18

1− 0 0 + 1
3

1− (0 + 1
3
+ 1

2
) 0 + 1

3
+ 1

2
+ 1

6

7

1 1 0 0

q7 =
5
9

1− 0 1− (0 + 1
3
) 0 + 1

3
+ 1

2
0 + 1

3
+ 1

2
+ 1

6

8

1 1 1 0

q8 =
1
9

1− 0 1− (0 + 1
3
) 1− (0 + 1

3
+ 1

2
) 0 + 1

3
+ 1

2
+ 1

6
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qi,j = mi,j

k+
∑

k=j

pk + (1−mi,j)

j−1
∑

k=1

pk =
1

2

[

1 + (−1)υ
(

2

k+
∑

k=j

pk − 1

)]

, (17)

and that qi is the produt of qi,j over j.

Robinson et al. (2001) provided an iterative algorithm for determining the distribution

of the number of open orders. It produes exatly the same results as (16) for �nitely

dimensioned disrete distributions.

4.3 The pdf of the Inventory Levels with Stohasti Lead Times

and Order Crossover.

We de�ne a proess as the sequene of a variable over time ({It}, {Wt} et). A sub-

proess is a subset of the proess where the pipeline states (the ompletion status of

previous orders, the rows in the M matrix) are the same. Eah sub-proess is normally

distributed (as the demand is normally distributed and eah sub-proess is the output

of a linear system) and the distribution of the entire proess an be multi-modal. We

now require the mean and variane of the inventory levels in eah of the sub-proesses.

We obtain this by �rst determining the distribution of the WIP in eah sub-proess and

then eah WIP sub-proess is ombined with a saled replenishment order to obtain

something we all the saled shortfall distribution. A weighted sum of the saled shortfall

distributions in eah sub-proess then forms the omplete inventory distribution.

We an rearrange (5) to obtain

It = T + µ
(

k̄ + 1
/

β
)

− (Wt +Ot/β) . (18)

For OUT poliy (that is, when β = 1) we an see that the inventory distribution is a

re�eted shortfall distribution, (Wt + Ot), translated by T + µ(k̄ + 1/β) (Zalkind 1978;

Robinson et al. 2001). When β 6= 1 the Ot omponent has beome saled by Ot/β, in

whih ase we all the distribution of (Wt+Ot/β) the saled shortfall distribution. We now

require the mean and the variane of the saled shortfall distribution for eah sub-proess.

The ompliating fators are that Ot is auto-orrelated and that the distributions of Wt

and Ot/β are orrelated with eah other. As the system is linear the simplest way to

proeed is to exploit the z-transform, whih is de�ned by

F (z) = Z {f [t]} =

∞
∑

t=0

f [t] z−t. (19)

To determine the variane of the WIP in sub-proess i, we �rst note that the variane

of the orders maintained by the POUT poliy is independent of the lead-time, as
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σ2
O

σ2
=

∞
∑

t=0

(

Z−1

{

zβ

z + β − 1

})2

=

∞
∑

t=0

(

(1− β)tβ
)2

=
β

2− β
, (20)

Disney & Towill (2003). Here, z is the z-transform operator,

Z−1 {F (z)} =
1

2πj

∮

C

F (z) zt−1dz = f [t] , (21)

f [t] is the inverse z-transform of the transfer funtion, F (z). zβ(z + β − 1)−1
is the

transfer funtion of the orders maintained by the POUT poliy under i.i.d. demand and

minimum mean squared error foreasting (Disney and Towill 2003). The relationship

between the variane ratio and the sum of the squared impulse response is known as

Tsypkin's (1964) relationship.

The pdf of the normal distribution with an argument of x, a mean of µ, and a standard

deviation of σ, is de�ned by

φ [x|µ, σ] = e−(x−µ)2/2σ2

√
2πσ

. (22)

Using this notation, (9) leads to an order proess desribed by the pdf,

φO = φ

[

x|µ,
√

σ2β
/

(2− β)

]

. (23)

The variane of WIP sub-proess i, is given by the variane of the sum of the impulse

responses of the open orders,

σ2
W,i

σ2
=

∞
∑

t=0

k+
∑

j=1

(

mi,jZ
−1

{

βz1+j

z + β − 1

})2

. (24)

wheremi,j is an element of the binary matrixM that aptures whether an order is open or

losed. The distribution of the saled orders, Ot/β, for all sub-proesses, an be obtained

using

σ2
O/β

σ2
=

∞
∑

t=0

(

Z−1 {z/(z + β − 1)}
)2

=
∞
∑

t=0

(

(1− β)t
)2

=
(

2β − β2
)

−1
=

σ2
O

σ2β2
, (25)

whih leads to the following expression for its pdf,

φO/β = φ

[

x|µ/β,
√

σ2
/

(2β − β2)

]

. (26)

The ovariane between the WIP sub-proess and the saled orders sub-proess is

given by
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cov (Wi, O/β) =

∞
∑

t=0

(

Z−1

{

∑k+

j=1
mi,j

βz1−j

z + β − 1

}

Z−1

{

z

z + β − 1

})

= cov (Wi, O) /β.

(27)

σ2
I,i, the variane of sub-proess i in the inventory distribution, is equal to the variane

of the shortfall distribution,

σ2
I,i = σ2

W,i + σ2
O

/

β2 + 2cov (Wi, O) /β. (28)

The mean of the eah of the sub-proesses of the inventory distribution an be shown

to be

µI,i = T + µ

(

k̄ −
∑k+

j=1
mi,j

)

. (29)

The omplete pdf inventory distribution is then given by

φI =
2k

+

∑

i=1

qiφ
[

x|µI,i,
√

σ2σ2
I,i

]

. (30)

We emphasize that φI is a multi-modal pdf as it is a ombination of the normally

distributed pdfs with di�erent means and varianes weighted by qi. The average inventory

is given by T and this an be set arbitrarily. However, if one wishes to minimise inventory

holding and baklog osts, T beomes a funtion of β. The variane of the omplete,

multi-modal, inventory is given by

σ2
I =

∞
∫

−∞

φI(T − x)2dx =

2k
+

∑

i=1

qi





(

k+
∑

j=1

mi,j

)2

µ2 + σ2σ2
I,i



 . (31)

Equation (31) shows that the inventory variane ontains a weighted sum of the

varianes of individual sub-proesses. Equation (31) also shows that the mean demand

has an in�uene on the variane of the inventory levels, an e�et that does not happen with

onstant lead times. An in�uene of the mean demand an be also seen in the standard

random sum of random variables variane equation, k̄σ2 + µ2σ2
k. However, we note that

(31) has a di�erent struture from this formula, and will produe signi�antly di�erent

guidane for the inventory variane and safety stok. One should not be surprised at this

beause the random variables in the random sum are drawn from di�erent distributions

in the (P)OUT poliy.

When simulating this senario in a spreadsheet for veri�ation of our analytial ap-

proah, we found that it is onvenient to generate alongside the order, Ot, a random

number used to determine the lead time for that order. We an then determine with a

simple logial test the time at whih the order is reeived. This ensures that omplete
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orders are reeived, i.e. they are not split eah individual order is reeived all at one.

As we allow for orders to ross some periods reeive more than one order; in other peri-

ods there ould be no reeipts. This is onsistent with our pratial experiene disussed

earlier. Notie that we also assumed that the random lead times are independent of all

the other system states.

5 A numerial example when k+ = 4

Consider the situation when k+ = 4. Table 2 details the pipeline states (M), the variane

of the net stok, and the mean of eah of the 2k
+

= 16 individual sub-proesses to the

inventory distribution. It an be easily shown that eah of the expressions for the variane

(and the standard deviations) of the inventory sub-proesses is in�nite at β = {0, 2}.
Furthermore, eah sub-proess has a single unique minimum, β∗

i , whih is also detailed

in Table 2. We an see that β∗

i = 1 exists only in the sub-proesses that do not ontain

order ross-overs. All of the sub-proesses that ontain order-rossover have β∗

i < 1.

An intuitive explanation of this is as follows (to avoid unneessary notation assume,

for this paragraph only, that σ = 1). Reall, the variane of eah of the inventory sub-

proesses is given by (28) and σ2
O/β

2
is in�nite at β = {0, 2}, minimised to unity at

β = 1, and onvex in β. For the sub-proesses without order rossover then σ2
W,i +

2cov(Wi, O)/β =
∑k+

j=1mi,j , a onstant. The variane of the sub-proesses without order

rossover are then learly minimised at β = 1. However, for sub-proesses with order

ross-over then σ2
W,i + 2cov(Wi, O)/β is onvex in β between β = 0 and β = 1 and

equal to

∑k+

j=1mi,j at β = {0, 1}. This implies there will be a minimum in σ2
I,i between

0 ≤ β < 1. As the omplete inventory pdf is a weighted sum of independent varianes,

some minimised with β = 1, some minimised with β < 1, then the β that minimises

the variane of the omplete inventory distribution is β∗

σ < 1. Also, the proportion of

states with order rossover inreases in k+
as the number of states with order rossovers

is given by 2k
+ − (k+ + 1). This suggests that the role of β beomes more important as

k+
inreases.

Table 2 details the �rst and seond order moments of eah of the subproesses for

a maximum lead time of k+ = 4. To identify the probability of the pipeline being

in state i, we now need to make the results in Table 2 spei� by enumerating the lead

time probabilities. Assume

{

p0 =
1
2
, p1 = p2 = p3 = 0, p4 =

1
2

}

whih we have hosen as it

allows us to better reveal the impat of the order rossovers. It may also be representative

of a supply hain where 50% of orders are sent via ship with a lead time of four and 50%

are sent by air with a lead time of zero. That is, the air shipments arrive before the next

order is made. The maximum lead time is k+ = 4 and the average lead time is k̄ = 2.

Using (5) we are then able to determine the probability that the pipeline is in state i, is

∀i, qi = 0.0625. Note that in general, the probability that the pipeline is in a partiular
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Table 2: The ombinations of open orders and their assoiated variane, mean and vari-

ane minimizing feedbak ontroller.

M j
σ2
I,i

σ2
µI,i β∗

i

i 1 2 3 4

1 0 0 0 0

1
β(2−β)

T + µk̄ 1

2 0 0 0 1

−2β5+8β4
−12β3+7β2

−2β−1
β(2−β)

T + µ(k̄ − 1) 0.656633

3 0 0 1 0

2β4
−6β3+5β2

−2β−1
β(2−β)

T + µ(k̄ − 1) 0.689845

4 0 0 1 1

2β5
−10β4+16β3

−10β2+4β+1
β(2−β)

T + µ(k̄ − 2) 0.60974

5 0 1 0 0

2β3
−3β2+2β+1
β(2−β)

T + µ(k̄ − 1) 0.751274

6 0 1 0 1

2β5
−6β4+10β3

−8β2+4β+1
β(2−β)

T + µ(k̄ − 2) 0.676129

7 0 1 1 0

−2β4+6β3
−6β2+4β+1

β(2−β)
T + µ(k̄ − 2) 0.689845

8 0 1 1 1

−2β5+8β4
−12β3+9β2

−6β−1
β(2−β)

T + µ(k̄ − 3) 0.656633

9 1 0 0 0

β2
−β−1

β(2−β)
T + µ(k̄ − 1) 1

10 1 0 0 1

−2β4+6β3
−6β2+4β+1

β(2−β)
T + µ(k̄ − 2) 0.689845

11 1 0 1 0

2β3
−4β2+4β+1
β(2−β)

T + µ(k̄ − 2) 0.751274

12 1 0 1 1

2β4
−6β3+7β2

−6β−1
β(2−β)

T + µ(k̄ − 3) 0.689845

13 1 1 0 0

−2β2+4β−1
β(2−β)

T + µ(k̄ − 2) 1

14 1 1 0 1

2β3
−5β2+6β+1
β(2−β)

T + µ(k̄ − 3) 0.751274

15 1 1 1 0

−3β2+6β+1
β(2−β)

T + µ(k̄ − 3) 1

16 1 1 1 1

−4β2+8β+1
β(2−β)

T + µ(k̄ − 4) 1

Overall - - - - Eq (31) T β∗

σ = 0.73
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and in both we have set the safety stok, T, to minimize J when h=1, b=9. In the

�rst ase µ = 100 and we an learly see that there are �ve modes in the inventory pdf.

Although the probability of being in eah of the 16 states is equal in this ase, the 16

states have only �ve unique means. This leads to the di�erenes in the size of eah mode

but, ultimately, they are all funtions of µ, σ, and the lead time probabilities. In the

other ase, µ = 40 and the distributions of the sub-proesses overlap more. Furthermore,

the omplete pdf of the µ = 40 ase has less variane, and requires less safety stok, than

the µ = 100 ase.

When µ = 100, the inventory levels have a variane of 10,300 for the OUT poliy.

Numerial experiments reveal that there is a single minimum inventory variane (or stan-

dard deviation) at β∗

σ = 0.73 and the net stok variane is 10,280 0.2% less than the

OUT variane. For the µ = 40 ase, the inventory variane maintained by the OUT

poliy is 1900, the numerially optimised feedbak parameter is the same, β∗

σ = 0.73, and

the net stok variane is 1879 a 1% redution.

Using numerial tehniques we an �nd the optimal proportional feedbak ontroller

β∗
, and safety stok T, that minimizes the inventory ost. When we have set {β∗, T} op-

timally, Fig. 8 desribes the perentage eonomi gain

(

(JOUT − JPOUT )J
−1
OUT × 100%

)

,

from using the POUT poliy. While the improvement is rather small (note that 0.8 means

0.8% not 80%), the POUT is always more eonomial than the OUT poliy. These ost

redutions are indued by a redution in the inventory variane. The variane onsists

of two parts, one with di�erent modes whih depend on µ, but independent of β; the

other one is a funtion of the varianes of eah sub-proess whih does depend on β. The

former part is dominant, hene the inventory ost bene�t of the POUT poliy is limited

and dereases in µ.

Fig. 9 plots β∗
for di�erent ost ratios and di�erent mean demands. We see that

β∗
is near unity when the availability target is (very) near 0% or 100%, but for most

availability targets β∗ ≈ 0.725. Interestingly, almost always, β∗ 6= β∗

σ implying that the

tightest inventory ontrol does not always lead to the minimal ost. The abrupt hanges

in β∗
that we see in Fig. 9 are a result of the ritial fratile moving from leading to

trailing edges of the modes in the inventory pdf. When the ost ratios are suh that the

ritial fratile lies on the leading edge, β∗
tends towards unity; when they are on a falling

edge β∗
redues. The sharp hanges our when the ritial fratile ours at a peak of

a mode.

Fig. 10 shows the safety stok requirements when β∗
is used for di�erent ost ratios.

The multi-modal nature of the µ = 100 ase results in rapid inreases in the safety stok

requirement at preditable points on the availability sales. These are also related to the

multi-modal pdf of the inventory levels as the safety stok requirements are a funtion of

the df of inventory. Furthermore, between 40-60% availability, the two demand settings

require very similar amounts of safety stok. As it is not possible to visually distinguish
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Table 3: Poliy omparison for the real-world lead time distributions between China and

the USA.

Case

OUT Poliy POUT Poliy % bene�t

σ2
O/σ

2

T ∗ J T ∗ β∗ J in J

1 44.8623 62.8224 44.8442 0.9156 62.7996 0.0363 0.8443

2 42.8846 60.3743 42.8547 0.9147 60.348 0.0436 0.8428

3 41.3303 60.0697 41.3313 0.845 59.968 0.1693 0.7316

4 39.1185 56.1142 39.1223 0.8962 56.0718 0.0756 0.8119

5 49.5645 69.04 49.4522 0.8524 68.9504 0.1298 0.7427

6 43.8723 60.8159 43.8569 0.9027 60.781 0.0574 0.8226

7 48.0291 68.6473 47.9623 0.8223 68.5191 0.1868 0.6982

8 46.0299 65.3138 45.9663 0.8197 65.1635 0.2301 0.6944

9 42.1678 59.6323 42.1636 0.9605 59.6278 0.0075 0.924

10 30.4934 43.1683 30.4933 0.9946 43.1682 0.0002 0.9892

11 56.3319 79.0999 56.1169 0.7722 78.8626 0.3 0.6289

12 39.1313 56.4232 39.1244 0.9356 56.41 0.0234 0.8789

13 47.793 66.7626 47.7706 0.8837 66.7453 0.0259 0.7916

osts (J) from optimising the safety stok (T ∗
) in the OUT poliy. Reall, the variane

of the orders in the OUT poliy is always equal to the demand variane (σO = σ = 10).

For the POUT poliy we note the minimised osts (J) from optimising both the safety

stok (T ∗
) and the feedbak ontroller (β∗

). We also alulate the variane of the orders

and the perentage redution in the inventory osts from using the POUT poliy.

The POUT poliy is always more eonomial than the OUT poliy, and the optimal

β∗ < 1. Usually, the safety stok requirements of the POUT poliy is less than the OUT

poliy, but not for ase 3 and 4. In ase 10, the probability of order rossovers is very small

and the β is very lose to unity. However in these pratial examples, the optimal β is

generally around 0.8 to 0.9. Whilst the inventory ost bene�t is very small, the redution

in the order variane is more signi�ant and omes without ost under stohasti lead

times. The order was redued by 37% in ase 11, and just 1% in ase 10, but the average

redution in order variane is 20%.
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7 Conlusions

As globalization aelerates, lengthening supply hains bring ompliations and pitfalls

assoiated with inreasing unertainty in both demand and lead time. We determined

how these harateristis atually impat the safety stok required to minimise inventory

holding and baklog osts. We began by presenting global logistis data that violated

the traditional normality assumption about lead times. We also provided a real-world

example of order rossover.

We introdued a new approah for alulating the distribution of open orders. This

allowed us to formulate and test a method that resulted in an exat solution for the

safety stok alulation. Sine the enumeration of open orders is ombinatori in nature,

it expliitly allowed for order rossover. We showed that using the POUT strategy al-

ways results in lower inventory osts when stohasti lead times with order rossover are

present. Our model settings were motivated by real-world settings and onsisted of a

disretely distributed lead time and a ontinuously distributed demand proess.

Our novel ontribution is a new method to obtain the distribution of the inventory

levels in the presene of orrelation between the WIP and orders, via the so-alled saled

shortfall distribution. This builds upon another unique ontribution the M-matrix

and the assoiated method to determine the probability of the pipeline being in eah of

its possible 2k
+

states. Furthermore, we onsidered the impat of orrelation in orders

and the ovariane between orders and WIP in a stohasti lead time setting with order

rossovers. Our methodology an be used to investigate the impat of auto-orrelated

demand, non-MMSE foreasting methods, more sophistiated replenishment poliies, and

information sharing strategies.

In the onstant lead time ase, or the non-rossover stohasti lead time ase, β = 1

will minimize the variane (or equivalently the standard deviation) of the inventory levels

and result in the minimum inventory osts when the safety stok is set to the ritial

fratile (Brown 1963). However, in the stohasti lead time with order rossover ase,

minimizing the variane of the inventory levels, by tuning β, will not always result in

minimal osts. While the optimal β∗
, may be near unity, it is never unity and hanges

signi�antly with the availability target, see Fig. 9.

The stohasti lead time ase with order rossover results in a surprising paradox.

Minimizing inventory osts does not always lead to minimum safety stoks. However, the

relationship between holding and baklog osts and the availability ahieved at the most

eonomial solution does still hold. This leads to an important insight: Costs should be

used to design the system beause fousing on minimizing inventory variane, or safety

stoks, an lead to an inorretly spei�ed system. We onlude that are must be taken

when determining safety stok requirements under a stohasti lead time with order

rossovers. One annot simply use the �rst two moments of the inventory distribution;
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one needs to use whole pdf beause the distribution of the inventory levels is multi-modal.

We have demonstrated that the OUT poliy is not the optimal poliy when order

rossover exists, as the linear POUT eonomially outperforms it. We have not proven

the optimality of the POUT poliy itself. Indeed it is known that the optimal poliy is

non-linear, see Srinivasan et al. (2011). However, the POUT poliy has a long history

and has been suessfully implemented in pratie. See Potter & Disney (2010) for details

of an implementation at the UK groery retailer, Teso and Disney et al. (2013) for an

implementation in a global printer manufaturer.

We note that our model / approah takes no aount of state dependent or autoor-

related lead times. Seasonal ongestion in ports is a well observed phenomena and this

would lead one to suspet that lead times are positively auto-orrelated. Furthermore,

in order to avoid an imminent stok-out, ompanies may air-freight argo leading to a

lead time that is a funtion of the state of the supply hain. We have also not onsid-

ered the onsequenes of non-normal demands. If demand is not normally distributed,

then the omplete pdf of eah sub-proess has to be obtained. Presumably this ould

be ahieved with onvolution but this it is beyond the sope of the paper. These issues

remain interesting areas for future work.
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