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a b s t r a c t 

Inner hair cells (IHCs) are excitable sensory cells in the inner ear that encode acoustic in- 

formation. Before the onset of hearing IHCs fire calcium-based action potentials that trig- 

ger transmitter release onto developing spiral ganglion neurones. There is accumulating 

experimental evidence that these spontaneous firing patterns are associated with matura- 

tion of the IHC synapses and hence involved in the development of hearing. The dynamics 

organising the IHCs’ electrical activity are therefore of interest. 

Building on our previous modelling work we propose a three-dimensional, reduced IHC 

model and carry out non-dimensionalisation. We show that there is a significant range of 

parameter values for which the dynamics of the reduced (three-dimensional) model map 

well onto the dynamics observed in the original biophysical (four-dimensional) IHC model. 

By estimating the typical time scales of the variables in the reduced IHC model we demon- 

strate that this model could be characterised by two fast and one slow or one fast and two 

slow variables depending on biophysically relevant parameters that control the dynamics. 

Specifically, we investigate how changes in the conductance of the voltage-gated calcium 

channels as well as the parameter corresponding to the fraction of free cytosolic calcium 

concentration in the model affect the oscillatory model bahaviour leading to transition 

from pseudo-plateau bursting to mixed-mode oscillations. Hence, using fast-slow analysis 

we are able to further our understanding of this model and reveal a path in the parameter 

space connecting pseudo-plateau bursting and mixed-mode oscillations by varying a single 

parameter in the model. 
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1. Introduction 

Inner hair cells (IHCs) are responsible for sound transduction as 90–95% of the afferent fibres of the auditory nerve

connect to IHCs via synapses. As many other physiological systems, these synapses undergo a process of maturation dur-

ing development of hearing [1,2] . There is a growing body of experimental evidence suggesting that this maturation in-

volves spontaneous, calcium-dependent electrical activity in the form of complex action potentials [2–5] . Specifically, the

calcium (Ca 2+ ) signals associated with the spontaneous electrical activity observed in immature IHCs trigger neurotransmit-

ter release, which generates action potentials in auditory neurones [6,7] . The action-potential firing in auditory neurones is

thought to be important for the development of the auditory system in terms of tonotopic (or frequency specific) organisa-

tion [8] . 

The electrical activity typically observed in immature IHCs is a combination of classical action potentials [9,10] and

prolonged action potentials that feature small plateau oscillations, called pseudo-plateau bursting [11–15] . These action

potentials are accompanied by Ca 2+ signals that in turn modulate their amplitude and duration [16,17] . As mentioned

above, the significance of the Ca 2+ dynamics observed in immature IHCs lies in its importance for neurotransmitter

release and signalling downstream the auditory pathway [6,7] . Specifically, prolonged action potentials generate Ca 2+ 

signals characterised by larger amplitude and longer duration compared to normal action potentials [17] and corre-

spond to a greater amount of calcium entry, which in turn could result in a larger amount of neurotransmitter release

[7,18] . 

In earlier work [16,17] we have proposed a biophysical model of immature IHCs that generates oscillations of the mem-

brane potential in the form of single spikes, plateau-bursting and a mixture of spikes and bursts. This model has been

parametrised using available experimental data obtained by recording the main ion-channel currents found in immature

IHCs [1,5,19–22] . Interestingly such complex oscillatory behaviour have been also reported recently in a reduced model of

the Xenopus tadpole central pattern generator, which is also a developmental system (see Figure 9B in [23] ). Our model is

of Chay and Keizer type [10] and represents a modification of the Hodgkin–Huxley model equations [9] including Ca 2+ cur-

rents coupled to an additional equation describing the dynamics of the intracellular calcium concentration ([Ca 2+ ] i ). There

are several biophysical parameters in the model that directly control the dynamics of calcium including the maximal K Ca 

channels conductance, g K Ca 
, and the ER leak rate, p ER . The role of g K Ca 

and p ER in shaping the patterns of electrical activity

in IHCs has been previously analysed and compared to experimental observations, keeping all other model parameters at a

fixed, biophysically plausible values [16,17] . 

This article advances our understanding of the mechanisms controlling IHCs electrical activity and intracellular Ca 2+ 

dynamics by investigating the effect of varying the maximal Ca 2+ channel conductance, g Ca . We show that changes in g Ca 

have a dramatic effect not only on the model solutions, but also on the characteristic time scale constants of the model. This

is important because the maximal Ca 2+ channel conductance is proportional to the number of Ca 2+ channels, which most

likely also varies during development of hearing [24] and are essential in IHCs [25] . Another significant contribution of this

study is the derivation of a reduced (3-dimensional) version of the immature IHC’s model that facilitates the application of

fast-slow analysis and allows us to understand better the solutions originally observed in the full (4-dimensional) model.

Specifically, using the reduced IHC model we are able to systematically investigate the complex oscillations observed in IHCs

in the full 3-dimensional phase space. 

We start by demonstrating in Section 2 that the number of large (normal) spikes of complex periodic orbits decreases

and, eventually, complex solutions become pseudo-plateau bursting solutions as g Ca increases. To do so, we perform nu-

merical bifurcation analysis of both the original 4-dimensional as well as reduced 3-dimensional IHC models applying an

approach similar to that taken in [17] . Thus, we are able to show that the reduced IHC model can generate similar dynam-

ics as the original IHC model using the same set of parameter values. Importnatly, non-dimensionalisation of the model

provides the characteristic time-scale constants that indicate the relative rates of change of the state variables. We use this

information to classify the model variables into fast and slow. 

In Section 3 , we perform a fast-slow analysis [26] of the reduced IHC model. We show that this model could be charac-

terised by two fast and one slow or one fast and two slow variables, depending on the choices of the parameters. Therefore,

as we change model parameters, we switch the technique used to interpret activity patterns, from 2-fast/1-slow analysis

[27] to 1-fast/2-slow analysis [28] . Specifically, the derived time scales reveal that the parameter g Ca is inversely proportional

to the time scales of the fastest and slowest variables. Hence, large g Ca causes an increase in the speed of both variables,

which shifts the balance in the time scales in the model from 2-fast/1-slow to 1-fast/2-slow. Accordingly, we show that the

periodic orbits observed at high values of g Ca can also be studied by 1-fast/2-slow analysis. Furthermore, we are able to

explain the mechanism of bursting oscillations of the reduced IHC model using 2-fast/1-slow analysis by changing one of

the model parameters that only affects the time scale of the slowest variable, namely the fraction of free cytosolic calcium

concentration, f c . Finally, we demonstrate that by changing f c , the slow variable (i.e. the intercellular Ca 2+ concentration)

becomes faster and the reduced IHC model exhibits mixed mode oscillations (MMOs) [28] that could be studied by applying

1-fast/2-slow analysis. 

Discussion of the results along with conclusions are presented in Section 4 . 
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2. Reduced IHC model 

2.1. Derivation of the reduced IHC model 

The original IHC model is defined by a set of four ordinary differential equations (ODEs) in [16] as follows: 

C m 

d V m 

d t 
= −I Ca (V m 

, Ca ) − I K (V m 

, n, h ) − I K Ca 
(V m 

, Ca ) − I leak (V m 

) , 

d n 

d t 
= 

n ∞ 

(V m 

) − n 

τn (V m 

) 
, 

d Ca 

d t 
= f c 

(
−αI Ca (V m 

, Ca ) − k PMCA 

Ca 2 

Ca 2 + K 

2 
p 

− ˆ k SERCA Ca + 

ˆ p ER (Ca ER − Ca ) 

)
, 

d h 

d t 
= 

1 

τh 
( h ∞ 

(V m 

) − h ) , (1)

where V m 

denotes the membrane potential, n the activation and h the inactivation variable for the voltage-gated K 

+ channel,

Ca = [Ca 2+ ] i the intercellular Ca 2+ concentration, and 

ˆ k SERCA = 

k SERCA 
f c 

and ˆ p ER = 

p ER 
f c 

. 

The IHC model introduced in (1) is biophysical and hence the variables representing the membrane potential ( V m 

) and

the intercellular calcium ( Ca ) as well as all model parameters, have dimensions usually used in this type of models such

as (mV) and (μM). Model parameter values along with their respective units are given in Table A.1 in Appendix A.1 , except

for the parameters that we vary, namely g Ca , g K Ca 
, p ER , f c , which we specified throughout the text. We next perform a

non-dimensionalisation of the model, with the view of estimating the characteristic rate of change of each variable, and

obtaining an approximate model, in which the rate of change of the slowest variable is set to 0 (see Appendix A.1 ). As a

result we obtain a reduced three-dimensional model. 

Non-dimensionalisation is a process which eliminates the physical units of the variables in the model [29] . There are sev-

eral objectives in making biophysical models non-dimensional. Here, we first explore the possibility to reduce the IHC model

by comparing the speed of the state variables. According to the typical time scales in (A.12) calculated in Appendix A.1 , the

state variables V m 

and n are much faster than the variables Ca and h . In the limit of τh ( τh → ∞ ) in (), we have d h 
d t 

= 0 .

Therefore one strategy to achieve a model reduction is to set h ( t ) constant for all t . 

The dynamic value of the inactivation variable h varies between 0 and 1 as it represents the probability of the voltage-

gated K 

+ channel ‘gate’ being inactivated, which depends on the membrane potential V m 

, and changes along periodic solu-

tions in the model. As we have shown previously [16,17] the periodic orbits of the IHC model are diverse, taking the form

of single spikes, pseudo-plateau bursting and mixed type (complex) solutions with different numbers of spikes. Hence, in

order to estimate a constant value for the variable h , we considered a large range of the parameters g Ca , g K Ca 
and p ER ,

where the original IHC model exhibits various periodic solutions and applied bifurcation analysis. As a result we were able

to compute the midrange values between the maxima and minima of various periodic orbits and to calculate average values

for the variable h as follows, (h Max + h Min ) / 2 . We then take the average of all averages, which gives the value h = 0 . 5732 .

The following three dimensional model, where h = 0 . 5732 is kept constant, will henceforth be referred to as the reduced IHC

model . 

C m 

d V m 

d t 
= −I Ca (V m 

, Ca ) − I K (V m 

, n ) − I K Ca 
(V m 

, Ca ) − I leak (V m 

) , 

d n 

d t 
= 

n ∞ 

(V m 

) − n 

τn (V m 

) 
, 

d Ca 

d t 
= f c 

(
−αI Ca (V m 

, Ca ) − k PMCA 

Ca 2 

Ca 2 + K 

2 
p 

− ˆ k SERCA Ca + 

ˆ p ER (Ca ER − Ca ) 

)
. (2)

2.2. Mapping the behaviour of the reduced to the original IHC model 

Before completing the derivation of the non-dimensional form of the reduced IHC model we verify below that this model

supports the range of dynamic behaviour observed in the original 4-dimensional IHC model [16,17] . To this end, we extend

the analysis presented in [16,17] by performing bifurcation analysis using g Ca as main bifurcation parameter and mapping the

behaviour of the reduced and original IHC models. The behaviour of the original 4-dimensional and reduced 3-dimensional

IHC model solutions can be investigated by examining the two-parameter bifurcation diagrams presented in Fig. 1 where

for the sake of a fair comparison we keep the ranges of the bifurcation parameter values the same in both cases. Using the

same notions as in [17] , where periodic solutions are classified according to their number of large and prolonged spikes

with small plateau oscillations, we use the notation a + b for a periodic solution with a large spikes followed by b small

spikes. For example, 1 + 4 implies a periodic solution with 1 large spike followed by a prolonged spike with 3 small plateau

oscillations. 
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Fig. 1. Two-parameter bifurcation diagrams of the original and reduced IHC model when g K Ca 
= 4. Stable regions of solutions are delimited by tracing 

the period-doubling bifurcations (solid curves) and saddle-node bifurcation of periodic solutions (dashed curves), and are coloured accordingly. Black dots 

indicate possible fold-flip bifurcation [30] and filled triangles indicate cusp bifurcations. Note that we conventionally use the notation a + b for periodic 

solution with a large spikes followed by b small spikes similar to Iosub et al. [17] . (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Fig. 1 a, the stable regions of various periodic solutions, which are normal spiking, bursting ( 0+N and (0+N)+(0+M)

solutions) and complex oscillations with one (normal) spike ( 1+N solutions) when g K Ca 
= 4, are coloured according to the

total number of oscillations of the periodic orbits in the g Ca − p ER plane. The stable regions of these periodic orbits are

computed by tracing the bifurcations that result in a change of the stability of the periodic solutions, which are period-

doubling (PD) and saddle-node bifurcation of periodic solutions (SNp). Additionally, the white regions also include chaotic

(aperiodic) solutions of the model (as shown in Figure 3a in [15]). Fig. 1 reveals that the number of large (normal) spikes

of complex periodic orbits decreases and, eventually, complex solutions become pseudo-plateau bursting solutions as g Ca 

increases. 

Next, using the same set of parameters, we also compute the stable regions of the periodic solutions of the reduced

(3D) model in Fig. 1 b. The two-parameter bifurcation diagrams depicted in Fig. 1 clearly demonstrate that the reduced IHC

model can generate oscillatory behaviours consistent with the behaviour observed in the original IHC model. In this way we

verify that the reduced (3D) IHC model approximates the dynamics found in the original (4D) IHC model reasonably well.

We find that the PD and SNp curves that enclose the stable region of a periodic solution become very close to each other in

the parameter space as shown in Fig. 1 . At the values indicated by black dots, one of the multipliers of SNp curves crosses

the unit circle at −1. Similarly, one of the multipliers of PD curves crosses the unit circle at +1, indicating the occurrence

of a fold-flip bifurcation [30] . Note that the filled triangles show the other co-dimension two bifurcation points, which are

the cusp bifurcation points where the two branches of SNp bifurcation curves of the (0+2)+(0+3) solutions meet tangentially

[31] . 

2.3. Non-dimensional reduced IHC model 

Having shown that the original and reduced IHC models support the variety of periodic solutions of interest we proceed

by investigating the time scale separation in the reduced model and performing fast-slow analysis. The dimensionless form

of the reduced IHC model could be written as: 

ˆ τv 
d v 
d τ

= F (v , n, c) 

ˆ τn 
d n 

d τ
= G (v , n ) 

ˆ τc 
d c 

d τ
= H(v , c) (3) 

where the typical time scales are 

ˆ τv := 

C m 

Q t g max 
, ˆ τn := 

1 

ˆ T n Q t 

, ˆ τc := 

Q c 

Q t f c αg Ca Q v 
(4) 

and the functions F ( v, n, c ), G ( v, n ) and H ( v, c ) on the right hand side of (3) , and g max = max (g Ca , g K , g K Ca 
) along with the

rest of the constants in (4) are given in Appendix A.1 . It is important to note that the parameter g Ca affects the time scales

of both, v and c , in the case when g Ca is the maximum conductance of the model as could be seen in (4) . Additionally, the

IHC model exhibits oscillatory behaviour when 0 < g Ca < 60 and 0 < g K Ca 
< 40 . Thus, considering the parameter values given
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Table 1 

Time scale constants for g Ca = 3, g Ca = 4, g Ca = 4.1, g Ca = 22 and 

g Ca = 24 when the scaling parameter values are Q v = 100 mV, 

Q c = 1 μM, Q t = 1 s. 

g Ca = 3 g Ca = 4 g Ca = 4.1 g Ca = 22 g Ca = 24 

ˆ τv 0.0024 0.0018 0.0017 0.0003 0.0003 

ˆ τn 0.0051 0.0051 0.0051 0.0051 0.0051 

ˆ τc 0.1137 0.0853 0.0832 0.0155 0.0142 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

in Table A.1 ( Appendix A.1 ), p ER = 0 . 0015 , f c = 0 . 004 and the scaling parameter values Q v = 100 mV, Q c = 1 μM, Q t = 1s

we obtain: 

• ˆ τv is typically an O (10 −3 ) or an O (10 −4 ) ; 
• ˆ τn is typically an O (10 −2 ) ; 
• ˆ τc takes a typical range of [ O (10 −2 ) , O (10 0 )]. 

The above non-dimensionalisation suggests two scalings for the reduced model: 

1-fast/2-slow scaling: this regime is obtained when g max � 1 so that ˆ τn , ̂  τc = O (10 −2 ) (slow variables), while ˆ τv =
O (10 −4 ) (fast variable). To interpret orbits in this regime we employ a 1-fast/2-slow analysis [32] ; 

2-fast/1-slow scaling: this regime is obtained when the parameters are fixed as in the 1-fast/2-slow scaling, with the

exception of f c , which affects solely ˆ τc and which is fixed to a small value. In this setting it is possible to obtain a

different separation of time scales, whereby ˆ τc = O (10 0 ) (slow variable), and ˆ τv , ̂  τn = O (10 −2 ) (fast variables). For this

scaling we apply a 2-fast/1-slow analysis [27] . 

We note that the parameter f c , representing the fraction of free cytosolic calcium, directly affects only the time scale

of c and could be taken small as it implicitly accounts for calcium buffering, which slows down the dynamics of calcium

dramatically [33] . Appendix A.2 contains further details on the fast-slow model decomposition we have performed. 

3. Fast-slow analysis of the reduced IHC model 

3.1. Effects of varying g Ca on the time scales 

The typical time scales (4) reveal that the calcium conductance g Ca affects the time scale constants of the intercellular

calcium ( ̂  τc ) and the membrane voltage ( ̂  τv ) in the case when g Ca is the maximum of the conductances. As mentioned above,

g Ca is inversely proportional to both ˆ τv and ˆ τc . Thus, increasing g Ca makes both the fast variable ( v ) and the slow variable

( c ) faster by decreasing their time scale constants. 

In order to investigate the dependence of the model solutions on varying g Ca we compute a one-parameter bifurcation

diagram using g Ca as a bifurcation parameter ( Fig. 2 , where g K Ca 
= 2, p ER = 0 . 0015 ). For small values of the control pa-

rameter g Ca , the stable equilibria (blue curve) undergo a supercritical Hopf bifurcation (HB 1 ) that gives rise to a family of

stable limit cycles. The inset in Fig. 2 depicts the family of complex periodic orbits with 1 large spike and a burst made of

2 plateau oscillations ( 1+2 solution). As g Ca increases, the reduced IHC model exhibits single spike solutions that terminate

at a homoclinic bifurcation HC 

∗. 

Table 1 summarises the typical time scale constants for the representative periodic orbits shown in Fig. 2 , namely g Ca = 3

for a small single limit cycle, g Ca = 4 for the complex periodic orbit ( 1+2 solution), g Ca = 4.1 for a bursting solution with

two small spikes, g Ca = 22 for a large single limit cycle and g Ca = 24 for a mixed mode oscillation (MMO). As seen in

Table 1 for small values of g Ca there are three clearly different and not very well separated time scales in the model. The

result of applying 2-fast/1-slow and 1-fast/2-slow analyses (see Appendix A.2 ) for g Ca = 4 and g Ca = 4.1 is shown in Fig. 3 ,

which depicts the fast subsystems (a) and (c) and critical manifolds (b) and (d) in the model. This figure demonstrates the

challenges faced by the fast-slow analysis in these cases since the limit cycles of the full model do not closely follow neither

the manifolds of fast nor slow subsystems. However, detailed inspection of the bifurcation diagrams shown in Fig. 3 indicates

that the active phase of the bursting solutions could be somewhat explained by the fast subsystem (see Fig. 3 (a) and (c))

while the silent phase appears to follow the critical manifold (see Fig. 3 (b) and (d)). 

Furthermore, as g Ca increases, the level of intracellular calcium in the model increases significantly, i.e. 0 < c < 4 (as shown

in Fig. A.2 (a) in Appendix A.1 ). Hence, a scaling parameter for calcium Q c = 4 would be more appropriate in this case. Since

the amplitude of voltage also increases, the time scale function for n increases and its maximum becomes ˆ T n = 400 (see

Fig. A.3 in Appendix A.1 ). Also, the calcium current in the voltage equation (3) is no longer bounded by 1 when g Ca is large.

In order to keep it bounded by 1, we have to scale it by its maximum over a period of the limit cycle when g Ca = 24,

which is max (I Ca ) = 4 (an illustration of the effects of these scalings is given in Fig. A.2 (b) and (c) in Appendix A.1 ). Now,

if we consider these rescaling constants the right hand sides in (3) become of the same order as shown in Fig. A.2 (d) in

Appendix A.1 . This yields new typical time scales as follows, ˆ τv = 0 . 0018 , ˆ τn = 0 . 0025 and ˆ τc = 0 . 0568 . Comparing these

time scale constants with those in Table 1 , we could see that the fastest ( v ) and the slowest variables ( c ) become faster as
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Fig. 2. (a) One-parameter bifurcation diagram of the reduced (3D) IHC model in the parameter g Ca when g K Ca 
= 2, p ER = 0 . 0015 , f c = 0 . 004 , and all 

other parameters of the IHC model are given in Table A.1 . The region of complex periodic orbit, 1 + 2 solution, is magnified in the middle of the diagram. 

Solid thin blue lines represent stable equilibria and the dashed red line represents unstable equilibria. Solid thick blue lines represent stable limit cycles 

and the dashed green lines represent unstable limit cycles. HB: Hopf bifurcation, TR: Torus bifurcation, HC: Homoclinic bifurcation. We plot the time series 

solutions of some of the representative periodic orbits when (b) g Ca = 3 (single spike), (c) g Ca = 4 (complex: 1+2 solution), (d) g Ca = 4.1 (bursting: 0+2 

solution), (e) g Ca = 22 (large periodic orbit) and (f) g Ca = 24 (MMO) below the bifurcation diagram. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

would be expected from the typical time scales in (3) since g Ca is increased. These new time scales rather indicate two fast

( v and n ) and one slow ( c ) variable in the model, which we use next in order to investigating the model solutions for large

g Ca . In Fig. 4 , we plot the fast subsystem bifurcation diagram of the model when g Ca = 24 and superimpose the full system

periodic orbit (black coloured) onto the fast subsystem diagram (see Appendix A.2 ). Clearly, the periodic orbit follows the

stable equilibrium branches (solid blue curves) in Fig. 4 a, projected onto two dimensions. Furthermore, the 2-fast/1-slow

analysis indicates that the mechanism behind termination of the active phase (i.e. by which the trajectory of periodic orbit

jumps from the upper equilibrium branch to the lower branch) could be via a slow passage through a Hopf bifurcation

[34] as seen in Fig. 4 b depicting the three-dimensional phase space of the model. 

For completeness we also present the results from applying 1-fast/2-slow analysis where n and c are the slow variables

and v is the only fast variable in the model. The structure of the equilibria of the desingularised system when g Ca = 22

shown in Fig. 5 (a) is the same as the desingularised system when g Ca = 24. Both have a folded node on F u , a folded focus

on F l and a saddle equilibria of the desingularised system on the repelling sheet of the critical manifold. However, the

equilibrium of the full model when g Ca = 22 is a saddle with eigenvalues are λ1 = 99.29, λ2 = 46.28 and λ3 = −12.14, but

the equilibrium of the full model when g Ca = 24 is a saddle-focus with eigenvalues, λ1 , 2 = 10 . 34 ± 123 . 62 i and λ3 = −5.31.

These saddle equilibria of the desingularised systems when g Ca = 22 and g Ca = 24 are shown as red squares in Fig. 5 . This

explains why decreasing g Ca from 24 to 22 leads to disappearance of the small oscillations at the end of the active phase

(as shown in Fig. 2 ). 

Now, if we superimpose the periodic orbit when g Ca = 22 on the critical manifold in Fig. 5 b, we note that the orbit

behaves similarly as the orbit when g Ca = 24 (see Fig. 5 c). Specifically, the orbit moves according to the slow flow (denoted

by cyan coloured single arrows) on the lower attracting sheet of the critical manifold. As it gets closer to the lower fold ( F l )

curve, the attraction becomes weaker and the trajectory jumps up to the upper attracting sheet. Once it reaches the upper

sheet, it follows the weak stable manifold (green curve) of the folded node on F u . The orbit continues following the weak

stable manifold after the node until getting near the saddle equilibrium of the slow flow denoted by a red square, where

this path on the repelling sheet is also part of the two-dimensional unstable manifold of the saddle of the full model. Once

the orbit gets closer to the saddle equilibrium, it moves to the lower attracting sheet of the critical manifold and completes

the cycle. In Fig. 5 c, small oscillations are seen near the saddle on the repelling sheet of the manifold ( S r ) since this is a

saddle-focus equilibrium of the full model in this case. Accordingly, the small oscillations spiral away from the equilibrium
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Fig. 3. Fast subsystem bifurcation diagrams and critical manifolds respectively when g Ca = 4 (a)-(b) and g Ca = 4.1 (c)-(d). For fast subsystem bifurcation 

diagrams in (a) and (c); the blue solid curves represent the stable equilibria and the red dashed curve represents unstable equilibria. The green surface 

represents the unstable periodic orbits. The transparent surface is the c -nullcline. HB: Hopf bifurcation, SN: Saddle-node bifurcation of equilibria, SNp: 

Saddle-node bifurcation of periodic orbits, HC: Homoclinic bifurcation. For the critical manifolds in (b) and (d); the green circle is a folded-node on the 

upper fold curve (F u ). The red square is the saddle equilibrium on the repelling sheet (S r ) at the critical manifold. The magenta star is a folded-node on 

the lower fold curve (F l ). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. Fast subsystem bifurcation diagram and 2-fast/1-slow analysis of the model when g Ca = 24. Two dimensional (a) and three dimensional (b) views 

of the fast subsystem analysis of the model when g Ca = 24. The blue solid curves represent the stable equilibria and the red dashed curve represents 

unstable equilibria. The green surface represents the unstable periodic orbits. The transparent surface is the c-nullcline. HB: Hopf bifurcation, SN: Saddle- 

node bifurcation of equilibria, HC: Homoclinic bifurcation. (For interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 
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Fig. 5. (a) The periodic orbit (black coloured) when g Ca = 22 (or g Ca = 24) is superimposed on the critical manifold. (Note: Superimposing the periodic 

orbit (black coloured) when g Ca = 22 and g Ca = 24 on the critical manifold produces very similar views except around the upper folds, which we showed 

separately in (b) and (c).) The thin cyan curves are the trajectories of the slow flow. The green curve is the weak stable manifold of the folded-node (green 

circle) on the upper fold curve (F u ). (b) A magnification of the critical manifold around the upper fold when g Ca = 22. The red square on the repelling 

sheet (S r ) is a saddle equilibrium. (c) A magnification of the critical manifold around the upper fold when g Ca = 24. The red square on the repelling sheet 

(S r ) is a saddle-focus equilibrium. (d) A magnification of the critical manifold around the upper fold when g Ca = 22 (or g Ca = 24). The magenta star is a 

folded-node on the lower fold curve (F l ). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 

this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

along its two dimensional unstable manifold [28] . As the oscillations grow and repeatedly intersect the repelling sheet, the

trajectory of the orbit moves to the lower attracting sheet of the critical manifold and completes the cycle. 

3.2. Effects of varying f c on the time scales 

In the previous section we investigate the effects of varying the parameter g Ca . Although changes in g Ca might be more

realistic from application point of view as the expression (or number) of voltage gated Ca 2+ channels could vary during

development [24] for the sake of better mathematical tractability it is desirable to identify a parameter that controls the

speed of only a single variable in the model. Indeed, as the typical time constants in (4) indicate the parameter f c , rep-

resenting the fraction of free to total cytosolic calcium concentration, makes a direct contribution to the time scale of the

slow variable c without affecting the time scales of the variables v and n . Specifically, the slow time scale ˆ τc = 

Q c 
Q t f c αg Ca Q v 

is

inversely proportional to the parameter f c , and f c does not appear in the fast time scale equations in (4) . As f c decreases,

ˆ τc increases, which implies that the slow variable c becomes slower. This allows us to investigate the dynamics of the var- 

ious periodic solutions of the reduced IHC model by applying fast-slow analysis using a parameter that controls the rate of

change of a single variable in the model. 

In order to ensure that we capture as wide range of dynamic behaviours as possible we choose here a different set of

parameters, namely g Ca = 2 . 4 , g K Ca 
= 18 and p ER = 0 . 0 0 097 . This allows us to capture various type of solutions such as single

spikes, bursting, complex oscillations with different number of large and small spikes and MMOs as the parameter f c varies.

We also note that the parameter g K Ca 
is now the maximum conductance of the model. 

Before turning our attention to analysing the reduced IHC model in the limit of ε = 0 , where ε represents the ratio

between the fast and slow time scales (see Appendix A.2 ), it is instructive to look at the behaviour of the full model as f c 
changes. 

In Fig. 6 , we plot representative time series solutions in the full model. As f c increases, the model produces complex

solutions with one large spike and different numbers of small spikes (from 1+11 to 1+4 solutions). Furthermore, the model
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Table 2 

Time scale constants for the values of f c whose time series solutions are 

plotted in Fig. 6 . The time scale constants for the variables v and c are ˆ τv = 

0 . 0 0 0394 and ˆ τn = 0 . 0051 , respectively. 

f c 0.0 0 0235 0.0 0 04 0.0 0 06 0.0010 0.00235 0.00244 

ˆ τc 2.4184 1.4211 0.9474 0.5684 0.2419 0.2330 

Fig. 6. Time series of periodic solutions as the parameter f c varies and g Ca = 2.4, g K Ca 
= 18, p ER = 0.0 0 097 are fixed. The model produces bursting solutions 

when f c = 0.0 0 0235 (a), complex solutions with one large spike ( 1 + 11 solution) and with two large spikes ( 2 + 5 solution) when f c = 0.0 0 04 (b) and 

f c = 0.0 0 06 (c) respectively, single spike solutions when f c = 0.001 (d) and f c = 0.00235 (e), and mixed mode oscillations (MMOs) when f c = 0.00244 (f). 

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

also produces complex periodic orbits having two large spikes followed by a burst, for example 2+5, 2+4 and 2+3 solu-

tions. We plot time series of complex periodic solutions 2+5 as a representative example (computed for f c = 0.0 0 06) in

Fig. 6 c. For a large range of the parameter f c values, the model produces single spike solutions (for instance f c = 0.001

and f c = 0.00235 in Fig. 6 d and e, respectively). We note that for f c = 0.00244 ( Fig. 6 f, the periodic orbit is a combi-

nation of large and small sub-threshold oscillations (MMO) that are qualitatively different from the complex periodic orbits

shown in Fig. 6 a–c. In order to study further the periodic solutions described above we next apply slow-fast analysis (see

Appendix A.2 for technical details). 

3.2.1. Two fast-one slow analysis 

Considering the scaling parameters Q v = 100 mV, Q c = 1 μM, Q t = 1 s and using the parameter values given in

Table A.1 in Appendix A.1 , the time constants of the reduced IHC model for the periodic orbits shown in Fig. 6 are given in

Table 2 . Specifically, Table 2 indicates that the time constants for the Fig. 6 a when f c = 0 . 0 0 0235 are ˆ τv = 0 . 0 0 0394 , ˆ τn =
0 . 0051 and ˆ τc = 2 . 4184 and the ratio between the fast and slow time scales ε = 0 . 0 0 0162 . In this case the variables v and

n evolve on time scales that are much faster than the variable c . Therefore, for the given parameter values, we can define

that v and n are the fast variables and c is the slow variable in the model. In Fig. 7 , we plot two different views of the

bifurcation diagram of the fast subsystem using c as a bifurcation parameter. As the bifurcation parameter c increases, the

stable equilibrium branch (solid blue curve) of the fast subsystem undergoes a sub-critical Hopf bifurcation (HB 1 ) and loses

stability (dashed red curve). This branch of equilibria regains stability at another sub-critical Hopf bifurcation (HB 2 ) obtained

for larger values of c . A family of unstable limit cycles (green surface) emanates from (HB 1 ) and gains stability (blue surface)

via a saddle-node bifurcation (SNp). This family of stable limit cycles vanishes in a homoclinic orbit (HC 1 ). 

A periodic orbit computed for f c = 0 . 0 0 0235 and shown in Fig. 6 a, is superimposed on the fast subsystem bifurcation

diagram in Fig. 7 . Above the c -nullcline, which is indicated by c -Null, c increases since d c 
d ̃ τ

> 0 . Additionally, the amplitude

of the small spikes within the bursting part of the periodic solution decreases until HB 1 . This behaviour can be understood

in terms of the type of the fast system equilibria, which are stable foci. As the trajectory of the full system moves away

from HB 1 the amplitude of the small spikes within the burst starts to increase as the stability of the equilibria in the fast

subsystem has changed and these are now unstable foci. However, since the c -nullcline is very close to the Hopf bifurcation

HB 1 , the slow passage through Hopf bifurcation [34] occurs in a very narrow range of c . As the amplitude of the small

spikes increases the trajectory of the full system crosses the c -nullcline multiple times. The direction of the flow is reversed

as the ratio between the average voltage above to below of the nullcline changes. Eventually the flow is attracted to the

other stable regime of the fast subsystem, which is composed of stable limit cycles. Now c decreases ( d c 
d ̃ τ

< 0 ) while the

trajectory follows the stable limit cycles region (blue surface). We note that the range of c is small in this case while the

value of f c is relatively large. This seems sufficient to force the trajectory to quickly leave the stable regime associated with
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Fig. 7. Three dimensional and two-dimensional views of the fast subsystem for the periodic orbit when f c = 0 . 0 0 0235 . The bursting periodic orbit shown 

in Fig. 6 a is superimposed on the figure. The blue solid curves represent the stable equilibria and the red dashed curve represents unstable equilibria. The 

blue and green surfaces represent the stable and unstable periodic orbits, respectively. The transparent surface is the c-nullcline. HB: Hopf bifurcation, SN: 

Saddle-node bifurcation of equilibria, SNp: Saddle-node bifurcation of periodic orbits, HC: Homoclinic bifurcation. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the limit cycles while moving left. As the trajectory crosses the saddle-node bifurcation of periodic orbits (SNp), it “rapidly”

jumps to the upper stable equilibria branch. 

In Fig. 8 , we depict fast subsystem bifurcation diagrams for different values of f c . As f c increases, the reduced IHC model

solutions do not follow the stable regions of the fast subsystem as closely as the bursting solution described above. This

indicates that the 2-fast/1-slow analysis loses its explanatory power as expected for larger f c values. This observation is

consistent with the typical time scale constants’ estimates presented in Table 2 . In particular, depending upon the parameter

values, the model could also be seen as having one fast and two slow variables. We investigate this in the following section.

3.2.2. One fast-two slow analysis 

As f c increases, the slow time scale ˆ τc becomes smaller, therefore the slow variable c becomes faster. Thus, the model

now could be regarded as having two slow variables ( n and c ) and one fast variable ( v ). Accordingly, we would like to in-

terpret the behaviour of the full model periodic solution for f c = 0.00244 in terms of the slow flow on the critical manifold

(S-shaped blue surface) by superimposing the periodic orbit (black coloured) in Fig. 9 . The manifold has two fold curves; at

v ≈ −0 . 45 (lower) and v ≈ −0 . 11 (upper). The middle surface between fold curves is repelling S r , and the top and bottom

surfaces separated by the two fold curves of the manifold are attracting. The saddle-focus equilibrium [35] , indicated by a

red square in Fig. 9 , has a pair of unstable complex conjugate eigenvalues ( λ1 , 2 = 1 . 21 ± 16 . 65 i ) and a real negative eigen-

value ( λ3 = −6 . 56 ). The interplay of the periodic orbit shown in Fig. 6 f with the desingularised slow flow (see Appendix A.2 )

gives an insight into the overall structure of the full model solution. On the lower attracting sheet of the critical manifold S a ,

the periodic orbit follows the strong stable manifold (green curve) of the folded node singularity on F l . We colour code time

when presenting the periodic orbit around the lower fold F l (see the magnified region in Fig. 9 ). As time increases, which

is indicated by the colour change from red to yellow on the periodic orbit, the small oscillations become larger around the

saddle-focus equilibrium [35] on the repelling sheet, which repeatedly intersects the repelling and attracting sheets of the

manifold. Then, it jumps to the upper attracting part of the critical manifold, where the attraction is not as strong as on the

lower sheet. After the trajectory passes the upper fold, it jumps to the lower attraction sheet of the critical manifold and

returns to the region near the singularity. Hence, it makes a full limit cycle and continues the periodic motion. 
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Fig. 8. Fast subsytem bifurcation diagrams and superimposed periodic orbits when (a) f c = 0.0 0 0235 (Bursting), (b) f c = 0.0 0 04 (Complex: 1+11 ), (c) 

f c = 0.0 0 06 (Complex: 2+5 ), (d) f c = 0.001 (Single spike), (e) f c = 0.00235 (Single spike) and (f) f c = 0.00244 (MMO). The blue solid and the red dashed 

curves represent the stable and unstable equilibria, respectively. The blue and green surfaces represent the stable and unstable periodic orbits, respectively. 

The transparent surface is the c -nullcline. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 

this article.) 
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Fig. 9. The periodic orbit when f c = 0.00244 is superimposed on the critical manifold. The green curve is the strong manifold of the node on the lower 

fold curve ( F l ). The region of small oscillations around the saddle-focus equilibrium of the full model is magnified. The colour code on the orbit around the 

small oscillations represents the time along the periodic orbit i.e. time increases from red to yellow. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Discussion 

In this paper we have made several contributions to better understanding of how immature IHC cell action potentials

are shaped and regulated, and the mechanisms that underlie these dynamics. This is important as it could provide a greater

insight into how such events may contribute to neuronal circuits and intrinsic development and more widely to understand

how complex behaviours in other systems may be generated. 

Firstly, we have investigated the role of varying a relevant biophysical parameter g Ca (that has not been previously inves-

tigated) in controlling oscillatory model behaviour. As the value of g Ca is proportional to the number of calcium channels

in IHC that could vary during development of the nervous system [24] and are essential in IHCs [25] it is important to

characterise the behaviour of the model in terms of this parameter. Specifically, we used g Ca as a bifurcation parameter

and showed that as this parameter increases, the complex oscillations lose their large spikes and become pseudo-plateau

bursting solutions. This is observed over a large parameter range, resulting in a significant increase on the amplitude and

duration of Ca 2+ signals. 

The second important contribution of this study is the reduction of the original (four-dimensional) IHC model [16] by

non-dimensionalisation to a three-dimensional model that preserves the variety of model solutions corresponding to firing

patterns observed in IHCs. We achieve this by identifying the slowest variable in the original model, i.e. the inactivation

variable associated with the voltage-gated K 

+ channels ( h ), and considering h as a fixed quantity resulting in a reduced

(three-dimensional) IHC model. In order to verify that we do not lose the rich experimentally observed dynamics [17] of

the original IHC model by fixing the slowest variable h , we carry out numerical continuation of a broad range of periodic

attractors, such as normal spiking, pseudo-plateau bursting with several plateau oscillations and complex solutions with one

and two large (normal) spikes, by tracing the bifurcations that result in a change of the stability of the periodic solutions

(i.e. period-doubling (PD) and saddle-node bifurcation of periodic solutions (SNp)) in two parameters for both the original

(4D) and the reduced (3D) IHC models. The two-parameter bifurcation diagrams confirm the qualitative agreement between

the original and the reduced models. This allows us to investigate the simpler (3D) model in order to better understand

its complex behaviour. This has the advantage that we no longer have to use projections of the original model in order to

present the results of the analysis [36] . Specifically, we are able to capture the true representation of the trajectories in three

dimensions and how various periodic orbits are organised without using phase-space projections. 

Importantly non-dimensionalisation of the IHC model provides the typical time scale constants of the dynamic variables

that enable us to classify the state variables as fast and slow according to the changes of the model parameters. Hence, hav-

ing identified differences between the time scales of the reduced (3D) IHC model, we are able to apply fast-slow analysis

in order to better understand the dynamic mechanisms underlying the behaviour of the model. The typical time scale con-

stants reveal that the parameter g Ca is inversely proportional to the time scales of both c and v when it dominates the other

conductances in the model. We show that 2-fast/1-slow analysis could not fully explain the behaviour of the model solu-

tion for large g Ca values. Applying 1-fast/2-slow analysis we are able to further demonstrate that the trajectory follows the

unstable sheet of the critical manifold for a while until it reaches the saddle equilibrium of the slow flow, thus completing

the analysis. 

Furthermore, our analysis of the model bahaviour for larger g Ca reveals mixed-model oscillations (MMOs) observed for

values of g Ca close to a torus bifurcation detected on the branch of small amplitude limit cycles originating from the right-

most Hopf bifurcation in Fig. 2 . The small oscillations in these MMOs occur at the end of a depolarised plateau that could
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be seen as an active phase of a bursting solutions. We show that such solutions are organised by a folded-node of the

desingularised system and a saddle-focus equilibrium of the full model. We also show that although the dynamic structures

of the desingularised system are the same for different values of g Ca , the type of the full model equilibrium (i.e. focus or

saddle-focus) can help in interpreting the overall behaviour of the various periodic orbits observed. In particular, the small

oscillations of the MMOs when g Ca is large could be explained by considering the saddle-focus equilibrium of the full model

( Fig. 5 ). 

The typical time scale constants also indicate that the parameter f c (the fraction of free to total cytosolic calcium) ap-

pears only in the time scale of the variable c . Therefore, varying f c affects solely the rate of change of c . We demonstrate

that the reduced IHC model exhibits bursting solutions, complex solutions with one and two large spikes, normal spiking

and MMOs as the parameter f c increases, which makes the slow variable faster. The advantage of using f c is that we are able

to generate a broad range of periodic solutions by varying a single parameter f c in the model. We showed that the mecha-

nism underlying the bursting solutions can be understood by considering the fast subsystem dynamics i.e. the 2-fast/1-slow

analysis when f c is small. If we make the slow variable c faster by increasing the parameter f c , the model exhibits MMOs,

which we analyse applying 1-fast/2-slow analysis. It is important to note that the MMOs found by increasing f c are different

compared the MMOs found for large g Ca and appear to be organised in a manner similar to the canonical model presented

in [28] . 

Finally, we find that neither the 2-fast/1-slow nor the 1-fast/2-slow analysis can fully explain the mechanism of the

complex solutions represented by mixture of action potentials/large spikes and bursting found in the model. We speculate

that this might be due to the asymptotic nature of the typical time scale constants calculated by the non-dimensionalisation

that are the lower bounds of the time scales of the state variables. However, time scale functions such as the time scale of

n ( τ n ( v )) could exhibit rapid changes corresponding to large (action potential) spiking along a complex solution’s trajectory

as τn (v ) = 0 . 0022 + 0 . 0029 e −(v Q v ) / 14 . 3 . Such rapid changes might necessitate analysis of the model considering three-time

scales [37] . Alternatively, different parts of complex solution’s trajectory could be seen as governed by different subsystems

and evolving under the fast, slow and super-slow flows [38] . Further research is needed in order to fully understand the

dynamic mechanisms of such complex solutions given the time scales in the model. 
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Appendix A 

A.1. Non-dimensionalisation of the IHC model 

The IHC model is defined by a set of four ordinary differential equations (ODEs) in [16] as 

C m 

d V m 

d t 
= −I Ca (V m 

, Ca ) − I K (V m 

, n, h ) − I K Ca 
(V m 

, Ca ) − I leak (V m 

) 

d n 

d t 
= 

n ∞ 

(V m 

) − n 

τn (V m 

) 

d Ca 

d t 
= f c 

(
−αI Ca (V m 

) − k PMCA 

Ca 2 

Ca 2 + K 

2 
p 

)
− k SERCA Ca + p ER (Ca ER − Ca ) 

d h 

d t 
= 

1 

τh 
( h ∞ 

(V m 

) − h ) (A.1)

where V m 

denotes the membrane potential, ( n ) the activation and ( h ) the inactivation variable for the voltage-gated K 

+

channel and Ca = [Ca 2+ ] i the intercellular Ca 2+ concentration. 

A.1.1. Dimensionless membrane voltage equation ( v ): 

In order to eliminate the dimensions of the membrane voltage equation in (A.1) , we have to rescale the state variables

 m 

and Ca as well as time t by some scaling constants that have the same dimensions with as variables V m 

, Ca and t .

Additionally, if we use the typical amplitude ranges for the state variables as these rescaling constants, the nondimensional

state variables will vary between 0 and 1. 

We have checked that the typical values of the membrane potential and the intercellular calcium of the IHC model are

 m 

∈ [ −60 , 0] mV and Ca ∈ [0, 1] μM. Therefore, we consider the suitable choices for the membrane voltage and intercellular

calcium as Q v = 100 mV and Q c = 1 μM, respectively. 

Rescaling V m 

= v Q v , Ca = cQ c and t = τQ t with Q t = 1 s eliminates the dimensions of V m 

, Ca and t to get the new di-

mensionless variables v and c as well as time τ . Additionally, we also rescale the Nernst potentials V Ca , V K and V leak by Q v .

Therefore, we obtain the dimensionless form of the membrane voltage ( v ) as 

C m 

Q t g max 

d v 
d τ

= −ˆ I Ca (v , c) − ˆ I K (v , n, h ) − ˆ I K Ca 
(v , c) − ˆ I leak (v ) (A.2)

https://doi.org/10.13039/501100000266
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Fig. A.1. Evolution of the function ˜ φ(c) as c changes. 

 

 

 

 

 

 

 

where g max = max { g Ca , g K , g K Ca 
, g leak } and the dimensionless currents ˆ I X = 

I X 
g max Q v 

with X ∈ {Ca, K, K Ca , leak}. 

Scaling the conductances by g max results in all terms on the right hand side (RHS) of the equation to be bounded (in

absolute values) by one. Therefore, the typical time scale for the membrane voltage v is given by C m 

Q t g max 
. 

A.1.2. Dimensionless calcium equation ( c ): 

Let us recall the intercellular calcium equation of the reduced IHC model given in (A.1) . 

d Ca 

d t 
= f c 

(
−αI Ca (V m 

, Ca ) − φ(C a ) C a − ( ̂ k SERCA + 

ˆ p ER ) Ca + 

ˆ p ER Ca ER 

)
(A.3) 

where ˆ k SERCA = 

k SERCA 
f c 

, ˆ p ER = 

p ER 
f c 

and φ(Ca ) = 

k PMCA Ca 

Ca 2 + K 2 p 
. 

Scaling V m 

= v Q v , Ca = cQ c and t = τQ t , we get the dimensionless form of the calcium equation as 

d c 

Q t d τ
= f c 

(
−ξ Ī c (v , c) − �φ̄(c) c − ( ̂ k SERCA + 

ˆ p ER ) c + 

ˆ p ER c ER 

)
(A.4) 

where ξ = 

αg Ca Q v 
Q c 

, Ī c (v , c) = 

I Ca (V m 

,Ca ) 
g Ca Q v 

, c ER = 

Ca ER 
Q c 

, ˜ φ(c) = φ(Ca ) , φ̄(c) = 

˜ φ(c) 
�

with � = max 0 ≤c≤1 
˜ φ(c) , which is well defined

since ˜ φ(c) is continuous (see Fig. A.1 ). 

In order to make all terms on the RHS of the Eq. (A.4) bounded (in absolute values) by one, we estimate the values of

constants on the RHS as 

( ̂ k SERCA + 

ˆ p ER ) is at most ≈ 10 

3 , 

( ̂  p ER c ER ) is at most ≈ 10 

3 and 

ξ = 

αg Ca Q v 

Q c 
is at most ≈ 10 

4 

with the model parameters given in Table A.1 and considering the ranges of the bifurcation parameters p ER and g Ca . After

rescaling the equation by ξ , all terms on the RHS are bounded (in absolute value) by one, and we obtain 

Q c 

Q t f c αg Ca Q v 

d c 

d τ
= −Ī c (v , c) − ζ1 φ̄(c) c − ζ2 c + ζ3 (A.5) 

where ζ1 = 

�Q c 
αg Ca Q v 

, ζ2 = 

( ̂ k SERCA + ̂ p ER ) Q c 
αg Ca Q v 

and ζ3 = 

ˆ p ER c ER Q c 
αg Ca Q v 

. 

A.1.3. Dimensionless activation variable equation (n): 

The equation of the activation variable ( n ) associated with the voltage-dependent potassium (K 

+ ) channel is given by 

d n 

Q t d τ
= 

1 

τn (v ) 
(n ∞ 

(v ) − n ) (A.6) 

As we have seen, the variable n is already dimensionless. Since we would like to bound the RHS of the IHC model in

(A.1) as a result of the process of non-dimensionalisation, we need only to check if the right hand side of (A.6) is bounded

by one. 

We have 0 ≤ n ≤ 1 and 0 ≤ n ∞ 

( v ) ≤ 1, hence | n − n ∞ 

(v ) | ≤ 1 . Fig. A.3 shows the behaviour of the inverse of the voltage

dependent time scale function of the gating variable, which is given by 

1 

τ (v ) 
= (0 . 0022 + 0 . 0029 e −v Q v / 14 . 3 ) −1 (A.7) 
n 
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Fig. A.2. (a) Time series for the orbit shown in Fig. 4 (a). (b) Right-hand side evaluated along the solution in (a), highlighting a difference in magnitudes of 

the respective components. (c) Right-hand side of (3) evaluated along the solution in (a). (d) A further rescaling with Q c = 4 , ˆ T n = 400 , ˆ τv = C m / 4 , leads to 

a right-hand side of order 1. 

 

 

 

Let ˆ T n := max −0 . 6 ≤v ≤0 
1 

τn (v ) 
. Therefore, we can rescale the function 

1 
τn (v ) 

by its maximum to get a new dimensionless time

scale function, which is bounded (in absolute values) by one; i.e. 

1 

τ̄n (v ) 
:= 

1 /τn (v ) 
ˆ T n 

Hence, the equation of the activation variable n in (A.6) becomes 

1 

ˆ T n Q t 

d n 

d τ
= 

1 

τ̄n (v ) 
(n ∞ 

(v ) − n ) (A.8)

This scaling makes the RHS of the equation dimensionless and bounded (in absolute values) by one. Therefore, the typical

time scale for the activation variable is given by 1 
ˆ T Q 

. 

n t 
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Fig. A.3. Evolution of the function 1 
τn (v ) in (A.7) as v changes in its typical range. 

 

 

A.1.4. Dimensionless inactivation variable equation (h): 

The rate of change in the inactivation variable h is represented by 

d h 

d t 
= 

1 

τh 
( h ∞ 

(V m 

) − h ) (A.9) 

Similar to the activation variable ( n ), the inactivation variable ( h ) is already dimensionless, and moreover its time con-

stant is already given in the model by τh , which is equal to 0.55. Therefore, the typical time scale for the inactivation

variable is the constant of the time derivative of 

τh 

Q t 

d h 

d τ
= h ∞ 

(v ) − h (A.10) 

which is 
τh 
Q t 

, which is equal to 0.55. 

A.1.5. The dimensionless IHC model 

Thus, the dimensionless form of the IHC model in (A.1) can be written as 

ˆ τv 
d v 
d τ

= F (v , n, c, h ) 

ˆ τn 
d n = G (v , n ) 

d τ

Table A.1 

Parameter values used in the IHC model . 

Parameter Value Dimension 

Voltage-gated Ca 2+ 

current ( I Ca ) 

V Ca −60 mV 

V mL −26.7 mV 

s m 11.5 mV 

K q 0.6 μM 

Ca 2+ -activated K + 

current ( I K Ca 
) 

V K 60 mV 

k s 1.25 μM 

Voltage-gated K + 

current ( I K ) 

g K 2.85 nS 

V K 60 mV 

V n −16 mV 

s n 10 mV 

V h 1 −60.5 mV 

s h 1 6.8 mV 

V h 2 −17.8 mV 

s h 2 7.1 mV 

s τn 
14.3 mV 

τ h 0.55 s 

Leak current ( I leak ) g leak 0.12 nS 

V leak −20 mV 

Intracellular Ca 2+ 

Equation 

α 7.3 μ MpA −1 s −1 

k PMCA 3.6 s −1 

K p 0.08 μM 

k SERCA 1.2 s −1 

c ER 500 μM 

Whole cell 

parameters 

C m 0.0071 nF 

d cell 15 μM 



H. Baldemir, D. Avitabile and K. Tsaneva-Atanasova / Commun Nonlinear Sci Numer Simulat 80 (2019) 104979 17 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ˆ τc 
d c 

d τ
= H(v , c) 

ˆ τh 

d h 

d τ
= L (v , h ) (A.11)

where the typical time scales are 

ˆ τv := 

C m 

Q t g max 
, ˆ τn := 

1 

ˆ T n Q t 

, ˆ τc := 

Q c 

Q t f c αg Ca Q v 
and ˆ τh := 

τh 

Q t 
(A.12)

and the functions on the right hand sides are 

F (v , n, h ) = −ˆ I Ca (v , c) − ˆ I K (v , n, h ) − ˆ I K Ca 
(v , c) − ˆ I leak (v ) 

G (v , n ) = 

1 

ˆ τn (v ) 
(n ∞ 

(v ) − n ) 

H(v , c) = −Ī c (v , c) − ζ1 φ̄(c) c − ζ2 c + ζ3 

L (v , h ) = h ∞ 

(v ) − h 

All terms on the right hand side of (A.11) are of an order one. Therefore, the coefficients of the time derivatives of the

nondimensional IHC model in (3) indicate the relative rates of evolution of the state variables. 

We note that the parameter g Ca affects both time scales of v and c when g Ca is the maximum conductance of the model.

Thus, considering the parameter values given in Table A.1 , p ER = 0 . 0015 , f c = 0 . 004 and the ranges for the conductances

0 < g Ca < 60 and 0 < g K Ca 
< 40 where the model exhibits oscillatory behaviour for the scaling parameter values Q v = 100 mV,

Q c = 1 μM, Q t = 1s we get 

• The typical time constant of v is of an order between O (10 −3 ) and O (10 −4 ) ; 
• The typical time constant of n is of an order O (10 −2 ) ; 
• The typical time constant of c takes a typical range of [ O (10 −2 ) , O (10 0 )]; 
• The typical time constant of h is 0.55. 

The typical time constants indicate that the state variables V m 

and n are much faster than the variables Ca and h . 

A.2. Slow/fast decomposition of the reduced IHC model 

A.2.1. 2-fast/1-slow analysis 

For some parameter values, we can define that v and n are the fast variables and c is the slow variable in the reduced

IHC model. Thus, the ratio ˆ τv 
ˆ τn 

is of an order one and the ratio ˆ τv 
ˆ τc 

is very small. 

Considering the nondimensional model in the fast time-scale, i.e. rescaling the system in (3) by replacing τ with ˜ τ = 

1 
ˆ τv 

τ,

we get 

d v 
d ̃  τ

= F (v , n, c) 

d n 

d ̃  τ
= G 1 (v , n ) 

d c 

d ̃  τ
= εH(v , c) (A.13)

where 

G 1 (v , n ) := 

ˆ τv 

ˆ τn 
G (v , n ) = 

ˆ T n C m 

g max 

(
n ∞ 

(v ) − n 

ˆ τn ( v ) 

)
(A.14)

and the ratio between fast and slow time scales 

ε := 

ˆ τv 

ˆ τc 
= 

C m 

f c αg Ca Q v 

g max Q c 
. (A.15)

We consider the limit ε = 0 in (A.13) to obtain the fast subsystem or layer equations [28,39] of the reduced IHC model

for 2-fast/1-slow case given by 

d v 
d ̃  τ

= F (v , n, c) 

d n 

d ̃  τ
= G 1 (v , n ) 

d c 

d ̃  τ
= 0 (A.16)

Since d c 
d ̃ τ

= 0 , we can treat c as a parameter in the fast subsystem. Then, using the fast subsystem bifurcation structure, we

will attempt to interpret the dynamics of the periodic solutions of the reduced IHC model. 
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A.2.2. 1-fast/2-slow analysis 

On the other hand, for some other parameter values, the reduced IHC model could have only one fast variable v and two

slow variables n and c . Thus, the ratio ˆ τn 
ˆ τc 

is of an order one and the ratio ˆ τv 
ˆ τc 

is very small. 

So, if we re-cast the system (3) from τ to the slow time scale ˜ t := 

1 
ˆ τc 
τ, we obtain 

ε
d v 
d ̃

 t 
= F (v , n, c) 

d n 

d ̃

 t 
= G 2 (v , n ) 

d c 

d ̃

 t 
= H(v , c) (A.17) 

where 

G 2 (v , n ) := 

ˆ τc 

ˆ τn 
G (v , n ) = 

ˆ T n Q c 

f c αg Ca Q v 

(
n ∞ 

(v ) − n 

ˆ τn ( v ) 

)
(A.18) 

Writing the system (A.17) in the limit ε = 0 , we get 

0 = F (v , n, c) 

d n 

d ̃

 t 
= G 2 (v , n ) 

d c 

d ̃

 t 
= H(v , c) (A.19) 

which is called the slow subsystem (or reduced subsystem ) of the model [28,39] . We prefer to use the term ”slow subsystem”

instead of ”reduced subsystem” in order to avoid confusion with the reduced IHC model. 

The differential-algebraic system in (A.19) describes the slow flow that is restricted to the critical manifold [28,32,39] ,

which is defined by 

S := { (v , n, c) ∈ R 

3 | F (v , n, c) = 0 } . (A.20)

where F (v , n, c) := −ˆ I Ca (v , c) − ˆ I K (v , n ) − ˆ I K Ca 
(v , c) − ˆ I leak (v ) . The critical manifold has two fold curves (lower F l and upper

F u ) that separate the repelling and attracting sheets of the manifold (see Fig. 9 ). 

In the equation F (v , n, c) = 0 , the variable n appears only in the voltage-dependent K 

+ current that is given by ˆ I K (v , n ) =
g K 

g max 
nh (v − v K ) . Therefore, F ( v, n, c ) is linear in n , and so we can solve F (v , n, c) = 0 for n in terms of v and c . Hence, we

get 

n := n (v , c) = 

−g Ca m 

2 
∞ 

(v ) q ∞ 

(c)(v − v Ca ) − g K Ca 
s ∞ 

(c)(v − v K ) − g leak (v − v leak ) 

g K h (v − v K ) 
(A.21) 

Taking the derivative of F (v , n, c) = 0 with respect to time ˜ t and applying the chain rule to dF 
d ̃ t 

= 0 , we obtain 

−∂F 

∂v 
dv 
d ̃ t 

= 

∂F 

∂n 

dn 

d ̃ t 
+ 

∂F 

∂c 

dc 

d ̃ t 

−∂F 

∂v 
dv 
d ̃ t 

= 

∂F 

∂n 

G 2 (v , n ) + 

∂F 

∂c 
H(v , c) 

This system is singular when 

∂F 
∂v = 0 i.e. at the fold curves. The flow is well defined on the critical manifold S , but not

on the fold curves. In order to remove the singularities, we introduce a re-scaled time ˆ t := −
(

∂F 
∂v 

)−1 
d ̃ t . Hence, we obtain the

system 

dv 
d ̂ t 

= 

∂F 

∂n 

G 2 (v , n ) + 

∂F 

∂c 
H(v , c) 

dc 

d ̂ t 
= −∂F 

∂v 
H(v , c) (A.22) 

This system defines the desingularised slow flow [28,39] . A trajectory of the model near the singular limit passes through a

folded singularity with finite speed unlike the other points on the fold curve, where trajectories have infinite speed [32] . 
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