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Thesis Abstract 

Our arsenal of weapons to fight against bacterial infections is weakening: bacteria 

are gaining resistance to the common antibiotics, while industries are struggling 

to develop new effective ones. To avoid triggering de-novo antibiotic resistance, 

we need the right antibiotic for the specific bacteria, at a dose adapted to the 

patient genetics. Genes driving the degradation of antibiotics have indeed known 

genetic variants that can dramatically affect the kinetics of antibiotic metabolism 

from one patient to another. This could lead to treatment failure, excessive side 

effects or emergence of resistance. 

I first investigated the clinical relevance of the vancomycin-rifampicin combination 

to treat Methicillin-Resistant Staphylococcus aureus infections (Chapter 3). I 

showed in various experimental settings that these two antibiotics may promote 

an environment prone for antibiotic resistance. Their interaction might be 

unstable in vitro because of environmental factors, one could wonder how the 

host environment might generate such instability. 

I then explored how interactions between antibiotics and host xenobiotic genetics 

could influence antibiotic concentrations, potentially triggering increased 

treatment failure, side-effects and antibiotic resistance in patients carrying 

particular variants. In silico, I estimated the effects of genetic variants of the 

Cytochrome P450 3A4 gene to its enzyme, and, as they are unequally distributed 

in the world, their global relevance (Chapter 4). In vivo, I focused on the 

Carboxylesterase 2 gene and I found two of its variants, rs11075646 and 

rs8192925, capable of significantly altering the degradation of various drugs, 

including rifampicin and mycophenolate mofetil. A clinical study was designed, to 

explore possible correlations between genotype for these variants and treatment 

response in patients (Chapter 5). 

Altogether, this body of work highlights the prescribing importance of considering 

not only the strain in bacterial infections, but also the genetics of the human host. 

This raises a need to make sure the right antibiotics are used in practices, at 

doses adapted to the patients. As part of personalised medicine, checking their 

genotype for these biomarkers could tailor their therapy, improving recovery while 

avoiding antibiotic resistance. 
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CHAPTER 1 - General introduction 

1.1. Antibiotic resistance: causes and consequences 

Bacteria are ubiquitous microscopic living organisms which have colonised most 

of Earth’s habitats. Most are commensal to the organisms they are living with/in, 

including the human beings1. Yet pathogenic microorganisms can harm their 

hosts, causing infectious diseases. These transmissible infections are of various 

gravity, with a potential to become endemic or pandemic. Antibiotherapies are 

therefore prescribed to both treat the infected patients and avoid the 

dissemination of the bacteria in the community. 

 

Contrarily to humans, bacteria can adapt quickly to their environment due to a 

high mutation rate (estimated to 10-6 mutations per base pair per year in bacteria 

and 10-9 in the average mammal)2,3. Given that this high genetic diversity occurs 

in large populations, most colonies comprise clones which will be equipped to 

survive to the next selective pressure. When infecting a human host being 

prescribed antibiotics, this bacterial capacity to adaptation allows them to select 

and propagate beneficial mutations resulting in their antibiotic resistance. 

Bacteria evolution into resistant strains occurs naturally in the environment4,5, yet 

it has accelerated over the last decades due to a imprudent antibiotic use in both 

healthcare, agriculture and animal farming6-9. This strong selective pressure has 

allowed both the propagation of existing beneficial mutations and the introduction 

of de novo ones10,11. 

In the past, misuses, abuses and overuses of antibiotics used to drive physicians 

to prescribe another antibiotic from the pharmacy shelf12, while nowadays a 

shortage of therapeutic options is predicted13,14. Strains are indeed getting more 

and more resistant to existing antibiotics (Figure 1.1A), whereas very few new 

antimicrobials are discovered, approved and introduced to clinical practices 

(Figure 1.1B)15-18. 700,000 deaths a year could be attributed to antimicrobial 

resistance currently, this number being predicted to reach 10,000,000 a year by 

205019. Antibiotic resistance is now described as a “slowly emerging disaster”20, 

strategies need to be implemented to avoid such fate. 



22 
 

 

Figure 1.1 

A lack of prescribable antibiotics. A – Antibiotic discovery and resistance 

history, by 10-years period, adapted from 16,18. B - Recent antimicrobial 

approvals by the Food and Drug Administration, by 5-years period, adapted 

from 6. 
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1.2. Strategies against antibiotic resistance 

 

1.2.1. Developing new antibiotics, and maximising the potency of existing 

antibiotics 

In an attempt to slow down, stop or even reverse antibiotic resistance, either new 

antibiotics need to be developed, or the efficiency of the already-approved ones 

need to be optimised. 

The high cost and low speed of drug development have led the pharmacology 

industries to decline most research and development investments in new 

antibiotics. Only 6 novel antibiotics have been approved since 2015 by the Food 

and Drug Administration21, mostly based on already-known mechanisms of 

action22,23. Moreover, the World Health Organisation (WHO) estimated that, 

nowadays, the useful lifespan of a newly introduced antibiotic is of two years only, 

due to the rapid emergence and spread of resistances24. Research could focus 

first on discovering novel mechanisms, yet it would take a decade before they 

turn into distributed new antibiotics25. 

Maximising the efficiency of existing antibiotics is therefore crucial. By regulating 

their usage in agriculture and farming, this selective pressure could decrease26. 

Furthermore, antibiotic prescriptions to patients should also be dealt with an 

excessive care12,17. In practice this means, firstly, being certain the infection is 

due to a bacteria before proceeding to any antibiotic prescription and, secondly, 

prescribing wisely by selecting the appropriate antibiotic(s), at the appropriate 

dose and with the appropriate length of treatment27. Only this would allow the 

cure of the infection without triggering a de novo resistance that will impact on 

both the next infection outcome and the spread of resistance in the community. 

 

1.2.2. Combination therapy 

To minimise the probability of de novo resistance emerging when using our 

current arsenal of drugs, prescribing high doses of a single antibiotic 

(monotherapy) or a combination of two (or more) antibiotics from different classes 

targeting different bacterial mechanisms are the main strategies. Yet high doses 

apply a stronger selective pressure on the bacteria and are often associated to 
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stronger side-effects in patients28-30. Moreover, monotherapies have been 

reported to increase the risks of antibiotic resistance31. Combination therapy is 

therefore considered as the regimen of choice since the 1970s32, but only if the 

combined spectrum of its antibiotics is broaden than their monotherapies’ ones, 

and if the antibiotics are acting in synergy33-35. 

 

A key concept needs to be introduced when considering antibiotics interaction: 

the Minimum Inhibitory Concentration (MIC) of an antibiotic. MIC is linked to the 

antibiotic efficiency in monotherapy, has coexistent definitions and is often 

associated to concepts such as Mutant Prevention Concentration, Mutant 

Selection Window or Minimum Bactericidal Concentration36-40. Throughout this 

thesis, the MIC of one drug will be defined as the lowest concentration at which 

the visible bacterial growth is inhibited in vitro. Consistent with this definition, the 

study of the interaction of two antibiotics, used at equal proportions in a 

combination, will be performed at their Inhibitory Concentration 50 (IC50), i.e. the 

concentration at which 50% of the visible bacterial growth is inhibited in 

monotherapy41. 

For in vitro experiments, using both combined drugs at their respective IC50s 

could seem counter-intuitive compared to those prescribed in clinical settings, 

where prescribed concentrations are exceeding the set MICs. These clinical high 

doses are based on the reasoning that, if one bacterium spontaneously develops 

a beneficial mutation for one drug (due to high selective pressure), the same 

bacterium would unlikely simultaneously benefit from a resistance to the other 

drug, targeting a different mechanism. Yet, in patients, prescribed (high) 

concentrations are not the concentrations found at the site of infections, due to 

various processes of absorption, distribution, tissue penetration, etc. For 

example, 88% of the antibiotic rifampicin is bounded to plasma proteins after 

intravenous intake, making these bounded molecules ineffective363. 

 

The following definitions will describe the interactions of drugs in combination. A 

synergy between two antibiotics should result in a significantly better bactericidal 

effect than the use of either drug in monotherapy (decrease in both killing time 

and pathogen count). An antagonism between two antibiotics should result in a 
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significantly worse bactericidal effect than the use of either drug in monotherapy. 

Additivity and indifference are in-between those two distinct types of interaction, 

with a combination of additive effect showing the same result as the expected 

sum of both drugs used together (they act independently and do not interact), 

and indifference indicating usually that both drugs target the same metabolic 

pathway – the effect of the combination being the same as the one from the most 

potent drug used alone42-45. The underlying mechanisms of such drug 

interactions are still to be characterized, potentially using novel techniques of 

systems biology46,47. 

 

In the literature, the bacterial growth in a combination therapy with equal 

proportions of antibiotics at IC50 is usually compared to the bacterial growth in 

the most effective monotherapy at IC5041, by using one-day checkerboard assays 

(in which two-fold dilutions of each drug are delivered in 96- or 384- well plates, 

one following the x-axis and one the y-axis)48. Yet, the MIC of an antibiotic in 

monotherapy has been reported to depend on environment parameters (such as 

the pH, or the concentrations in available metabolites or nutrients24), it would 

therefore be inaccurate to assume the bacterial growth in combination is 

independent from such factors. Moreover, studies have shown that drug 

interactions are dynamic in nature, observing that synergy could turn into 

antagonism overtime24,41. A synergistic combination is assumed to be beneficial 

for the patients as it increases antibacterial efficiency without increasing drug 

toxicity. It is also expected that, if a bacterial clone gains a resistance to one of 

the antibiotics, the other antibiotic will still active against it - and it could even take 

advantage of the cost associated to such resistance24. Yet, numerous synergistic 

therapies have been unsuccessful, and in the event those synergies were not 

artefact, one could wonder if such drug pair could actually apply a stronger 

selective pressure on the bacteria than their monotherapies41,49-52. The use of 

combinations of antagonist antibiotics have been questioned, yet they are 

associated to the prescription of high doses of each antibiotic, increasing drug 

toxicity in patients53,54. 
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With such variations in MIC definitions and interpretations, it is not surprising that 

antibiotics interactions against every particular strain are not well defined in the 

literature55,56. Despite being prescribed for decades, evidences are still missing 

to fully support the use of several combination therapies used against clinically-

relevant infections. 

 

 

1.2.3. The case of vancomycin and rifampicin against Methicillin-Resistant 

Staphylococcus aureus infections 

Methicillin-Resistant Staphylococcus aureus (MRSA) was first observed in 1961 

and is currently indicative of Staphylococcus aureus (SA) with multiple 

resistances to antibiotics from the beta-lactam family57 and cephalosporins58. 

MRSA is also commonly resistant to fluoroquinolones, kanamycin, tobramycin 

and clindamycin33. MRSA being an opportunist pathogen, its staphylococcal 

infections are of various gravity depending on the site of infections, the patient 

immunity and the efficiency of the prescribed therapy59. Pathogenic MRSA 

infections frequently spread in hospitals, they are named Healthcare-Acquired 

(HA) or nosocomial infections, as opposed to Community-Acquired infections60. 

Because of its ubiquity and its multi-resistances, MRSA is estimated to cause 10-

20,000 deaths a year in the United States of America (USA)61 183 - WHO even 

considers it to be one of the seven bacteria of “great concern”62. 

 

Numerous therapeutic regimens have been studied to treat (MR)SA infections 

successfully while trying to avoid the emergence of de novo resistances. 

Vancomycin (Figure 1.2A) was selected as monotherapy of choice against SA 

infections in the 1960s63 thanks to its interaction with the cell-wall cross-linking 

enzymes of the bacteria, inhibiting therefore a proper cell-wall synthesis64. 

Despite being bactericidal on SA, this “last resort” therapy is associated to several 

deficiencies (including nephrotoxicity and the emergence of resistance)53,64-66, its 

use is therefore recommended in combination with another antibiotic. 

Discovered in 1957, rifampicin (“rifampin” in the USA, Figure 1.2B) used to be 

prescribed as monotherapy to treat bacterial infections, as it can penetrate most 
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tissues, enter the bacterial cells and inhibit their RNA synthesis45. Due to the rapid 

emergence of resistance and to its hepatotoxicity / nephrotoxicity45,67, rifampicin 

is now used in combination with other antibiotics to treat MRSA and 

Mycobacterium tuberculosis infections45. It is considered bactericidal towards 

MRSA rifampicin-susceptible strains, including in biofilms – an asset as this 

structured environment has been shown to be 100 to 1000 times more resistant 

to antibiotics than planktonic environments33,45,68. 

 

 

Figure 1.2 

Chemical structures of vancomycin (C66H75Cl2N9O24 , A) and rifampicin 

(C43H58N4O12 , B). 

 

Vancomycin and rifampicin having two different bactericidal effects on MRSA 

(respectively inhibitions of the cell-wall and of the RNA synthesis), their 

synergistic effect was assumed, leading to the introduction of their combination 

in clinics in the 1970s69,70. In practice, this combination has been very 

controversial ever since: several in vitro, in vivo and clinical studies have been 

conducted, and they concluded on opposite types of interactions of these 

antibiotics against MRSA (synergy, antagonism, indifference, undetermined) (as 

seen in Table 1.1), rendering their potential use in combination either 

advantageous or clearly dangerous for the patients. 



28 
 

Date Type of study Observation Reference 

1984 In vitro 

(time-kill or checker-
board) 

Synergy or antagonism or 
undetermined (depending on method). 

71 

1985 In vivo 

(rabbit, endocarditis) 

No evidence of antagonism. 72 

 

1987 In vitro 

(minimal bactericidal 
concentration45) 

Synergy. 73 

1991 Clinical 

(42 patients with 
endocarditis, 
prospective, 
randomised, some 
flaws55) 

Increased bacteraemia compared 
to vancomycin alone. 

74 

1993 Clinical 
(5 neonates with 
bacteraemia, 
prospective)  

Favourable clinical outcome 

(but no control group). 

75 

1999 Clinical 

(14 patients with 
septicaemia and burns, 
prospective, some 
flaws55) 

Favourable clinical outcome 

(but no control group). 

76 

2007 Clinical 

(37 patients with 
osteomyelitis, 
retrospective) 

Various outcomes and emergence 
of rifampicin resistance. 

77 

2008 Clinical 

(84 patients with 
endocarditis, 
retrospective, some 
flaws55) 

Increased hepatotoxicity, no 
improved outcome compared to 
vancomycin alone. 

78 

2009 In vitro 

(biofilm) 

Synergy or indifference 

(depending on biofilm density). 

79 

2009 Clinical 

(4 patients, 
retrospective, some 
flaws55) 

No clinical success compared to 
linezolid alone. 

80 

2010 Clinical 

(83 patients with 
pneumonia, prospective, 
randomised, controlled) 

Improved clinical outcome and 
mortality compared to vancomycin 
alone. Increased in hepatotoxicity 
and emergence of rifampicin 
resistance. 

81 

Table 1.1 

Representative selection of the in vitro, in vivo and clinical studies 

published on the combination of vancomycin and rifampicin against 

Methicillin-Resistant Staphylococcus aureus infections. 
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The combination of vancomycin and rifampicin against MRSA being still 

questioned by the scientific community, physicians are reported to follow their 

local official guidelines, which contain published contradictory recommendations 

(Table 1.2) 82-84. 

 

Disease or 
type of 

infection 
USA recommendations82 UK recommendations83 

Common 
SSTI 
or 
Severe SSTI 
treated 
outside the 
hospital 

Not recommended. 
“unable to make any 

recommendations on the use 
of combined therapy” 

Severe SSTI 
treated in the 
hospital 

Only recommended if 
recurrent and if no effect 

from changes. 

“unable to make any 
recommendations on the use 

of combined therapy” 

Infective 
endocarditis 
on prosthetic 
valve 

Recommended on adults. Not recommended. 

Pneumonia 
Unsure. Not recommended. 

Osteomyelitis 

Recommended by “some 
experts”. 

“recommend the combination 
of a glycopeptide 

(vancomycin) alone or in 
combination with rifampicin” 
while waiting for new trials. 

CNS Only on adults. Not recommended. 

Table 1.2 

Comparison between local guidelines regarding the combination of 

vancomycin and rifampicin against Methicillin-Resistant Staphylococcus 

aureus infections. Data presented from the guidelines issued for the United 

States of America (USA) and the United Kingdom (UK) have been chosen to 

highlight their differences and incertainties. SSTI stands for Skin and Soft Tissues 

Infections, CNS for Central Nervous System. 
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Deciphering the true underlying interaction of vancomycin and rifampicin in 

MRSA infections is critical, we need to elucidate why so many inconsistencies 

have been published. Various in vitro and in vivo studies seemed flawed (lack of 

control samples, low sample sizes, etc.), most were non-replicated and could 

show different results because of differences in strains, techniques, handling 

methods, etc. Moreover, the published clinical studies were mostly performed on 

small samples of patients, while sometimes lacking specific data, control groups 

and/or randomisation55. Their discrepancies could also be explained by the 

different nature of the staphylococcal infections and by differences between 

patients’ immunity. It was notably pointed out that this regimen could not be 

optimal for all sites of infections, as both antibiotics are not able to penetrate 

easily the same tissues33,45. Furthermore, this combination was deemed more 

successful when the patients were suffering a “low organism burden”45. Inter-

individual differences could also play a role in those inconsistencies, as they are 

currently not considered to adapt the dosages to the patients, and dosages are 

at the core of any antibiotherapy. 

 

 

1.3. Considering antibiotic dosing 

One key parameter to consider for any type of antibiotherapy is the prescribed 

dose of antibiotic(s). As previously discussed with the concept of MIC, a precise 

antibiotic dosage is crucial to inhibit all the bacteria, and yet most of the 

commonly-used dosages of antibiotics were defined during the antibiotic’s golden 

era (1950-1969), only considering their pharmacokinetics (PK) and 

pharmacodynamics (PD) parameters85-87. At this time, two important paradigms 

about antibiotherapy were still followed: i) the need to “hit hard”88 and ii) “one size 

fits all”86,87. 



31 
 

Contrarily to what Paul Ehrlich claimed in 191388, using a high dosage of 

antibiotics is not necessarily the best option. As Alexander Fleming said in his 

Nobel Prize acceptance speech in 194589, “If you use penicillin, use enough” – 

“enough” being now considered as not too little, but not too much either. Not only 

a very high dosage is indeed usually associated to stronger side-effects in 

patients, but a lower, if not sublethal, dosage could be best to kill all bacteria and 

yet apply a weaker selective pressure for resistance24. Over the last decades, 

evidence have accumulated against the “one size fits all” paradigm86,90: the major 

drug dosages are only efficient for up to 60% of the population91. Empirical data 

supports now the need for physicians to slightly adapt their prescriptions to their 

patients baseline personal data (age 82,92-94, sex 45,95, Body Mass Index96, 

concomitant diseases and treatments 97-100, etc.101). 

 

Worryingly, antibiotherapy guidelines have not being revised since the antibiotic 

golden era: most of antibiotics are still delivered at the same non-optimised 

(mostly high) dosage, indifferently of the patients’ characteristics102. Furthermore, 

recent studies reported on the critical effect host genetics (pharmacogenomics, 

PGx) could have on antibiotic dosage differences between patients. 

 

1.4. The impact of polymorphism of xenobiotic metabolism 

genes 

To treat efficiently patients while avoiding de novo antibiotic resistance, it is 

crucial to use the right antibiotic, at the right dose and for the right length of 

time27,103. Ensuring an appropriate dose of antibiotics is circulating the patients 

also means considering how their host genetics can alter their circulating 

concentrations by impacting on xenobiotic metabolism – yet the current 

prescriptions rarely take it into account. 

 

 

1.4.1. The xenobiotic metabolism 

A.D.M.E. describes the fate of drugs in patients: in the case of antibiotics, after 

their administration, they reach the blood circulation (Absorption) to be delivered 



32 
 

to the site of infection (Distribution). In the meantime, the blood is filtered in the 

liver and kidneys, allowing their detection as “xenobiotic” (foreign compounds) to 

be metabolised and eliminated (Metabolism, Excretion)86. 

Also called detoxification, this metabolism is a set of pathways that detects and 

modifies external substances, stimulating their excretion from the organism104. 

Enzymes from the xenobiotic metabolism catalyse the conversion of lipophilic 

compounds into polar / hydrophilic metabolites105. This affects the duration and 

the intensity of the pharmacological activity (bioavailability) of the antibiotics. 

Thus, it is linked to their PK parameters and impacts on their appropriate 

dosage98,104. 

This biotransformation happens in every biological tissue, yet it mainly occurs in 

hepatocytes (liver cells)101. It can be divided into three Phases. 

 

1.4.1.1. Phase I 

Phase I is associated with a first chemical modification of the foreign substances. 

Enzymes from this phase allow the solubilisation of lipophilic chemicals through 

various types of chemical reactions (hydroxylation, reduction, hydrolysis, etc.). 

These enzymes are of various natures (esterases, epoxide hydrolases, etc.), the 

main ones being the cytochrome P450 monooxygenases (CYPs, or p450s)101. 

Out of 57 isozymes, CYP1A1/2, CYP1B1, CYP2A6, CYP2B6, CYP2C8, 

CYP2C9, CYP2C19, CYP2D6, CYP2E1 and predominantly CYP3A4/5/7 are 

estimated to be responsible for 70-80% of the drug metabolism106. These 

haemoproteins are mainly performing a monooxygenase reaction, e.g. the 

hydroxylation (an oxidative process) of the compound, as follows: 

RH + O2 + NADPH + H+ → ROH + H2O + NADP+   107. 

They have a relatively low-specificity and can consequently detoxify most of the 

existing xenobiotics. They are low-speed catalyser, but are inducible by various 

compounds (including medicine, and not necessarily those they metabolise). 

They are particularly concentrated where they will be directly exposed to lipophilic 

chemicals101. 
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1.4.1.2. Phases II and III 

Phase II is the conjugation of primary metabolites with polar groups, to complete 

their solubilisation and decrease their toxicity104. It precedes the active transport 

of the hydrophilic metabolites out of the cells (Phase III)105. 

The main Phase II enzymes are Uridine 5’-triphosphate 

GlucuronosylTransferases (UGTs), Glutathione S-Transferases (GSTs) and N-

AcetylTransferases (NATs)108. As for Phase I enzymes, they exist into different 

isozymes, for example GSTM1, GSTT1 and GSTP1 are well-known amongst the 

GSTs105. 

 

 

1.4.1.3. Characteristics 

Understanding of xenobiotic metabolism has facilitated the development of 

optimised medical treatments. The fate of most drugs has been characterised as 

being metabolised in the liver, their metabolites elimination occurring in the bile, 

in order to reach the intestinal lumen and the faeces. They can also be redirected 

to the kidneys via the bloodstream and be processed in the urines105. This has 

highlighted the need to ensure liver and kidneys functions in patients before 

treatment, and to monitor closely the patients affected by those organs’ 

dysfunction. Moreover, some drugs have been developed as pro-drugs: they will 

be activated by the host xenobiotic metabolism, but will still be water-soluble and 

readily excreted105,109, as opposed to the usually bioactive antibiotics losing their  

(antibacterial for antibiotics) effect after Phase I metabolism. It is also important 

to note that most medications are degraded by the xenobiotic metabolism, the 

involvement of zero, one, two or all three phases depending on the drug chemical 

structure / polarity105. A variety of different metabolites are produced for each 

drug, depending on the metabolic enzymes in charge - emphasizing on their 

broad spectrum105. 

As the xenobiotic metabolism can alter the bioavailability of the drugs (including 

antibiotics), considering it when prescribing a drug is vital. 
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1.4.2. Polymorphism at the xenobiotic metabolism genes 

Most of the Phase I and Phase II enzymes are encoded by highly polymorphic 

genes: they present numerous sequence variations, with allele frequencies 

above 1%, leading to the expression of various enzymatic isoforms98,101,106,110,111. 

These genetic variations can be of various sizes, and the most frequent are single 

nucleotide substitutions, insertions and deletions - usually referred altogether as 

Single Nucleotide Polymorphisms (SNPs). Despite involving only one nucleotide, 

SNPs can affect the xenobiotic metabolism gene expression and/or enzyme 

activity. Depending on their localisation in the genome and the type of variation 

occurring, they can for example alter the protein sequence (leading to a 

dysfunctional enzyme), the gene transcription or the gene stability (leading to 

differences in the enzymatic concentrations)112. All these alterations could 

promote differences in drug metabolism. Polymorphisms in the xenobiotic 

metabolism genes are common occurrence of clinical relevance101,108. Illustrating 

this, the intronic CYP1A2 SNP rs762551 is found in 35% of the world population 

and associated to an increased oral clearance for olanzapine. Similarly, 26% of 

the world population harbours CYP2B6 rs2279343 (codon change), reporting an 

increased drug clearance for bupropion, efavirenz and cyclophosphamide. 

Likewise, the null allele resulting from a splicing defect due to CYP2C19 

rs4244285 was associated to a lack of drug clearance, particularly regarding 

antidepressants, antimalarials and antifungals - it is present in 19% of the world 

population.101 

Considering antibiotics which are mostly delivered as active drugs, a lower (or 

slower) xenobiotic metabolism in “Poor Metaboliser” patients could induce an 

accumulation of the active antibiotic in their organism. This could increase their 

experience of side-effects and lead to drug overdose. In case their xenobiotic 

metabolism is higher (or quicker) than those from the average patient, a higher 

amount of antibiotic would be metabolised, lowering its bioavailability and 

impacting therefore on treatment efficacy in these “Extensive” or “Ultrarapid 

Metabolisers”. Median impacts have also been reported in patients considered 

as “Intermediate Metabolisers” 91,113. Overall, by impacting on the antibiotic 

PK/PD parameters, polymorphisms at the xenobiotic metabolism genes could 

alter the exact concentration required to inhibit all bacteria while avoiding the 

emergence of antibiotic resistance27. 
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The effect of genetic polymorphism on genes coding for Phase I CYPs is 

particularly well documented: 20-25% of patients are estimated to be clinically 

affected by genetic variations on their copies of the CYP3A4/5, CYP2C9, 

CYP2C19 and CYP2D6 genes113. These genes, known to metabolise more than 

50 clinically-relevant drugs, have indeed been reported to present at least 40 

different SNPs - each. For example, due to their CYP2C9 genotype, Poor 

Metabolisers for the cardiovascular drug warfarin require a critical decrease in 

their drug dosage: up to 75% decrease in some patients114. 

Genes coding for Phase II enzymes have also being studied regarding the impact 

of their polymorphism. Responsible for up to 20% of clinically-relevant drug 

Phase II metabolism106, the GST family contains common SNPs with critical 

effect: partial or entire gene deletion mutations are present in patients for the 

GSTM1 and GSTT1 genes, resulting in non-functional null alleles115,116. The null 

allele for GSTT1 has for example being associated with an increased likelihood 

of toxicity in tuberculous patients treated with isoniazid, pyrazinamide and 

rifampicin117. 

These polymorphisms at the xenobiotic metabolism genes have mostly been 

studied in the context of cancer risk (the GSTT1 enzyme – for example – is 

involved in the elimination of carcinogenic compounds) or drug-drug interactions. 

Numerous evidences support indeed that one particular drug can stimulate (or 

inhibit) the expression of one particular enzymatic gene which is promoting 

therefore the quicker (or slower) degradation of another drug, reducing (or 

increasing) its bioavailability98,101,106,110,118-120. 

 

 

Ethnic differences have been reported for such polymorphisms. As documented 

with their continental Minor Allele Frequencies (MAF), some xenobiotic 

metabolism SNPs are indeed differently distributed around the world110,118,121,122. 

It is notably the case of many of the deleterious CYP2D6 SNPs which have been 

found mostly in Caucasian populations: if 9% of the world population express the 

CYP2D6*4 allele (harbouring rs3892097), resulting in the absence of detectable 
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protein in the liver, it was found that up to 25% of Caucasians are affected by 

such SNP101,123. Similarly, and to name a few, CYP1A1 rs1048943 was found in 

20-26% of the Asian populations but mostly absent in descents from Africa. 

CYP1A2 rs2069514 is also dominantly expressed in African ethnic groups 

compared to other populations. 16-27% of the Asian populations express 

CYP2A6 rs28399433, contrarily to African (4-12%) or European (4-5%) 

descents.101 

Likewise, the complete GSTM1 or GSTT1 gene deletion has even been found in 

up to 50% of the patients in populations from European descent115. One study 

reported also a large and differential distribution of NAT2 gene polymorphisms at 

global and micro-geographic scales in ethnic groups124. 

 

1.4.3. The case of vancomycin, rifampicin and Mycophenolate MoFetil 

metabolism 

The impact of polymorphism at the xenobiotic metabolism genes may be well-

characterized when it involves the CYP enzymes, yet not all clinically-relevant 

drugs are metabolised by these enzymes. Let us consider again the combination 

of vancomycin and rifampicin against MRSA infections. 

 

Vancomycin is known to be directly poorly metabolised125. Readily reabsorbed, it 

is excreted from the blood through the kidneys126. Vancomycin clearance can still 

be influenced, not by polymorphisms at its metabolism by renal 

dysfunctions76,126,127. In opposition, rifampicin has been extensively studied 

because of its induction of the xenobiotic metabolism, involving it into drug-drug 

interactions with various compounds. After being administrated, it reaches the 

blood circulation45,128 where 80% of the drug interacts with proteins - reducing its 

half-life. In the liver, rifampicin is degraded into its metabolites (mainly 25-

desacetyl-rifampicin), which will then be excreted through the urine45,129. 

For decades, rifampicin has been described by the scientific community as an 

“auto-inducer of its own metabolism”, and it is believed to both i) induce the 

expression of the CYP genes and ii) be degraded by the CYPs33,45. The 

metabolism of rifampicin by the CYPs was actually never established: to the best 
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of our knowledge, no experimental proof has been published. Citations usually 

mention the work of Gianni Acocella who reported in 1972, simultaneously with 

other studies, that rifampicin induces its own metabolism (by reducing its own 

half-life)130-132 – but the specific role of CYPs was never mentioned through his 

career133-135. Other studies describe actually that rifampicin is submitted to a 

deacetylation reaction (hydrolyse) in the liver136 and that it increases its own rate 

of deacetylation137. This suggests rifampicin metabolism by the xenobiotic 

metabolism Phase I beta-esterases, and particularly the carboxylesterase 2 

(CES2, former nomenclature: “hCE-2” for “human cocaine esterase 2”). CES1 

and CES2 are indeed contributing to 80% of the hydrolytic activity in the liver105, 

and evidences support both the induction of CES2 by rifampicin and the 

metabolism of rifampicin by CES233,105,129,138-140. 

 

With vancomycin being poorly metabolised in the organism and the metabolism 

of rifampicin being performed by the CES2 enzyme, polymorphisms at the CES2 

gene could impact on rifampicin concentrations and therefore on its interaction 

with vancomycin to treat MRSA infections. As previously mentioned, such 

polymorphisms in other xenobiotic metabolism genes have been associated to 

both clinical impact and ethnic differences. When it comes to CES2, its 

polymorphic nature was reported, and epidemiology studies have shown that the 

specific incidence of MRSA bacteraemia was associated with ethnicity141 – one 

could wonder if those ethnic variations may be due to SNPs in CES2. 

Polymorphism at the CES2 gene has been partly investigated in South-Korean 

tuberculosis patients, focussing first on 10 SNPs found in these patients. 

Thousands of SNPs have been reported on the CES2 gene, including 70 being 

registered as “common”, i.e. found in at least 1% of the world population111,142-148. 

Studying those CES2 SNPs could perhaps provide another explanation on the 

inconsistencies found in the literature about the combination of vancomycin and 

rifampicin towards MRSA infections. 

 

Mycophenolate Mofetil (MMF) is yet another of the clinically-relevant drugs 

metabolised by CES2. This pro-immunosuppressor is prescribed notably to 

kidney transplant patients, to weaken their immunity and therefore reduce their 

rejection risks. Clinicians have witnessed unexplained different response to this 
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treatment between their patients149-152. One could wonder if their polymorphisms 

at the CES2 gene could be associated to such differences, affecting the MMF 

concentrations in patients. It is particularly important to elucidate this due to the 

main adverse effect associated to MMF: a severe diarrhoea, causing a life-

threatening dehydration. A rapid MMF withdrawal is then necessary, followed by 

the prescription of its primary metabolite (mycophenolic acid or salt 

mycophenolate sodium). In case these inter-patient differences are actually the 

result from polymorphisms in CES2, and given how critical transplant success is, 

developing a “predictive test” associating patients genotypes to the likelihood of 

MMF treatment success could be very useful in clinics. 

 

 

1.5. Thesis aims 

Given the decline in new antibiotic discovery and the rise of antibiotic resistance6, 

it is crucial to use the right antibiotic, at the right dose and for the right length of 

time in order to treat efficiently patients while avoiding de novo antibiotic 

resistance27,103. Antibiotic prescription should be dealt wisely and consider the 

interactions between i) the bacteria and the antibiotic, ii) the antibiotic and the 

host, and iii) the bacteria and the host. This PhD thesis aims to expand our 

knowledge on the first two of these interactions, particularly regarding the 

clinically-relevant antibiotics prescribed to treat MRSA infections. 

 

Firstly, Chapter 3 of this thesis will focus on the combination of vancomycin and 

rifampicin against MRSA infections. Given their importance and severity, making 

sure this regimen is effective, i.e. vancomycin and rifampicin synergise against 

MRSA, is key. Numerous contradictions have been published on this topic55,82,83, 

and several hypotheses have been drawn to explain such discrepancies: for in 

vitro studies, differences in laboratory environment factors and techniques are 

questioned. Here, one operator will study their combination in various 

experimental settings, in the same laboratory and using the same materials. 

Chapter 3 will show that the interaction of vancomycin and rifampicin is 

antagonistic in planktonic and biofilm environments, and either indifferent or 

undetermined in more structured environments and using clinically-relevant 
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Etests. Overall, no data from these experiments was found to support the synergy 

of vancomycin and rifampicin on MRSA, and the impact of monotherapy MIC 

variations is discussed. 

 

Secondly, Chapters 4-5 will investigate the impact host genetics can have on 

differential antibiotic bioavailability between patients.  

Chapter 4 of this thesis will concentrate on the gene polymorphisms in 

CYP3A4105. Despite being associated to the metabolism of up to 30% of clinically-

relevant drugs, rare are the common CYP3A4 variants to have been both 

characterized and associated to an effect on the gene expression or enzyme 

activity. Using the available literature, open access data and in silico tools, the 

most common CYP3A4 SNPs will be identified, and their potential importance on 

the CYP3A4 gene expression or enzyme activity will be evaluated. Overall, this 

chapter will predict the importance of eight CYP3A4 SNPs (rs28988603, 

rs28988604, rs28969391, rs28371763, rs28988606, rs12721620, rs2242480 

and rs2687116), only two of which being already reported in the literature. These 

eight SNPs will be classified according to their predicted potential impact score 

and their distribution in the world and in continental populations will be discussed. 

The next chapter will focus on the overlooked rifampicin metabolism by 

CES2138,139, as this enzyme is responsible for the metabolism of rifampicin and 

MMF – both drugs being associated to variable pharmacokinetics between 

patients. Firstly, using open access data and in silico tools, three of the most 

common - yet poorly characterised - CES2 SNPs (rs11075646, rs8192925 and 

rs28382828) will be identified as potentially important for the CES2 gene 

expression or enzyme activity. Their impact will then be investigated using an 

allelic balance assay, showing that the presence of the minor variant for 

rs11075646 and/or rs8192925 are associated to significant differences at the 

CES2 mRNA levels. Finally, this chapter will assess these associations with a 

pilot clinical study. Patients treated with rifampicin or MMF will be genotyped for 

rs11075646 and rs8192925 to detect if there is an association between their 

genotype and their phenotypic response to their CES2-metabolised treatment. 

The preliminary results of this pilot study will be discussed. 
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Overall, in Chapters 4-5, a total of 10 poorly characterised xenobiotic metabolism 

SNPs is associated to predicted CYP3A4 or in vitro significant CES2 mRNA 

alterations. These in silico and in vitro predictions need to be validated, yet they 

are novel characterisations with the potential to explain, perhaps, inter-patients’ 

variability in the kinetics of CYP3A4-metabolised cardiovascular simvastatin153 

and immunosuppressant tacrolimus154, or in the kinetics of CES2-metabolised 

antibiotic rifampicin and pro-immunosuppressant MMF. 

 

Overall, the scientific community really needs to investigate the xenobiotic 

metabolism of every clinically relevant drug, as well as the genetic polymorphisms 

affecting the enzymes responsible for the metabolism of these drugs. They could 

have a critical role in some patients, with potential ethnical divergences due to 

the differential distribution of those genetic backgrounds. With the rise of 

molecular biology and genetics, and particularly of the rapid and inexpensive 

genome sequencing, this improved knowledge could help develop personalized 

medicine90,106,120, taking this concept to the next level: tailoring the treatment of 

diseases to the genotype of the patients. In the context of antibiotics, this could 

potentially explain some contradictions published in clinical studies, and this 

could most likely being useful to help us select the appropriate antibiotic doses to 

treat the patients effectively while avoiding the emergence of antibiotic 

resistance. 

 

In each of the Chapters 3-5, a different research question will be addressed and 

presented as a manuscript containing an introduction, followed by the methods, 

the results and the discussion sections. A reflection on the research was added 

afterwards to explain how allowing more time to these projects could have helped 

solve research obstacles. 
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CHAPTER 2 - Materials and Methods 

The following outlines generic concepts and techniques included in Chapters 3-5. 

 

 

2.1. Antibiotics and bacteria 

 

2.1.1. Definitions of regimens 

Throughout this thesis, the following terms and definitions are being used. 

Patients are being delivered a treatment by their physicians. In the case of 

antibiotics, the treatment is an antibiotherapy. If only one antibiotic is 

administrated during the treatment, we talk about “monotherapy”. Generally 

speaking, a combination therapy (or combined therapy) involves the presence of 

two (or more) antibiotics in the treatment, either used in mixture (simultaneously), 

or in sequence (for example a 2-weeks treatment consisting in Antibiotic A on the 

first week, and Antibiotic B alone for the second week) or in cycling (for example 

a treatment in which the two administrated antibiotics are switched every other 

day) 155,156. 

In this body of work, combination therapy will refer only at a mixture of antibiotics 

used simultaneously. By extension, such terms and definitions will be applied to 

the laboratory infection control methods used in Chapter 3. 

 

 

2.1.2. Concept of combination therapy 

As monotherapies are often associated with the development of antibiotic 

resistance31, the addition of at least one antibiotic to the prescription is 

recommended. It should also benefit even more the patient who will be dispensed 

two (or more) antibiotics at lower doses, decreasing therefore their risk in 

experienced side-effects. A combination of two antibiotics is deemed effective 

when they are in synergy against one bacterial strain - their concomitant use 

leads to a significantly better clearance of the bacteria than when used alone, as 

opposed to antagonism (significantly worse clearance), additivity or indifference 

(approximately the same clearance ratio)41-45. 
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To assess the efficiency of one antibiotic monotherapy, the bacterial growth is 

evaluated in several increasing concentrations of said antibiotic. These dose-

responses allow the estimation of the Minimum Inhibitory Concentration (MIC), 

the concentration at which 100% of the bacterial growth is inhibited. Guidelines 

from National Clinical and Laboratory Standards Institutes (NCLSI) recommend 

the use of two-fold dilution method, yet this tends to overestimate the MIC value, 

creating a stronger selective pressure on bacteria and/or stronger side-effects24. 

In this body of work, the increasing concentrations tested were therefore within 

the range of sub-inhibitory doses. 

The estimation of the MIC allows the estimation of the Inhibitory Concentrations 

(IC) 50, 80, 90 and 99 (for example) which are the smallest concentrations that 

inhibit respectively 50%, 80%, 90% and 99% of the bacterial growth41. 

 

 

To visually assess the type of interaction between two antibiotics (A and B), we 

could plot at time T the bacterial growth (d) as a function of the drug combination 

delta factor or relative drug fraction (θ), i.e. the ratio of each antibiotic in the 

combination. Figure 2.1 shows an example where IC90A and IC90B are used as 

basal concentrations for each antibiotic. Θ represents then any combination 

along the equidosage line: each value of θ is therefore simultaneously associated 

to a drug A concentration of θ*IC90A and to a drug B concentration of 

(1 - θ)*IC90B. By fixing those basal concentrations of A and B, θ is the only 

variable parameter allowing the determination of the optimal antibiotherapy (the 

one associated to the lowest d). This ensures a fair comparison between 

regimens, prohibiting the use of arbitrarily high doses which could lead, over time, 

to antibiotic resistance and/or excessive side-effects41. 

As developed in the literature, the nature of the interaction between two 

antibiotics can be defined compared to a neutral interaction (additivity or 

indifference) using the Loewe drug interaction profile i(θ). i(θ) equals to 

d(T;θA,(1−θ)B) and, in the case of synergy - when the combination has more 

effect than the sum of the separate effects of each antibiotic: 

i(θ) < θ*i(A) + (1−θ)*i(B)    , with i(θ) being therefore a convex function of θ. For 
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antagonism, i(θ) > θ*i(A) + (1−θ)*i(B)   , with i(θ) being a concave function of θ. 

If i(θ) is a constant, it is independent of θ and the drug interaction is defined as 

additive – this would be visualised as a straight line on Figure 2.141. In other 

words, on Figure 2.1, in the case of a synergy, more bacteria density is expected 

at the extremes of θ than in a 50%/50% combination, the plot is expected to show 

a smile-like feature (in blue on Figure 2.1). For antagonism, more bacterial growth 

is expected when both drugs are provided together than alone, creating a frown-

like feature (in red on Figure 2.1). As previously reported, the smile configuration 

could lead to a frown over time due to greater selective pressure at 50%-50% of 

the drugs than in monotherapies, it is therefore important to assess the evolution 

of the combination of A and B over time41. 

 

 

 

Figure 2.1  

Illustration of a smile configuration when two drugs, A and B, synergise 

(blue bold line) and of a frown configuration when both drugs antagonise 

(red line). Interestingly, both conformations can be found over time in the same 

environment - the type of interaction between A and B is not necessarily stable. 

In this example, the drug combination delta factor or relative drug fraction θ is 

depicted as a function of the bacterial density (Δt(θ)). Adapted from 41. 
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2.1.3. Optical density 

For the planktonic experiments performed in Chapter 3, optical density (OD, with 

OD = Absorbance / optical pass Length) was read with a spectrophotometer at 

600nm, as a proxy for biomass, or bacterial density (bacterial growth or inhibition, 

when compared to the negative and positive controls). This method is recognized 

as particularly effective as OD correlates well with live cell counts (colony forming 

units)155,157. OD may be biased by cell sizes and non-viable cells, yet this method 

was selected because it allows a minute-by-minute estimation of bacterial density 

for a large number of replicates and culture conditions, tested at the same time 

on the same microplate. 

 

2.2. In silico predictions on the effect of a genetic variant on 

gene expression or enzyme activity 

 

2.2.1. Genetic variants affecting gene expression regulation 

Various mechanisms are known to regulate the gene expression, through 

transcriptional initiation, alternative splicing, gene stability, etc. In brief, trans-

regulatory factors, such as transcription factors, can activate the gene 

transcription by binding to cis-regulatory elements (transcription binding sites). 

Intronic and exonic splicing enhancers and silencers (ISE, ISS, ESE, ESS) can 

modulate the alternative splicing through their binding on cis-acting RNA 

sequence elements in pre-messenger RNA (mRNA), depending on the 5’- and 

3’- splice sites (donor and acceptor sites) and branch sites. MicroRNA (miRNA) 

can recognize motifs on the mRNA, stimulating their degradation (gene 

silencing)158-161. 

 

Variants expressed on one gene can affect the regulatory mechanisms of its 

expression. They can modify the DNA (and RNA) sequences, disrupting or 

creating motifs recognized by transcription factors (mostly in 5’-UnTranslated 

Regions (5’-UTRs)), ISS/ISE/ESE/ESS (unlikely in UTRs), miRNA (mostly in 3’-

UTRs). When located in the vicinity of such DNA or RNA regions, by modifying 

the DNA or RNA conformation, they can impact indirectly on the binding on 



45 
 

regulatory elements. Variants can also directly modify the donor and acceptor 

splice sites, as well as the branch sites in alternative splicing159-170. 

 

Genetic variants can also have a functional impact on gene expression or enzyme 

activity by modifying translated exonic sequences (substitution leading to a 

missense or non-sense, or insertion/deletion of a few nucleotides potentially 

causing frameshifts). Synonymous substitutions have also been reported to 

impact on the protein secondary structure. Other types of impacting genetic 

variants include variations affecting epigenetic marks (methylation, histone 

marks)168,171-174. 

 

 

 

 

2.2.2. Linkage (dis)equilibrium 

When studying a number of human genetic variants in silico, it is important to 

consider their linkage. Linkage equilibrium is the independent occurrence of the 

alleles of two different genetic variants: their (rare) concomitant inheritance is 

considered to be due to randomness. Contrarily, variants in linkage disequilibrium 

are considered linked, their alleles commonly occur together, non-randomly. This 

is mostly due to their physical proximity on gene sequence, which impacts on the 

frequency of recombination events175,176. 

 

To measure the linkage (dis)equilibrium of two variants, D’ and R2 are calculated, 

given the known distribution of haplotypes in a selected population. D’ is 

considered as an indicator of allelic segregation, with value ranging from 0 to 1 

(the closer to 1, the tighter the linkage). D’ = 1 indicates that at least one expected 

haplotype combination is not observed. R2 is more sensitive to allele frequency 

in populations. It measures the correlation of alleles, with value ranging from 0 to 

1 (the closer to 0, the more independent the alleles). 
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2.2.3. Estimation of the distribution of genetic variants in different ethnic 

groups 

To estimate the distribution of selected genetic variants in different ethnic groups, 

data from phase 3 of the 1000Genome Project was extracted177,178. This project 

is considered the largest catalogue of human variation data. It includes the 

genotype of such variants in 2,504 people from ancestry populations of known 

and detailed ethnic background: Africa (661 individuals), America (347), East 

Asia (504), South Asia (489) and Europe (503).  

 

 

 

2.3. Molecular biology techniques 

 

2.3.1. Polymerase Chain Reaction 

Most of the molecular biology techniques in Chapter 5 are based on the 

Polymerase Chain Reaction (PCR) technique that allows the amplification of a 

selected sequence of a DNA template in a thermal cycler. A typical PCR is carried 

out in a reaction buffer containing the DNA template to synthesize, deoxyribose 

Nucleoside TriPhosphates (dNTPs), a specific forward and reverse couple of 

oligonucleotides and the Taq DNA polymerase enzyme, which creates a 

complimentary copy of the template within the target region. 
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Synthesis accuracy is often linked to the nature of the Taq DNA polymerase itself, 

but also to the parameters of the reaction in the thermal cycler: 

 Time Temperature 

Step 1 15 min 95°C 

Step 2 30 sec 94°C (denaturation) 

Step 3 1 min 60°C (annealing) 

Step 4 1 min 72°C (synthesis) 

Step 5 Repeat steps 2-4 34 times 

Step 6 Forever 4°C 

Table 2.1 

Example of the cycles of a conventional PCR. Min and sec stand for minutes 

and seconds, respectively. 

 

By varying the concentrations inside the PCR mix, by adapting the cycling 

parameters (time, temperature, number of repeats, etc.) and by adding, when 

necessary, DiMethyl SulfOxide (DMSO) and/or Mg2+ (which makes the DNA 

more labile for heat denaturation) to the reaction mix, it is possible to optimise a 

PCR in order to improve synthesis accuracy and to obtain the required amount 

of PCR product. 

 

 

Real-time PCR (RTPCR) is a commonly used technique that can be used 

quantitatively (qRTPCR). It consists in the monitoring, in real-time, of the 

amplification during the PCR, thanks to the use of sequence-specific DNA probes 

(oligonucleotides labelled with a fluorescent reporter activated by the probe 

hybridization with its complementary sequence). By using two sets of probes, 

each recognizing the major or the minor allele of a genetic variant, and each 

associated to a different fluorescent reporter, it is possible to quantify the PCR 

products associated to each allele, over time. A cycle threshold (Ct) value is 

attributed to each probe: it is the number of PCR cycles required for the probe 
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fluorescence to cross the threshold / background level. A high Ct is therefore 

correlated to a low amount of target nucleic acids in the sample. 

 

2.3.2. Allelic imbalance assay 

Allelic imbalance assay, using (separately) genomic and complementary DNA 

(gDNA and cDNA) samples from individuals heterozygous for one genetic 

variant, is a powerful tool to quantity the gene expression (mRNA), in each 

sample, associated to each allele (major or minor allele). It allows to distinguish 

differences in gene expression due to the presence of the major or the minor 

allele. Because both alleles are extracted in a single sample from one single 

individual, and because the measurements are performed independently for each 

type of DNA and for each individual, this method is considered insensitive to 

differences in environmental factors or extraction efficiency. No “control” genes 

are required179. 

 

Allelic imbalance assay can be performed using a qRTPCR and the Ct values are 

used to quantify the mRNA levels associated to each variant as following, for 

each sample x: 

 

DCt(gDNA,x) = Ct (major,x) – Ct (minor,x) using the gDNA values 

 

DCt(cDNA,x) = Ct (major,x) – Ct (minor,x) using the cDNA values 

 

DDCt(cDNA,x) = DCt(gDNA,x) - DCt(cDNA,x) 

 

DDCt(gDNA,x) =  DCt(gDNA,x) - median(DCt(cDNA)) 

 

gDNA allelic ratio = 20−𝐷𝐷𝐶𝑡(𝑔𝐷𝑁𝐴,𝑥)        to normalize the gDNA value to 1 

(the gDNA values are expected to follow a 1:1 ratio) 

 

cDNA allelic ratio = 20−𝐷𝐷𝐶𝑡(𝑐𝐷𝑁𝐴,𝑥)      to consider the logarithmic nature of PCR. 

 

 

gDNA allelic ratios and cDNA allelic ratios are pooled (separately) and compared: 

significant divergence in cDNA allelic ratio from 1:1 is correlated to an allelic 

imbalance180. 
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2.4. Statistics 

As a general rule and following the general usage in health science, throughout 

this thesis, a p-value of 0.05 was used as the cut-off for significance. Data were 

checked beforehand for normality and parametric state. Used tests includes t-

test, Mann-Whitney test, one-sample variance comparison, two-samples t-test, 

Levene’s test, Shapiro-Wilk test, Kruskal-Wallis, etc. A Hill equation was also 

used to fit the data to an expected distribution, and to deduce their 

correspondence (R-square). The selection of the appropriate statistical tests to 

determine significance is detailed throughout the chapters. 
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CHAPTER 3 - Interaction between vancomycin and 

rifampicin towards Methicillin-Resistant 

Staphylococcus aureus, in various experimental 

settings. 

 

3.1. Overview 

The purpose of this chapter is to understand the extent to which antibiotics 

vancomycin and rifampicin synergise - particularly in the context of the clinically-

relevant Methicillin-Resistant Staphylococcus aureus (MRSA, especially here the 

MRSA252 strain) - in order to investigate if such interaction could be influenced, 

at some degree, by the environment (experimental methods or host genetics). 

We first determined the dose-response of each drug in monotherapy in planktonic 

culture and we observed variability in the concentrations required to inhibit all the 

bacterial growth. We then sought the synergy of vancomycin and rifampicin with 

different experimental methods (most of them based on the planktonic Minimum 

Inhibitory Concentrations, MIC) and found no evidence of synergy. Vancomycin 

and rifampicin were antagonising or indifferent against MRSA. 

Given the long-standing debate in the literature on whether this drug pair 

synergises - or not55,71,  we can only provide data in support of the former case. 

This could be influenced by the observed variability in MIC for both drugs, these 

concentrations being expected to fluctuate as well in patients given inter-

individual differences in antibiotic diffusion and host genetic background. 

 

3.2. Introduction 

Given the rise of antibiotic resistance20,181 and the lack of novel antibiotics being 

successfully developed and approved6,182, the scientific community needs to 

ensure the current arsenal of antibiotics is used appropriately. Paul Ehrlich 

proposed in 191388 that we need to “hit fast and hit hard”, yet nowadays the 

consensus is that we need to use the right antibiotic, at the right dose and for the 
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right length of time27 to inhibit bacteria as much as practicable while also avoiding 

antibiotic resistance. 

Amongst the so-called “superbugs”, Methicillin-Resistant Staphylococcus aureus 

(MRSA) has been flagged as a particularly serious threat181. A report from the 

Centers for Disease Control and Prevention attributed more than 80,000 

infections per year to MRSA in the United States of America (USA), leading to 

10-20,000 deaths a year61 183. With such a high mortality rate, MRSA infections 

have been estimated to be 64% more likely to kill their human host than their non-

resistant counterparts184. Moreover, they need to be dealt with due care given 

their predominance in hospitals185, where the patients’ immune systems are often 

compromised. 

 

To combat MRSA infections wisely, several regimens are proposed and their 

usage depending on the nature of the infection itself82,83. Among these is the 

combination of vancomycin and rifampicin – in use since the 1970s69,70 – and yet 

it is still controversial, with guidelines varying greatly between countries. In the 

United Kingdom (UK), the last published recommendations proposed to restrict 

this combination to hospitalized patients either with cellulitis on surgical sites 

which are unresponsive for glycopeptide monotherapy, or with bone/joint 

infections (including prosthetic)83. Interestingly, not only did this report state that 

these guidelines were due to a lack of clear alternatives, but the American 

counterpart recommended this combination for very different types of infections, 

including infective endocarditis and several central nervous system infections82. 

This lack of consensus on the usage of vancomycin and rifampicin could be 

attributed to the variability in the outcomes of various in vitro, in vivo and clinical 

trials where this regimen was tested. Despite extensive studies on this 

combination, the nature of the interaction of vancomycin and rifampicin towards 

MRSA is, indeed, still in question: publications evidence both synergy and 

antagonism (i.e. beneficial or disadvantageous combination for the patients42-45), 

as well as indifference and additivity55,71-81. Variabilities affecting the data from in 

vitro experiments have been questioned71,72,186-196, as well as differences in 

clinical settings55. For the latter, the current best practices to determine antibiotic 
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resistance and/or optimal drug dosages in patients are yet to be defined45,82,83, 

most of them differing from laboratory practices197. 

Inconsistencies in clinical trial outcomes could also be caused by differences in 

MRSA strains, antibiotic dosages, study protocols (including sample sizes, or lack 

of control groups and randomisation)55 and inter-individual differences98. The 

dosage of rifampicin is, indeed, only adapted to body weight according to current 

practice82,83, with no consideration on potential differences in the patients’ 

immune system, age, sex or even xenobiotic metabolism92,95-97. 

 

The purpose of the following study is to assess the effectiveness of the 

combination of vancomycin and rifampicin against MRSA in five different 

experimental settings: i) a planktonic experiment that produces a non-structured 

environment in a shaking-liquid media, ii) a biofilm experiment that produces a 

biofilm (a common biological structured environment for MRSA33), iii) and iv) two 

solid agar-plate experiments that produce structured environments, and finally v) 

the use of reagent strips of antibiotics on top of agar plates (Etests), commonly 

used in Clinical Diagnosis laboratories56. 

By inhibiting MRSA growth using vancomycin and rifampicin on culture media, 

the manifold variables from the patients are removed from the context, which 

should make fundamental pharmacological questions about MRSA treatments 

more tractable. Moreover, having just one single person performing the entire 

range of this wide variety of experiments, in the same laboratory environment, 

and with the same equipment and stock of supplies (MRSA strain, antibiotic stock 

and culture material), this study could help decipher if the published 

contradictions about the interaction of vancomycin and rifampicin on MRSA were 

be due to inter-laboratory/practices or inter-individual differences, or if they are 

the simple reflective of the unpredictable nature of MRSA under this specific 

combination. 

Using the five different tests, we consistently rejected the hypothesis that 

vancomycin and rifampicin synergise in a MRSA infection, though some tests 

were better at answering this question than others. The only significant evidence 

we can provide is for a stable antagonism of vancomycin and rifampicin on 

MRSA252. 
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3.3. Materials and Methods 

3.3.1. Bacteria strains 

The MRSA strain MRSA252 was used in this study. Although vancomycin is not 

commonly thought to be active against E. coli198, dose-response assays in liquid 

media exhibited the full range of inhibition (data not shown), allowing us to test 

the synergy of vancomycin and rifampicin on E.coli Wcl during preliminary 

experiments (only “square dish” experiments are presented here with the use of 

Wcl instead of MRSA, for health and safety purposes). 

 

Bacteria 

strain 
Description / Type Source 

E. coli Wcl Assay strain TetS MC4 100-CFP / pCS-lambda 52 

MRSA252 Hospital-acquired strain from the United Kingdom, 

representative of the epidemic EMRSA-16 clone. 

199 

Table 3.1 

Description of the bacteria strains used in this study. 

 

3.3.2. Bacteria culture media 

E. coli Wcl was cultured in broth in the minimal growth media M9 (M9), prepared 

by mixing two concentrated salt solutions into distilled water (dH2O), in order to 

reach the following concentrations: 40mM dipotassium phosphate (K2HPO4), 

15mM monopotassium phosphate (KH2HPO4), 2.3mM trisodium citrate 

(Na3C6H5O7), 7.5mM ammonium sulfate ((NH4)2SO4) and 1mM magnesium 

sulfate (MgSO4) (all Fischer Scientific, UK or Sigma Aldrich, Germany). After 

being autoclaved, M9 was supplemented with filtered-sterilized 0.2% glucose 

(C6H12O6, Fischer Scientific) and 0.1% casamino acids (casein hydrolysates, 

Duchefa, Netherlands). When required, M9 was also supplemented with agar 

(Sigma Aldrich), at 5g/L of agar for soft agar and 20g/L for hard agar plates in 

150mm round Petri dishes (Greiner, UK). 

MRSA252 was cultured in the rich Luria Bertani growth media (LB), composed of 

dH2O with 1% (w/v) tryptone, 0.5% (w/v) bacto-yeast extract and 0.5% (w/v) 

sodium chloride (NaCl) (as an already-made mix from Sigma Aldrich). When 
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appropriate, it was supplemented with agar, at 5% (w/v) for soft agar plates or 

20% (w/v) for hard agar in 150mm round Petri dishes. 

For the Etest experiments, the MRSA252 strain was also cultured on Mueller-

Hinton Agar (MHA) plates according to the Etests’ manufacturer protocol. MHA 

powder (Fisher Scientific) was diluted in dH2O to provide a solid media containing 

17g/L of agar, 17.5g/L of acid hydrolysate of casein, 2g/L of beef extract and 

1.5g/L of starch. 

 

The aim for all experiments was to inhibit the growth of MRSA in/on a fresh media. 

 

3.3.3. Antibiotics 

When required, antibiotics were added to the sterile culture media, prior to use. 

Vancomycin and rifampicin powders (Sigma Aldrich) were dissolved to provide 

stock solutions at 50mg/mL in dH2O (adjusted at pH7.3 with the addition of a few 

drops of hydrogen chloride for rifampicin), before being stored at -20°C in the 

dark. 

Etests (bioMerieux, France) were used for antibiotic susceptibility testing on 

vancomycin and rifampicin on LB-agar and MHA plates. The VA 256 Etest was 

diffusing vancomycin from 0.016 to 256µg/mL, and the RI 32 Etest was diffusing 

rifampicin from 0.002 to 32µg/mL (Figure A12). These concentrations are defined 

by bioMerieux with the use of standard agar dishes (in volume and softness) as 

per manufacturer’s protocol. 

 

3.3.4. General bacteria culture 

All bacteria strains were stored frozen at -80°C in 30% glycerol before use. They 

were all manipulated in sterile conditions, using autoclaved media and tools. 

Sterility was checked during the experiment with the systematic use of negative 

controls whereby media were not inoculated by a bacterium but still underwent 

every other process of the experiment. Results were discarded completely if the 

negative control appeared to be contaminated: this was checked by Optical 

Density (OD, with OD = Absorbance / optical pass Length) at 600nm as a proxy 

for cell population density (see Chapter 2), or visually – depending on the type of 
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experiment. Positive controls were also systematically provided with the bacterial 

inoculation of/on the growth media in the absence of antibiotics. Other controls 

were undertaken when deemed relevant. 

 

Bacteria were grown in various conditions – depending on the experiment. They 

were always used after an overnight culture of 14-16 hours (h) at 37 for E.coli or 

42°C for MRSA in an aerated incubator with a 180-revolutions-per-minute (rpm) 

shaking. The overnight culture consisted of directly thawing a µL sample from 

their frozen aliquot to 10mL of media broth155. 

 

 

3.3.5. Bacterial culture in a planktonic environment (broth dilutions) 

Using a 96-pins replicator (Sigma-Aldrich), the equivalent of 1.5µL of the 

overnight culture of E.coli Wcl (in the preliminary steps of this experiment) or 

MRSA252 was transferred into the wells of a crystal-clear flat-bottom 96-wells 

microplate (Greiner) filled with 150µL of growth media (with or without the 

presence of antibiotics)155. This microplate was sealed with a transparent 

adhesive film and each well was aerated by carefully drilling a hole in the film. 

Bacteria growth was recorded automatically every 20 minutes (min) via the OD 

at 600nm by eLx807 UV/ABS (BioTek, USA) or Infinite 200Pro (Tecan, Life 

Sciences, Switzerland) plate readers, at 37°C (E. coli) or 42°C (MRSA). To keep 

the planktonic nature of the environment and avoid the formation of a biofilm of 

bacteria, plates were shaken in the plate readers. To keep the OD measurement 

consistent in-between wells, the hole in the transparent film was located at the 

same position for each well. Control growth was established in the absence of 

any antibiotic in the growth media (negative control). 

Unless otherwise specified, each experimental condition was tested in three wells 

from the same overnight culture, and its OD is the average of the OD in these 

triplicates minus the OD from the negative control wells. 

 

Antibiotic monotherapies were assessed first with a planktonic dose-response 

(DR) experiment allowing the plot of a DR curve, as previously described 41. The 
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DR assay of one particular antibiotic towards one particular bacterium was 

performed in the wells of a microplate containing row-wise increasing 

concentrations of said antibiotic (Figure 3.1A). After bacteria inoculation, the 

microplate was incubated in the plate reader to measure the OD every 20min. 

The DR curve was plotted with the OD value at 24h as a function of the antibiotic 

concentration (Figure 3.1B). This allowed the estimation of the Inhibitory 

Concentrations (IC) 50, 80, 95 and 99 which are the smallest concentrations that 

inhibit respectively 50%, 80%, 95% and 99% of the bacterial growth41. The 

Minimum Inhibitory Concentration (MIC) is the minimal drug concentration at 

which no visible growth of a bacterium is observed after in vitro overnight culture, 

it is usually associated to IC95 or IC99155.  

 

 

Important note: To fairly compare the efficacy of a drug combination to their 

monotherapies, each basal drug concentration needed to be normalised to 

achieve equal inhibitory effect at time T. When deemed possible by the type of 

experiment (as it is the case in planktonic environment and biofilms), the IC50 of 

each antibiotic were chosen as basal drug concentrations, based on the fact that 

clinicians may prescribed higher than MIC concentrations to patients, yet these 

concentrations are often not reached at the site of infections – they are highly 

diluted by processes of absorption, plasma protein binding, tissue penetrations, 

etc.363. For example, in bone and joints - tissues often infected by MRSA, 

rifampicin and vancomycin penetrations are estimated to be particularly efficient, 

allowing those antibiotics concentrations to reach IC90 at these sites364. Yet, in 

the MRSA infections-susceptible Central Nervous System, rifampicin 

concentrations can exceed the MIC while vancomycin concentrations are 

lower365. With 88% of rifampicin being protein-bounded after administration363, a 

direct association between dose-response curves in vitro and in patients is 

therefore not straightforward. 
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Figure 3.1  

Testing antibiotic monotherapies in planktonic and biofilm experiments. A- 

Example of a microplate set-up producing an antibiotic monotherapy for both 

vancomycin and rifampicin. The negative control consisted in the non-inoculated 

non-antibiotic-supplemented growth media, the positive control contained non-

antibiotic-supplemented growth media and has been inoculated by the bacteria. 

B- Example of the dose-response of Escherichia coli (E.coli) Wcl strain growing 

on rifampicin at 0.2% glucose, with the indication of the Inhibitory Concentrations 

(IC) IC50, IC80, IC95 and IC99. This example being imperfect due to the data 

point in absence of rifampicin not reaching the optical density of the overnight 

culture (positive control). On B, the full points represent the average of the 
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observed data, and the vertical lines the standard deviation between the 

observed data. The data follows the expected biochemical interaction of the 

bacteria and the antibiotic (Hill equation fitted to the data, with 95% confidence 

intervals around a predicted mean in grey). 

 

Here, the extrapolated IC50 of each drug were therefore used to produce seven 

combinations of vancomycin and rifampicin, ranging from 100% of one drug at 

IC50 to 100% of the other one at IC50 (drug combination delta factor or relative 

drug fraction θ, Table 3.2)41. Each of these combinations was tested in four wells 

from the same overnight culture, and, on the same plate (with the same overnight 

culture and the same fresh media), monotherapies of vancomycin and rifampicin 

were re-assessed as dose-responses - in quadruplicates as well - to control if 

variations of the extrapolated IC50s occurred, and to observe the evolution of 

each dose-response over time, during 3 days41 (Figure 3.2). 

 

Combinations 

Content in 

vancomycin 

at IC50 (%) 

Content in rifampicin 

at IC50 (%) 

Combination #1 0 100 

Combination #2 20 80 

Combination #3 35 65 

Combination #4 50 50 

Combination #5 65 35 

Combination #6 80 20 

Combination #7 100 0 

Table 3.2 

Composition of the seven tested combinations of vancomycin and 

rifampicin. These combinations were used in planktonic and biofilm 

experiments, with their respective experimental Inhibitory Concentrations (IC) 

IC50 concentrations. 

 



59 
 

 

Figure 3.2  

Example of a microplate set-up producing both monotherapies and the 

seven drug-drug combinations, used in the planktonic and biofilm 

experiments. A- Area of the plate for the vancomycin monotherapy. B- Area of 

the plate for the combination of vancomycin and rifampicin, with the volume of 

vancomycin at IC50, leading to the drug combination delta factor or relative drug 

fraction θ (not shown). C- Area of the plate for the rifampicin monotherapy. D- 

Area of the plate with the controls: empty wells, negative control containing only 

the growth media, positive control containing the inoculated media without any 

antibiotics. IC50 is the antibiotic concentration inhibiting 50% of the bacterial 

growth (Inhibiting Concentration). 

 

 

On Day 1, 3 microplates (D1-3) were filled with these combination of antibiotics 

(Table 3.2 and Figure 3.2). The 96-pins replicator was used to inoculate the first 

plate (called D1) before incubation in the plate reader (where the plate was 

shaken, and the OD was read every 20min), the other plates (D2 and D3) were 

stored at 4°C in the dark. Every 24h, one plate (Dx) was retrieved from the fridge 

and approximately 1% of the inoculum of each well of the previous plate (Dx-1) 

was transferred into the new plate (Dx) using the 96-pins replicator, to refresh the 

carbon source in the media. The Dx plate was then incubated in the plate reader, 
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while the Dx-1 plate was saved in the freezer at -80°C. This serial transfer allowed 

to assess the evolution of the dose-responses on 3 days. 

 

By plotting the bacterial density as a function of the drug combination delta factor, 

a smile or a frown was expected to show synergy or antagonism, respectively (as 

fully developed in Chapter 2). All presented results have passed the quality 

control: the negative control was not contaminated over the three days of the 

experiment, and the extrapolated IC50s for vancomycin and rifampicin were 

approximatively reached on the D1 microplate. The experiment was successfully 

replicated, providing the same outcome. 

 

 

3.3.6. Bacterial culture in a biofilm environment 

To create biofilms into the wells of a crystal-clear flat-bottom 96-wells microplate, 

200µL of LB (with or without antibiotics) were inoculated with 2µL of the overnight 

culture of the MRSA252 strain. The plate was sealed and placed into a 37°C 

incubator without shaking, for 48h. After incubation, the OD was first read at 

600nm by the eLx807 UV/ABS (BioTek) or the Infinite 200Pro (Tecan) plate 

readers, to determine the wells in which bacteria growth happened. Changing tips 

at every well from now on, media was pipetted out from the wells, without 

disrupting the bottom of the wells which contained the biofilm (this special care 

applies to all of the remaining steps of this protocol). Wells were washed with 

200µL of 1x Phosphate Buffered Saline (PBS, Fischer Scientific) before being 

filled with 200µL of 0.1% crystal violet stain (Fisher Scientific) for 15min. This 

classic dye binds to negatively charged molecules, allowing the quantification of 

total biomass including bacteria and the extracellular polymeric substances of the 

biofilm. It was then removed from the wells, which were then washed five times 

with PBS. The microplate was let to dry, and 200µL of 1x ethanol (EtOH, Fisher 

Scientific) was poured into the wells to dissolve the biofilm-bound crystal violet. 

After an incubation at room temperature for 10min, the content of each well was 
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homogenized by pipetting, and OD was measured again to quantify the biofilm 

formation200,201. 

Unless otherwise specified, each experimental condition was tested in four wells 

from the same overnight culture and its OD is the average of the OD in these 

quadruplicates, minus the OD from the negative control wells (LB without 

bacterial inoculation, in triplicates). Control growth, tested in triplicates, was 

established in the absence of any antibiotic in LB. 

 

The MIC of each drug was tested first in the experimental condition of biofilm, by 

growing MRSA252 on increasing row-wise concentrations of vancomycin or 

rifampicin for 24-48h without shaking (as seen for the planktonic experiment in 

Figure 3.1A). This allowed the creation of a DR curve for each antibiotic and 

therefore the estimation of the IC50 for each drug in this condition. 

 

As in Bacterial culture in a planktonic environment, the extrapolated IC50 of each 

drug were used to produce seven combinations of vancomycin and rifampicin, 

ranging from 100% of one drug to 100% of the other one (drug combination delta 

factor or relative drug fraction θ - as seen for the planktonic experiment in Table 

3.2). Both monotherapies were re-assessed on the same microplate than the 

combination therapy to control if variations of their expected IC50 occurred (as 

seen for the planktonic experiment in Figure 3.2). 

 

By plotting the bacterial density as a function of the drug combination delta factor, 

a smile or a frown was expected to show synergy or antagonism, respectively (as 

fully developed in Chapter 2). All presented results have passed the quality 

control: the negative control was not contaminated during the experiment, and 

the extrapolated IC50s for vancomycin and rifampicin were approximatively 

reached on the microplate. The experiment was successfully replicated, providing 

the same outcome. 
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3.3.7. Bacterial culture inside a “square dish” structure 

 

3.3.7.1. Description and protocol 

 

For this structured environment, 150mm square Petri dishes (Greiner) were used. 

This structured method was designed to keep an entirely homogenous dish in 

terms of bacteria inoculation, nutrients and drugs, avoiding therefore an unequal 

diffusion of drugs in the dish24. 50mL of soft M9-agar, at 0.2% glucose, inoculated 

with 1 or 5% of E. coli Wcl (in the preliminary experiment, instead of MRSA252) 

was poured into the dish, except of a circular area in the middle which was kept 

empty by using a 60mm round Petri dish (Greiner) (Figure 3.3A-B). When the 

agar was solidified, the small dish was removed, and a solid plastic band, whose 

length and width were similar to the diameter and the thickness of the small dish 

(respectively), was placed in the centre of dish to divide it in two : half of the centre 

of the dish was then filled with non-inoculated vancomycin-supplemented soft 

M9-agar. After solidification, the solid plastic band was removed to allow the 

pouring of soft M9-agar containing rifampicin in the other half. The tested doses 

of antibiotics to use in combined therapies were of 5, 10 or 15 times the daily MIC 

tested in planktonic conditions (up to 6µL/mL for vancomycin and to 70ng/mL for 

rifampicin) due to Wcl being a facultative anaerobe - as MRSA 202,203. 
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Figure 3.3  

Illustration of the “square dish” methodology to produce a gradient of drug 

combinations in a structured environment. A - The inner circle of the square 

dish was divided in two and filled with non-inoculated agar supplemented with 

vancomycin (in blue) on one side and with rifampicin (in red) on the other side. 

The rest of the dish was filled with media-agar inoculated with bacteria. B - The 

antibiotics were expected to diffuse from the inner centre of the dish, with lower 

concentrations localised away from the inner centre (visualised in lighter shades 

of blue or red). There should be a monotherapy of each drug (in shades of blue 

or red) as well as a combination of them on the dish, this latter being 

approximatively localised where both half-circles meet (visualised in shades of 

purple). C – After incubation, if the antibiotics synergise, there should be a bigger 

clearance of bacterial growth (visualised as clear agar) where the bacteria were 

growing in the combination of both drugs, compared to where they are subjected 

to any of the monotherapies. 

 

 

 

Dishes were incubated at 37°C for 24-48h in the laboratory BioBox, which is an 

automated photography chamber using the EOS 1100D digital SLR camera 

(Canon, UK) with white light. Square dishes were used in this experiment as they 

were fitting perfectly to the square platform of this station, allowing the settings to 

be consistent between experiments. Camera was set to take a picture and record 

it every 20min. Images were analysed with the ImageJ software (National 

Institutes of Health, USA) to correct the perspective and glare. 
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Image analysis of the final picture undertaken on ImageJ after subtracting, on 

each pixel, the background (picture taken at 0h) (Process > Image Calculator). 

Using the Radial Profile Angle plugin extension ( 

https://imagej.nih.gov/ij/plugins/radial-profile-ext.html ) (Plugins > Radial Profile 

Angle), the centre of the small dish was localised and its coordinates were 

recorded (Figure A1 left). This was performed three times, independently. With 

the same plugin, radial angles of 3° and 700 pixels of radius – starting at the 

previously located centre of the small dish – were created and their pixel 

intensities were extracted, the resulting data being the normalized integrated 

intensities around concentric circles as a function of distance from the centre of 

the small dish. This was performed for the three conditions (vancomycin 

monotherapy, rifampicin monotherapy and combination therapy, Figure A1 right 

– bottom for vancomycin monotherapy), with three independent readings per 

conditions. 

 

 

The final pixel intensity (as a proxy for cell density or bacterial growth) was plotted 

as their average for each, as a function of the average distance from the centre 

of the dish. Differences in the thickness of the halo of inhibition were expected to 

be visualised, between the three conditions, as differences in the lengths between 

the two peaks in pixel density (as illustrated on the drawing in Figure 3.4). Lengths 

between the peaks were calculated from raw data. 

 

 

 

 

https://imagej.nih.gov/ij/plugins/radial-profile-ext.html
https://imagej.nih.gov/ij/plugins/radial-profile-ext.html
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Figure 3.4  

Illustration of the methodology used to visualise the halo of inhibition of 

bacterial growth for every condition in the “square dish” structure. The 

distance between the highest peak (edge of the small dish) and the second peak 

(the resumption of the bacterial growth) were calculated for each condition from 

raw data. In this example of antagonism, the halo length for the combination (in 

pink) would be shorter than the ones for vancomycin (in blue) or rifampicin (in 

red). 

 

 

 

The control dishes consisted of using only one antibiotic or no antibiotic at all in 

the centre of the dish. A negative control consisted of a dish not being inoculated 

at all with the bacteria. This experiment has been completely replicated three 

times successfully (validation of the control dishes). Each experiment consisted 

of duplicated dishes per each setting condition (monotherapy controls, negative 

control…), and the analysis was performed for each dish with triplicate readings 

of 3° radial angles. The presented results and analysis are those associated to 

the experiment produced at 15 times the daily MIC (tested in planktonic 



66 
 

conditions), they represent all observed outcomes from all experiment, 

regardless of the concentrations used. 

 

3.3.7.2. Expectations 

As the “square dish” structure was produced using an unfamiliar protocol, the 

following details the expectations from performing this experiment. 

The “square dish” method was designed to show, if any, a difference in the sizes 

of halo of bacterial growth inhibition between where bacteria were only in contact 

with one antibiotic (vancomycin or rifampicin) and where they were in contact with 

both antibiotics. The size of the halos would be visualised on the plots as the 

lengths between the edge of the small dish (where the first peak is visible) and 

where the bacteria growth is recovered (next pixel intensity peak). 

 

 

 

Figure 3.5  

Illustration of an antagonistic result from the “square dish” methodology.  

After incubation, if the antibiotics antagonise, there should be a bigger clearance 

of bacterial growth (visualised as clear agar) where the bacteria were growing in 

monotherapies (of vancomycin in blue, of rifampicin in red), compared to where 

they are subjected to the combination therapy (bottom triangle). 

 

On the same dish, in case of synergy, it was expected to observe a smaller halo 

of agar without bacteria growing in it where the bacteria are only in contact with 

monotherapies than where they are treated with combined therapy (Figure 3.3C). 
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By plotting the pixel intensity as a function of the distance from the centre of the 

dish, for the three therapies, the halo length would be significantly shorter for the 

monotherapies than for the combination therapy (Figure 3.6A). 

 

Conversely, in case of antagonism, a bigger halo of agar without bacteria growing 

in it was expected where the bacteria are only in contact with monotherapies than 

where they are treated with combined therapy (Figure 3.5). The pixel intensity 

plot would therefore show a significantly longer halo length for the monotherapies 

than for the combination therapy (Figure 3.6B). 

 

 

 

 

Figure 3.6  

Illustration of the expected plots for synergy or antagonism interactions of 

vancomycin and rifampicin from the “square dish” structure. The distance 

between the highest peak (edge of the small dish) and the second peak (the 

resumption of the bacterial growth) could be calculated for each condition from 

raw data. Left is an example of synergy, in which the length associated to a 

combination is (significantly) longer than those from the monotherapies. Right is 

an example of antagonism, in which the length associated to a combination is 

(significantly) shorter than those from the monotherapies. Vanc would be in blue, 

rif in red and the combination of both in pink. 
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3.3.8. Bacterial culture on a “layer dish” structure 

 

3.3.8.1. Description and protocol 

The “layer dish” structured environment is named after the two unbalanced layers 

of soft LB-agar placed inside 150mm round Petri dishes (Figure 3.7). This 

structure, also known as “gradient plate” in the literature, was manufactured by 

pouring a first layer of soft agar on a non-levelled Petri dish, and by waiting for it 

to dry before levelling up the dish and pouring a second layer of soft agar, of 

equal volume204-206. Each layer was supplemented with a different antibiotic 

(Figure 3.7A) whose homogenous diffusion in the soft agar was assumed (here, 

as both the stock solutions of vancomycin and rifampicin are made of polar and 

water-soluble compounds, their hydrophilic nature were expected to favour their 

diffusion through the agar207-209). This created a gradient of antibiotic inside the 

dish, from the pole A containing 100% of antibiotic A and 0% of antibiotic B, to 

the pole B with 0% of antibiotic A and 100% antibiotic B (Figure 3.7B). When the 

second layer was dry, the MRSA252 overnight culture was swabbed onto its 

surface in two linear streaks: one from pole A to pole B, and one - a few 

millimetres away - from pole B to pole A. Dishes were incubated at 42°C for 24-

48h and bacterial growth was checked visually and recorded with a camera. As 

for the “square dish” experiment, the tested doses of antibiotics to use in 

combined therapies were of 1, 5 or 15 times the daily MIC tested in planktonic 

conditions (up to 9µL/mL for vancomycin and to 100ng/mL for rifampicin) due to 

MRSA being facultative anaerobe 202,203. 
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Figure 3.7 

Illustration of the “layer dish” methodology to produce a gradient of drug 

combinations in a structured environment, with the antibiotics A and B. A- 

Content of the Petri dish, in a cross-section view, showing the two unbalanced 

layers of soft agar. B- Surface of the Petri dish where the bacteria were streaked 

in one single line going from Pole A to Pole B, and another streak going from Pole 

B to Pole A. “Pole A” marks the pole of the dish containing 100% of antibiotic A 

and 0% of antibiotic B, “Pole B” marks the opposite pole with 0% of antibiotic A 

and 100% of antibiotic B. Both layers should allow the drug combination delta 

factor or relative drug fraction θ along the streaks. 

 

 

Every experiment consisted in producing this “layer dish” with all possible 

arrangements of layers consisting of either vancomycin, or rifampicin, or no 

antibiotic (Table 3.3). For the purpose of clarity, the nomenclature of the layer 

dishes is “A1B2”, with A the initial of the antibiotic used in the first (bottom) layer 

and B the initial of the antibiotic used in the second (top) layer (using V for 

vancomycin, R for rifampicin and C for the control without antibiotic). Therefore, 

as an example on a C1R2 dish, the Pole A of the dish contained 100% of non-

supplemented agar and the Pole B contained 100% of rifampicin-supplemented 

agar. 
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Conditions First layer Second layer Streaks Comments 

Negative 

control 

(C1C2*) 

No antibiotic No antibiotic 

Non-

inoculated 

liquid media 

No bacterial 

growth was 

expected. 

Positive 

control 

(C1C2) 

No antibiotic No antibiotic 
Inoculated 

liquid media 

Bacterial 

growth was 

expected along 

the streaks. 

Vancomycin 

control 1 

(V1C2) 

Vancomycin No antibiotic 
Inoculated 

liquid media 

Should be 

equivalent to 

C1V2. 

Vancomycin 

control 2 

(C1V2) 

No antibiotic Vancomycin 
Inoculated 

liquid media 

Should be 

equivalent to 

V1C2. 

Rifampicin 

control 1 

(R1C2) 

Rifampicin No antibiotic 
Inoculated 

liquid media 

Should be 

equivalent to 

C1R2. 

Rifampicin 

control 2 

(C1R2) 

No antibiotic Rifampicin 
Inoculated 

liquid media 

Should be 

equivalent to 

R1C2. 

Combination 

vancomycin / 

rifampicin 

(V1R2) 

Vancomycin Rifampicin 
Inoculated 

liquid media 

To be analysed 

if both V1C2 

and C1R2 are 

validated. 

Combination 

rifampicin / 

vancomycin 

(R1V2) 

Rifampicin Vancomycin 
Inoculated 

liquid media 

To be analysed 

if both R1C2 

and C1V2 are 

validated. 

Table 3.3 

Description of the seven different conditions tested in the “layer dish” 

experiment. The nomenclature of the layer dishes is “A1B2”, with A the initial of 

the antibiotic used in the first (bottom) layer and B the initial of the antibiotic used 

in the second (top) layer - using V for vancomycin, R for rifampicin and C for the 

control without antibiotic. 
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On each dish, after recording the bacterial growth with a camera before and after 

incubation, image analysis was performed on ImageJ (National Institutes of 

Health) by subtracting the background of the dish (as developed in the “square 

dish” experiment), by plotting a straight line from pole A to pole B, on both bacteria 

streaks, and by extracting the pixel intensity (profile) along these lines (Figure 

A2). This was replicated three times per streak, and the resulting profile (as a 

proxy for cell density or bacterial growth) was plotted as the average of the three 

readings per bacteria streak, as a function of the distance to the pole A of the 

dish. The final bacterial growth (expressed in percentage along the streaks, from 

0% at one pole to 100% at the opposite pole) was plotted. The exact antibiotic 

concentration inhibiting the bacterial growth in these structured environments 

were calculated using the antibiotic concentration inside the antibiotic layer, and 

the localisation of the growth inhibition – which is related to the relative drug 

fraction distribution. For example, with a bacterial growth along the streak at 65% 

for 3-times MIC in the antibiotic layer, the bacteria were inhibited using a minimal 

concentration of 3x0.65-times MIC. 

 

 

Up to four replicates were produced with the same dish composition per 

experiment. As a rule, every dish was validated only when its two streaks showed 

the same pattern, and every dish composition was validated only if all replicates 

were showing the same results. Negative and positive control dishes were also 

produced every time this experiment was performed, and all presented results 

have passed the quality control by i) showing the expected outcome for both 

these controls (see Results), and ii) not presenting any sign of bacterial 

contamination or of dried agar. All presented results have passed the quality 

control: the negative control was not contaminated during the experiment. The 

presented results and analysis are representative of all observations. 
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3.3.8.2. Expectations 

As the “layer dish” structure was produced using an unfamiliar protocol, the 

following details the expectations from performing this experiment. 

 

 

To be able to visualise a potential synergy or antagonism between vancomycin 

and rifampicin, the “layer dish” environment had to be produced both at low doses 

and at high doses of each antibiotic (Figure 3.8). Synergy could indeed only be 

visualised at low doses, i.e. concentrations at which the antibiotic monotherapy 

control dishes allowed the bacteria to grow homogenously from pole A to pole B 

– for both rifampicin and vancomycin. In this context, if vancomycin and rifampicin 

synergise, their combination dishes would show an inhibition of the bacterial 

growth in the centre of both A-B streaks, while bacteria would be growing at the 

poles (Figure 3.8A). Similarly, antagonism could only be visualised at high doses, 

i.e. concentrations at which the antibiotic monotherapy control dishes allowed no 

bacteria to grow homogenously from pole A to pole B – for both rifampicin and 

vancomycin. In this case, if vancomycin and rifampicin antagonise, their 

combination dishes would display bacterial growth only in the centre of both A-B 

streaks (Figure 3.8B). No interpretation could be made from other growth patterns 

on the dishes. 
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Figure 3.8 

Illustration of the methodology to observe, in the “layer dish” experiment, 

the interaction between both antibiotics depending on the doses of 

antibiotics used. A – If any, low doses of antibiotics could show a synergy 

between vancomycin and rifampicin: no bacterial growth is visible in the middle 

of the streaks on the V1R2 plate, compared to growth on the plates V1C2 and 

C1R2. B- If any, high doses of antibiotics could show an antagonism between 

vancomycin and rifampicin: bacterial growth is visible in the middle of the streaks 

on the V1R2 plate, compared to an absence of bacterial growth on the plates 

V1C2 and C1R2. C stands for control layer, V for a layer with vancomycin and R 

for a layer with rifampicin. 

 

To provide a clear and definitive interpretation of the interaction between 

vancomycin and rifampicin, this experiment was produced with both low doses 

and high doses dishes. For each condition, the observations had to be similar 

between the two combination dishes (V1R2 and R1V2), which were compared 

respectively to the bacterial growth on V1C2 and C1R2, and R1C2 and C1V2 

(Table 3.3 for the full nomenclature and composition of the conditions). 

 

For the antibiotic control dishes, and only if the bacterial growths along the 

streaks were linear as expected (as seen on the example of control dishes V1C2 

or C1V2 in Figure 3.9A, and as opposed to the growth pattern in both V1R2 
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dishes in Figure 3.8), the bacterial growth was recorded in percentage along the 

streak, representing the relative distance from the pole with 0% antibiotic to where 

the bacterial growth is fully inhibited (example in Figure 3.9A with 100% of 

bacterial growth on the V1C2 dish and approximatively 60% of bacterial growth 

on C1V2). On those monotherapy “layer dishes”, a curve following a Hill equation 

pattern was expected by plotting the average bacterial growth along the streaks 

as a function of the antibiotic concentration in the antibiotic layer (Figure 3.9B). 

The bacteria were indeed predicted to fully grow along the streak (100%) in very 

low antibiotic concentrations, and to follow an exponentially decreasing dose-

response with increasing antibiotic concentrations in the antibiotic layer. 

 

 

 

Figure 3.9 

Illustration of the analysis for antibiotic control plates in the “layer dish” 

experiment, in cases of linear growth along the streaks. A – In cases of linear 

growth along the streak, the average bacterial growth was recorded in percentage 

of the streak on which the bacteria were able to grow, from the control pole to the 

antibiotic pole. In this example, the streaks on V1C2 and C1V2 would be recorded 

as, respectively, 100% and approximatively 60% of average bacterial growth. B- 

The average bacterial growth along the streak was then plotted as a function of 

the antibiotic concentration in the antibiotic layer. The curve is expected to follow 

a Hill function with limited antibiotic concentrations allowing bacterial growth 

along the streaks and high antibiotic concentrations inhibiting the bacterial 

growth. C stands for control layer, V for a layer with vancomycin, R for a layer 

with rifampicin and MIC is Minimum Inhibitory Concentration. Notes: in A, the 

same pattern are expected between V1C2 and C1V2 to allow for a plot following 

the example exhibited in B. The examples in A and B are therefore unrelated. 
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3.3.9. Bacterial culture on agar plates using Etests 

After pouring LB-agar or MH-agar in 150mm round Petri dishes, MRSA252 was 

streaked into the dry dishes using a disposable L-shaped spreader (Sigma 

Aldrich) and RI 32 and/or VA 256 Etests were carefully positioned onto the dishes 

with forceps – sterilely and in one single movement, as per manufacturer’s 

instructions. Dishes were then incubated for 18-24h at 42°C. 

 

MIC was determined by applying only one antibiotic Etest on the surface of the 

inoculated LB-agar or MHA dish. The way to determine the MIC was dependant 

on the microorganism and on the drug - for rifampicin and vancomycin, and on 

MRSA, the manufacturer protocol advised a reading after incubation as following: 

rifampicin MIC was read where the edge of the inhibition ellipse intersects with 

the side of the strip (or at the next higher value if it sits in-between markings) and, 

vancomycin being considered a bactericidal agent with a high molecular weight, 

its MIC is reached where the growth halo intersects with the side of the strip as 

well (Figure 3.10A). With vancomycin, special care had to be undertaken to avoid 

false results due to trailing growth (hazes, micro- and macrocolonies) – only the 

higher MIC value had to be considered. 

 

When used in combination, the two Etests were placed perpendicularly to each 

other (with a 90° angle) according to their MIC readings from the previous day186-

189,210. In the case of the combination of antibiotic A and antibiotic B, both possible 

configurations were tested: on one dish, Etest(A) was placed first and Etest(B) 

was positioned on top of it with a 90° angle (Figure 3.10B), and on another dish, 

Etest(B) was placed first and Etest(B) was positioned on top of it with a 90° angle 

(Figure 3.10C). The combination MIC was read in the area where both Etests 

intersect, where the edge of the inhibition ellipse intersects with the side of both 

strips. 
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Figure 3.10 

Illustration of the Etest methodology to produce a gradient of drug 

combinations in a structured environment, with the antibiotics A and B. A- 

The Etest was placed on an agar plate surface which was inoculated with bacteria 

prior to use. Using one Etest (monotherapy), the Minimum Inhibitory 

Concentration (MIC) was read at where the edge of the inhibition ellipse 

intersects with the side of the strip (green arrow). B and C- For a combination 

assay, the Etests of both antibiotics were placed perpendicularly to each other, 

at their respective MIC breakpoints. B shows the configuration in which the Etest 

of antibiotic A was placed first, C shows the configuration with the Etest of 

antibiotic B being first on the agar plate. In both cases, the MIC in combination 

was read in the area pointed by the green arrow. 

 

 

 

Visual observations and photograph recordings were taken at 24h. Control dishes 

included the re-determination of the MIC of monotherapies on the day of the 

combination, along with both: i) the combination of two vancomycin Etests and ii) 

the combination of two rifampicin Etests. One control dish was also simply 

streaked with the bacteria (positive control) and another one was incubated 

without bacteria nor Etest (negative control). Both control dishes were produced 

for each experiment. All presented results have passed the quality control by not 

presenting any sign of bacterial contamination or of dried agar. The application 

of the Etests on the agar plates was particularly troublesome in the case of Etests 

combination, as it was difficult to place the Etests perpendicularly to each other 

at their exact MIC, in one single movement and using forceps. Only the most 

precise applications were incubated, and therefore analysed.  
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After preliminary experimentation, the whole experiment was replicated four 

times. Up to two exact replicates were produced per control and tested 

conditions, per experiment. The presented results and analysis are 

representative of all observations. 

 

 

 

3.3.10. Plotting and statistics 

Differences in bacteria growth were followed through the Optical Density as a 

function of drug concentration (monotherapies), or drug combination delta factor 

or relative drug fraction θ, at one time point (2D graph) and over time (3D graph) 

(combined therapies) using MatLab 2018 (MathWorks, USA) for the planktonic 

experiment, and SPSS Statistic 24 (IMB, USA) for the biofilm experiment. As 

detailed in Chapter 2, this allowed the visualisation of possible synergies as 

smile-features and of antagonism as frown-features41. For the planktonic 

experiments, statistical differences were assessed by MatLab 2018 using t-test 

(with p < 0.05 considered significant) and Hill equation was used to fit the data 

points to show standard deviation and standard error (Supplementary Data). For 

the biofilm experiment, error bars represent the standard deviation of the four 

replicates and statistical differences were assessed using XLSTAT (Addinsoft, 

France) and Stata/SE 15 (Statacorp, USA) by a Mann-Whitney test 

(Supplementary Data). 

 

For the “square dish” experiment, the three halo lengths produced in each 

experiment were plotted as clustered bar charts using Excel 2016 (Office 365, 

Microsoft, US) for visualisation purpose and two-samples t-tests were performed 

using Stata/SE 15 (Supplementary Data). 

For the “layer dish” experiment, the average bacterial growth along the streaks 

was plotted as a function of the antibiotic concentration, using a scatterplot on 

Excel 2016 to visualise the disparities in results - with error bars representing the 

standard deviations along streaks on similar dishes (same composition, 

experiment performed on the same day). 
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For the Etest experiments, the distribution of the MICs was plotted using X, Y 

scatter plots on Excel 2016. For each combination, the Fractional Inhibitory 

Concentration Index (FICI) was calculated as the sum of ratios of the MIC of the 

combination of Antibiotics A and B divided by the MIC of the antibiotic A (or B) 

monotherapy (Equation 1). The FICI data was interpreted using the following 

criteria: antibiotics synergize if FICI ≤ 0.5; they are indifferent if 0.5 < FICI < 4.0; 

and they antagonise if FICI ≥ 4.0 186,187,189,190,210-212. 

Equation 1: FICI =
𝑀𝐼𝐶 𝐴 (𝑖𝑛 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ 𝐵)

𝑀𝐼𝐶 𝐴 (𝑖𝑛 𝑚𝑜𝑛𝑜𝑡ℎ𝑒𝑟𝑎𝑝𝑦)
+

𝑀𝐼𝐶 𝐵 (𝑖𝑛 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ 𝐵)

𝑀𝐼𝐶 𝐵 (𝑖𝑛 𝑚𝑜𝑛𝑜𝑡ℎ𝑒𝑟𝑎𝑝𝑦)
 

 

 

 

 

3.4. Results 

The aim of this study was to assess the effectiveness of the combination of 

vancomycin and rifampicin against MRSA infection in five different experimental 

settings, to see if the inconsistencies between previously reported clinical studies 

could be due to inter-laboratory/practices or to inter-individual differences, or if 

they are potentially the result of a non-optimal regimen. 

 

3.4.1. Bacterial culture in a planktonic environment (broth dilutions) 

Research question 1: what is the interaction of vancomycin and rifampicin 

towards MRSA in a planktonic culture - an environment typically used in clinical 

laboratories45? 

 

 

A planktonic experiment was performed to produce a non-structured environment 

in which MRSA252 could grow at different concentrations of vancomycin and/or 

rifampicin. Usually referred as “broth (micro) dilution”213, this method of antibiotic 

susceptibility testing, commonly used in research laboratories and 

clinics191,193,209,213,214, was adapted here to be able to follow, on one microplate, 

the dose-responses of each monotherapy, and to compare them to the 

combination therapy, both over time (3 days). 
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Over 24h, the bacterial growth of MRSA252 was inhibited, in monotherapies, 

when reaching the MIC of approximately 300ng/mL for vancomycin and of 

approximately 3.5ng/mL for rifampicin (as visualised in Figures 3.11A and 3.12A). 

Their respective IC50s were of 60.7 and 1.25 ng/mL. Interestingly, the dose-

response of MRSA in a rifampicin monotherapy was not stable over time: a dose 

completely inhibiting the bacterial growth at 24h was found to be ineffective after 

48h (see 3ng/mL in Figure 3.12B, for example). 

By repeating the monotherapy experiments, it was witnessed that the MICs read 

at 24h, and therefore their resulting determined IC50s, tend to fluctuate from one 

day to another (example of a 2ng/mL MIC for rifampicin in Figure A3) – despite 

great handling care to follow precisely the protocol. It was therefore challenging 

to proceed to the combination part of the experiment, as it required this particular 

dosage to be reached for both vancomycin and rifampicin. This was nevertheless 

successfully achieved, when - on the same microplate - the observed IC50s of 

the monotherapies were in accordance with the predicted ones, concentrations 

which were used in the combination therapy (Figures 3.13-14). 
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Figure 3.11 

24h-dose-response curves for MRSA252 in monotherapy of vancomycin, 

followed over time as the optical density (OD) at 600nm at increasing 

vancomycin dosages in broth liquid. A- Dose-response at 24h on day 1, 

allowing the estimation of the Minimum Inhibitory Concentration at 

approximatively 300ng/mL. B- Dose-response at 24h on day 2, after one serial 

transfer. C- Dose-response at 24h on day 3, after a second serial transfer. The 

full points represent the average of the observed data, and the black vertical error 

bars the standard deviation between the observed data. A Hill equation is fitted 

to the data, with 95% confidence intervals around predicted mean, associated to 

the expected biochemical interaction of the bacteria and the antibiotic, in the grey 

area along the black curve (superimpos ed Hill curve). The data follows the Hill 

curve, with the correlation coefficient R2 indicated on the graph. The Inhibitory 

Concentrations 50 (IC50), 80 (IC50) and 95 (IC95) are indicated. 
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Figure 3.12 

24h-dose-response of MRSA252 in monotherapy of rifampicin, followed 

over time as the optical density (OD) at 600nm at increasing rifampicin 

dosages in broth liquid. A- Dose-response at 24h on day 1. B- Dose-response 

at 24h on day 2, after one serial transfer. No Minimum Inhibitory Concentration 

was estimated from this growth curve, the bacteria never being completely 

inhibited. C- Dose-response at 24h on day 3, after a second serial transfer. The 

full points represent the average of the observed data, and the black vertical error 

bars the standard deviation between the observed data. A Hill equation is fitted 

to the data, with 95% confidence intervals around predicted mean, associated to 

the expected biochemical interaction of the bacteria and the antibiotic, in the grey 

area along the black curve (superimposed Hill curve). The data follows the Hill 

curve, with the correlation coefficient R2 indicated on the graph. The Inhibitory 

Concentrations 50 (IC50), 80 (IC50) and 95 (IC95) are indicated. 
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Interestingly, following the monotherapies over time allowed us to observe in 

Figures 3.11-12 that, as expected, the definition of Minimum Inhibitory 

Concentration may be biased. It involves the visual observation of no bacterial 

growth at a given concentration, and does not consider the limitations of such 

visual observations: no visible bacterial growth (≤105 bacteria) could actually hide 

the presence of low-density populations, as persister cells or slow growing 

phenotypes for example24. If the optical density of 0 were reached in both 

monotherapies on day 1 (Figures 3.11A and 3.12A), these OD zero values were 

not found in days 2 or 3, for both vancomycin and rifampicin. 

 

 

Focussing now on the combination therapy tested on the same microplate 

(presented in Figures 3.13-14), the OD at 600nm was plotted as a function of the 

drug combination delta factor or relative drug fraction θ, and is expected to exhibit 

a smile-feature when the antibiotics synergise, or a frown-feature when they 

antagonise41. On the first day of the combination (Figure 3.13A), at 16.7 hours, a 

frown was visible: there was significantly more bacterial growth at θ ½ (where an 

equal amount of vancomycin and rifampicin is present in the broth) than in either 

of the monotherapies (θ = 0/1 or 1/1). This significant frown was stable over time, 

up to 3 full days of experiment (Figure 3.13B-C, B being at 13.3h on the second 

day of the experiment, and C at 13.3h on the third day of the experiment). As 

illustrated with the 3D visualisation in Figure 3.14 (and in Figure A4), the frown 

was stable during the 24 hours of each day of the experiment. Vancomycin and 

rifampicin were therefore significantly antagonising against MRSA252 in this 

broth dilution environment. 

 

Important note: Figures 3.11-14 show the outcome of the same experiment (one 

single dataset). The optical densities of each monotherapy can therefore be read 

as following: on day 1 at 16.7h on Figure 3.13A, on day 1 at 24h on Figures 3.11A 

and 12A, on day 2 at 13.3h on Figure 3.13B, on day 2 at 24h on Figure 3.11B 

and 12B, on day 3 at 13.3h on Figure 3.13C and on day 3 at 24h on Figure 3.13C. 
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Figure 3.13 (described next page) 
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Vancomycin and rifampicin significantly antagonise against MRSA252 in 

broth liquid, over three days (2D visualisation). The combination of 

vancomycin and rifampicin at Inhibitory Concentration 50 (IC50) does not 

inhibit the bacterial growth of MRSA252 in broth liquid, over 3 days. A frown 

is observed here in 2D visualisation of the combination therapy as a function of 

the drug concentration delta factor or relative drug fraction θ. The antagonism of 

vancomycin and rifampicin is stable and significant (“sig.ant”), associated to a p-

value < 10-7, over three days (A – day 1 read at 16.7h, B- day 2 read at 13.3h, C- 

day 3 read at 13.3h). The full points represent the average of the observed data, 

and the black vertical error bars the standard deviation between the observed 

data. A Hill equation is fitted to the data, with 95% confidence intervals around 

predicted mean, associated to the expected biochemical interaction of the 

bacteria and the antibiotic, in the grey area along the black curve (superimposed 

Hill curve). The data follows the Hill curve, with the correlation coefficient R2 

indicated on the graph. The Inhibitory Concentrations 50 (IC50), 80 (IC50) and 

95 (IC95) are indicated. Vanc stands for vancomycin and rif for rifampicin, and 

drug concentration delta factor or relative drug fraction θ is expressed in 

vancomycin ratio in the combination (from 0 to 1). 

 

 

Figure 3.14 (next page) 

Vancomycin and rifampicin significantly antagonise against MRSA252 in 

broth liquid, over three days (3D visualisation). The combination of 

vancomycin and rifampicin at Inhibitory Concentration 50 (IC50) does not 

inhibit the bacterial growth of MRSA252 in broth liquid, over 3 days (A- day 

1, B- day 2 after serial transfer, C- day 3 after serial transfer). A frown is 

observed in 3D visualisation of the combination therapy as a function of the drug 

concentration delta factor or relative drug fraction θ and time. The antagonism of 

vancomycin and rifampicin is stable and significant over the course of the three 

days (“sig ant”). The black curves follow the average of the observed data along 

delta factor, the light grey curves follow OD over time. Vanc stands for 

vancomycin and rif for rifampicin, and the drug concentration delta factor or 

relative drug fraction θ is expressed in vancomycin ratio in the combination (from 

0 to 1). 
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Conclusion 1: the interaction of vancomycin and rifampicin towards MRSA is 

significantly antagonistic, and stable over time, in a planktonic culture. Both 

vancomycin and rifampicin exhibit both variability in their Minimum Inhibitory 

Concentrations. 

 

 

 

3.4.2. Bacterial culture in biofilms  

Research question 2: what is the interaction of vancomycin and rifampicin 

towards MRSA in biofilm - a structure typically formed by MRSA33,45? 

 

 

Colonies of Staphylococcus aureus are known to form biofilms33,45. This highly-

structured environment is beneficial for MRSA as it is less permeable to foreign 

compounds such as antibiotics33,45,215. Since rifampicin has been described as 

potentially able to penetrate such biofilms45, the combination of vancomycin and 

rifampicin is favoured to eradicate device-related staphylococcal infections, 

particularly during prosthetic bone/joint replacements or insertions of intravenous 

catheter33,45. Yet this specific usage is still questioned82,83. 

 

To drive MRSA252 into forming biofilms, the bacteria were cultured in liquid 

media inside the wells of a microplate, for 48h without being shaken – in the 

presence of monotherapies or combinations of vancomycin and rifampicin. The 

Optical Density was read at 600nm before and after a staining with crystal violet, 

this technique allowing the quantification of the biofilm formation, which 

proportional to the bacterial load79,197,200,201,215. 

 

The dose-response of each antibiotic alone was monitored using monotherapies. 

The MIC was reached at approximatively 6.65ng/mL for rifampicin, and not 

reached at all for vancomycin (Figure A7). The IC50 for rifampicin was calculated 

to be approximately of 2ng/mL. These concentrations were slightly higher than 

those observed in planktonic cultures, which was expected as the formation of 
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biofilm is beneficial for MRSA to survive antibiotic therapy. However, it was not 

anticipated that the rifampicin MIC in biofilm would be double than in broth 

dilution. This was particularly surprising as rifampicin was known for its anti-

biofilm properties33,45,68. 

 

When vancomycin was associated to rifampicin, at the IC50 of each antibiotic, a 

significantly more robust biofilm of bacteria was detected in the presence of both 

drugs combined compared to either monotherapies: a frown-feature was visible, 

before and - more importantly - after crystal violet staining, when plotting the OD 

(as a proxy for, respectively, the bacterial growth and the biofilm formation) as a 

function of θ (Figures 3.15-16). Vancomycin and rifampicin were therefore 

significantly antagonising against MRSA252 in this biofilm environment. 
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Figure 3.15 

MRSA252 bacterial growth is significantly improved in the presence of both 

vancomycin and rifampicin than with their monotherapies, in a biofilm 

environment. Data shown represent the optical density at 600nm, as a proxy for 

MRSA252 bacterial growth, as a function of the drug concentration delta factor 

or relative drug fraction θ – before staining the biofilm with crystal violet. 

Vancomycin and rifampicin were used at their Inhibitory Concentrations 50 and 

combined at different percentages (from 0% rifampicin + 100% vancomycin to 

100% rifampicin + 0% vancomycin). The error bars represent the standard 

deviation of the four replicates. * indicates p < 0.05 from a Mann-Whitney test 

(Supplementary Data). 
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Figure3.16 

MRSA252 produces significantly more biofilm in presence of both 

vancomycin and rifampicin, than with their monotherapies. Optical density, 

as a proxy for biofilm formation by MRSA252, as a function of the drug 

concentration delta factor or relative drug fraction θ – after staining with crystal 

violet. Vancomycin and rifampicin were used at their IC50 and combined at 

different percentages (0% rifampicin + 100% vancomycin to 100% rifampicin + 

0% vancomycin). The error bars represent the standard deviation of the four 

replicates. * indicates p < 0.05 from a Mann-Whitney test (Supplementary Data). 

 

 

Conclusion 2: the interaction of vancomycin and rifampicin towards MRSA is 

significantly antagonistic, in a biofilm environment. 
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3.4.3. Bacterial culture inside a “square dish” structure 

Research question 3: what is the interaction of vancomycin and rifampicin 

towards MRSA (or Wcl) in a “square dish” structure? 

 

 

In this pilot study using E.coli Wcl instead of MRSA252 (for sterility purpose), the 

bacteria were cultured inside a media supplemented with a small dose of agar, in 

presence of a gradient of vancomycin alone, of rifampicin alone and of a 

combination of both antibiotics (used here at 15 times the daily MIC measured in 

planktonic culture). This methodology aimed to provide a homogenous bacterial 

inoculation in the agar, along with a homogenous diffusion of both drugs, alone 

and in combination24. 

 

In the first step of the analysis of the produced “square dishes” at 15-times-MIC 

in 0.2% glucose, as described in Chapter 2, the data capture was processed to 

eliminate the background from the “square dishes” pictures taken at the end of 

the experiment. Resulting data was extracted as pixel intensity (as a proxy for 

bacterial density), using radial profile angles in the area of the plate associated 

to i) rifampicin monotherapy, ii) vancomycin monotherapy or iii) combination 

therapy. 

 

For visualisation purpose, the pixel intensity in each condition was plotted as a 

function of the distance from the centre of the plate, allowing - if any - the direct 

visualisation of differences in the halos of inhibition (distance between the two 

peaks of pixel intensity) between the three conditions. Figure 3.16 illustrates the 

visualisation associated to a “square dish” representative of all performed 

experiments. No clear difference in the distance between the two peaks of pixel 

intensity were detected from this. The raw data was therefore analysed 

statistically. 
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Figure 3.16 

Distribution of the “pixel density” in different radial angles (localised in 

monotherapies or combination of vancomycin and rifampicin), as a 

function of the distance from the centre of the dish, using the “square dish” 

methodology. The pixel intensity was a proxy for Escherichia coli Wcl growth in 

0.2% of glucose with a monotherapy of vancomycin (blue line), a monotherapy of 

rifampicin (red line), or in the presence of both antibiotics (pink line). 
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Using the radial profile raw data, the localisation of each peak of pixel intensity 

was measured, for each condition. By subtracting the localisation of the first peak 

(associated to the edge of the small dish) to the localisation of the second peak 

(associated to the end of the halo of inhibition), halo lengths could be measured 

for each condition (Table 3.4). Data was analysed using two-samples t-tests to 

compare the halo lengths associated to vancomycin monotherapy, rifampicin 

monotherapy and combination therapy (Figure 3.17). An inconclusive outcome 

was reported: the halo length of the combination therapy may be (significantly) 

shorter than the vancomycin one, yet it is longer than the rifampicin one. No 

interaction between these antibiotics could be interpreted from such data. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.4 (next page) 

Resulting halo lengths (in pixels) between the areas where Escherichia coli 

Wcl were introduced in monotherapies of vancomycin or rifampicin, and 

where they were growing in the combined therapy – both with 0.2% of 

glucose in the media, in a “square dish”. * indicates p < 0.05 from two-samples 

t-tests (Supplementary Data). 
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Experimental 

condition 

Halo length (in pixels), 

representative for the halo of inhibition) 

Vancomycin 

monotherapy 

116.6 

Rifampicin 

monotherapy 

84.75 

Combination 

therapy 

85.66 

Table 3.4 

 

 

Figure 3.18 

Conflicting outcomes from the halo length comparisons between 

monotherapies or combinations of vancomycin and rifampicin, using the 

“square dish” methodology. When comparing the length of the halos of 

inhibition of Escherichia coli Wcl strain in 0.2% glucose, in presence of antibiotic 

monotherapies or of their combination (at 15-times-Minimum Inhibitory 

Concentrations), the average halo lengths for the combination therapy is 

significantly shorter than the one from the vancomycin monotherapy – but no 

significance is found when comparing the combination therapy to rifampicin. Data 

represents the average halo lengths of three radial profiles in each therapy, the 

error bars indicate the standard deviation. Monotherapies are in shades of grey 

(lighter for vancomycin) and the combination is in black. * indicates p < 0.05 from 

two-samples t-tests (Supplementary Data). 
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The presented results are representative of all observed outcomes from all 

experiment, regardless of the concentrations used. This could mean the 

experiment did not work (the observations do not meet the expectations, with a 

lack of significance and opposite interpretations depending on the monotherapy 

the combination therapy was compared to) or is not suitable to analyse the 

interaction of vancomycin and rifampicin towards Wcl, especially given the size 

of the effect that, if there was any, could be potentially not large enough to be 

clearly visualised with this methodology. The BioBox parameters were indeed not 

optimised yet at the time of this pilot study: for example, the surface of the dish 

was not perfectly parallel to the objective of the camera, and for sterility reasons, 

the incubation and the photographic captures were performed with the lid of the 

dish, creating reflections on the photographs. This could have decreased the 

sensitivity of this test, and therefore the precision of the measurement. 

Another explanation for such inconclusive outcome could be associated to the 

reported variability in MIC for vancomycin and rifampicin in planktonic culture. 

These concentrations were used (at 15-times-MIC each) in this study and could 

have increased 15-fold times daily variations in monotherapy MIC, dys-stabilising 

a potential interaction between vancomycin and rifampicin. 

 

 

It is important to note that the “square dish” experiment was performed using 

E.coli Wcl because of safety reasons (the BioBox was not insuring sterility and 

safety for other laboratory users and the environment). Given the infectious state 

of MRSA252 and the presented results from this preliminary study on “square 

dishes”, another structured environment was developed: the “layer dish” 

structure. 

 

 

Conclusion 3: the “square dish” methodology was relatively flawed to answer 

the research question on the interaction of vancomycin and rifampicin towards 

MRSA or E. coli. This could be due to the observed variability in the Minimum 

Inhibitory Concentrations of both antibiotics. 
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3.4.4. Bacterial culture on a “layer dish” structure 

 

Research question 4: what is the interaction of vancomycin and rifampicin 

towards MRSA in a “layer dish” structure? 

 

 

The “layer dish” method produces a structured environment for the bacteria to 

grow in contact with gradients of antibiotics using unbalanced layers of soft agar. 

Using low or high doses of each antibiotic in separated layers inside the Petri dish 

could allow the visualisation of potential interaction between vancomycin and 

rifampicin. 

Low and high doses of vancomycin or rifampicin were initially chosen according 

to the daily planktonic MICs of each antibiotic, starting at 2-times MIC for each 

drug in the pilot experiments and adjusting the concentrations according to the 

actual bacterial growth on the antibiotic control dishes (V1C2, C1V2, R1C2 and 

C1R2). At “low enough” doses, the bacteria were indeed expected to grow along 

the streaks on the antibiotic control dishes, enabling the possible visualisation of 

a synergy on the V1R2 and R1V2 dishes. Similarly, at “high enough” doses, a 

complete inhibition of the bacterial growth along the streaks of the antibiotic 

control dishes was expected, allowing the possible visualisation of a complete 

inhibition of the growth on the V1R2 and R1V2 dishes. 

 

The experiment was repeated 22 times in total and did not provide any evidence 

of the nature of the interaction between vancomycin and rifampicin.  

 

Firstly, despite great handling care, there were often disparities between both 

streaks from the same dish (Figure A9), and/or between replicated dishes 

produced on the same day (Figure A10), and/or between the two different control 

dishes produced on the same day (for example R1C2 and C1R2, which were 

supposed to provide a similar structure and therefore a similar bacterial growth – 

Figure 3.20). This variability in the bacterial growths along those streaks is 
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visualised as standard deviations with error bars on Figure 3.19, focussing on the 

rifampicin control dishes. 

 

 

Figure 3.19 

In-between replicates and in-between experiments variations in bacterial 

growth on rifampicin monotherapies. Rifampicin concentrations are 

expressed in times-Minimum Inhibitory Concentrations (MIC) inside the rifampicin 

layer of the “layer dish”. The average bacterial growth is expressed in percentage 

along the streaks, with 0% being a complete inhibition of growth, 100% being 

bacteria growing everywhere on the streaks and 33% being the bacterial growth 

on the first third of the streak – starting at the absence of antibiotic. Each data 

point represents the average of all streaks performed on the same day on the 

control plates C1R2 and/or R1C2, with two streaks per dish and up to six 

replicated dishes - standard deviations are shown using error bars. 

 

 

 

 

No expected Hill curve could be fitted to these data, a sign of randomness in their 

values and distribution as a function of the rifampicin concentration. 
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Secondly, it was challenging to produce either of the two full sets of conditions, 

by reaching either i) the highest low doses for both antibiotics simultaneously, 

allowing the growth along the streaks on both the antibiotic control dishes, or ii) 

the lowest high doses for both antibiotics simultaneously, inhibiting completely 

the growth along the streaks on both control dishes. As for the planktonic 

structure experiment (Figures 3.12A and A3), there were indeed variations in the 

inhibition patterns for similar concentrations in monotherapies – for example, a 

sufficient rifampicin concentration on one day could be either too strong or too 

weak on the next day, using the same protocol and the same stock solutions. 

Figure 3.20 depicts this for rifampicin, with for example 3-times MIC which did not 

inhibit the bacterial growth on one day (top dot with 100% bacterial growth and 

standard deviation = 0) and 3.04-times MIC which inhibited the bacterial growth 

at 29% on the same week (with a standard deviation of approximatively 17% for 

8 analysed streaks). A representative illustration of this effect is provided in Figure 

A8. 

 

Despite great care to produce these dishes in the same conditions every time 

(with the same stock of antibiotics and media), and as homogenous diffusion of 

these antibiotics inside the soft agar was assessed in the literature204,205,207-209, 

these two types of variations (in-between samples and in-between experiments) 

affected the distribution of the bacterial growth along the streaks as a function of 

the antibiotic concentration in the layer: the expected Hill curve fitting the data 

was not retrieved (Figure 3.19). One could argue that the antibiotic concentrations 

were not appropriate to allow a complete inhibition of the bacterial growth 

(literature reporting 10-50µg/mL for rifampicin in agar media216,217, compared to 

up to 100ng/mL here), yet the concentrations used here were consistent with 

those used with doxycycline on E.coli in our laboratory (up to 20-times difference 

between planktonic and “square dish” method24), moreover the common 

concentrations are known to follow the “hit hard and fast” paradigm88 and were 

not designed for this specific type of dishes and bacteria strain. Furthermore, low 

doses of antibiotics were necessary to visualise a possible synergy and those 

concentrations were able to inhibit partially the bacterial growth. 

Hypothesis could be drawn to explain these inconsistencies. A first one involves 

the extreme precision needed to handle these antibiotics. As seen in the 
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planktonic experiments, with much smaller volumes, the MIC of both antibiotics 

were variable. Here, bigger concentrations could impact this inherent variability, 

despite using bigger volumes (generally associated to less errors). A second 

hypothesis could be based on a possible instability of the interaction between 

each antibiotic and MRSA252 in this type of structured environment. It is also 

possible that the diffusion of each antibiotic inside the agar is not homogenous, 

as expected. Yet studies have being published about vancomycin and rifampicin 

used in agar media218,219. Finally, studies have reported the possible effect of 

circadian rhythm on laboratory experiments using bacteria, this could partially 

explain the lack of replicability of these experiments366. 

Altogether, and because it was difficult to reproduce the same outcomes every 

time the experiment was performed in full, it was challenging to validate the 

observations of the control conditions, and therefore to be able to observe, 

analyse and interpret the results provided by the combination dishes. 

 

However, at rare occasions, both antibiotic control dishes (C1R2 and V1C2, or 

C1V2 and R1C2) were validated and it was then possible to observe the resulting 

combination dish (V1R2, or R1V2) (Figure 3.20). It was not possible to interpret 

such observations, with not only a lack of replicability of the experiment (the main 

experimental outcome in A was not retrieved on the next day, Figure 3.20B), and 

the two supposedly similar conditions V1R2 and R1V2 tested on the same day 

not providing the same outcome (Figure 3.20A versus C). The validity of this 

experimental methodology to answer our research question was therefore even 

more questioned. 
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Figure 3.20 

Illustration of the resulting combination dishes V1R2 and R1V2, after 

validation of their respective antibiotic control dishes (V1C2, C1R2; R1C2, 

C1V2), using low doses of antibiotics (4.6MIC for vancomycin and 2.76MIC 

for rifampicin). A and B - On two different days (A and B), when bacterial growth 

was observed on the V1C2 and C1R2 control dishes produced at high doses, 

different observations were made on the combination V1R2 dish. Taken alone, A 

could be interpreted as an absence of synergy; yet B was not interpretable. A and 

C – The R1C2, R1V2 and C1V2 plates in C were produced on the same day than 

the V1C2, V1R2 and C1R2 plates in A, and are supposed to show a similar 

bacterial growth along the streaks. They do not, no interaction could be 

interpreted from the plates in C, discrediting even more the validity of this 

experimental methodology to answer our research question. 
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Despite a great care to follow a precise protocol, this “layer dish” experiment was 

found incapable of providing any evidence about the type of interaction of 

vancomycin and rifampicin against MRSA252 in such a structured environment. 

This could be due to the methodology itself that was proven challenging, possibly 

worsened by the extreme variability of the MICs for both vancomycin and 

rifampicin (as seen in the planktonic experiments and in Figure 3.20). Another 

hypothesis could be a possible instability of the nature of the interaction of both 

antibiotics towards MRSA. This could be tested by improving the experiment 

using a third layer of agar220 or by assessing the expected diffusions of the 

antibiotics in the agar206. 

Conclusion 4: the “layer dish” structure was relatively flawed to answer the 

research question on the interaction of vancomycin and rifampicin towards 

MRSA. This could be due to the observed variability in the Minimum Inhibitory 

Concentrations of both antibiotics. 

 

 

3.4.5. Bacterial culture using Etests 

 

Research question 5: what is the interaction of vancomycin and rifampicin 

towards MRSA using commercialized Etests - commonly used in clinics? 

 

Etests (bioMérieux) are commercialized strips containing known gradients of 

antibiotic. Commonly used in Clinical Diagnosis laboratories for antimicrobial 

susceptibility testing, this quantitative technique allows for the determination of 

the MIC of the antimicrobial agent on agar media against the tested 

microorganism, after an overnight incubation. The use of Etests is not a 

referenced method, yet it has been validated for Gram-positive aerobic bacteria, 

including Staphylococcus aureus, by both the American Society for Microbiology 

and the European Society for Clinical Microbiology and Infectious Diseases191. 
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Repeated monotherapies of vancomycin or rifampicin, against MRSA252 

cultured on LB- or MH- agar plates, showed major variations in MIC (Figure 3.21 

and Figure A12). The MIC of rifampicin on LB- or MH-agar plates was fluctuating 

from 0.003µg/mL to 0.012µg/mL and from 0.004µg/mL to 0.016µg/mL 

respectively. More importantly, the MIC of vancomycin was particularly instable, 

showing bacteria eradication from 0.125µg/mL and 4µg/mL (with one extra 

reading at 24µg/mL) for LB-agar plates and from 0.38µg/mL to 4µg/mL on MH-

agar plates. These differences could not entirely be attributed to differences in 

the laboratory environment (or the media / agar plates handling techniques) or to 

the subjectivity of this methodology (two different operators were determining the 

MIC, separately, while following the supplied protocol and guidelines for test 

reading). It is interesting to note that, in most Clinical Diagnosis laboratories, 

commercialized agar plates and an automatic MIC reader are often provided, to 

avoid such human errors56,221. 

 

 

 

 

 Mean Median Standard Deviation 

Vancomycin and LB-agar 3.14 0.75 6.67 

Vancomycin and MH-agar 2.35 3 1.85 

Rifampicin and LB-agar 0.0067 0.006 0.003 

Rifampicin and MH-agar 0.0092 0.008 0.005 

Table 3.5 

Descriptive statistics regarding the distribution of the Minimum Inhibitory 

Concentrations for vancomycin and rifampicin towards MRSA252 using 

Etest on two different media. As detailed in Figure 3.21. 
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Figure 3.21 

Distribution of the Minimum Inhibitory Concentrations for vancomycin and 

rifampicin towards MRSA252 using Etests on different media. Antibiotic 

susceptibility testing using Etests for vancomycin (left panel) and rifampicin (right 

panel) monotherapies on both Luria Bertani (LB) and Mueller-Hinton (MH) agar 

plates, previously streaked with MRSA252, showed an heterogenous distribution 

of the Minimum Inhibitory Concentrations (MICs) in most cases. The total of data 

points per category is the following: (vancomycin) 12 for LB, 5 for MH, (rifampicin) 

10 for LB, 6 for MH. These experiments were conducted during the same couple 

of weeks using the same stock material to prepare the media. Descriptive 

statistics are detailed in Table 3.5. 

 

 

 

 

Each day, after determining the daily MIC for vancomycin and rifampicin from the 

previous day, combination therapies of vancomycin and rifampicin were 

performed using two different Etests crossed together at their daily MIC – both 

combination conformations were tested (one with the vancomycin Etest applied 
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first on the agar plate, and the other one with the rifampicin Etest being applied 

first). The MIC for the combination of both drugs was determined on the next day, 

for both conformational plates (Table 3.6 and Figures A13-14). No bacterial 

inhibition was visible on any of the LB-agar plates, which could explain why their 

usage is not particularly recommended in Clinical Diagnosis laboratories. 

Considering the MHA plates (that are recommended in most Clinical Diagnosis 

laboratories221), three experiments out of the four applying vancomycin first on 

the plate did not inhibit the growth of MRSA252. Bacterial inhibition of MRSA252 

was visible on the other five configurations, the values of the MICs in combination 

were varying, for vancomycin between 0.19µg/mL and 1µg/mL, and for rifampicin 

between 0.002µg/mL and 0.008µg/mL. With such daily variations at the MIC for 

monotherapies, it was not surprising to obtain such heterogeneous observations, 

yet the variations between the primarily application of either vancomycin or 

rifampicin were questioning the validity of this whole antimicrobial susceptibility 

testing methodology
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Experiments 
Observed combinated MICs for each experiment (µg/mL) 

A B C D 

On LB 

agar plates 

Vancomycin 

On 

rifampicin 
No bacterial inhibition for these four experiments. 

Rifampicin 

On 

vancomycin 

On MH-

agar plates 

Vancomycin 

On 

rifampicin 

Vancomycin: 0.5, 

Rifampicin: 0.006 
No bacterial inhibition for these three experiments. 

Rifampicin 

On 

vancomycin 

Vancomycin: 0.75, 

Rifampicin: 0.008 

Vancomycin: 1, 

Rifampicin: 0.003 

Vancomycin: 0.5, 

Rifampicin: 0.002 

Vancomycin: 0.19, 

Rifampicin: 0.003 

Table 3.6 

Example of several experiment outcomes of antimicrobial susceptibility testing of combination of vancomycin and 

rifampicin. The combinated Minimum Inhibitory Concentrations (MICs) of Etests, on Luria Bertani (LB) and Mueller-Hinton (MH) agar 

plates streaked with MRSA252, are expressed when bacterial inhibition was reached in the experiment. These experiments A-D were 

conducted during the same couple of weeks using the same stock material to prepare the media. 
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When used in Clinical Diagnosis laboratories, the FICI is calculated to determine if the 

combination of two drugs is synergistic or antagonistic, or if it is indifferent to the 

bacteria to be subjected to either monotherapies or combination therapy. The FICI 

data of the experiments on LB and MH-agar plates, for both conformations of 

combination of vancomycin and rifampicin, is presented in Table 3.7. Here, the 

combination of vancomycin and rifampicin appeared to not be beneficial to the 

eradication of MRSA252, as it is associated to indifference. Interestingly, indifference 

is sometimes limited with FICI > 2.0 in the literature, yet the presented data is still 

associated with indifference according to this definition. 

 

Experiments 
FICI result for each experiment 

A B C D 

On LB-agar plates 

Vancomycin on rifampicin 
NA Rifampicin on 

vancomycin 

On MH-agar 

plates 

Vancomycin on rifampicin 0.83 

(I) 

NA 

Rifampicin on 

vancomycin 

1.16 

(I) 

1.25 

(I) 

0.58 

(I) 

1.26 

(I) 

Table 3.7 

Example of several Fractional Inhibitory Concentration Index (FICI) of 

antimicrobial susceptibility testing of vancomycin and rifampicin in Etests 

combinations, on Luria Bertani (LB) and Mueller-Hinton (MH) agar plates 

streaked with MRSA252. FICI ≤ 0.5 indicates a synergy (S) of both drugs against the 

microorganism, 0.5 > FICI > 4.0 to an indifference (I) and FICI ≥ 4.0 to an antagonism 

(A). 

NA indicates an absence of validated MIC data for the condition (as seen in Table 

3.6). 

 

 

As the FICI calculation considers the MIC of the antibiotic used alone, the FICI was 

also calculated for these experiments with the MIC of the monotherapies obtained on 

the same day of the combination (as developed in Supplementary Data). It did modify 

the FICI prediction of indifference between vancomycin and rifampicin in the case of 

rifampicin on vancomycin on a MH-agar plate: synergy was detected (Table A1). 



106 
 

 

It seemed interesting to observe what would happen in terms of bacterial growth if LB- 

or MH-agar plates, previously streaked with MRSA252, were subjected to a 

combination of the same drug, at its MIC in monotherapy (with Etest(A) and Etest(B) 

being both vancomycin, for example). This would allow to test the validity of the use 

of Etests and/or the FICI measure themselves, as the combination of the same dose 

of the same drug should be equal to the double of the dose. As presented in Table 

3.8, all experiments concluded with an indifference of the use of these “combinations”. 

The FICI was also calculated for these experiments with the MIC of the monotherapies 

obtained on the same day of the combination (as developed in Supplementary data). 

It did modify the FICI prediction of indifference for two double vancomycin 

combination, the one on MH-agar was associated to antagonism and the LB-agar one 

to synergy (Table A1). This data should be considered if Clinical Diagnosis 

laboratories are only using the Etest methodology to determine the antibiotic regimen 

to prescribe to their patients. FICI may not be the best value to interpret antibiotic 

interactions on Etest. The Weighted Cohen’s kappa statistic may be of better use, yet 

its interpretation and use are not straightforward due to reported prevalence and bias 

effects188,222.  
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Experiments 

Observed combinated MICs (µg/mL) and FICI result 

for each experiment 

A B C D 

MIC       FICI MIC       

FICI 

MIC    FICI MIC       FICI 

On LB-

agar 

plates 

Double 

vancomycin 

combination 

0.38 

and 

0.5 

1.17 

(I) 

MRSA 

growing 

0.38 

and 

0.25 

0.84 

(I) 

MRSA 

growing 

Double 

rifampicin 

combination 

MRSA 

growing 

0.003 

and 

0.003 

2 

(I) 
NA NA 

On 

MH-

agar 

plates 

Double 

vancomycin 

combination 

NA NA 

1 

and 

0.75 

1.16 

(I) 

0.25 

and 

0.25 

1.55 

(I) 

Double 

rifampicin 

combination 

0.003 

and 

0.004 

0.58 

(I) 
NA NA 

0.003 

and 

0.004 

1.75 

(I) 

Table 3.8 

Example of several experiment outcomes (in Minimum Inhibitory 

Concentrations (MIC) and Fractional Inhibitory Concentration Index (FICI)) of 

antimicrobial susceptibility testing of Etest combinations of the same antibiotic, 

on Luria Bertani (LB) and Mueller-Hinton (MH) agar plates streaked with 

MRSA252. These experiments were conducted during the same couple of weeks 

using the same stock material to prepare the media. FICI ≤ 0.5 is correlated to a 

synergy (S) of both drugs against the microorganism, 0.5 > FICI > 4.0 to an 

indifference (I) and FICI ≥ 4.0 to an antagonism (A). 

NA indicates an absence of validated experimental condition; no MIC was retrieved 

and therefore no FICI could be calculated. 

 

 

Conclusion 5: No synergy was detected between vancomycin and rifampicin towards 

MRSA using Etests. Yet, the validity of such method is questioned (combinations of 

the same drug, FICI data depending on the variable MIC). 
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3.5. Discussion 

The combination of vancomycin and rifampicin is commonly used in practices to treat 

MRSA infections82,83. Nevertheless, this regimen has been studied over the last 

decades in a variety of clinical studies, and reports lead to contradicting results: some 

demonstrated a successful combination, in which the antibiotics synergise effectively, 

and the others a failing therapy which could trigger the emergence of antibiotic 

resistance55. These inconsistencies in the literature could be due i) to the antibiotics 

themselves (their interaction may not be synergistic, or could be inherently 

unstable44,46,48,49,51), or ii) to inter-individual differences between the 

patients45,82,83,92,95-98, or iii) to differences between the parameters of the studies 

(quality of the antibiotics, dosages, type of infections, etc. 55,71,72,186-196). By studying 

the inhibitory effect of the combination of vancomycin and rifampicin on MRSA252 in 

fresh cultures in laboratory, inter-individual differences could be removed from the 

equation, and by doing so in five different experimental settings, in the same laboratory 

environment with the same operator using the same equipment and stock of supplies, 

it could be possible to assess the effectiveness and stability of the combination of 

vancomycin and rifampicin. Overall, we consistently rejected the synergy of 

vancomycin and rifampicin towards MRSA252, and we also observed that some 

experimental tests were more suitable to answer our research question than others. 

 

The planktonic experiment in a shaking-liquid media is very similar to the standardised 

serum bactericidal test45. It produced a non-structured environment which did not 

favour combination therapy over monotherapies: the bacteria were significantly 

growing less in presence of only vancomycin or rifampicin at IC50 than with their mixed 

combination. The biofilm experiment, producing a more biologically relevant structured 

environment33,45,197, delivered the same outcome of significant antagonism between 

vancomycin and rifampicin, quite unsurprisingly given the literature68,197,223. There was 

no clear result from the two solid agar-plate experiments that produced structured 

environments (the “square dish” and the “layer dish” ones), possibly due to variabilities 

in the antibiotic concentrations – as they were particularly sensitive to minor handling 

differences from one day to another – but also to the difficulties to follow their protocol 

precisely. Finally, the use of reagent strips (Etests) of antibiotics on top of agar plates 

showed no sign of synergy between those drugs – indifference was observed. Yet, the 
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validity of this commonly used methodology was questioned using supposedly 

indifferent combination of the same monotherapy – in support of the lack of evidences 

on this test and on the computing of FICI data56,224. Overall, it is therefore possible to 

conclude from these five types of experiments that no data supports a synergy of 

vancomycin and rifampicin in such laboratory settings. As laboratory experiments 

provide much simpler infection models than clinical infections and are easier to monitor 

closely225,226, one could wonder the impact inter-individual differences (patients’ 

immune system, xenobiotic metabolism, etc.) could have on the nature of the 

interaction of combination of vancomycin and rifampicin against MRSA. These 

differences have indeed been flagged as capable of modifying the 

pharmacokinetics/pharmacodynamics of drugs98,101,119,173,227-234, and this metabolism 

has been reported to degrade rifampicin117,127,133,135,137,138. By modifying the circulating 

concentrations of rifampicin, inter-individual differences could therefore alter an 

already very sensitive interaction between vancomycin and rifampicin. However, 

correlations between in vitro and clinical settings have been long questioned45.  

 

Vancomycin and rifampicin are two antibiotics which seemed particularly difficult to 

use at the right dose in the laboratory, therefore we wonder if the reported 

synergies71,73,75-77,79,81 could have been due to the variabilities in their MIC, leading to 

changes in their subtle and sensitive concentrations equilibrium. Not only MIC is 

known to not be a fixed measure - as it is sensitive to its environment (temperature, 

pH, concentrations of available metabolites, etc.24,191) – but any use of rifampicin 

should be cautious as it is deemed unstable235,236. Indeed, rifampicin is readily oxidised 

in alkaline media, and hydrolysed in highly acidic media367. Very sensitive to moisture, 

rifampicin is also affected by light, air and oxygen. Its half-life in patients is estimated 

between 1.5 and 5 hours133. 

Furthermore, differences in MIC readings and analysis, for the same strain, have been 

reported in the past, as well as the association of vancomycin to increased MIC for 

some common clones56,237-239 – the variability in MIC of vancomycin and rifampicin 

should not be surprising here. In patients, drug gradients have been reported240, they 

can also destabilise the required balanced therapy, while acting as a stronger pressure 

selecting for resistance. Given how difficult it was to inhibit the growth of MRSA252 in 
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those laboratory settings when using vancomycin and rifampicin in combination, and 

given the possible effects that inter-individual differences in patients could have on the 

pharmacokinetics/pharmacodynamics of rifampicin (and therefore on this very 

sensitive combination), the use of alternative regimen should probably be advised to 

treat MRSA infections while avoiding antibiotic resistance. Indeed, synergistic 

combinations are more than needed when it comes to the use of vancomycin and 

rifampicin: counterintuitively, antagonist combinations may have been of interest49,52,54 

yet, they require high dosages, which will be nephrotoxic for vancomycin, and 

hepatotoxic as well for rifampicin45,53,67. 

 

Further studies should be carried out to conclude on the combination of vancomycin 

and rifampicin on all five experiment settings to bring along a clearer result. The most 

challenging part of the presented experiments was without any doubt the variations in 

vancomycin and rifampicin MICs in monotherapies, in planktonic cultures. Even with 

the best possible care, differences were observed at the MIC levels between the 

replicated experiments. These MICs being used to determine the IC50 to use in the 

combination of vancomycin and rifampicin, it was not surprising it was challenging as 

well to produce, on the same microplate, a perfectly balanced combination therapy. 

Yet, it could be interesting to reproduce the experiment with a final subculture in 

antibiotic-free media, to observe the growth of the content of the wells after 

antibiotherapy, or to re-inoculate the D3 microplate with fresh MRSA at the end of the 

experiment, as a control for drug degradation24. The amount of living bacterial cells 

could have been quantified in both the planktonic and the biofilm structures241. A more 

precise data capture method could have been used to analyse the “square dish” halos. 

The “layer dish” experiment seemed very difficult to handle as well. Higher 

concentrations could have been tested in order to observe an antagonism – if any. 

Anyway, the antibiotic concentrations of these two structured environments were 

based on those, particularly unstable, retrieved from the planktonic experiment, 

therefore difficulties to even replicate an observed outcome should have been 

expected. Given Etests are commercialised gradients of antibiotics, the difficulty in 

replicating their results from one day to another was particularly worrisome, especially 

as these strips are often used in clinics to test the antimicrobial susceptibility of the 

patients’ strains56. The precise application of each strip required precise handling skills 
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and their use in combination was more than delicate. However, it was striking to realize 

that MRSA252 was mostly indifferent to the use of any combination, even those of two 

strips of the same antibiotics (where additivity should be expected). With more 

material, another combination technique involving two Etests placed on top of each 

other190,211,212, still challenging to handle, could have been tested to help figuring out 

if Etests and their FICI data are good indicators of the effectiveness of antibiotic 

combinations188,222. It could have been interesting to re-evaluate the diffusion of the 

antibiotics in the agar, especially given the natural instability of rifampicin235,236. For all 

five experiments, it could maybe have been beneficial to pre-culture a single colony of 

MRSA252 before a shorter overnight culture, to avoid it evolving into different sub-

populations during this overnight culture. For all experiments but the Etest protocol, 

dosages higher than IC50 (but lower than MIC) for both antibiotics could have been 

tested. It could have been also interesting to assess the combination of vancomycin 

and rifampicin in a single-cell experiment 242-244, or to carry out an agar dilution 

experiment (using soft agar inside the wells of a microplate188,194,213) to study the 

susceptibility of MRSA252. Another MRSA strain could also have been tested. 

No evidence of a synergy between vancomycin and rifampicin, in the context of a 

MRSA infection, was found in this body of work using five different antibiotic 

susceptibility testing methods. It was established that these antibiotics are very 

instable: there are critical variations in their MIC, which may have led to some 

contradicting results in the past. As some of these clinically-relevant methods were 

proved to be particularly difficult to handle, and to provide a clear and definitive answer 

to the type of interaction vancomycin and rifampicin have, it is crucial to either 

recommend the usage of a less controversial regimen82,83, or conduct a 

comprehensive clinical studies on this mixed combination therapy - considering 

important patient parameters such as their immune system and xenobiotic 

metabolism, both of them playing a role to fight against their MRSA infection98. The 

clock is ticking, antibiotic resistance has been predicted to cause 10 million deaths per 

year by 205019, and MRSA is one of the main actors of this terrible projection. 

3.6. Reflection on the research 

In this chapter, five types of experiments were performed in order to answer our 

research question about the interaction of vancomycin and rifampicin towards MRSA. 
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Two of them were successful to deliver an answer (significant “antagonism” for both 

the planktonic environment and biofilms), but the two experiments involving a 

structured environment using agar (“layer dish” and “square dish” structures) failed to 

answer the research question, while bacterial cultures using Etests provided more 

questions on its validity than answers about our research theme. 

The "square dish" environment was supposed work inside the laboratory BioBox. The 

parameters of this laboratory-made automated photography chamber were 

unfortunately not perfectly set at the time of the experiments. Given more time, the 

BioBox could have been impeccably fitted to this experiment, allowing us perhaps to 

conclude on the type of interaction between those two antibiotics. During the BioBox 

refit, another structured environment could even have been tested: for example, we 

could have inoculated, with the same amount of bacteria, a large series of agar dishes 

- each of them containing a different combination of vancomycin and rifampicin (in 

terms of concentrations and proportions) - in order to spot the combinations inhibiting 

the growth of MRSA. 

The “layer dish” environment was supposed to provide an improved approach 

compared to the "square dish" structure, yet it was limited to the use of low antibiotic 

doses to see synergy or high doses to spot antagonism, and it was very sensitive to 

fluctuations in the planktonic MICs used to set the layer concentrations. In case 

allowing more time on the “square dish” method did not provide a better outcome, 

repeating this “layer dish” experiment would perhaps not help, but it could have been 

good to validate its methodology by dosing the antibiotic concentrations along the 

streaks. 

Finally, the bacterial culture using Etests gave rise to a plethora of questions about the 

validity of such antibiotic susceptibility testing method. Without any restriction on our 

budget (Etests are very expensive), we would have investigated even more on these 

commercialized strips. Do they diffuse well the antibiotics inside the agar? What about 

the antibiotic degradation? What is the best combination technique? Why does a 

combination of two strips from the same batch (same antibiotic) seem to be linked with 

auto-indifference of the antibiotic? Is the FICI data reliable? What about the Weighted 

Cohen’s kappa coefficient? All of these open questions could definitely be conducted 

in a new research project on its own. 
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CHAPTER 4 - In silico investigation of the potential impact 

of the most common genetic variants on the CYP3A4 gene 

expression or enzyme activity. 

 

4.1. Introduction 

Xenobiotic metabolism is the process in which enzymes, mostly hepatically expressed, 

degrade and excrete compounds that are detected as foreign from the organism – 

including medicines. This biotransformation has been extensively studied for decades, 

with the main objective of avoiding drug-drug interactions: one drug stimulating (or 

inhibiting) the degradation of another, leading to a low treatment efficiency (or to the 

emergence of side-effects)108,245. In the case of antibiotics, this metabolism can affect 

the circulating concentrations, impacting therefore on the critical dose required to 

eliminate all bacteria while avoiding antibiotic resistance27,91,113. 

Amongst the xenobiotic metabolism enzymes, the most common are the cytochrome 

p450 (CYP) enzymes101,108. This superfamily of 57 mono-oxygenases takes part in 

Phase I of the xenobiotic metabolism, in which CYP-1A2, -2B6, -2C9, 2C19, -2D6   and 

-3A4/5 are the most popular members101. They are highly expressed in the liver and 

account for the metabolism of around 75% of the clinically relevant drugs – including 

antibiotics101. Differences in various drugs metabolism have been reported between 

patients112, many have been attributed to polymorphisms at genes coding for 

xenobiotic metabolism enzymes98,101,106,110. 20-25% of patients are estimated to be 

possibly clinically affected by genetic variations (mainly Single Nucleotide 

Polymorphisms, or SNPs) on the CYP3A4/5, CYP2C9, CYP2C19 and CYP2D6 

genes113. For example, the presence of the minor variant for either rs1799853 and 

rs1057910 on CYP2C9 has been shown to dramatically affect the metabolism of 

warfarin: patients poorly metabolising this cardiovascular drug require a 75% 

decreased dosage114. Similarly, Phase II xenobiotic metabolism Glutathione S-

Transferase Mu 1 (GSTM1) and Theta 1 (GSTT1) genes are expressed as non-

functional null alleles in patients115,116, increasing for example for GSTT1 in 

tuberculous patients their likelihood of experiencing treatment toxicity to isoniazid, 

pyrazinamide and rifampicin117. 



114 
 

Both CYP3A4 and CYP3A5 genes code for two distinct enzymes metabolising about 

30% of the clinically relevant drugs altogether246, classify them as Very Important 

Pharmacogenes (VIP)245,247. Their enzymatic broad substrate specificities often 

overlap, rendering their separate study challenging248,249. Most clinically relevant drugs 

(including antibiotics) are metabolised in the liver108,250, where CYP3A4 expression is 

four-fold higher than CYP3A5 expression251. CYP3A4 is therefore of great interest, 

and yet its genetic variants have been less characterized than those associated to 

CYP3A5 - there is three-times less pharmacogenomics-based prescribing information 

available in the literature for CYP3A4 than CYP3A5252. 

CYP3A4 presents thousands of SNPs253, although their impact on gene expression or 

enzyme activity have not being indisputably established251. Some studies reported an 

association between CYP3A4 SNPs and differences in the metabolism of several 

drugs (including the immunosuppressant cyclosporin and the oestrogen receptor 

modulator tamoxifen)228,234,254-257. Notably, the minor variants for rs35599367 and 

rs2242480 were associated to, respectively, a decreased statin clearance (a 

cardiovascular drug) and an increased R-warfarin clearance (an anticoagulant). But 

contradictory results have being published, for example the same rs2242480 has been 

shown to not influence the pharmacokinetics and pharmacodynamics of ticagrelor (an 

platelet aggregation inhibitor)231,258-261. This could potentially be explained by a 

compensation of the enzymatic activity by another enzyme - possibly CYP3A5248,262-

265. Another hypothesis could be drawn based on both i) a high linkage equilibrium 

between the CYP3A4 SNPs and ii) the very low Minor Allele Frequency (MAF) of most 

of them234,253. The CYP3A4 SNPs are indeed sometimes found grouped in the same 

haplotype and studied together266, perhaps making a direct correlation between one 

SNP and its specific impact of the CYP3A4 gene expression or enzyme activity difficult 

to evidence. Understandably, for one variant, the lower its MAF, the less likely it will 

be found in a particular studied population, and consequently its studied sample size 

will be low and associated to a limited significance. Ethnic differences have been 

reported for pharmacogenetics polymorphisms: studies have shown differential 

distribution for some xenobiotic metabolism SNPs around the world110,118,121,122. This 

was notably evidenced in Caucasian populations expressing many of the deleterious 

CYP2D6 SNPs123, or the complete GSTM1 or GSTT1 gene deletion found in up to 

50% of the patients in populations from European descent116. 
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The aim of this study was therefore to identify CYP3A4 SNPs harboured by a large 

proportion of the world population, to evaluate in silico their potential impact on the 

CYP3A4 gene expression or enzyme activity, to finally classify them with a score of 

potential impact (derived from the type of evidence, and both the nature and the 

localisation of the variation). It was also aimed to consider their distribution amongst 

different ethnicities with a view to explaining geographical differences in drug 

response. If the predictions presented in this study are validated by in vitro and clinical 

studies, this could help establish a list of relevant CYP3A4 variants to genotype in 

patients, to be able to tailor their drug regimen (choice of drugs, and dosage of said 

drugs) according to their genetic background. This would allow an improved treatment 

efficiency while avoiding the emergence of side-effects. CYP3A4 being known to 

metabolise several antibiotics (such as the following antibiotics: clarithromycin, 

clindamycin, erythromycin101), adapting their regimen to the patients’ genetics could 

also help fighting against the rise of antibiotic resistance. 

 

 

4.2. Materials and Methods 

4.2.1. Sequences 

The human CYP3A4 gene sequences (as complete coding DNA sequence, cds) and 

messenger RNA (mRNA) sequences (as transcript variants sequences) were 

extracted from NCBI’s Nucleotide or the UCSC Genome Browser ( 

https://www.genome.ucsc.edu), in FASTA format. The CYP3A4 gene sequence was 

found under the reference NG_008421.1 (GenBank) or at chr7:99756960-99784188 

(UCSC Genomic Sequence). CYP3A4 transcript variants 1 and 2 (mRNA) are 

associated respectively to NM_017460.5 and NM_001202855.2 (NCBI Reference 

Sequence). Detailed information is available in Table B1. 

 

 

https://www.genome.ucsc.edu/
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4.2.2. Identification of the CYP3A4 variants of interest 

The CYP3A4 gene is located on the minus chromosomal strand, yet its genetic 

variants have been reported on either strand (i.e. with “A > C” equivalent to “G > T” for 

the same SNP, depending on the use, or not, of the reference strand). In this body of 

work, for standardisation purpose, the SNPs are expressed as referenced on dbSNP 

Short Genetic Variations browser ( https://www.ncbi.nlm.nih.gov/projects/SNP). 

The UCSC Genome Browser (on the most recent human assembly and with the most 

recent Short Genetic Variations database – respectively GRCh38/hg38 and dbSNP17) 

was used to identify all genetic variants in the gene, and to localise them on it (the 

selected options are detailed in Supplementary Data). The selection of CYP3A4 

variants of interest was undertaken using an in silico pipeline (Figure 4.1), to select 

the most “common” variants which have the potential to be relevant to a large 

proportion of the world population. On UCSC Genome Browser, “common” variants 

were defined as having a global MAF above the 1% threshold (as documented on the 

UCSC Genome Browser, Supplementary Data). They also had to be documented in 

the 1000Genome Project ( http://www.internationalgenome.org/ ): this project being 

considered the largest catalogue of human variation data, variants not referenced in it 

are unlikely to be found in large proportion of the world population178. 

https://www.ncbi.nlm.nih.gov/projects/SNP
http://www.internationalgenome.org/
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Figure 4.1 

Overview of the methodology to select the CYP3A4 variants of interest. Out of 

the 3,100 variants on the CYP3A4 gene, 70 are found in at least 1% of the world 

population: 7 are located in the 3’-UnTranslated Region (UTR) and 63 are in introns. 

Amongst the 7 exonic variants, 5 are documented in the 1000Genome Project. 

Between the 63 intronic variants, 3 are situated at a maximum of 100 nucleotides (nt) 

from the exon boundaries (as detailed in-text) and were selected accordingly - due to 

a potential predicted impact on the gene expression or the enzyme activity (see text). 

All 3 selected intronic variants are documented in the 1000Genome Project. 

This study focuses on CYP3A4 “common” variations in order to predict, if any, an 

impact of the variant on gene expression or enzyme activity which has the potential to 

be relevant to a large proportion of the world population. “Common” variations were 

therefore defined as those associated both to a world Minor Allele Frequency (MAF) 

of 1% at a minimum, and those documented in the 1000Genome Project (a project 

considered the largest catalogue of human variation data). Variations with below-

threshold MAF or not documented in the 1000Genome Project were assumed to be 

infrequently distributed in the world and therefore not relevant to a large proportion of 

the world population. 

 

 

As developed in Chapter 2, the SNPs were pre-selected when they were localised 

either in introns in vicinity from the closest exon (at a maximum of 100 nucleotides 

from the exon boundary), on in exons. In intron, it is assumed that the closer to the 

exon boundary, the more likely the sequence contains regulatory 

elements159,165,167,170,267-271. When variants are localised in such vicinity of the 
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boundaries, they can alter the expression of a gene or the activity of its protein, by 

affecting the binding of regulatory Serine-aRginine rich (SR) proteins158 on intronic 

splicing enhancers or silencers (modulating alternative splicing in both 

directions)164,169. They can also impact on 5’- or 3’- splice sites, and branch points, 

necessary for alternative splicing. When in the 3’-UnTranslated Region (UTR), genetic 

variations could lead to amino-acid changes in translated proteins272, alterations to 

microRNA (miRNA) binding sites (gene stability)160 and, less likely, exonic splicing 

enhancers or silencers. Variations altering the protein sequence could lead to a non- 

or dys-functional protein, impacting on its activity272. Variations altering the cis-

regulatory elements could lead to alternative splicing: the gene could be transcribed 

into different mRNAs leading to their translation into different protein isoforms which 

could have different enzymatic activities164. Finally, variations altering the miRNA 

binding sites could trigger differences in gene silencing, affecting its expression and 

therefore the level of mRNA being transcribed273-276, and variations altering the DNA 

or RNA conformations could impact indirectly on the binding of regulatory elements. 

Overall, the localisation of the SNPs (in introns close to exon boundaries or in exons) 

was assessed using Alternative Splicing Graph from the Swiss Institute of 

Bioinformatics159,165-167,170,267-271 (Figure B1). 

 

 

4.2.3. In silico searches to predict the potential effect of CYP3A4 variants 

Untranslated and intronic variants have been reported to be potentially able of 

affecting the gene expression or enzyme activity by altering transcription, alternative 

splicing or silencing mechanisms158,160,272, or DNA/RNA conformations. Several open 

access databases were used to predict such potential effect of the CYP3A4 variants. 

The searches on the following integrated predicting tools focussed on localising the 

CYP3A4 sites on which transcription factors, trans-regulatory proteins, miRNA or 

splicing factors could bind. Several databases were perceived as redundant, yet their 

concomitant use is established277,278, possibly because of their differing default 

thresholds which have both being recommended277,279-283. Unless otherwise specified 

and argued, the pre-set parameters were therefore used (as detailed in 

Supplementary Data). 
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RegRNA 2.0 ( http://regrna2.mbc.nctu.edu.tw/) is an integrated website predicting 

functional RNA motifs from inputted RNA sequences279,284. This database was 

searched to find potential alterations by the variants of interest on transcription factor 

binding sites, polyadenylation sites, ribosome binding sites and RNA-RNA interaction 

regions (including miRNAs). The scan function was performed twice, to allow for the 

comparison of the outputs from CYP3A4 RNA sequences with or without the presence 

of the minor variants of interest285.  

Poly-miRTS on microRNA binders ( http://compbio.uthsc.edu/miRSNP/) was also 

accessed to locate the miRNA target sites on the CYP3A4 gene286-288 . They are 

classified into four classes, depending on their likelihood to alter the repression control 

of the gene. By inputting the gene name into the search option, the outputs associate, 

when possible, miRNA(s) to each CYP3A4 exonic SNPs, alongside a function class 

predicting the functional impact of the variants289. 

The potential impact of both intronic and exonic SNPs of interest on alternative splicing 

was studied using the Human Splice Finder 3.1 ( http://www.umd.be/HSF3/), Fruit Fly 

( http://www.fruitfly.org/seq_tools/splice.html), ESE Finder 3.0 ( 

http://krainer01.cshl.edu/cgi-bin/tools/ESE3/esefinder.cgi?process=home) and 

SpliceAid 2 ( http://193.206.120.249/splicing_tissue.html). Human Splice Finder 3.1282 

was used with the “performing a quick mutation” tool to mutate the sequence at the 

SNP locus from major to minor variants. Fruit Fly290 was accessed by using the whole 

sequence of the gene (with or without the expression of the minor allele for the variants 

of interest) and comparing the two outputs (list of acceptor or donor sites). Likewise, 

overlapping 4900nt gene sequences, with or without the expression of the minor 

alleles, were inputted into ESE Finder 3.0283,291. Even smaller overlapping gene 

sequences were used in Splice Aid 2292 to compare the output between the presence 

and the absence of the minor variants of interest in said sequences. 

As CYP3A4 metabolism is predominant in the liver108, the hepatic expression of all 

flagged miRNA and splicing proteins was checked using GeneCard ( 

https://www.genecards.org/) and GTex ( https://gtexportal.org/home/). 

 

 

http://regrna2.mbc.nctu.edu.tw/
http://compbio.uthsc.edu/miRSNP/
http://www.umd.be/HSF3/
http://www.fruitfly.org/seq_tools/splice.html
http://krainer01.cshl.edu/cgi-bin/tools/ESE3/esefinder.cgi?process=home
http://193.206.120.249/splicing_tissue.html
https://www.genecards.org/
https://gtexportal.org/home/
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Genetic variants can impact on the gene expression or enzyme activity by affecting 

the folding conformation of the DNA, RNA or protein sequences (for example, DNA 

sequences of different conformations are differentially recognized by regulatory 

proteins, depending on the physical availability of the motif they bind to)293-295. 

Differences in folding conformations on both DNA and RNA sequences by the 

expression of the minor allele for each selected locus were assessed using the mfold 

Web Server ( http://unafold.rna.albany.edu/?q=mfold) with the pre-set parameters of 

temperature and concentrations in sodium and magnesium cations (as detailed in 

Supplementary data). A series of structures, differing in "initial free energies", were 

provided for each sequence (type of genetic material, with or without the major variant 

being expressed). The presented results are associated to those ranked as most 

predictive with their initial dG and are being representative of them all. 

 

 

The scientific literature regarding the SNPs of interest was accessed with their 

Reference SNP (RefSNP) reports on the dbSNP Short Genetic Variations browser ( 

https://www.ncbi.nlm.nih.gov/projects/SNP) - which is linked to both PubMed ( 

https://www.ncbi.nlm.nih.gov/pubmed) and LitVar ( 

https://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/LitVar/#). SNPedia ( 

https://www.snpedia.com/ ) and PharmGKB ( https://www.pharmgkb.org/) were also 

searched for this purpose. 

This literature search was performed in a systematic manner, using directly their 

current Reference SNP identification number (rs#) in the search bar: all publications 

referencing the selected SNPs in these databases, available in open access through 

Pubmed and written in English were considered for characterisation of the effect of the 

CYP3A4 variant on gene expression or enzyme activity. These evidences were 

classified depending on their type (predictions, or laboratory study, or clinical study) 

and their power – considering various study parameters such as: was the study directly 

associating the SNP to the effect? Was the study including homozygous individuals 

for the minor variant of the SNP? Has the study a large sample size? Was the study 

controlled, randomised and/or including a placebo group? Was the study ethnically 

heterogenous? 

http://unafold.rna.albany.edu/?q=mfold
https://www.ncbi.nlm.nih.gov/projects/SNP
https://www.ncbi.nlm.nih.gov/pubmed
https://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/LitVar/
https://www.snpedia.com/
https://www.pharmgkb.org/
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4.2.4. Distribution of the genotypes in the world populations and in different 

ethnic groups 

As developed in Chapter 2, and because CYP3A4 variants are often inherited together 

due to their linkage disequilibrium (LD)176,297, the D’ and the R2 of those variants of 

interest, assessed in pairs, were calculated using the world frequencies option on the 

LDLink matrix and pairwise tools ( https://ldlink.nci.nih.gov/)175. 

The MAFs of the variants of interest were directly assessed using the open access 

1000Genome Project data ( http://phase3browser.1000genomes.org/index.html ) 

which was based on the GRCh37 reference assembly then updated to GRCh38/hg38. 

It displays the world MAF, and MAFs associated to different ethnic groups (amongst 

the 2,504 individuals from this study, 661 were originating from Africa, 347 from 

Americas, 504 from East Asia, 489 from South Asia and 503 from Europe). Full 

information regarding the 2,504 individuals from these ethnic groups is available in a 

previous study and in Chapter 2178. 

By using the options “individual genotypes”, it was possible to build the genotype 

profile of all individuals for all of the studied SNPs. For clarity purpose, terms such as 

“Europeans” will be used through this chapter for “individuals from European ancestry 

populations”. 

 

4.3. Results 

4.3.1. Identification of the most common and potentially altering CYP3A4 

variants 

All 3,100 CYP3A4 variants were considered in this study, they were counted on the 

gene directly with db150253. Using the UCSC genome browser with the Human 

GRCh38/hg38 Assembly from December 2013, their distribution was assessed: it was 

uniform (Figure B1). The majority of CYP3A4 variants appeared to be SNPs (variations 

affecting only one nucleotide) which were associated to a “reference SNP ID number” 

(namely, an accession number for referenced SNPs, such as “rs123456789”). Most of 

these SNPs were intronic, the other variants being either located in UnTranslated 

Regions (UTRs) or in one of the 13 CYP3A4 translated exons (75% of them coding 

for non-synonymous codons). 

https://ldlink.nci.nih.gov/
http://phase3browser.1000genomes.org/index.html
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This study focuses on variations associated to MAF above 1% of the world population, 

in order to predict, if any, an impact of the variation on gene expression or enzyme 

activity which can be potentially relevant to a large proportion of the world population. 

On the genome browser, only 70 “common” variants were displayed (Figure 4.2): 7 of 

them were SNPs in CYP3A4 3’-UTR and the remaining 63 were SNPs located in 

introns. No “common” variant was found in the 5’-UTR of CYP3A4. No “common” 

variant was found in coding regions neither, where insertions-deletions (indels) are 

prone to impact on the gene or its enzyme, by causing frameshifts. 

 

 

 

Figure 4.2 

Distribution of the 70 “common” Single Nucleotide Polymorphisms (SNPs) 

along the CYP3A4 gene. The 70 “common” CYP3A4 SNPs are visualised from the 

5’-UnTranslated Region (UTR) to the 3’-UTR (both in white) – i.e. between 

chr7:99,756,722 and chr7:99,784,327. The number of exonic SNPs are provided 

above the gene drawing, the position of these numbers indicating on which exon they 

are located. Similarly, the number of intronic SNPs are given below the gene drawing, 

the position of the number indicating on which intron they are located. “Common” 

SNPs are defined here as associated to a world Minor Allele Frequency of 1% at a 

minimum. Black vertical boxes represent the exons, black lines the introns. 

 

Amongst the pre-selected 63 intronic SNPs, only 3 were located in the regions more 

likely to contain regulatory elements159,165,167,170,267-271. Amongst the remaining 3 

intronic and 10 exonic SNPs, 2 exonic SNPs were discarded due to their lack of 

documentation in the largest catalogue of human variation data, 1000Genome 

Project178. Ultimately, 8 SNPs were identified as “of interest” due to their loci and MAF: 

the 3 intronic SNPs (rs2687116 at 33 base pair (bp) downstream of exon 7/13, 
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rs2242480 at 11bp downstream of exon 10/13, and rs12721620 at 10bp upstream of 

exon 12/13), and 5 SNPs located in the CYP3A4 3’-UTR (rs28988603, rs28988604, 

rs28969391, rs28371763 and rs28988606) (Figure 4.2). Interestingly, rs28969391 

was the only “common” indel, yet it is located in the 3’-UTR of the gene, where it can 

not cause frameshift. 

The distributions of the genotypes for the 8 SNPs identified as “of interest” (separately) 

in the world and amongst ethnic groups are presented in Table 4.1 as Minor Allele 

Frequencies. 
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 SNPs Type of variation 

(from 1000Genome Project) 

 

Minor Allele Frequencies (%) 

World Africa  

Americ

a 

East 

Asia 

South 

Asia Europe  

L
o

c
a

te
d

 

in
 t

h
e
 3

’
-U

T
R

 rs28988603 A > C 1% C 4% C 1% C 0% C 0% C 0% C 

rs28988604 G > A 3% A 6% A 2% A 0% A 1% A 2% A 

rs28969391 A > - 35% - 63% - 20% - 32% - 37% - 10% - 

rs28371763 T > A 1% A 0% A 1% A 0% A 3% A 2% A 

rs28988606 G > C or T 
1% C 

0% A 
4% C 1% C 0% C 0% C 

0% C 

0% A 

L
o

c
a

te
d
 

in
 

in
tr

o
n

s
 rs12721620 A > G 9% A 33% A 3% A 0% A 2% A 0% A 

rs2242480 T > C 42% T 85% T 39% T 27% T 37% T 8% T 

rs2687116 C > A 22% C 72% C 10% C 1% C 5% C 3% C 

Table 4.1 

Minor Allele Frequencies of the 8 identified Single Nucleotide Polymorphisms on the CYP3A4 gene, in the world and among 

ethnic groups. This gene is on the minus chromosomal strand. For each Single Nucleotide Polymorphism (SNP), located in the 3’-

UnTranslated Region (UTR) or in intron, the variation is expressed as referenced in db150, with the ancestral nucleobase followed 

by the mutant nucleobase (and a “>” sign placed in-between). The Minor Allele Frequency (MAF) of each SNP is shown for the world 

population and different ethnic groups (populations from African, American, East-Asian, South-Asian and European ancestry). 

Interestingly, the minor variant is not necessarily the one associated to the mutant nucleotide for the intronic SNPs. For each SNP, 

differential MAF distributions amongst the ethnic groups, are written in red, with an arbitrary threshold of 10-percentage point between 

the ethnic groups with the lower and the highest MAF. A stands for adenine, C for cytosine, G for guanine and T for thymine. “–“ 

indicates a nucleotide deletion. Data from the 1000Genome Project. 
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4.3.2. In silico prediction of the effect of the eight CYP3A4 variants of interest 

In silico data was extracted from various databases to predict the possible effect, if 

any, of these 8 SNPs of interest. When a possible effect is predicted by these 

databases, they associate particular protein or miRNA binding sites, or splice sites, to 

the SNP locus on the CYP3A4 sequence164,276,279,282-284,286-288,292,298. As the liver is the 

main organ for the CYP3A4 xenobiotic metabolism108, the hepatic expression of the 

flagged proteins and miRNAs was validated using GeneCard and GTex. Only the 

relevant, namely hepatically-expressed, proteins and miRNAs are presented (Table 

4.2). 

 

 

 

 

 

 

Table 4.2 (next page) 

 

Associations of the minor variant of the eight identified CYP3A4 Single 

Nucleotide Polymorphisms to potential changes in the silencing or the splicing 

of the gene. For each Single Nucleotide Polymorphism (SNP), the potential changes 

in gene silencing have been searched on RegRNA2.0 and Poly-miRTS (column A) 

and the potential changes in gene alternative splicing have been searched on Human 

Splice Finder, Fruit Fly, ESE Finder 3.0 and SpliceAid 2 (column B). “–“ denotes a 

potential loss of the miRNA or splicing element binding, or a potential shortening of 

the splice/branch site, due to the presence of the minor variant. “+” indicates a potential 

gain of the miRNA or splicing element binding, or a potential creation of a splicing site, 

due to the presence of the minor variant. “/” denotes an absence of flagged changes 

for the SNP. 

*rs28988606 minor variant can be G or T 
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SNPs 

A – 

 

Silencing elements 

potentially affected 

by the presence of 

the minor variant 

B- 

 

Splicing elements 

potentially affected 

by the presence of 

the minor variant 

 

L
o

c
a

te
d
 

in
 t

h
e
 3

’
-U

T
R

 

rs28988603 hsa-miR-5584-3p (--) / 

rs28988604 none SRSF1 (-) 

rs28969391 hsa-miR-197-3p (+) 

hsa-miR-1305 (+) 

hsa-miR-5096 (+) 

splicing acceptor site (+) 

human 5’ splice site (-) 

rs28371763 

none 

hnRNPU (-) 

hnRNPK (-) 

hnRNPA1 (-) 

FMR1 (-) 

RBM5 (-) 

rs28988606 

hsa-miR-3679-5p () 

for both* 

SRSF5 (-) for both* 

SRSF6 (-) for both* 

SRSF3 (-) for both* 

YBX1 (-) for G* 

MBNL1 (+) for G* 

L
o

c
a

te
d
 

in
 i
n
tr

o
n

s
 

rs12721620 
/ 

CELF2 (+) 

SRSF6 (+) 

rs2242480 / branch site (-) 

rs2687116 

/ 

MBNL1 (-) 

hnRNP1 (+) 

TIA1 (+) 

TIAL1 (+) 

Table 4.2 

 

 

Hepatically-expressed miRNA binding sites were localized on the 3’-UTR of the 

CYP3A4 gene using RegRNA2.0 and Poly-miRTS. Out of the five CYP3A4 SNPs 

located in 3’-UTR, only rs28988603, rs28969391 and rs28988606 were shown to be 

potentially associated to differences in the binding of miRNAs between minor and 

major alleles (Table 4.2 – column A), these differences potentially impacting the 

silencing of the gene. The case of rs28988603 was particularly highlighted by these 

searches as it is associated to a “functional impact score D”, meaning that “the derived 
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allele disrupts a conserved miRNA site (ancestral allele with support >= 2)”287. All the 

flagged miRNAs are poorly characterised in the literature. 

 

Databases regarding alternative splicing (Human Splice Finder, Fruit Fly, ESE Finder 

3.0, SpliceAid 2) were searched to predict the impact of the presence of the minor 

variant of each SNP on splicing, by associating the SNP to at least one alternative 

splicing regulatory elements: donor or acceptor splice sites (respectively located at the 

5’- or 3’- end of introns), or branch sites, or serine/arginine rich proteins (SR 

proteins)164,165,167,169,273,274. Nothing was detected with the Human Splice Finder, but 

the other databases associated all 8 SNPs with differences between minor and major 

variants (Table 4.2 – column B) - these SNPs could therefore potentially impact 

alternative splicing. Most of the flagged hepatically-expressed SR proteins have been 

characterized as modulator of the selection of alternative splice sites, by binding to 

splicing enhancers or silencers - one could wonder how the gain or loss of their binding 

could impact on CYP3A4 gene regulation. Depending on the direction of the 

modulation, they may stimulate or inhibit alternative splicing. Alternative splicing also 

requires two splicing sites (one donor and one acceptor) and a branch point, therefore 

the creation of such motif on the gene could stimulate alternative splicing – if other 

sites and point are available. Similarly, the break or shortening of one splice site (or 

one branch point) could inhibit CYP3A4 alternative splicing158,159,161,163-167,169-

171,273,274,299. Overall, by targeting alternative splicing, such variants could alter the 

concentrations in functional CYP3A4 isoforms in the organism, leading to an increased 

or a decreased drug metabolism. 

As genetic variants can impact on the gene expression or enzyme activity by affecting 

the folding conformation of the DNA, RNA or protein sequences293-295,298, the mfold 

Web Server was used to examine changes in the conformation of the DNA and RNA 

sequences for all of the 8 SNPs of interest. Major DNA and RNA conformations 

changes were interpreted as such when the observed conformations were visibly 

different between those associated to the sequence with the major or the minor variant 

for each SNP. This was the case for four of the SNPs localized in CYP3A4 3’-UTR: 

rs28371763 (Figure 4.3), rs28988603, rs28988606 and rs28988604 (Figure B1) - the 

latter being only predicted to impact on the RNA conformation. By impacting on the 

DNA or RNA conformation, these variants can render cis-regulatory elements 
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unavailable for binding, leading to differences in the regulation of the gene, and 

therefore possible differences in CYP3A4 concentrations and differences in CYP3A4-

mediated drug metabolism. 

 

 

 

Figure 4.3 

Examples of conformation changes between the major and the minor variants 

of the identified CYP3A4 Single Nucleotide Polymorphisms, at 37°C. A- DNA 

folding conformation change between the major (left) and the minor variant (right) of 

rs28371763. B- RNA folding conformation change between the major (left) and the 

minor variant (right) of rs28371763. Conformations retrieved from mfold web server. 
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Finally, the scientific literature was systematically searched for references to 

rs28988603, rs28988604, rs28969391, rs28371763, rs28988606, rs12721620, 

rs2242480 and rs2687116 in LitVar, Pubmed, SNPedia and PharmGKB. The aim was 

to find evidences of (potential) effect of such SNPs on the CYP3A4 gene expression 

or enzyme activity. 

Most of these SNPs have not been of particular interest for the scientific community in 

the past decades (Table 4.3). In these renown databases, rs28988606 was not 

mentioned in any publication, both rs28371763 and rs28988603 were only cited in 1 

publication each, both rs28969391234 and rs12721620300 in a total of 2 publications 

each, and rs28988604 in a total of 3 publications234,277. However, rs2687116 was 

mentioned in a total of 11 distinct articles and rs2242480 (as part of the specific 

haplotype CYP3A4*1G) in a total of 104 articles. 

 

 

 

SNPs 

Number of articles mentioning the SNP 

in the database total (open access only) 

Total of distinct 

articles mentioning 

the SNP 

total (open access) 
LitVar Pubmed SNPedia PharmGKB 

rs28988603 0 (0) 0 (0) 0 (0) 1 (0) 1 (0) 

rs28988604 2 (2) 0 (0) 0 (0) 1 (0) 3 (0) 

rs28969391 1 (1) 0 (0) 0 (0) 1 (1) 2 (2) 

rs28371763 1 (1) 0 (0) 0 (0) 0 (0) 1 (1) 

rs28988606 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 

rs12721620 1 (1) 0 (0) 0 (0) 1 (0) 2 (0) 

rs2242480 99 (80) 34 (16) 12 (8) 0 (0) 104 (83) 

rs2687116 6 (5) 3 (2) 1 (0) 3 (0) 11 (7) 

Table 4.3 

Number of articles mentioning the eight identified CYP3A4 Single Nucleotide 

Polymorphisms in four main databases: LitVar, Pubmed, SNPedia and PharmGKB. 

For each Single Nucleotide Polymorphism (SNP), the total number of articles is 

provided, with the total of open access articles in brackets. 
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To study the evidences published on the effect, or lack thereof, of those 8 SNPs on 

the CYP3A4 gene expression or enzyme activity, the search was restricted to articles 

available in open access through Pubmed links: a grand total of 88 articles were 

retrieved. All of them were written in English, therefore they were all assessed. Tables 

4.4 and 4.5 summarize the findings from these systematic reviews for, respectively, 

rs28988603, rs28988604, rs28969391, rs28371763, rs28988606 and rs12721620, 

and rs2242480 and rs2687116. 

 

 

 

 

 

 

Table 4.4 (next page) 

Summary of the scientific evidence regarding the effect on CYP3A4 gene 

expression or enzyme activity of six of the identified Single Nucleotide 

Polymorphisms: rs28988603, rs28988604, rs28969391, rs28371763, rs28988606 

and rs12721620. Data retrieved from all open access articles, about the selected 

Single Nucleotide Polymorphism (SNP), found on LitVar, Pubmed, SNPedia and 

PharmGKB. 
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SNPs 

Summary of the scientific 

evidences regarding CYP3A4 

gene expression or enzyme 

activity 
Type of study and reference 

rs28988603    No study in open access 

rs28988604 

rs28988604 is predicted 

to influence CYP3A4. 
                  In silico, predictions regarding microRNA binding sites.277 

No significant association between 

genotype and mRNA levels. 
        In vitro, using allelic balance assay and cloning techniques.234 

rs28969391 

No significant association between 

genotype and mRNA levels. 
          In vitro, using allelic imbalance assay and cloning techniques.234 

                                                 One article was not related to CYP3A4 nor the SNP. 

rs28371763 
No significant association between 

genotype and mRNA levels. 
          In vitro, using allelic balance assay and cloning techniques.234 

rs28988606 No published study 

rs12721620 No functional data 

Table 4.4 
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SNPs 
Summary of the scientific 

evidences regarding CYP3A4 gene 
expression or enzyme activity 

  

Type of study Comments and reference 
rs

2
2

4
2

4
8
0

 

No significant association between 
genotype and mRNA levels. 

In vitro, using allelic balance assay and cloning techniques.234 

Significant association between 
genotype and transcriptional activity. 

 
Significant association between 

genotype and coronary heart disease. 

In vitro (using 
reporter gene) 
and clinical. 

Controlled study - 322 cases with coronary heart disease and 306 controls. 
Study considered diabetes, hypertension, and smoking or drinking patterns. 

 
Not a direct clinical study, but also in vitro findings. 

 
Study with individuals from the same ethnic group (Chinese). 

Gender effect on results.372 

No significant association between 
genotype and colorectal cancer. 

Clinical 

Large controlled study - 2,575 cases with colorectal cancer (carcinogen 
metabolism) and 2,707 controls. 

 
Study with individuals from the same ethnic group (British Caucasian). 

No mention of concomitant medication, smoking patterns, etc. 
Not a direct study – possible enzyme compensation for carcinogen metabolism. 

Cannot exclude a small effect in cancer risk associated with the SNP. 

Did not study the gene-environment effect on cancer risk.368 

Significant association between 
genotype and ticagrelor metabolite 

concentration. 
 

No significant association between 
genotype and platelet aggregation. 

Clinical 

Only 14 individuals, all healthy males with normal range laboratory values. 
Numerous exclusion criteria including frequent smokers and grapefruit consumers. 
Kinetic of ticagrelor metabolite concentrations was followed on 15 timepoints, over 

48h, while platelet aggregation was assayed at 7 timepoints. 
 

Study with individuals from the same ethnic group (Chinese). 
 

Possible mechanism of enzyme compensation to metabolise ticagrelor.231 

No significant association between 
genotype and ticagrelor plasma 

concentration, or 
platelet aggregation. 

Clinical 

Only 18 individuals, all healthy and non-smokers males. 
Numerous exclusion criteria including caffeine, alcohol and juices consumption. 

Kinetic of ticagrelor metabolite concentrations was followed on 15 timepoints over 
48h, while platelet aggregation was assayed at 5 timepoints over 24h. 

 

Study with individuals from the same ethnic group (Chinese).258 
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No significant association between 
genotype and clopidogrel (and its 

metabolites) concentration, or platelet 
aggregation. 

Clinical 

Only 13 cases and 69 controls, all having coronary disease. 

Study with individuals from the same ethnic group (Caucasian). 
No mention of concomitant medication, smoking patterns, etc. 

No homozygous for the minor variant. 
The pharmacokinetics of clopidogrel was followed in only 44 individuals, at 8 

timepoints over 24h of the last day of treatment. Platelet aggregation was assayed 
at only 1 timepoint. 

Issues with low concentrations, below the quantitation limit of the methodology.371 

Significant association between 
genotype and clopidogrel-driven 

platelet aggregation. 
Clinical 

94 cases and 97 controls, all having coronary disease. 
Considered the concomitant medications. 

No significant differences in the distribution of age, sex, smoking, alcohol, etc. 
between responders and non-responders. 

 
Study with individuals from the same ethnic group (Chinese). 

Platelet aggregation was assayed at only 1 timepoint a day, over 5 days. 

More hypertension in the responders254. 

Significant association between 
genotype and steady-state finasteride 

concentration. 
Clinical 

597 cases and 676 controls, all from the same demographic and from various 
ethnic groups in the USA. 
Placebo-controlled study. 

Minorities were oversampled, yet ethnic groups along with age, sex, alcohol 
consumption, etc. were studied. 

 
Concentrations were tested at a very specific timepoint (one day, between 1- and 
7-years post baseline data), may not be the same depending on duration of use. 

Serum concentrations may not be similar to tissue concentrations. 
Self-reported doses, low or undetectable levels could be due to missed doses 

because of low half-life of finasteride.309 

Significant association between 
genotype and breast cancer. 

Clinical 

Large controlled study - 1,508 cases with breast cancer (carcinogen metabolism) 
and 1,556 controls. 

Dietary intake was assessed (self-report). Physical activity, smoking status, etc. 
were studied. 

Study with individuals from the same ethnic group (white from Long Island, USA). 
Not a direct study – possible mechanism of enzyme compensation for carcinogen 

metabolism.370 
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rs
2
6

8
7

1
1
6

 

No significant association between 
genotype and colorectal cancer. 

Clinical 

Large controlled study - 2,575 cases with colorectal cancer (carcinogen 
metabolism) and 2,707 controls. 

 
Study with individuals from the same ethnic group (British Caucasian). 

No mention of concomitant medication, smoking patterns, etc. 
Not a direct study – possible mechanism of enzyme compensation for carcinogen 

metabolism. 
Cannot exclude a small effect in cancer risk associated with the SNP. 

Did not study the gene-environment effect on cancer risk.368 

No significant association between 
genotype and neviparine “apparent” 

clearance. 
Clinical 

Only 129 patients with HIV-1, all with good tolerance to the drug (bias against 
potential genotypes of high effect). 

Study with individuals from the same ethnic group (Cambodian). 
No exclusion criteria, nor study on concomitant parameters (alcohol, smoking, 

etc). 
Self-report of medication by the patients: issues with compliance and missing 

doses. 
Clearance was tested at only 2 timepoints: one morning after 1.5 and 3 years of 

treatment. 

Individual “apparent” clearance, due to a lack of pharmacokinetic model.259 

No significant difference in Lopinavir 
therapeutic drug monitoring between 
the alleles. No significant association 
of genotype to failure of treatment. 

Clinical 

Pubmed entry for a poster presentation – lack of data. 
 

Only 39 patients with HIV-1. 

The mean in therapeutic drug monitoring was yet lower for one allele.369 

Table 4.5 

Summary of the scientific evidence regarding the effect on CYP3A4 gene expression or enzyme activity of two of the 

identified Single Nucleotide Polymorphisms: rs2242480 and rs2687116. Data from a representative selection of open access 

articles, about the selected Single Nucleotide Polymorphism (SNP), found on LitVar, Pubmed, SNPedia and PharmGKB. The articles 

not investigating functional characterisation of these two identified SNPs were removed from this summary. HIV-1 stands for Human 

Immunodeficiency Virus 1, UK for United Kingdom and USA for United States of America.
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No evidence of any kind about the potential effect of rs28988603, rs28988606 and 

rs12721620 on CYP3A4 were retrieved from these systematic literature searches. The 

in vitro study on rs28988604 advocated for a lack of association between genotype 

and CYP3A4 gene expression or enzyme activity234, contrarily to a in silico study 

prediction using microRNA binding sites277. No clinical study was available for this 

SNP. For rs28969391 or rs28371763, no association was found between their 

genotypes and mRNA levels in the only open access article mentioning those SNPs234 

(Table 4.4). No significant association between rs2687116 genotype and CYP3A4 

gene expression or enzyme activity was published in any of the 3 articles in open 

access259,367,368. 

Generally, large and controlled clinical studies regarding rs2242480 were not 

assessing directly the effect on the CYP3A4 gene expression or enzyme activity – 

their focus was on disease risks. There was no real consensus between the large 

clinical studies: significant associations and non-significant ones were both 

published368,370. Clinical studies with smaller sample size acknowledged several 

limitations including a lack of controls, sampling data points or ethnical 

heterogeneity231,254,258,309,371. Overall, their results were contradictory – even when 

considering the metabolism of the same medication in-between ethnic groups254,371 or 

the same medication in the same ethnic group231,258. Even in vitro experimental results 

on rs2242480 were inconsistent234,372 (Table 4.5). Still, there was more publications 

on a potential impact of rs2242480 to CYP3A4 gene expression or enzyme activity, 

including articles associating it to tacrolimus or sunitinib treatment304,305, in methadone 

overdoses232, in imatinib mesylate plasma levels306, in beta-lactam allergies307, in 

vitamin D concentrations308, etc. In particular, the variant allele for rs2242480 was 

associated to the fluoxetine response status, a drug involved in the treatment of 

depression310. This association remained significant after a general linear regression 

to control for the impact of age, gender and depression score. It was also reported that 

the presence of the minor variant for rs2242480 was correlated to an increase in either 

the CYP3A4 gene expression or the CYP3A4 protein function311. 
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In general, out of the 8 variants of interest, the open access literature could only flag 

rs2242480 as “potentially altering CYP3A4 gene expression or enzyme activity”. Its 

effect is not undisputed, yet it has the merit of being way more referenced on this 

particular thematic than any of the other SNPs of interest. 

 

 

4.3.3. Introducing a classification for the potential importance of the eight 

CYP3A4 variants of interest 

Given the data obtained in silico, the importance of the 8 SNPs of interest could be 

scored according to the predictions of their impact on the gene expression or enzyme 

activity. As developed below, the higher the score, the most likely the SNP could have 

an effect. 

 

Despite controversies, the systematic literature search on the open access articles 

regarding the 8 variants of interest could only flag rs2242480 as “potentially altering 

CYP3A4 gene expression or enzyme activity”, impacting potentially on drug 

concentrations, drug efficacies and even disease risks. None of the remaining 7 SNP 

of interest was significantly associated to any published laboratory or clinical effects. 

This could perhaps be explained by their lower minor allele frequencies in the world 

(between 1 and 35%, compared to 42% for rs2242480). Interestingly, the present in 

silico search did not predict an effect of the presence of the minor variant for rs2242480 

on miRNA or splicing element bindings, or on DNA or RNA conformations, contrarily 

to the other SNPs of interest. It could then be assumed that this intronic SNP could 

impact the gene expression or enzyme activity through another route, such as the 

binding of transcription enhancers312, and that the 7 remaining SNPs of interest really 

need to be characterised – and in open access articles. 

 

To score the potential impact of the SNPs on CYP3A4 gene expression or enzyme 

activity, as a rule, published literature evidence documenting the potential impact of a 

SNP through empirical laboratory or clinical evidences was scored higher than any in 
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silico predictions, published or presented in this thesis. rs2242480 impact score was 

therefore inherently the highest. 

To rank the 7 remaining SNPs not associated to open access literature evidence of 

effect (rs28988603, rs28988604, rs28969391, rs28371763, rs28988606, rs12721620, 

and rs2687116), every type of in silico predictions was weighted equally to the other 

ones (predictions about miRNA bindings = predictions about splicing elements = 

predictions regarding the DNA/RNA conformations = prediction from non-validated 

references in the literature). Equal weight was indeed applied on these different types 

of change as they all have the potentially to entirely inhibit the gene expression or the 

enzyme activity (respectively through complete miRNA silencing276, or alternative 

splicing leading to a non-functional enzyme164, or dysfunctional protein-RNA 

interactions298). For each of the 7 remaining SNPs of interest, it was then possible to 

calculate their total score as the number of different types of predictions they were 

associated to (Table 4.6) and to classify them accordingly - from the one which are 

predicted to have a lower impact on the CYP3A4 gene expression or enzyme activity 

to the ones predicted to have a higher impact (Figure 4.4). 

 

 

 



138 
 

x 

CYP3A4 

SNPs of 

interest 

(with world 

MAF) 

Predicted 

changes 

involving 

miRNA 

binding sites 

Predicted 

changes 

involving 

splicing elements 

binding sites 

Predicted changes 

on the DNA/RNA 

conformations 

Total 

score 

rs12721620 

(9%) 
NO 

YES 
NO 1 

rs28988603 

(1%) 
YES  NO 

YES 

(DNA and RNA) 
2 

rs28988604 

(3%) 
NO YES 

YES 

(RNA) 
2 

rs28969391 

(35%) 
YES YES NO 2 

rs28371763 

(1%) 
NO YES 

YES 

(DNA, RNA) 
2 

rs2687116 

(22%) 
NO YES NO 1 

rs28988606 

(1%) 
YES YES 

YES 

(DNA, RNA) 
3 

Table 4.6 

Summary of the predicted changes on gene expression or enzyme activity when 

the minor variant of seven of the CYP3A4 variants of interest is expressed. 

Presented data only recovers potential changes in hepatically-expressed miRNAs and 

splicing elements, as well as DNA/RNA folding conformations, associated to 7 of the 

Single Nucleotide Polymorphisms (SNPs) of interest*, as presented in Table 4.2, 

Figure 4.3 and Figure B1 following predictions on RegRNA2.0, Poly-miRTS, Human 

Splice Finder, Fruit Fly, ESE Finder 3.0, SpliceAid 2 and mfold. Minor Allele Frequency 

(MAF) in the world are shown for each SNP. 

 

All of the in silico predictions about these 7 SNPs of interest were weighted equally: a 

“YES” in any category was associated to a SNP when any change in binding site or 

conformation was associated to the presence of the minor variant. Each “YES” was 

related to a score of 1. A total sum of scores was calculated to each SNP by cumulating 

the number of “YES”. The total score of 0 was associated to a lack of predictions of 

any type of impact on CYP3A4 gene expression or enzyme activity, while the total 

score of 3 was associated to a subjective higher likelihood for the SNP to impact on 

CYP3A4 gene expression or enzyme activity. 
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*rs2242480 was excluded from this summary as, contrarily to the other SNPs, it is 

associated to a high number of literature evidences about its potential impact on 

CYP3A4 gene expression or enzyme activity. These evidences are contradictory and 

with several limitations, there is a real need to investigate further on this particular SNP 

given it is found as minor variant in 42% of the world population. 

 

Figure 4.4 

Classification of the eight CYP3A4 variants of interest depending on their 

predicted score. Single Nucleotide Polymorphisms (SNPs) are displayed on the x-

axis according to their 5’-3’- loci and, on the y-axis, their predicted impact score is 

shown. The higher the score, the most likely this SNP could have an impact on the 

gene expression or enzyme activity. A score of 5 was arbitrarily chosen for rs2242480 

as it is studied in numerous literature publications, as discussed in-text. 

 

 

4.3.4. Distribution of the genotypes for the eight CYP3A4 variants of interest in 

the 1000Genome Project 

rs2242480 being predicted to be the one more likely to affect the CYP3A4 gene 

expression or enzyme activity amongst the 8 SNPs of interest, their linkage 
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disequilibriums (LDs) were investigated in case the minor allele for rs2242480 is non-

randomly associated to the minor allele for one of the other SNPs of interest, in the 

world population. In population genetics, two loci are in LD when the frequency 

associated to their association is different from the expected random association 

frequency (see Chapter 2)175,176. To study the association of the 8 SNPs of interest, 

the two common measures associated to LD (D’ and R2) were accessed using the 

LDLink matrix tool, which uses dbSNP 142 and therefore does not include the most 

recently characterized rs28969391, rs28371763 and rs28988606 SNPs. 

Amongst the 5 SNPs of interest present in dbSNP 142, R2 values were unsurprisingly 

low (Figure 4.5), because of differences in allele frequencies (Table 12), and D’ values 

were assumed mostly high (Figure 4.6). The following pairs were flagged as in linkage 

disequilibrium: rs12721620 and rs28988603, rs12721620 and rs2687116, rs12721620 

and rs2242480, rs28988603 and rs28988604, and rs2687116 and rs2242480. This 

meant that the inheritance of the minor variant for rs2242480 was strongly associated 

to the presence of the minor variant for both rs12721620 and rs2687116 (respective 

R2 were of 0.142 and 0.269, with respective D’ of 1.0 and 0.834). 
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Figure 4.5 

Linkage (dis)equilibrium matrixes of R2 correlation value for CYP3A4 variants 

rs28988603, rs28988604, rs12721620, rs2242480 and rs2687116. The correlation 

of two Single Nucleotide Polymorphisms are studied pairwise and estimated “high” 

when in red. Data from LDLink, using the world population data. 
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Figure 4.6 

Linkage (dis)equilibrium matrixes of D’ correlation value for CYP3A4 variants 

rs28988603, rs28988604, rs12721620, rs2242480 and rs2687116. The correlation 

of two Single Nucleotide Polymorphisms are studied pairwise and estimated “high” 

when in red. Data from LDLink, using the world population data. 
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rs2242480 being associated to the highest impact score (Figure 4.4) and non-

randomly associated with other SNPs of interest (Figures 4.5-6) using the world MAF 

data, the distribution of the different possible genotypes involving those 8 SNPs of 

interest was estimated, while focusing on rs2242480 - with or without rs28988603 and 

rs12721620 which are in LD with it. Indeed, it was important to estimate the proportion 

of the population being potentially affected by the predicted phenotypical differences 

due to their rs2242480 genotype on the CYP3A4 gene expression or enzyme activity. 

They were expected to metabolise a different amount of clinically-relevant drugs, 

compared to patients carrying the major variants for this SNP. 

Individual data from the participants of the 1000Genome Project was accessed to 

obtain the estimated distribution of the different possible genotypes involving 

rs28969391, rs28371763, rs28988604, rs28988606, rs28988603, rs12721620, 

rs2242480 and rs2687116, in the world and in ethnic groups. Globally, 70 different 

genotypes were found (as listed in Table B3). The most frequent genotype in the world 

was established when each of the 8 SNPs of interest are present as homozygous for 

the major variants (36.7% of the population, this genotype being named “homozygous 

for the 8 major variants”), and a total of 53 different genotypes were present in less 

than 1% of the world population, each (Figure 4.6A and Table B3). 

Focussing on the distribution in ethnic groups (Figure 4.7B-F), 76.1% of the European 

population is homozygous for the 8 major variants, the rest of the population being 

distributed amongst 17 other genotypes (Figure 4.7B). In South Asia and East Asia, 

22 and 15 different genotypes were accounted for, respectively with 35.8% and 44.2% 

of the populations being homozygous for the 8 major variants (Figure 4.7C-D). 

America was demonstrating a pretty heterogeneous population separated into 36 

different genotypes, the most common being homozygous for the 8 major variants as 

well (37.5% of the population, Figure 4.7E). Finally, Africa was accounting for a total 

of 53 different genotypes, the most common - homozygous for the 8 major variants - 

being found in only 10.1% in this ethnic group (Figure 4.7F). 
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Figure 4.7 

Distribution of the different genotypes for the eight CYP3A4 variants of interest 

amongst the world population and between ethnic groups. Calculated from the 

1000Genome Project phase 3 data, these distributions of the different genotypes for 

rs28988603, rs28988604, rs28969391, rs28371763, rs28988606, rs12721620, 

rs2242480 and rs2687116 are shown for the world population (A) as well as different 

ethnic groups (Europeans (B), East Asians (C), Americans (D), East Asians (E) and 

Africans (F)). Each colour represents one particular genotype (out of 70 possible in 

total, as described in Table B3), the light blue being the one associated to homozygous 

for the 8 major variants. Faded parts represent the least frequent genotypes. 
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As the validated literature only reported rs2242480 as potentially impacting the 

CYP3A4 gene expression or enzyme activity254,304,306,308,310,311, the rest of this 

population genetics study focuses on the distribution of the minor variant of rs2242480 

in the world and in populations from different ethnic groups (Figure 4.8). It was found 

that 26.2% of the world population is homozygous for the minor variant of rs2242480, 

but massive disparities were found between ethnic groups, as 1.0% of the Europeans, 

14.9% of the South Asians, 6.9% of the East Asians, 18.2% of the Americans and, 

most importantly, 72.4% of the Africans present such genotype. These major 

differences between ethnic groups in the distribution of the minor variant for rs2242480 

evidence that, if this SNP is indeed impacting on the CYP3A4 gene expression or 

enzyme activity, it could possibly have a major effect on drug concentrations in 

patients from different genetic backgrounds. It would be critical to investigate on the 

direction of the potential effect associated to the minor allele for rs2242480: are people 

homozygous for this minor allele Poor Metabolisers or Ultra-Rapid ones? 91,113 As 

shown by the critical frequency difference for the genotype homozygous for the minor 

variant of rs2242480 between Europeans versus Africans, one could wonder how to 

adapt a potential CYP3A4-metabolised drug dosage between these populations: 

which of these two populations is most likely to require a lower drug dosage (to 

decrease the experience of side-effects) or a higher drug dosage (to increase the 

treatment efficacy)?101,106,108 

 

 

 

 

It may be important to consider the ethnicity of the patients before prescribing a 

regimen metabolised by CYP3A4. Yet even one of the 8 SNPs of interest expressed 

as a heterozygous allele could possibly have a critical impact on the CYP3A4 enzyme 

concentration or activity, and therefore on the drug metabolism. A systematic 

genotyping of particular SNPs on xenobiotic metabolism enzymes could therefore be 

proposed as part of a personalised medicine90,106,120. 
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Figure 4.8 

Distribution of the different genotypes for CYP3A4 rs2242480 amongst the world 

population (A) and between Europeans (B), East Asians (C), Americans (D), 

South Asians (E) and Africans (F). Data from the 1000Genome Project – phase 3, 

with green depicting homozygous for the major variant of rs2242480, orange 

heterozygous and red homozygous for the minor variant. 
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4.4. Discussion 

This study aimed to identify the most common and potentially important variants on 

the CYP3A4 gene using publicly available bioinformatics tools. Common variants were 

defined with a MAF above 1% in the world population. In silico tools were used to 

predict the importance of the selected SNPs: searches were performed to associate, 

if any, splicing sites or the binding sites on various regulatory elements (transcription 

factors, miRNAs, SR proteins) to the selected SNPs. Overall, this study acknowledged 

8 SNPs (rs28988603, rs28988604, rs28969391, rs28371763, rs28988606, 

rs12721620, rs2242480 and rs2687116), they were all predicted to have a potential 

impact on the CYP3A4 gene expression or enzyme activity, at different scales. A 

classification of those SNPs was established, and rs2242480 was scored as the most 

likely to affect CYP3A4, or at least the most important to investigate further on. The 

distribution of all possible genotypes for the 8 SNPs of interest was considered, with 

a focus on rs2242480, in the world and among ethnic groups. It showed major 

differences in the distribution of the genotypes between ethnic populations. Altogether, 

the present study emphasises on the importance of studying xenobiotic metabolism 

variants. It may be critical to generalise the use of personalised medicine, a tailoring 

of drug dosages according to the patient genetic background90,106,120. 

 

This study being performed using in silico tools, its predictions would need to be 

confirmed in vitro, if not in vivo or in clinical studies. Firstly, subjective, although 

informed, thresholds were used to select the 8 SNPs of interest. For example, the 

positional effect of SNPs on gene function was assumed161,162,165,169,268,313, excluding 

therefore intronic SNPs not present in the vicinity of the exon boundaries. Indeed, a 

threshold of 100 nucleotides from the boundaries was suggested in previous 

papers159,163-165,167,169,170,267-271, although several other studies proposed to extend it to 

200 nucleotides159,267 or even expected a distribution of intronic regulatory elements 

at variable distances from the exons165. Secondly, this study did not consider the 

extensive list on how variants can affect the gene expression or enzyme activity. We 

focused on the most common ones, excluding for example genetic variants affecting 

CYP3A4 epigenetics marks172, despite reports of the differential expressions of 

CYP3A4 due to epigenetic factors251. Thirdly, strong linkage disequilibriums have been 

found to correlate the alleles of many of the xenobiotic metabolism genes, CYP3A4 
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included,230,297,314-316 therefore a broader approach could have been performed to 

consider all 3,100 CYP3A4 variants, instead of 8.  

Fourthly, and more notably, the predictions retrieved from the in silico searches were 

computed together using subjective scores, discarding a potential asymmetry in the 

distribution of actual regulatory elements on the gene165,267. We also assumed that 

associations to CYP3A4 impact published in clinical studies weighted more than 

predictions about possible alterations of the miRNA silencing or of alternative splicing 

or of DNA/RNA conformation (those predictions were weighted equally in the scoring 

system). 

Fourthly, it is important to note that the systematic review of all open access 

publications on the 8 SNPs of interest only flagged rs2242480 as potentially impacting 

on CYP3A4, yet the search was limited to open access articles. Notably, this 

systematic literature review on open access articles showed that most studies on 

rs2242480 had several limitations: clinical study with a large sample size were not 

assessing directly the effect of the SNP but were focussing on disease risks368,, while 

much smaller sample-sized clinical studies were lacking controls, sampling timepoints, 

etc.231,254,258,259,309,370,371. It is therefore not surprising that most of these published 

evidences were contradictory - for example two studies on the same medication, 

performed on the same ethnic group, had distinct conclusions on the potential impact 

of the SNP231,258. However, rs2242480 was still flagged as having the “potential to 

effect on CYP3A4 gene expression or enzyme activity” given that studies focussing 

on similar xenobiotic metabolism enzymes have evidenced at the same time i) 

differences in the distributions of the variants amongst ethnic groups, and ii) an 

association between those variants and differential phenotypic response (drug 

response)91,98,106,113-117,317,318. It would be unlikely that CYP3A4 is the “only” xenobiotic 

metabolism enzyme not subjected to such alterations from its gene polymorphisms. 

The studies focussing on other xenobiotic metabolism enzymes have already 

advocated for an adaptation of the treatment to the patient genetics. This present body 

of work points out to 8 more SNPs to consider when administrating CYP3A4-

metabolised drugs. These 8 SNPs are of clinical importance as this enzyme 

metabolism is predominant for clinically-relevant drugs108,247,251. 

 

In the literature, CYP3A4 and CYP3A5 were often studied together due to their 
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overlapping substrate specificity for many of the clinically-relevant drugs246,248,249. Yet, 

differences in their tissue expression and catalytic efficacy251 were reported, alongside 

the metabolism of a major antibiotic agent, erythromycin, by CYP3A4 and not 

CYP3A5251. It is therefore particularly important to consider the SNPs being able to 

potentially impact on the CYP3A4 gene expression or enzyme activity. Especially now 

that differences in their distribution amongst particular ethnic groups have been shown 

(in the present study), such as differences between populations from European or 

African ancestry. Previous studies actually evidenced that, in Caucasian populations, 

the non-functional CYP3A5*3 allele is highly represented and therefore the xenobiotic 

metabolism of drugs metabolised by CYP3A4/5 is only undertaken by CYP3A4246. 

Even though “only” 1.0% of the Europeans were estimated to be homozygous for the 

minor variant of rs2242480 (that could potentially be responsible for an abundance or 

lack of CYP3A4 gene expression or enzyme activity101,108), this represents 7.4 million 

potential patients being at risk of experiencing low treatment efficiency and/or 

increased side-effects due to their genetic background, and the possible lack of 

enzymatic redundancy between CYP3A4 and CYP3A5251. 

 

In summary, there are several implications of the present findings. This in silico study 

shows that common SNPs on the CYP3A4 gene could potentially have an impact on 

its expression or enzyme activity. This needs to be confirmed in vitro or in vivo, as this 

could impact on the concentrations on the many drugs metabolized by CYP3A4, 

leading to ineffective treatment, over-doses and side-effects106. As CYP3A4 is 

involved in the metabolism of many clinically-relevant antibiotics101, those SNPs could 

affect their circulating concentrations, destabilising the exact dosage required to 

assure both treatment efficacy and the avoidance of antibiotic resistance27. More 

importantly, this  study evidences differences in the distribution of various “common” 

CYP3A4 SNPs between ethnic groups, and previous reports on other xenobiotic 

metabolism enzymes have associated such differences to alterations in drug 

response110,118,121,122. It was notably the case for Caucasian populations expressing 

many of the deleterious CYP2D6 SNPs123 or for the complete GSTM1 or GSTT1 gene 

deletion found in up to 50% of the patients in certain populations116. The clinical effect 

of such polymorphisms was reported, with examples of i) up to 25% of the world 

population being affected by genetic variations on the main CYP genes (including 
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CYP3A4/5)113, ii) a specific CYP2C9 SNP dramatically affecting warfarin 

metabolism114, or iii) the common GSTT1 gene deletion increasing the toxicity to 

isoniazid, pyrazinamide and rifampicin for tuberculous patients117. 

If one or more of the 8 SNPs highlighted in the present study are indeed proven to 

impact the CYP3A4 gene expression or enzyme activity, it would be interesting to 

develop personalized medicine for the xenobiotic metabolism genes90,106,120. Patients 

would then be genotyped for targeted SNPs before being delivered any regimen, their 

prescription being tailored later on, according to their genetic background. In areas in 

the world where systematic genotyping is still an out-of-reach technique of molecular 

biology, knowledge about the distribution of the most common CYP3A4 SNPs in 

different ethnic groups should be spread out to make sure clinicians adapt treatments 

and treatment dosages to the average patients living in the area. 

 

In this in silico study, rs28988603, rs28988604, rs28969391, rs28371763, 

rs28988606, rs12721620, rs2242480 and rs2687116 were found to be potentially 

impacting the CYP3A4 enzyme activity. Further research is needed to address 

whether these variants are indeed impacting CYP3A4 and whether they can influence, 

alone or together, drug efficacy and/or toxicity. 

 

4.5. Reflection on the research 

This in silico study acknowledged 8 CYP3A4 SNPs, all predicted to have a potential 

impact on the CYP3A4 gene expression or enzyme activity, but at different scales – a 

classification of predicted importance was shared. 

Given more time, it could have been interesting to seek access to the closed-access 

publications on these SNPs in the literature, as part of their classification is based on 

the scientific evidences published on their potential effect on CYP3A4. It could also 

have been interesting to translate this in silico research into an experimental one, 

using an allelic balance assay. We could have quantified the gene expression 

associated to each allele (major or minor), using genomic and complementary DNA 

samples from individuals being heterozygous for only one of the selected genetic 

variants. It could have helped us distinguish – if any - differences in gene expression 
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due to the presence of the major or the minor allele of each of these 8 SNPs. 

Considering the genetic linkage found between those 8 SNPs, finding and recruiting 

such individuals would be time consuming though. 

A more realistic approach of extending this research would be to consider all CYP3A4 

SNPs, instead of focusing only those in 3’-UTR and those in vicinity of exon 

boundaries. In total, 60 intronic SNPs were discarded due to their loci: they were 

localised in regions “less likely to contain regulatory elements”, yet there is still a 

chance these SNPs could have effect on CYP3A4 gene expression or enzyme activity. 

Finally, still using in silico methods, given more time, we could have investigated 

CYP3A5 as well, as CYP3A4 and CYP3A5 are closely linked – one could wonder if 

they compensate each other when one presents an altering SNP. 
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CHAPTER 5 - Investigating the impact of Carboxylesterase 

2 genetic variants on host xenobiotic metabolism, treatment 

efficacy and adverse effects. 

 

5.1. Introduction 

With the global threat of antibiotic resistance, the right antibiotics need to be delivered 

to the patients, at the appropriate dose and for the appropriate length of treatment, to 

be able to treat them efficiently whist reducing the probability of antibiotic resistance 

emergence27. To improve the treatment against Methicillin-Resistant Staphylococcus 

aureus (MRSA) infections, many clinical trials have focussed over the last decades on 

the combination of vancomycin and rifampicin55. Due to serious published 

inconsistencies about the type of their interaction towards MRSA (both synergies, 

antagonisms and indifferences have been reported)71-81, physicians have to base their 

prescriptions on highly contradictory treatment guidelines: this combination is for 

example recommended for infective endocarditis on prosthetic valve in the United 

States of America, but discouraged in the United Kingdom, without clear 

explanation82,83. Several hypotheses have been formulated to explain the 

discrepancies between the in vitro, in vivo and clinical studies on this interaction33,45,55. 

During clinical trials, inter-individual differences between patients (such as age, sex, 

body weight, concomitant diseases and treatments, and genetic background) might 

have influenced these antibiotics xenobiotic metabolism during clinical trials91,101,113. 

In the host organism, xenobiotic metabolism detects and processes foreign 

compounds, including medicine, to facilitate their rapid excretion108. This 

biotransformation is divided into three enzymatic phases, involving enzymes coded by 

highly polymorphic genes98,101,106,108,110 – i.e. their genes are known to contain various 

genetic variants, present in at least 1% of the world population, that could alter their 

gene expression or influence their enzyme activity. Amongst xenobiotic metabolism 

Phase I enzymes, the well characterised cytochrome P450 monooxygenases (CYPs 

or p450) are estimated to be involved in 70-80% of the clinically relevant drug 

metabolism101,106,108. Some of their common genetic variants have been reported to 

interfere with drug metabolism, treatment efficacy and adverse effects113. It is notably 
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the case for patients treated with warfarin, a major cardiovascular drug: carriers of 

either minor allele for rs1799853 and rs1057910 on CYP2C9 may require up to 75% 

decrease in warfarin dosage to reduce their experienced side-effects114. Similarly, the 

intronic CYP1A2 variant rs762551 was associated to an increased oral clearance for 

the mental health medication olanzapine, and CYP2B6 rs2279343 to increased 

clearance of the HIV-1 drugs efavirenz and cyclophosphamide, to name a few relevant 

Phase I SNPs101. Polymorphisms in the Phase II genes have also been associated to 

altered gene expression or enzyme activity. In particular, the non-functional null alleles 

of the Glutathione S-Transferase T1 (GSTT1) or the GSTM1 gene were reported, 

separately, to increase the likelihood of toxicity from antituberculous treatment115-

117,319. Likewise, the slow acetylator variants for N-Acetyltransferase 2 were associated 

with increased hepatotoxicity from the antituberculous isoniazid124. A large proportion 

of differences in treatment efficacy between patients could therefore be associated to 

their genetic background, amongst other causes (lack of drug monitoring, influence of 

immune system, sex, age, etc.45,82,92,95,97,98). This could be of critical importance as 

genetic variation shows strong effects of ethnicity, i.e. a heterogenous distribution of 

such variants between the different ethnic groups108,110,116,118,121,122. For example, 

many of the deleterious CYP2D6 genetic variants are expressed mostly in Caucasian 

populations123, and up to 50% of individuals of European descent exhibit the deletion 

of GSTM1 or GSTT1 genes115. 

Vancomycin is known to be poorly metabolised125 and, until recently, rifampicin 

xenobiotic metabolism was wrongfully attributed to the CYPs33,45. Although rifampicin 

is indeed a potent inducer of the CYP enzymes101, it was recently reported that it is 

primarily metabolised by the Carboxylesterase 2 (CES2) enzyme33,108,129,136-140. CES2 

has been overlooked320 despite being responsible for the metabolism of several 

clinically-relevant drugs, including the pro-immunosuppressor Mycophenolate MoFetil 

(MMF) “dampening down” the immune system after organ transplant149,150. CES2 is 

encoded by the CES2 gene, which harbours a number of genetic variants with 

potential effects on gene expression or enzyme activity144-146,148,321. Most of these 

polymorphisms have been poorly characterised, despite their potential interference 

with drug metabolism, treatment efficacy and adverse effects. Rare CES2 genetic 

variants have been recently associated with differences in rifampicin metabolism in 

Korean tuberculosis patients138, yet little is known about the most common ones or 
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their distribution amongst ethnic groups142,144,145,147,148. This could potentially explain 

why rifampicin, currently prescribed to MRSA and tuberculosis patients at a dose 

which only considers their body weight82,83, has been frequently associated to 

hepatotoxicity or unresponsiveness in patients 322,323. Likewise, MMF fixed dose133 has 

long been questioned, with different groups of responders being reported (including 

unresponsive or with increased experiences of side-effects). Critically-ill patients can 

develop severe diarrhoea, leading to severe dehydration and MMF 

withdrawal151,152,324. Their prescribed doses are not considering the potential impact of 

the host genetics or baseline parameters (age, concomitant diseases, etc.). Regarding 

antibiotic prescription, such inter-individual differences could alter the circulating 

antibiotic concentrations, modifying therefore the effective dose required to treat them 

efficiently whilst eradicating all bacteria and reducing the probability of emergence of 

antibiotic resistance. In other words, inter-individual differences such as genetic 

variations could convert a successful combination of vancomycin and rifampicin into 

an ineffective (if not hazardous) antibiotic regimen in patients infected with MRSA27. 

 

To characterise the impact of CES2 genetic variants on the host xenobiotic 

metabolism, this body of work aimed first to associate “common” CES2 genetic 

variants to in silico predictions of gene expression or enzyme activity alterations. Using 

an allelic imbalance assay, the effect of potentially-altering genetic variants on CES2 

mRNA levels was established: rs11075646 and rs8192925 were identified as 

associated with distinct effects on allele-specific mRNA output - the minor variant for 

rs11075646 is associated with significant increased level of CES2 transcripts and the 

minor variant for rs8192925 with significantly reduced CES2 mRNA. As differences at 

CES2 mRNA levels might be correlated with differences at the enzyme level325,326 – 

with potential inter-patient differences in drug efficacy and adverse treatment effects, 

a pilot clinical study was then set up to evaluate a potential association between the 

response of patients to rifampicin or MMF, and their genotype for CES2 rs11075646 

and rs8192925. The preliminary data of this clinical study is developed in this chapter. 

If these CES2 SNPs are shown to interfere with drug metabolism and treatment 

response, their presence as minor alleles in the genotype of patients treated with 

rifampicin could affect their recovery, whilst potentially triggering de-novo antibiotic 

resistance27. Thus, it could be useful for both the patients and the community to 
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proceed to pre-operative screenings before antibiotic prescription, allowing the 

tailoring of medication dose based upon genotype. This would be another step towards 

personalized medicine90,106,120. 

 

5.2. Materials and Methods 

5.2.1. Bioinformatics 

5.2.1.1. Identification of gene sequences and genetic variation 

CES2 gene sequences (as complete DNA sequence, cds) and messenger RNA 

(mRNA) transcript sequences were extracted from NCBI’s Nucleotide or the UCSC 

Genome Browser ( https://www.genome.ucsc.edu), in FASTA format. Sequence 

references and lengths (in base pair, bp) are provided (Table 5.1). 

 

Gene / Transcript 

variant 
Sequence reference 

Sequence 

length 

(bp) 

Link 

CES2 gene AY851164.1 (GenBank) 

Or 

Genomic Sequence 

(chr16:66,934,444-66,945,069) 

(UCSC) 

14,667 

 

FASTA 

Or 

FASTA 

CES2 transcript variant 1 

(mRNA) 

NM_003869.5 

(NCBI Reference Sequence) 
3,955 FASTA 

CES2 transcript variant 2 

(mRNA) 

NM_198061.2 

(NCBI Reference Sequence) 
3,907 FASTA 

CES2 transcript variant 3 

(non-coding RNA) 

NR_036684.1 

(NCBI Reference Sequence) 
4,193 FASTA 

Table 5.1 

Information about the genes and transcript variants sequences for 

Carboxylesterase 2 (CES2). mRNA stands for messenger RNA, and bp for base pair. 

 

 

https://www.genome.ucsc.edu/
https://www.ncbi.nlm.nih.gov/nuccore/AY851164.1?report=fasta
https://genome.ucsc.edu/cgi-bin/hgc?hgsid=680260523_pzMYy1AGaW2W2wt6fAYlBJTxnAyE&g=htcDnaNearGene&i=uc002eqq.4&c=chr16&l=66934443&r=66945069&o=knownGene&boolshad.hgSeq.promoter=0&hgSeq.promoterSize=1500&hgSeq.utrExon5=on&boolshad.hgSeq.utrExon5=0&hgSeq.cdsExon=on&boolshad.hgSeq.cdsExon=0&hgSeq.utrExon3=on&boolshad.hgSeq.utrExon3=0&hgSeq.intron=on&boolshad.hgSeq.intron=0&boolshad.hgSeq.downstream=0&hgSeq.downstreamSize=2500&hgSeq.granularity=gene&hgSeq.padding5=0&hgSeq.padding3=0&boolshad.hgSeq.splitCDSUTR=0&hgSeq.casing=exon&boolshad.hgSeq.maskRepeats=0&hgSeq.repMasking=lower&submit=submit
https://www.ncbi.nlm.nih.gov/nuccore/NM_003869.5?report=fasta
https://www.ncbi.nlm.nih.gov/nuccore/NM_198061.2?report=fasta
https://www.ncbi.nlm.nih.gov/nuccore/NR_036684.1?report=fasta
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CES2 genetic variants were identified using the UCSC Genome Browser, on the most 

recent human assembly (GRCh38/hg38) with the most recent Short Genetic Variations 

database (dbSNP17). The search was limited to those carried by at least 1% of the 

world population, as they are those defined as “common” in dbSNP (Supplementary 

Data). The commonality of the selected genetic variants was important to observe, if 

there is any, an impact on gene expression or enzyme activity which has the potential 

to be relevant to a large proportion of the world population.  The Minor Allele 

Frequencies (MAFs) of the variants, and their alleles frequencies in the world and in 

different ethnic groups (populations with descents from Africa, Americas, East Asia, 

South Asia, Europe), were accessed using the 1000Genome Project data ( 

http://phase3browser.1000genomes.org/index.html ), which was based on the 

GRCh37 reference assembly then updated to GRCh38/hg38. Full information 

regarding the 2,504 individuals from these ethnic groups is available in Chapter 2 and 

in a previous study178. For clarity purpose, terms such as “Europeans” will be used 

through this chapter for “individuals from European ancestry populations”. CES2 

genetic variants were classified according to their world MAF, the 3 more frequent 

exonic CES2 genetic variants were preselected for our study given their MAF 

(Supplementary Data). The rationale to select genetic variants localised in exons was 

that studies have reported variant positional effects on function161,162,169,268,313, and 

exonic regulatory elements have been more characterised than their intronic 

counterparts168. 

 

 

As SNPs are sometimes non-randomly associated and could therefore biased the 

each other’ reported potential effect, the Linkage Disequilibrium (LD) was estimated 

between the 3 SNPs of interest on the LDLink database ( https://ldlink.nci.nih.gov), 

using the LD Pair and LD Matrix functions in the world population, for determination of 

the D’ and the R2 of the pairs of variants of interest175 (see Chapter 2). 

 

 

5.2.1.2. In silico assessment of potential effects on RNA transcription or processing 

Following identification and classification of the CES2 variants, 3 SNPs were included 

in this study: rs11075646, rs8192925 and rs28382828, due to their commonality and 

http://phase3browser.1000genomes.org/index.html
https://ldlink.nci.nih.gov/
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their exonic loci. They are found on the chromosome 16, at their respective locus of 

chr16:66935273-66935273 for rs11075646 (C>G), chr16:66944094-66944094 for 

rs8192925 (A>G) and chr16:66944326-66944325 for rs28382828 (- >AGAA or else). 

They are cited in their 5’-3’- order through this chapter. As detailed below, in silico 

studies were performed to assess their localisation in regards of regulatory elements 

(sequences regulating the gene), in order to validate and specify the general prediction 

that their position could affect CES2 gene expression or enzyme 

activity161,162,169,268,313. 

 

rs11075646 being localised in CES2 5’-UnTranslated Region (UTR), it could most 

likely alter gene transcription, by disrupting the binding of a transcription factor, or - 

less likely - alternative splicing by disrupting the binding of an Exonic Splicing 

Enhancer or Silencer (ESE/ESS)161,166,169,170,291,327. rs8192925 and rs28382828 being 

localised in the CES2 3’-UTR, they could most likely affect mRNA stability by 

influencing microRNA (miRNA) binding162 or - less likely - alternative splicing by 

disrupting ESE/ESS (more details on gene regulation mechanisms in Chapter 2). In 

silico searches - detailed below - were therefore performed to evaluate the localisation 

of the 3 SNPs of interest regarding known or predicted transcription factor binding sites 

(for rs11075646), splicing sites (for all), noncoding RNA binding sites (for rs8192925 

and rs28382828), etc. When available on the in silico tool, the search was made with 

or without the minor variant, to observe if differences are highlighted. 

The co-localisation of the SNPs with regulatory elements was primarily assessed using 

the human assembly build GRCh37/hg19 on UCSC Genome Browser. When 

necessary given the SNP localisation on the CES2 gene, potential effects on 

transcription were evaluated using “ENCODE TFBS ChIP-seq”. Effects on miRNA or 

other non-coding RNA regulation were assessed using “Regulation”, when needed. 

Predictions for transcription factor binding sites were also checked using the 

Regulatory Analysis of Variations in ENhancers database ( http://www.cisreg.ca/cgi-

bin/RAVEN/a)327 using all of the proposed reference sequences to access the list of 

transcription factor binding sites affected by CES2 SNPs. RegRNA 2.0 database ( 

http://regrna2.mbc.nctu.edu.tw/)279,284 was also used for this purpose and to assess 

http://www.cisreg.ca/cgi-bin/RAVEN/a
http://www.cisreg.ca/cgi-bin/RAVEN/a
http://regrna2.mbc.nctu.edu.tw/
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several other regulatory elements: polyadenylation sites, ribosome binding sites and 

RNA-RNA interaction regions (including miRNA). 

miRNA binding sites were also validated through the Poly-miRTS database286-288 ( 

http://compbio.uthsc.edu/miRSNP). They are classified into four classes, depending 

on their likelihood to alter the repression control of the gene. By inputting the gene 

name into the search option, the outputs associate, when possible, miRNA binding 

site(s) to each CES2 exonic SNPs, alongside a function class predicting the functional 

impact of the variants289. Likewise, Exiqon (mirseach), Target Scan328, MirSNP329, 

miRSearch330,331 and miRBase332 were also accessed to study the miRNA target sites 

on CES2 gene (Supplementary Data). 

DNA and RNA conformation changes due to genetic variants being reported to have 

a potential impact on the gene expression or protein activity293-295, the predicted effect 

of conformation changes at the DNA or RNA level because of the presence of the 

minor variant(s) were analysed using the mfold Web Server281 

(http://unafold.rna.albany.edu/?q=mfold). 

 

Unless otherwise specified, all of these databases were accessed using the default 

options and thresholds (Supplementary Data), as they were rationalised and 

recommended in the literature279-283, consistently with this study’s general approach. 

When necessary, the motifs recognized on regulatory elements were accessed in 

Jaspar ( jaspar.genereg.net ). 

 

5.2.1.3. In silico assessment of expression patterns of factors potentially binding to 

CES2 regulatory elements 

The CES2 metabolism of clinically relevant drugs being localised mainly in the liver320, 

hepatic expression patterns for transcription factors predicted to bind to sites disrupted 

by rs11075646 were assessed using the Expression Atlas ( 

https://www.ebi.ac.uk/gxa/home), the dataBase for Gene Expression Evolution ( 

https://bgee.org/ ), the Jaspar CORE ( http://jaspar.genereg.net/) and the Tissue-

specific Gene Expression and Regulation (TiGER,  http://bioinfo.wilmer.jhu.edu/tiger/) 

databases. Jaspar CORE was also accessed to associate the factors to their specific 

http://compbio.uthsc.edu/miRSNP
http://unafold.rna.albany.edu/?q=mfold
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwio2Y7F5fzeAhUvy4UKHWMLBjMQFjAAegQICRAB&url=http%3A%2F%2Fjaspar.genereg.net%2F&usg=AOvVaw0L8zvb14CUv6OhJqCMKSok
https://www.ebi.ac.uk/gxa/home
https://bgee.org/
http://jaspar.genereg.net/
http://bioinfo.wilmer.jhu.edu/tiger/
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motifs. Where miRNA binding was predicted to be disrupted by rs8192925 or 

rs28382828, their likely presence in the appropriate tissue was assessed using the 

Genotype-Tissue Expression portal ( https://www.gtexportal.org/home/), the miRmine 

database ( http://guanlab.ccmb.med.umich.edu/mirmine/) and data from the 

Expression tab on the miRNA Genecards ( https://www.genecards.org). 

 

 

5.2.2. Measurement of relative allelic expression 

5.2.2.1. Samples 

300 peripheral blood DNA and RNA samples from anonymised participants in the 

Exeter 10,000 study were collected and used here with the ethical permission from 

Exeter National Institute for Health Research (NIHR) Clinical Facility (REC 

09/H0106/75). Exeter 10,000 is a cross sectional population study consisting of 

samples collected from volunteer individuals living in the South West of England and 

recruited since 2010. 

 

5.2.2.2. Determination of genotypes 

DNA samples were genotyped for the presence of rs11075646 and rs8192925 using 

Polymerase Chain Reaction (PCR) technique with TaqMan chemistries on the ABI 

7900HT Fast RealTime PCR System or StepOnePlus Real-time PCR System as 

appropriate (ThermoFisher, Warrington, UK). 22ng of genomic DNA was amplified in 

a total volume of 20 µL containing 200nM of the specific primers to one SNP (the VIC-

tagged primer recognizes the major variant, whereas the FAM-tagged primer attaches 

to the minor one, Table 5.2) and 10µL Taqman Genotyping MasterMix 

(ThermoFisher), as per manufacturer’s instruction. Cycling conditions were an initial 

cycle of 60°C for 30 seconds (sec), and 95°C for 10 minutes (min), then 40 cycles of 

95°C for 15 sec and 60°C for 1 min, and a final read at 60°C for 30 sec. Clustering of 

genotypes was achieved using the post-read function. 

  

https://www.gtexportal.org/home/
http://guanlab.ccmb.med.umich.edu/mirmine/
https://www.genecards.org/
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  rs11075646 

(custom) 

rs8192925 

(assay ID: shelf 

C___2847570_10) 

P
ri

m
e

rs
 

Forward ACGTGCACATCCTCAGAGAAG 

Proprietary 
Reverse GTCCACAGGCCCGATGAG 

R
e

p
o

rt
e

r 

s
e

q
u

e
n

c
e

 

VIC CC CTCCTATCGATCCCCCAG 

Proprietary 

FAM       CTCCTATCGATGCCCCAG 

Reporter 

Data 

1 (C) is VIC 

2 (G) is FAM 

1 (A) is VIC 

2 (G) is FAM 

Context 

sequence 

CC CTC CTA TCG AT 

[C/G] 

CCC CAG 

GGGTCAGCCTGCTGTGCCCACACAC 

[A/G] 

CCCACTAAGGAGAAAGAAGTTGATT 

Final 

concentration of 

the assay mix 

Used at 1x (containing an 

equal concentrations of each 

primer, and equal 

concentrations of each 

reporter). 

Used at 1x (containing an equal 

concentrations of each primer, 

and equal concentrations of each 

reporter). 

Table 5.2 

Description of the Taqman Genotyping primers for rs11075646 and rs8192925. 

The primers for rs11075646 were selected using the Pyromark Assay Design Software 

(Qiagen). The rs8192925 assay is inventoried under the assay ID “C___2847570_10”, 

which is proprietary. For both Single Nucleotide Polymorphisms, the major variant (1) 

is associated to the VIC-tag, while the minor variant (2) is recognized by the FAM-tag, 

allowing for their distinction. 

 

 

Despite using the Pyromark Assay Design Software (Qiagen, Limburg, Netherlands) 

to design the primers for rs28382828 genotyping, this Custom Taqman SNP Assay 

was failing – potentially because of its DNA structural conformation (Figure C1). In the 

presence of the minor variant for rs28382828, it requires a melting temperature (Tm) 

of 54.9°C to be denatured, yet the designed probe Tm was of 49.9°C, causing low 
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levels of cross-hybridisation. Genotyping for rs28382828 was therefore performed 

using an alternative approach: conventional PCR followed by Sanger sequencing. 

Specific primers containing a M13-cap were selected using Pyromark Assay Design 

(Qiagen) (Tables 5.3 and C1). They were checked for off-target pairing with the UCSC 

In-Silico PCR tool ( http://genome.ucsc.edu/cgi-bin/hgPcr ) and the BLAST-like 

alignment tool ( https://genome.ucsc.edu/cgi-bin/hgBlat/ ). A large region of 503 bp - 

containing both rs8192925 and rs28382828 - was amplified in a thermocycler 

(ThermoFisher) and Sanger sequencing was ordered from the RILD Diagnostic 

laboratory. Each amplification consisted in 25µg of genomic DNA content in a total 

volume of 10µL containing 5µL of MegaMix-Royal (Gel Company, San Francisco, 

USA) with the primers at 200nM. This was performed with the following conditions: 

95°C for 12 min, 30 cycles of 95°C for 30 sec and 63°C for 1 min and 72°C for 1 min, 

and a final step at 72°C for 10 min. The PCR products were then Sanger sequenced 

to obtain genotyping data for both rs8192925 and rs28382828. 

 

Description Sequences (5’- to 3’-) 

Complete 

primers 

Forward 

Primer 

TGTAAAACGACGGCCAGTAGCCGAGGAGCCTGAAGA 

Reverse 

Primer 

CAGGAACACGCTATGACCGGATTAGGGGCATGAGCC

AC 

Table 5.3 

Sequences of the primers amplifying by Polymerase Chain Reaction rs8192925 

and rs28382828. The primers were selected using Pyromark Assay Design (Qiagen) 

and a M13 tag was added to the 5’- end of the primers for sequencing ease. 

 

 

http://genome.ucsc.edu/cgi-bin/hgPcr
https://genome.ucsc.edu/cgi-bin/hgBlat/
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5.2.2.3. Allelic imbalance assay 

In order to determine potential effects of the presence of each SNP on mRNA 

expression or stability, allelic imbalance assays were performed for the 3 SNPs of 

interest, separately. Using genomic DNA and RNA samples from Exeter 10,000 

individuals heterozygous for the studied SNP, this technique allowed for the distinct 

quantification of the mRNA output from the major and the minor variant. As fully 

developed in Chapter 2, these two measurements were compared after being 

normalized to the expected 1:1 ratio obtained from genomic DNA. Significant deviation 

from the expected 1:1 allelic ratio was associated to an unequal expression from each 

allele. 

 

RNA samples were previously extracted using PAXgene Blood RNA tubes 

(PreAnalytiX, Hombrechtikon, Switzerland) and the PAXgene Blood miRNA Kit 

(Qiagen) on the QIAcube automated extraction platform (Qiagen), according to the 

manufacturer’s instructions. 200 ng of each RNA sample was DNAse-treated using 

the Turbo DNA-free kit (ThermoFisher), according to the manufacturer’s instructions, 

and subsequently reverse transcribed using the VILO cDNA synthesis kit 

(ThermoFisher) in a total volume of 20µL with the following conditions: 25°C for 10 

min, 42°C for 60 min and 85°C for 5 min. cDNA samples were stored at-20°C for a 

next-day use or at -80°C for long term storage. 

 

For rs11074656 or rs8192925 (separately), allele-specific mRNA levels were 

determined using the Custom TaqMan SNP Genotyping Assays, on their respective 

heterozygous gDNA or cDNA samples. Quantitative Real-Time PCR (qRTPCR) was 

performed as previously described (see Determination of genotypes). For each type 

of sample, the cycle thresholds (Ct) associated to each allele were pooled, and the 

dCt (being Ct(minor)-Ct(major)) and the ddCt were computed as previously 

described180 to obtain an allelic ratio of RNA data normalised to the allelic ratio 

associated to genomic DNA. 

 

 

For rs28382828, as the Custom TaqMan SNP Genotyping Assay failed to amplify the 

sequences (see Determination of genotypes), another approach was followed – the 
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pyrosequencing allele quantification method333. DNA pyrosequencing for allele 

quantitation was performed following published protocols179,334-337, after conventional 

amplification by PCR of a 290 bp fragment - spanning rs28382828 - in a total volume 

of 20µL, using specific forward and reverse primers (Table 5.4, the forward primer 

displaying a biotin cap). T hese primers were checked for off-target pairing with the 

UCSC In-Silico PCR tool ( http://genome.ucsc.edu/cgi-bin/hgPcr  ) and the BLAST-

like alignment tool ( https://genome.ucsc.edu/cgi-bin/hgBlat/ ). Using the 

Pyrosequencing Vacuum Prep Tool on a Pyromark workstation, the PCR products 

were first denatured, and single-stranded biotinylated fragments were captured on 

streptavidin sepharose beads.  After annealing to the sequencing S1 primer (Table 

5.4), products were loaded on the Pyromark Q24 plates with the Pyromark Gold Q24 

Reagents. The plates were then run on the Pyromark Pyrosequencing system, 

following manufacturer’s instructions to detect the following sequence: 

CTTCTCAAAAAAAAAAAAAAAAA[AGAA]AGA. Pyrogram outputs were analysed by 

the PyroMark Q24 software (all Qiagen) to determine the proportion, in each individual, 

of product associated to a positive or negative detection of the expected sequence, 

according to relative peak height. Data was pooled to analyse, separately, samples 

heterozygous for both rs11074656 and rs28382828, and samples heterozygous for 

both rs8192925 and rs28382828. The full protocol is provided as Supplementary Data. 

 

 

Primers Sequence 

Forward [btn]TCAGGCATGATGGCCCATA 

Reverse CCACAGTGCCTGGCCTATTAT 

S1 TAGCTTCTAATCACACACTC 

Table 5.4 

Sequences of the primers amplifying by Polymerase Chain Reaction 

rs28382828, before pyrosequencing. The primers were designed using PyroMark 

Assay Design (Qiagen), and a biotin-cap (btn) was added to 5’- end of the forward 

primer. 

 

For rs11075646, rs8192925 and rs28382828, the mean average measurement values 

from respectively 39, 19 and 52 samples are presented. Stata (Statacorp, USA) and 

SPSS Statistic 24 (IBM, USA) were used to analyse the data and express the 

http://genome.ucsc.edu/cgi-bin/hgPcr
https://genome.ucsc.edu/cgi-bin/hgBlat/
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significance of the results. The Levene’s test for equality of variance was used, as well 

as the Independent sample t-test in SPSS (Supplementary Data). A p-value of 0.05 

was used as the cut-off for significance. 

 

 

 

 

 

5.2.3. Clinical study 

 

5.2.3.1. CES2 genetic variations rs11075646 and rs8192925 

Both CES2 SNPs rs11075646 and rs8192925 can be expressed either as major 

variant (represented as +) or minor variant (-). For each, it is possible to be either 

homozygous for the major variant (+/+), or heterozygous (+/-) or homozygous for the 

minor variant (-/-). Overall, nine different genotypes are possible (Table 5.5, with 

rs11075646 being cited first throughout this chapter). 
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Genotypes for 

(alleles presented as 

“Parent 1/ Parent 2”) Terminologies used 

throughout this chapter 

rs11075646 rs8192925 

rs11075646 

and 

rs8192925* 

+/+ +/+ ++/++ “double major homozygous” 

+/+ +/- ++/+- (or +-/++) “heterozygous for rs8192925” 

+/+ -/- +-/+- “minor homozygous for rs8192925” 

+/- +/+ ++/-+ “heterozygous for rs11075646” 

+/- +/- ++/-- (or +-/-+) “double heterozygous” 

+/- -/- +-/-- “heterozygous for rs11075646 and 

minor homozygous for rs8192925” 

-/- +/+ -+/-+ “minor homozygous for 

rs11075646” 

-/- +/- -+/-- (or --/-+) “minor homozygous for rs11075646 

and heterozygous for rs8192925” 

-/- -/- --/-- “double minor homozygous” 

Table 5.5 

Nine different genotypes are possible, involving rs11075646 and rs8192925. For 

each Single Nucleotide Polymorphism, + indicates the presence of the major variant 

and - the minor variant. Alleles are presented as “Parent 1 copy/Parent 2 copy”, with 

rs11075646 in first position on each copy. It is important to note that the genotyping 

method used in this chapter does not allow chromosomal discrimination, it was 

therefore impossible to know, for example in the case of a double heterozygous, if 

both minor alleles were present on the same copy of the chromosome 16 or not, 

making “++/--” equivalent to “+-/-+” in this chapter. 
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5.2.3.2. Patient selection / recruitment 

Over 40 patients from the Royal Devon & Exeter (RD&E) hospital were targeted for 

recruitment through the RD&E Tissue Bank (ETB), the respiratory medicine 

department and the renal transplant unit. Inclusion and exclusion criteria are provided 

in Table 5.6. 

Inclusion criteria Exclusion criteria 

Adults (18 years and above). Children and youth (up to 18 years). 

Patient have capacity to give informed 

consent to participate to the study. 

Patient does not have capacity to 

give informed consent to participate 

to the study. 

Patient has tuberculosis or has received a 

kidney transplant. 

Patient does not have tuberculosis or 

has not received a kidney transplant. 

Patient has been treated with rifampicin 

(tuberculosis) for a minimum of 6 weeks or 

with MMF (kidney transplantee), suggesting 

drug tolerance. 

Patient has not been treated with 

rifampicin (tuberculosis) or with MMF 

(kidney transplantee), for a minimum 

of 6 weeks. 

Patient is currently treated with rifampicin 

(tuberculosis) or with MMF (kidney 

transplantee). 

Patient is not currently treated with 

rifampicin (tuberculosis) or with MMF 

(kidney transplantee). 

Patient is regularly followed by clinicians 

from the RD&E hospital. 

Patient is not regularly followed by 

clinicians from the RD&E hospital. 

Patient accepts to donate an extra blood 

sample as part of their routine care. 

Patient does not accept to donate an 

extra blood sample as part of their 

routine care. 

Patient accepts to be genotyped for 

rs11075646 and rs8192925. 

Patient does not accept to be 

genotyped for rs11075646 and 

rs8192925. 

Patient accepts to have their baseline data 

(see Sample donation) collected and 

anonymously analysed. 

Patient does not accept to have their 

baseline data (see Sample donation) 

collected and anonymously 

analysed. 

Table 5.6 

Inclusion and exclusion criteria to participate to the study on rifampicin or 

Mycophenolate MoFetil (MMF) metabolism at the Royal Devon & Exeter (RD&E) 

hospital. 
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Recruited patients were separated into two different cohorts, a respiratory cohort and 

a renal one. The respiratory cohort was focused on tuberculosis patients treated with 

rifampicin, while the renal cohort consisted in kidney transplant patients treated with 

MMF. 20 patients were expected to join each cohort, the sample size of this pilot study 

being developed in the results section. For both sub-studies, patients were identified 

beforehand by their clinicians either as responding adequately to the treatment (control 

group) or as not responding well to the treatment (lack of treatment efficacy or 

experience of side-effects). 

Tuberculosis patients on rifampicin regimen were selected for this study after 6 weeks 

of treatment, as clinicians use this breakpoint to estimate patients’ response to 

treatment 338. Critically non-responding patients, or patients experiencing severe side-

effects, were at this time already withdrawn from rifampicin, and could not be included 

in the study. It was “hoped” that the remaining patients would show various degrees 

of efficacy or side-effects (abnormal liver function tests results indicating 

hepatotoxicity), to allow a potential correlation between this and their genotypes for 

rs11075646 and rs8192925. Amongst the patients on MMF, clinicians were asked to 

tell apart groups of patients depending on the side-effects they were experiencing: i) 

no side-effect, ii) diarrhoea only, iii) low white blood count only, iv) both diarrhoea and 

low white blood count, and v) other side-effects. It is important to note that critically-

responding patients and their (expected critical) genotypes were ruled out from the 

study because these patients, experiencing organ rejection or severe diarrhoea 

(leading to life-threatening dehydration), were rapidly withdrawn from MMF. Changes 

have been made in the recruitment process a posteriori to include them.  

 

5.2.3.3. Sample donation and baseline data collection 

For each patient, a blood sample of 7.5mL was obtained in addition to those taken as 

part of their routine care. Samples were collected in EDTA blood tubes and stored at 

-20°C by the NIHR Exeter Clinical Research Facility (NIHR ECRF). 

Samples were anonymised using each patient unique ETB study identifying (ID), 

under which important baseline data known to affect xenobiotic polymorphism was 

recorded (Table 5.7). As knowledge about the role of CES2 in xenobiotic metabolism 

is still relatively scarce108,146,339, personal anthropometric data including sex, age and 
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Body Mass Index (BMI, Supplementary Data) was collected as they could feasibly 

affect xenobiotic metabolism driven by cytochrome P450 enzymes. It has been indeed 

known for decades that sex and age could influence drug metabolism29-30, and that 

other xenobiotics (medications, tobacco) could stimulate or inhibit metabolic 

enzymes101. Interestingly, there could indeed be a difference in CES2 activity between 

males and females, as it was shown with cocaine metabolism in rats340 – and CES2 

is the main metabolic enzyme for cocaine229. Moreover, if the BMI is already taken into 

account for rifampicin dosing322,323, it is not the case for MMF151. 
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Baseline data Complementary information 

Sex As evidenced in 229,340 

Age As evidenced in 341 

Ethnicity As CES2 SNPs are differently distributed 

in ethnic groups147. 

Body Mass Index (or height and weight) As evidenced in 151,322,323 

Procedure(s) undertaken  

Concomitant treatments and diseases As evidenced in 101 

Smoking: history and current status As evidenced in 101 

Baseline liver function test results (LFT) 

(Supplementary Data, Table C3)  

ALanine Transaminase (ALT), Gamma-

GlutamylTransferase (GGTP), bilirubin 

(BIL), ALkanine Phosphatase (ALP), 

albumin (ALB). 

Baseline LFT results being used to 

estimate the activity of the patient liver 

(hepatotoxicity of rifampicin)342. 

Recent blood test results Full Blood Count, White Blood Count 

(WBC), Urea & Electrolites, C-Reactive 

Protein. 

A low WBC being a possible side-effect 

from MMF treatment343 and blood test 

results in general indicating if the immune 

system has been successfully “dampen 

down”. 

Results of sputum culture 

and chest X-ray reports. 

For patients under rifampicin, to estimate 

their treatment efficacy. 

Table 5.7 

Baseline data parameters known to affect xenobiotic metabolism. They were 

collected during the study as they can potentially impact on the Carboxylesterase 2 

(CES2) metabolism of both rifampicin and Mycophenolate MoFetil (MMF). SNP stands 

for Single Nucleotide Polymorphism, all other acronyms being explained in-table. 

 

 



170 
 

Data collection, recording, storage and archiving were undertaken as per standard 

RD&E Research & Development protocols and procedures to protect patient 

confidentiality. This involved standardised ETB study specific data collection form, 

ETB study specific database, password-protected computers and locked filing 

cabinets accessible only by the ETB research team. 

Baseline data not reported in the results section has not being retrieved yet, at the 

time of submission, as it is the case notably for ethnicity, recent blood test results, 

results of sputum culture and chest X-ray reports. 

 

5.2.3.4. Sample analysis 

DNA was extracted from 200µL of frozen blood sample, using PureLink Genomic DNA 

kits (ThermoFisher) as per manufacturer’s instructions. This required the sequential 

use of Proteinase K, RNAse A, the Purelink Genomic Lysis/Binding Buffer and 100% 

ethanol in a first stage, and then Purelink columns were used to purify the DNA per 

centrifugation – using PureLink Wash Buffers and Elution Buffer as medium. 

Successful DNA extraction was checked by quantitating the DNA content at 260nm, 

in replicate reads, on the NanoDrop 8000 Spectrophotometer (ThermoFischer) after a 

blank of PureLink Elution Buffer (ThermoFisher). After DNA extraction, the remaining 

frozen blood samples in EDTA blood tubes were stored in -80°C until plasma 

extraction for (future) rifampicin level analysis for the rifampicin cohort. DNA samples 

were stored at -20°C for a next-day use, or at -80°C for long term storage.  

 

Genotyping for rs11075646 and rs8192925 were performed on DNA samples using 

Custom Taqman Genotyping assays (ThermoFisher) (as described earlier). Genotype 

for rs11075646 and rs8192925 was assessed in blinded fashion without knowing the 

degree of treatment response of patients. 

 

Differences between the expected and observed numbers of people of each genotype 

in the responder and non-responder/over-responder groups were expected to be 

assessed by Chi-squared analysis, when the required numbers of analysed samples 

were met. 
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5.3. Results 

 

5.3.1. In silico predictions 

5.3.1.1. Selecting bioinformatically the CES2 genetic variants of interest  

This body of work hypothesizes that genetic variation in the CES2 gene could 

potentially impact the transcription or stability of CES2 mRNA, affecting its enzymatic 

efficacy to metabolise drugs and therefore impacting on treatment efficiency. Using 

the most recent Short Genetic Variations database (dbSNP17) on UCSC Genome 

Browser, 1,977 genetic variants could be accounted for on CES2. It was important to 

study relatively “common” variants, to predict and observe - if there is any - an impact 

on gene expression or enzyme activity which has the potential to be relevant to a large 

proportion of the world population. The most “common” variants were therefore 

displayed using the “Variations” tab on UCSC browser: it revealed 18 SNPs carried 

out by at least 1% of the world population (Figure 5.1 and Figure C2). None of these 

SNPs were insertions-deletions (indels). Using the 1000Genome Project data entry 

associated to each SNP, these 18 “common” SNPs were ranked by Minor Allele 

Frequency in the world (Table C4). Their allelic distribution in different ethnic groups 

was also accessed, showing allelic divergences between ethnicities, that could 

possibly explain differences in drug efficacy between populations338. 
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Figure 5.1 

Distribution of the 18 “common” Single Nucleotide Polymorphisms (SNPs) 

along the Carboxylesterase 2 (CES2) gene. The 18 “common” CES2 SNPs are 

visualised from the 5’-Untranslated Region to the 3’-UTR (both in white). The number 

of exonic SNPs are provided above the gene drawing, the position of the number 

indicating on which exon they are located. Similarly, the number of intronic SNPs are 

given below the gene drawing, the position of the number indicating on which intron 

they are located. “Common” SNPs are defined here as associated to a world Minor 

Allele Frequency of 1% at a minimum. Black vertical boxes represent the exons, black 

lines the introns.  

 

 

As the positional effect of genetic variants on function is well 

characterized161,162,179,268,283,291,313,327, the 18 “common” SNPs loci were evaluated 

(Figure 5.1). As fully developed in Chapter 2, it was historically assumed that exonic 

SNPs are more likely to affect protein concentrations than intronic SNPs, especially 

when exonic SNPs are associated to a non-synonymous sequence variation (although 

more recent studies have associated introns from the so-called “junk drawer” to 

functions168). Among the 18 “common” CES2 SNPs, 6 were exonic: one (rs11075646) 

was located in CES2 5’-UTR, one (rs11863141) was reported in the transcribed exon 

1, one (rs28382827) was located in the transcribed exon 12 and three (rs8192925, 

rs28382828 and rs28382829) were in CES2 3’-UTR (Figure 5.1). The exon 1 

rs11863141 and exon 12 rs28382827 were discarded as they were both associated 

with a synonymous amino acid change (for each, a leucine was encoded indifferently 

of major and minor variants – Table C4). 4 “common” SNPs remained to be studied, 

and the top 3 in term of world allelic frequency were selected. Thus, the 3 CES2 SNPs 

of interest to investigate here were rs28382828, rs11075646 and rs8192925, 
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associated respectively to MAF of 0.25, 0.13 and 0.09 (in comparison to rs28382829 

with a MAF of 0.03). 

The 3 SNPs of interest are all located in CES2 UnTranslated Regions (in 5’-UTR for 

rs11075646 and in 3’-UTR for rs8192925 and rs28382828). Their potential effect on 

the gene expression or enzyme activity could be regulatory, by affecting the 

transcription (for rs11075646 only), gene stability (for rs8182825 and rs28382828), 

DNA or RNA conformations or – less likely – alternative 

splicing161,162,166,167,169,170,267,268,270,281-283,291,292,313,327. Importantly, rs28382828 is not a 

SNP per se: this is not a “single” nucleotide which is changed when the minor variant 

is expressed, but an insertion (indel) of either +AA or +GAAA or (most commonly) 

+AGAA, at chr16:66944326-66944325. 

 

 

5.3.1.2. Investigating the potential impact of rs11075646, rs8192925 and rs28382828 

with bioinformatics 

Bioinformatics databases were accessed to assess possible effects of rs11075646, 

rs8192925 and rs28382828 on CES2 gene expression or enzyme activity, through 

alterations in transcription, gene stability and DNA/RNA 

conformations161,162,166,167,169,170,267,268,270,281-283,291,292,313,327. All factors binding to such 

regulatory elements are reported here only if they were expressed in the liver, the main 

organ in which CES2 metabolism occurs138,139,146,147,229,320,321,339. 

 

CES2 5’-UTR variant rs11075646 was evaluated first using ENCODE transcription 

factor ChIp-Seq on the UCSC genome browser. Its locus was positioned near 

sequence motifs recognized by two transcription factors (TFs): Taf1 and Hey1. Despite 

being expressed in the liver, Taf1 and Hey1 were discarded as potential targets for 

impactful alterations. Indeed, there was no TATA-box (a consensus sequence of T 

and A base pairs repeats) that could be recognised by Taf1 in rs11075646 vicinity, 

and Hey1 is reported to recognize 5’-CACGTG-3’, a sequence found only in reverse 

(3’-CACGTG-5’) near rs11075646. rs11075646 was therefore deemed unlikely to 

affect CES2 transcription through these TFs. The RegRNA 2.0 database284 was then 
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accessed using TRANSFAC TF search on CES2 gene. It associated rs11075646 

locus to the binding of a transcription regulator called CCAAT Displacement Protein 

(CDP), which has hepatic expression. Also known as CDP/Cux or CUX1 or the human 

protein Cut, CDP is a homeodomain protein that may regulate gene expression344,345. 

It contains 3 regions (Cut Repeat x or CUTx, with x being 1 to 3) that bind to DNA 

sequences to prevent the binding of other TFs (amongst co-transcription factors such 

as the hepatic HNF-1 and NRF-1). Both repeats CDP_CR1 and CDP_CR3 HD 

recognize the motif ATCG(orA)AT, located one base pair upstream of rs11074656 on 

the CES2 gene (Figures C1-C2)346. The minor allele of rs11075646 was therefore 

predicted to potentially alter CES2 transcription through changes in CDP binding. 

Through bioinformatic searches on the PolymiRTS, TargetScan, MirSNP and 

MirSearch databases286-288,328-331, rs8192925 and rs28382828 were confirmed as to 

localise within predicted miRNA binding sites (Tables 5.8-9). For both SNPs, the 

miRBase tool332 did not show such difference between miRNA binding sites for both 

alleles. Most of the reported miRNAs were poorly conserved and poorly characterized 

and no evidence for expression was found in silico. If any of the miRNAs reported in 

Tables 5.8-9 were to be expressed in the liver, the presence of minor variants for 

rs8192925 or rs28382828 could potentially impact these miRNAs binding on CES2 

mRNA, influencing therefore gene stability and leading to differences in CES2 enzyme 

concentrations. 
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miRNA associated to: 

miRNA potentially 

not expressed 

in the liver 

miRNA 

with no tissue expression 

Major variant (A) 

 

hsa-miR-609 

(potential break) 

hsa-miR-3650 

(potential break) 

hsa-miR-4450 hsa-miR-4455 * 

(potential break) 

 hsa-miR-6748-5p 

(potential break)  

 hsa-miR-6772-5p 

(potential break) 

Minor variant (G) hsa-miR-585-3p hsa-miR-1268-a 

(potential creation) 

 hsa-miR-1268-b 

(potential creation) 

Table 5.8 

MicroRNA (miRNA) binding predictions associated to the expression of 

rs8192925 alleles. As Carboxylesterase 2 is mainly expressed in the liver, these 

potentially disrupted miRNA binding sites are classified regarding the miRNA liver 

expression using GTEx. Data retrieved from the PolymiRTS, TargetScan, MirSNP, 

miRSearch (validation indicated by *) and miRbase databases. Indication of “potential 

break / creation” is associated to PolymiRTS prediction. 
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miRNA 

associated to: 

miRNA potentially 

expressed 

in the liver 

miRNA potentially 

not expressed 

in the liver 

miRNA 

with no tissue 

expression data 

Major variant (-)   hsa-miR-6817-3p 

   hsa-miR-6873-3p 

   hsa-miR-7110-3p 

Minor variant 

(AGAA) 

hsa-miR-130b-5p hsa-miR-4768-5p 

(create) 

hsa-miR-6809-3p 

   hsa-miR-6833-3p 

Table 5.9 

MicroRNA (miRNA) binding predictions associated to the expression of 

rs28382828 alleles. As Carboxylerase 2 is mainly expressed in the liver, the 

potentially disrupted miRNA binding sites are classified regarding the miRNA liver 

expression using GTEx. Data retrieved from the TargetScan, MirSNP, miRSearch and 

miRbase databases. Indication of “create” is associated to MirSNP prediction. 

 

Finally, genetic variants being also able to impact on the enzyme transcription because 

of conformation changes281, CES2 DNA and RNA structures, with and without each 

minor variant for rs11075646 and/or rs8192925 and/or rs28382828, were analysed 

with the mfold Web Server (Figure 5.2 and Figure C1). Visible conformation 

d)ifferences were established at DNA level when rs8192925 (or rs28382828, data not 

shown) was present as minor variant (Figure 5.2A). There was also a visible effect in 

the RNA conformation of the presence of the minor variant for rs11075646 (Figure 

5.2B) and an effect in the RNA conformation of the presence of the minor variant for 

rs8192925. Overall, all 3 of the SNPs of interest are predicted to potentially affect 

CES2 in its DNA and/or RNA conformation. By impacting on the DNA or RNA 

conformations, these variants can render cis-regulatory elements unavailable for 

binding, leading to differences in the regulation of the gene, and therefore possible 

differences in CES2 concentrations and differences in CES2-mediated drug 

metabolism. 
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Figure 5.2 

Predictions of Carboxylesterase 2 DNA or RNA structure changes associated to 

the presence of the minor variants for rs11075646 and rs8192925. A - DNA 

conformation in the presence (left) or absence (right) of the major variant for 

rs18192925. B - RNA conformation in the presence (left) or absence (right) of the 

major variant for rs11075646. C- RNA conformation in the presence of the minor 

variant for rs8192925. Conformations retrieved from mfold. 
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To summarize, the “common” rs11075646, rs8192925 and rs28382828 were all 

predicted to be potentially affecting CES2 (Table 5.10), through its transcription (for 

rs11075646), CES2 stability regulation by miRNAs (for rs8192925 and rs28382828) 

and CES2 DNA/RNA conformations (for all). Literature was therefore searched, to 

evaluate if these SNPs have been flagged for such alterations in the past. Searches 

were made using their current names (rs11075646, rs8192925 and rs28382828), but 

also their former dbSNP- and HGSV-based names (Table C5). Very little publications 

were found mentioning those polymorphisms, and most of the retrieved articles failed 

to study their potential impact on CES2. Only the article published by Song about 

rs8192925 (among other rare genetic variants) could be retrieved138. Studying those 

SNPs was therefore particularly important; thus their relative allelic expression was 

investigated. 

 Regulatory factors 

predicted to be potentially affected by… 

 rs11075646 rs8192925 rs28382828 

Transcription 

factor binding 

sites 

CDP   

miRNA binding 

sites 

 

hsa-miR-3650 

hsa-miR-4455 

hsa-miR-6748-5p 

hsa-miR-6772-5p 

hsa-miR-1268-a 

hsa-miR-1268-b 

hsa-miR-130b-5p 

hsa-miR-6817-3p 

hsa-miR-6873-3p 

hsa-miR-7110-3p 

hsa-miR-6809-3p 

hsa-miR-6833-3p 

DNA/RNA 

conformations 
RNA only DNA and RNA RNA mostly 

Table 5.10 

Summary of the predicted types of alterations associated to the presence of the 

three CES2 Single Nucleotides Polymorphisms (SNPs) of interest. All listed 

regulatory factors are hepatically expressed. The CCAAT Displacement Protein (CDP) 

binding site was co-localised with rs11075646. Several micro RNA (miRNA) binding 

sites were associated to rs8192925 and rs28382828. rs11075646 and rs28382828 

were associated to changes in RNA conformation, rs8192925 to changes in DNA 

conformations. 
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5.3.2. Measurement of relative allelic expression for rs11075646, rs8192925 and 

rs28382828 

 

5.3.2.1. Finding heterozygous samples for the 3 variants of interest in the Exeter 

10,000 cohort 

In order to study the effect of rs11075646, rs8192925 and rs28382828 on CES2 gene 

expression with an allelic imbalance assay, samples of DNA and RNA samples from 

individuals being heterozygous for at least one of these SNPs needed to be retrieved 

from the Exeter 10,000 cohort. Ideally, these samples should be heterozygous for only 

one of the studied SNP, but rs8192925 and rs28382828 were found to be closely 

associated through linkage disequilibrium search (developed in Chapter 2). It was 

reported that their major variants were frequently inherited together, and their minor 

variants were also correlated (D’ = 0.894 and R2 = 0.245). There was a linkage 

equilibrium between the other pairs (rs11075646 and rs8192925, rs11075646 and 

rs28382828), i.e. they were reported to be randomly inherited together, without any 

particular correlation (Figure 5.3 for correlation with R2 – Supplementary Data for D’, 

as well as both R2 and D’ data for all 18 “common” CES2 SNPs in Figures C5-C7). 
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Figure 5.3 

Matrix of pairwise linkage disequilibrium statistics in the world population 

between rs11075646, rs8192925 and rs28382828. Red shows the correlation in R2, 

the value is provided. Matrix retrieved from the LDLink tool, based on the 

1000Genome Project database. 
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To estimate the sample size needed to retrieve heterozygous individuals for 

rs11075646, rs8192925 and/or rs28382828 from this cohort of people living in the 

South West of England, ethnicity allelic distribution data from the 1000Genome Project 

was accessed and the different genotype frequencies for these 3 SNPs were analysed 

(Table 5.11). It is important to note that, according to the 2011 census, people living 

in the South West of England are expected to be at 94.9% from a “White British ethnic 

background”347, yet their genetic traits have shown particularities in another study348: 

they are expected to follow the genetic distribution trends of both Europeans and world 

populations. Interestingly, in the 1000Genome Project world population, no people 

being heterozygous for only rs11075646 or for only rs8192925 (and homozygous for 

the major variants of the other two SNPs) could be found. In Europe, only 0.4% of the 

population was heterozygous for only rs28382828 (and homozygous for the major 

variants of the other two SNPs), while this genotype was found in 7% of the world 

population. 

Important divergences in rs11075646, rs8192925 and rs28382828 genotype 

frequencies exist between ethnic populations: for example, the most represented 

genotype in South Asia was the triple homozygous for the major variants (79% of the 

population) while this genotype is found in only 11% of the African population. If these 

genotypes are indeed correlated with differences in treatment efficacy, this could 

explain clinical studies inconsistencies found in the literature regarding CES2 

metabolised drugs (rifampicin for example). 

 

Table 5.11 (next page) 

Frequencies of the different genotypes for rs11075646, rs8192925 and rs283828, 

in various populations (world, Africa, East Asia, South Asia, America and Europe). 

Values are in red if range between 5-25%, in orange if between 26-46% and in green 

if above 47%. Data retrieved from the 1000Genome Project. 

 

 

 

 



182 
 

Genotype 

for 

rs11075646 

(C major) 

Genotype 

for 

rs8192925 

(A major) 

Genotype 

for 

rs28382828 

(- major) 

Frequencies in… 

the 

world 

Africa South 

Asia 

East 

Asia 

America Europe 

C|C A|A -|- 51.0% 10.9% 78.5% 52.8% 54.7% 72.4% 

C|C A|A -|AGAA or 

AGAA|- 

6.9% 23.1% 0% 0% 5.2% 0.4% 

C|C A|A AGAA|AGAA 3.1% 11.8% 0% 0% 0% 0% 

C|C A|G or G|A -|- 1.0% 0.2% 0% 1.6% 1.7% 1.8% 

C|C A|G or G|A -|AGAA or 

AGAA|- 

13.0% 1.1% 7.8% 32.1% 23.3% 8.1% 

C|C A|G or G|A AGAA|AGAA 0.4% 1.13% 0% 0% 0.6% 0% 

C|C G|G -|- 0% 0% 0% 0% 0% 0% 

C|C G|G -|AGAA or 

AGAA|- 

0.3% 0% 0% 1.0% 0.3% 0.2% 

C|C G|G AGAA|AGAA 1.2% 0% 0.2% 4.6% 2.0% 0% 

C|G or G|C A|A -|- 6.7% 9.2% 10.0% 5.4% 3.7% 3.6% 

C|G or G|C A|A -|AGAA or 

AGAA|- 

8.3% 17.2% 3.3% 0% 6.1% 11.1% 

C|G or G|C A|A AGAA|AGAA 3.5% 13.2% 0% 0% 0.3% 0% 

C|G or G|C A|G or G|A -|- 0.08% 0% 0.2% 0.2% 0% 0% 

C|G or G|C A|G or G|A -|AGAA or 

AGAA|- 

0.9% 0.6% 0.4% 2.4% 0.9% 0.4% 

C|G or G|C A|G or G|A AGAA|AGAA 0.3% 6.4% 0% 0% 0.3% 0.4% 

C|G or G|C G|G -|- 0% 0% 0% 0% 0% 0% 

C|G or G|C G|G -|AGAA or 

AGAA|- 

0% 0% 0% 0% 0% 0% 

C|G or G|C G|G AGAA|AGAA 0% 0% 0% 0% 0% 0% 

G|G A|A -|- 0.6% 1.8% 0.4% 0% 0% 0% 

G|G A|A -|AGAA or 

AGAA|- 

2.0% 6.7% 0% 0% 0.6% 0.6% 

G|G A|A AGAA|AGAA 0.9% 2.6% 0% 0% 0.3% 1.0% 

G|G A|G or G|A -|- 0% 0% 0% 0% 0% 0% 

G|G A|G or G|A -|AGAA or 

AGAA|- 

0% 0% 0% 0% 0% 0% 

G|G A|G or G|A AGAA|AGAA 0% 0% 0% 0% 0% 0% 

G|G G|G -|- 0% 0% 0% 0% 0% 0% 

G|G G|G -|AGAA or 

AGAA|- 

0% 0% 0% 0% 0% 0% 

G|G G|G AGAA|AGAA 0% 0% 0% 0% 0% 0% 

Table 5.11 
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As it was not possible to predict which of the global or the European trends in genotype 

distribution was followed our cohort, we extrapolated the genotype distribution for a 

sample size of 300 individuals from the Exeter 10,000 cohort in both cases (Table 

5.12). Given the linkage disequilibrium between rs8192925 and rs28382828, it was 

not surprising that it was predicted be near to impossible to retrieve samples from 

people being heterozygous for only one SNP (and homozygous major variant for the 

other SNPs) with such a sample size, especially if the cohort distribution of genotype 

was following the European one. Yet only 291 DNA and RNA samples were available 

for this study to use, therefore the sample size was validated, with the hope that it 

ensured the representation of different genotypes by following the global trend (as it 

was estimated that a total of 43.8 single heterozygous could be found in such 

distribution, contrarily to 17.4 for a more European cohort). 

It was also hoped that the allelic imbalance assay would only show an imbalance for 

one or two SNPs for this study to be able to distinguish the effects of the SNPs in the 

highly probable double heterozygous samples. This was not sample size dependant. 
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Genotype 

for 

rs11075646 

(C major) 

Genotype 

for 

rs8192925 

(A major) 

Genotype 

for 

rs28382828 

(- major) 

World 

frequencies 

Global 

estimation 

for 300 

samples 

European 

frequencies 

European 

estimation 

for 300 

samples 

C|C A|A -|AGAA or 

AGAA|- 

6.9% 20.7 0.4% 1.2 

C|C A|G or G|A -|- 1.0% 3 1.8% 5.4 

C|C A|G or G|A -|AGAA or 

AGAA|- 

13.0% 39 8.1% 24.3 

C|C A|G or G|A AGAA|AGAA 0.4% 1.2 0% 0 

C|C G|G -|AGAA or 

AGAA|- 

0.3% 0.9 0.2% 0.6 

C|G or G|C A|A -|- 6.7% 20.1 3.6% 10.8 

C|G or G|C A|A -|AGAA or 

AGAA|- 

8.3% 24.9 11.1% 33.3 

C|G or G|C A|A AGAA|AGAA 3.5% 10.5 0% 0 

C|G or G|C A|G or G|A -|- 0.08% 0.24 0% 0 

C|G or G|C A|G or G|A -|AGAA or 

AGAA|- 

0.9% 2.7 0.4% 1.2 

C|G or G|C A|G or G|A AGAA|AGAA 0.3% 0.9 0.4% 1.2 

C|G or G|C G|G -|- 0% 0 0% 0 

C|G or G|C G|G -|AGAA or 

AGAA|- 

0% 0 0% 0 

C|G or G|C G|G AGAA|AGAA 0% 0 0% 0 

G|G A|A -|AGAA or 

AGAA|- 

2.0% 6 0.6%  

G|G A|G or G|A -|- 0% 0 0% 0 

G|G A|G or G|A -|AGAA or 

AGAA|- 

0% 0 0% 0 

G|G A|G or G|A AGAA|AGAA 0% 0 0% 0 

G|G G|G -|AGAA or 

AGAA|- 

0% 0 0% 0 

Table 5.12 

Estimation of the frequencies of people being heterozygous for at least one 

Single Nucleotide Polymorphism in a group of 300 individuals from the Exeter 

10,000 cohort. Values are in red if range between 5-25%, in orange if between 26-

46% and in green if above 47%. Rs11075646, rs8192925 and rs28382828 data was 

retrieved from the 1000Genome Project. 
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291 DNA samples from the Exeter 10,000 cohort were genotyped for rs11075646, 

rs8192925 and rs28382828 (Table 5.13). Seven different genotypes were found, and 

the distribution of their frequencies amongst this cohort seemed to follow the expected 

distribution for the European data (Table 5.11). As estimated, the triple homozygous 

for the major variants was the most represented genotype (77.3% in the cohort, 

estimated 72.4% in Europe) and the two most frequent genotypes amongst those 

harbouring at least one heterozygous variant were, on one hand, the double 

heterozygous for rs11075646 and rs28382828 (homozygous for the major variant of 

rs8192925 - 13.7% of the cohort, estimated 11.1% in Europe) and, on the other hand, 

the double heterozygous for rs8192925 and rs28382828 (homozygous for the major 

variant of rs11075646 - 6.5% of the cohort, estimated 8.1% in Europe). 
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Genotype for 

rs11075646 

(C major) 

Genotype for 

rs8192925 

(A major) 

Genotype for 

rs28382828 

(- major) 

Distribution amongst the 

291 samples 

C|C A|A -|- 225 (77.3%) 

C|C A|A -|AGAA or AGAA|- 0 

C|C A|A AGAA|AGAA 0 

C|C A|G or G|A -|- 0 

C|C A|G or G|A -|AGAA or AGAA|- 19 (6.5%) 

C|C A|G or G|A AGAA|AGAA 1 (0.3%) 

C|C G|G -|- 0 

C|C G|G -|AGAA or AGAA|- 0 

C|C G|G AGAA|AGAA 0 

C|G or G|C A|A -|- 1 (0.3%) 

C|G or G|C A|A -|AGAA or AGAA|- 40 (13.7 %) 

C|G or G|C A|A AGAA|AGAA 3 (1.0%) 

C|G or G|C A|G or G|A -|- 0 

C|G or G|C A|G or G|A -|AGAA or AGAA|- 0 

C|G or G|C A|G or G|A AGAA|AGAA 2 (0.7%) 

C|G or G|C G|G -|- 0 

C|G or G|C G|G -|AGAA or AGAA|- 0 

C|G or G|C G|G AGAA|AGAA 0 

G|G A|A -|- 0 

G|G A|A -|AGAA or AGAA|- 0 

G|G A|A AGAA|AGAA 0 

G|G A|G or G|A -|- 0 

G|G A|G or G|A -|AGAA or AGAA|- 0 

G|G A|G or G|A AGAA|AGAA 0 

G|G G|G -|- 0 

G|G G|G -|AGAA or AGAA|- 0 

G|G G|G AGAA|AGAA 0 

Table 5.13 

Distribution of the genotypes for rs11075646, rs8192925 and rs28382828 

amongst the 291 samples of the Exeter 10,000 cohort. 
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As expected by the European distribution, this sample size did not allow for a clear 

distinction between the 3 SNPs of interest: no heterozygous for only rs8192925 or only 

rs28382828 were retrieved in the cohort, and only one heterozygous for only 

rs11075646 (being homozygous for the other two major variants) was found. The 

allelic expression was therefore assessed in samples being heterozygous for two 

SNPs - separately, with the 19 samples from individuals being double heterozygous 

for rs8192925 and rs28382828, and the 40 double heterozygous for rs11075646 and 

rs28382828. 

 

5.3.2.2. Investigating the effect of rs11075646, rs8192925 and rs28382828 on allele-

specific CES2 mRNA expression 

Having “selected” the heterozygous individuals for rs11075646, rs8192925 and 

rs28382828 from the Exeter 10,000 cohort, their allelic expression was assessed by 

comparing their gDNA and cDNA levels with an allelic imbalance assay, for each SNP 

separately – as developed in Chapter 2. By normalising gDNA levels to 1 and 

comparing to those the cDNA levels, it allows the quantification of expression of mRNA 

deriving from the allele carrying the minor allele relative to that carrying the major 

allele. 

The genotype of 59 individuals being heterozygous for rs28382828 were assessed for 

their allelic balance on this SNP by pyrosequencing. 7 samples failed to be 

successfully pyrosequenced, leaving 52 samples: 35 individuals being heterozygous 

for both rs11075646 and rs28382828, and 17 being heterozygous for both rs8192925 

and rs28382828. Pyrosequencing data was analysed separately for these two sub-

cohorts (Figure 5.4): it showed for each a non-significant allelic imbalance between 

their levels of gDNA and cDNA, meaning the expression of mRNA deriving from each 

allele was equal - rs28382828 has potentially no effect on CES2 gene expression. 
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Figure 5.4 

Allelic balance for rs28382828 between genomic and complementary DNA 

amounts in heterozygous individuals for rs28382828, and either rs11075646 or 

rs8192925. Top – Expression of mRNA deriving from the allele carrying the minor 
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allele relative to that carrying the major allele, in individuals being heterozygous for 

both rs11075646 and rs28382828 (and homozygous for the major variant of 

rs8192925). Bottom - Expression of mRNA deriving from the allele carrying the minor 

allele relative to that carrying the major allele, in individuals being heterozygous for 

both rs8192925 and rs28382828 (and homozygous for the major variant of 

rs11075646). Both - There is no significant difference between the means of genomic 

DNA (gDNA) and complementary DNA (cDNA) samples for this allelic expression of 

rs28382828 (respective p-values of 0.101 for top and 0.601 for bottom – Figure C8). 

Data are represented as box plots, with the boxes bounding to the interquartile ranges 

divided by the median, and Tukey-style whiskers extending to a maximum of 1.5-times 

the interquartile range beyond the box. Open circles and stars are sample data points 

outside those values. 

 

 

 

 

 

 

The 40 individuals being heterozygous for rs11075646 and rs28382828 (and 

homozygous for the major variant of rs8192925) were assessed for their allelic 

expression for rs11075646 by qRTPCR. One sample was discarded due to a lack of 

qPCR effectiveness - the allelic imbalance assay outcome is presented for the 39 

remaining individuals (Figure 5.5). gDNA levels were normalised to 1 and, compared 

to those, cDNA levels are in significant imbalance. cDNA levels are indeed significantly 

3-fold higher than the gDNA levels in the presence of the minor variant for rs11075646. 

rs28382828 not been previously associated to an allelic imbalance (Figure 5.4), 

rs11075646 has a significant effect on the CES2 gene expression, potentially by 

increasing its transcription by 3-fold when the minor variant is expressed. 
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Figure 5.5 

Allelic imbalance between the genomic and complementary DNA amounts in 

heterozygous individuals for rs11075646 (being also heterozygous for 

rs28382828 and homozygous for the major variant of rs8192925). Expression of 

mRNA deriving from the allele carrying the minor allele relative to that carrying the 

major allele, in individuals being heterozygous for both rs11075646 and rs28382828 

(and homozygous for the major variant of rs8192925). There is a significant 3-fold 

difference between the means of genomic DNA (gDNA) and complementary DNA 

(cDNA) samples for this allelic expression of rs11075646 (p-value of 0.001 – Figure 

C9). 

Data are represented as box plots, with the box bounding to the interquartile ranges 

divided by the median, and Tukey-style whiskers extending to a maximum of 1.5-times 

the interquartile range beyond the box. Open circles are sample data points outside 

those values. 
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The 19 individuals being heterozygous for rs8192925 and rs28382828 (and 

homozygous for the major variant of rs11075646) were assessed for their allelic 

expression for rs8192925 by qRTPCR. The allelic imbalance assay outcome is 

presented for the 19 individuals (Figure 5.6), it showed cDNA levels are in imbalance 

with their normalized gDNA levels for rs8192925. The cDNA levels are indeed 

significantly 1.13-fold lower than the gDNA levels in the presence of the minor variant 

for rs8192925. rs28382828 not been associated to an allelic imbalance, rs8192925 

has a significant effect on CES2 expression, potentially by increasing its silencing by 

1.13-fold when the minor variant is present. 
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Figure 5.6 

Allelic imbalance between the genomic and complementary DNA amounts in 

heterozygous individuals for rs8192925 (being also heterozygous for 

rs28382828 and homozygous for the major variant of rs11075646). Expression of 

mRNA deriving from the allele carrying the minor allele relative to that carrying the 

major allele, in individuals being heterozygous for both rs8192925 and rs28382828 

(and homozygous for the major variant of rs11075646). There is a significant 1.13-fold 

difference between the means of genomic DNA (gnDNA) and complementary DNA 

(cDNA) samples for this allelic expression of rs8192925 (p-values of 0.001 – Figure 

C10). 

Data are represented as box plots, with the box bounding to the interquartile ranges 

divided by the median, and Tukey-style whiskers extending to a maximum of 1.5-times 

the interquartile range beyond the box. 

 

Overall, the minor allele for rs11075646 and rs8192925, but not rs28382828, were 

shown to be associated to significant differences in CES2 mRNA levels, possibly by 

altering its transcription (rs11075646) or stability (rs8192925). As differences at the 

CES2 mRNA levels have been correlated to differences at the CES2 protein levels for 

this enzyme326, a clinical study was designed to explore these association further.  
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5.3.3. Clinical study of rs11075646 and rs8192925 

 

5.3.3.1. Setting-up the clinical study: the sample size 

This clinical study was planned in collaboration with clinicians from the RD&E Hospital 

and personnel from the Exeter Tissue Bank and from the NIHR Exeter Clinical 

Research Facility. Approximately 15-20 patients per annum are treated with rifampicin 

in the RD&E hospital for an active or latent Mycobacterium tuberculosis infection or 

another non-tuberculous mycobacterial infection (personal communication). Each 

year, around 250 renal transplant patients are treated with MMF at the RD&E hospital 

(personal communication). Due to budget constraints, 20 patients were expected to 

be selected in each cohort, if possible. In the 9 months of this pilot study, 6 patients 

were recruited in the respiratory cohort and 12 in the renal one. It was expected that 

the collected patients would yield the expected genotype distributions for both 

rs11075646 and rs8192925, predicted by the Hardy-Weinburg equilibrium 349 and the 

world data in the 1000Genome Project (Table 5.11). The choice of using the world 

distribution of these genotypes found in the 1000Genome Project is discussed in 

Supplementary data, where European and British distributions are also developed. 

The expectations were therefore that, amongst the 20 potential patients in each sub-

study, 7 (39%) would carry a genotype that differs from double major homozygous 

(++/++), the genotype one would predict most likely to be found in patients responding 

optimally to their treatment. Undoubtedly, data was missing to make clear predictions 

with such small sample size, yet this is an ongoing collection. 
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rs11075646 

genotype 

rs8192925 

genotype 

World 

distribution (%) 

+/+ +/+ 60.98 

+/- +/+ 18.49 

+/+ +/- 14.30 

-/- +/+ 3.43 

+/+ -/- 1.52 

+/- +/- 1.28 

+/- -/- 0 

-/- +/- 0 

-/- -/- 0 

Table 5.14 

Expected distribution of each possible genotype for rs11075646 and rs8192925 

in the world, based on the 1000Genome Project data (2,504 participants). For 

each Single Nucleotide Polymorphism, + indicates the presence of the major variant, 

- the minor variant. 

 

However, a previous study showed a correlation between alteration of the CES2 

mRNA levels and a difference at the enzyme levels 325. As both rs11075646 and 

rs8192925 minor variants were found to show very robust significant differences at the 

mRNA level (the minor variant of rs11075646 conferring a 3-fold increase and the 

minor variant of rs8192925 a 1.13-fold decrease of transcription), we predicted that 

were these variants to be present at the expected frequencies in our cohort, 

considerable divergences in phenotype may be observed in terms of treatment 

response, given a previous study in which less considerable effects were observed for 

similar sample size350. Yet, if no significant observation was made, the potential effects 

of such SNP was not expected to be ruled out. 
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5.3.3.2. Preliminary genotyping data 

At the time of writing, only 6 samples from patients enrolled in the respiratory cohort 

and 12 from the renal one were available. DNA was extracted from the blood sample 

from these patients, and genotyping was performed to assess their genotype towards 

rs11075646 and rs8192925 (Table 5.15). 

 

Cohort 
Patient 

number 

rs11075646 

genotype 

rs8192925 

genotype 
Double major homozygosis 

R
IF

A
M

P
IC

IN
 

R001 +/+ +/+ YES 

R002 +/+ +/+ YES 

R003 +/+ +/+ YES 

R004 +/+ +/+ YES 

R005 +/+ +/+ YES 

R006 +/- +/+ NO (heterozygous for rs11075646) 

M
M

F
 

R007 +/- +/- NO (double heterozygous) 

R008 +/+ +/+ YES 

R009 +/+ +/+ YES 

R010 +/+ +/+ YES 

R011 +/+ +/+ YES 

R012 +/+ +/+ YES 

R013 +/+ +/+ YES 

R014 +/+ +/- NO (heterozygous for rs8192925) 

R015 +/+ +/+ YES 

R016 +/- +/+ NO (heterozygous for rs11075646) 

R017 +/- +/+ NO (heterozygous for rs11075646) 

R018 +/- +/+ NO (heterozygous for rs11075646) 

Table 5.15 

Preliminary data - genotypes for the 6 patients from the rifampicin cohort, and 

the 12 patients from the Mycophenolate MoFetil (MMF) cohort. For each Single 

Nucleotide Polymorphism, + indicates the presence of the major variant, - the minor 

variant. 
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Out of the 6 rifampicin patients, 5 (83%) were major homozygous for both SNPs 

(++/++) with a predicted basal metabolism, and 1 (17%) was heterozygous for 

rs11075646 (++/+-). This fits with the general distribution of these alleles in the world 

and in Europe, these two genotypes being the two most common, and the major 

homozygous for both SNPs being dominant in proportion.  

Amongst the 12 MMF patients, 7 (58%) were double major homozygous (++/++), 3 

(25%) were of ++/-+ genotype (heterozygous for rs11075646), 1 (8%) was double 

heterozygous (++/--) and 1 (8%) was of ++/+- genotype (heterozygous for rs8192925). 

The repartition fits with the general distribution of those genotypes in the world and in 

Europe, ++/++ being indeed the most common and ++/-- and ++/+- being the rarest. 

 

It is important to point out that this data is only preliminary with very limited sample 

sizes and precludes any correlation with phenotypes presently, as numbers are too 

small. Given the expression differences and the variability in expression, it was 

estimated that 20 patients per cohort would be a better sample size to analyse. 

However, it would be interesting to know, compared to the basal metabolisers in their 

cohorts, i) if the patient of ++/+- genotype on rifampicin has been identified as a fast 

metaboliser by their clinicians (through a less effective treatment or a lack of 

hepatotoxicity at high doses), ii) if the ++/+- patient in the MMF cohort was flagged as 

less responsive to treatment and iii) if the 3 MMF-treated patients of ++/-- or ++/+- are 

super-responsive to the treatment, with or without an increase of experienced side-

effects – all of these predictions being made with the assumptions found in 

Supplementary data. 
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5.3.3.3. Preliminary clinical data 

At the time of submitting this thesis, most of the important baseline data for the 18 

genotyped patients was not retrieved yet. Preliminary clinical data is therefore shared 

(Tables 5.16-18 and Tables C6-7) and discussed here. It is important to note that the 

degree of response to treatment and the genotyping analysis were studied separately 

to avoid involuntary bias. 

 

 

 

 

 

 

 

The following table (presented on the next page) presents preliminary clinical data 

from the 6 patients in the rifampicin cohort. 

(Table 5.16 next page) Preliminary clinical data from the 6 patients in the 

rifampicin cohort. Preliminary data consists for each patient in: age (in years), sex, 

Body Mass Index (BMI), rifampicin dosage (in mg/day), selection of other concomitant 

diseases and treatments and liver function test results (LFT; ALanine Transaminase 

ALT, Gamma-GlutamylTransferase GGTP, bilirubin BIL, ALkanine Phosphatase ALP, 

albumin ALB – all being in red if there are outside the normal ranges, as developed in 

Table C6). The full list of concomitant diseases and treatments is available in Tables 

C6-7.
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 Patient R001 Patient R002 Patient R003 Patient R004 Patient R005 Patient R006 

Age (years) 33 73 41 41 32 61 

Sex Female Male Female Male Female Female 

BMI 23.4 24.4 32.1 23.8 31.0 18.5 

Smoking history 

and status 

never Not currently (for 40 
years) 

Not currently (for 20 
years) 

Not currently 

(for 20 years) 

never never 

Rifampicin dosage 
(mg/day) 

600 600 900 300 120 900 

S
e

le
c

ti
o

n
 o

f 
c

o
n

c
o

m
it

a
n

t 

d
is

e
a

s
e

s
 

None Vasculitis, 

infarct 

Asthma, 

XXX 

chromosome 
syndrome 

Pseudomonas 
infection, 
superimposed 

lower 

respiratory 

tract infection 

Lymphade- 

nopathy 

Bronchiectasis 

tr
e

a
tm

e
n

ts
 

isoniazid 
pyridoxine 

azithromycin 
cotrimoxalone 

ethambutol 

prednisolone 
rituximab 

amikacin 

azithromycin 
ethambutol 

carbocisteine 

colomycin 

isoniazid tazocin 

salbutamol 

ethambutol 

isoniazid 

pyranamide 

pyrisoxine 

azithromycin 

ethambutol 

clofazimine 

L
F

T
 r

e
s

u
lt

s
 

ALT 13 17 12 40 18 22 

GGTP 20 50 29 31 25 16 

BIL 5 10 5 12 2 14 

ALP 81 98 66 64 99 62 

ALB 47 44 44 45 47 46 

Table 5.16 
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As described in Table 5.16, out of the 6 patients on rifampicin, which are from both 

sex, there was a wide variety of ages (32-73 years old) and BMI categories (developed 

in Supplementary data). Three of the patients were smoking heavily until recently, 

none are diabetic but 5 out of the 6 patients have several concomitant diseases and 

infections, not necessarily related to their tuberculosis infection. They all followed other 

courses of medications, including some that are usually influencing xenobiotic 

metabolism101. 

Contrarily to the current guidelines (which have been reported to be followed by 

physicians84), rifampicin dosage does not seem to be directly related to the BMI: the 

clinically-obese patient being prescribed the lowest amount of drug in this cohort. It 

may be related to the degree / stage of tuberculosis or the presence of morbidity risk 

factors. 

The degree of treatment response was not retrieved yet for these patients on 

rifampicin, but the main side-effect of this treatment being hepatotoxicity, we could 

estimate if they were experiencing liver damage, using their LFT results (Tables 5.16 

and C3). Out of the five LFT results per patient, no value were found to be outside of 

the normal range. Patients seemed therefore to tolerate well their treatment, but the 

low preliminary sample size does not allow to conclude on the projected effect of their 

genotype. 

 

The following table (presented on two pages) presents preliminary clinical data from 

the 12 patients in the Mycophenolate MoFetil (MMF) cohort. 

(Table 5.17 – next page) Preliminary clinical data from the 12 patients in the 

Mycophenolate MoFetil (MMF) cohort. Preliminary data consists in: age (in years), 

sex, Body Mass Index (BMI), MMF dosage (in mg/day), selection of other concomitant 

diseases, selection of other concomitant treatment and liver function tests results 

(LFT; ALanine Transaminase ALT, bilirubin BIL, ALkanine Phosphatase ALP, albumin 

ALB – all being in red if there are below or above the norm data developed in Table 

C3). Patients R008 and R009 were on MMF for less than 6 weeks. NC stands for Non-

Communicated (at the time of thesis submission). The full list of concomitant diseases 

and treatments is available in Tables C6-7. 
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Table 5.17 

 



As seen in Table 5.17, most of the 12 patients treated with MMF following kidney 

transplant are men, and ages vary greatly in the cohort (from 20 to 64 years old). BMI 

and smoking status were not all indicated yet, some of the patients have Type 1 or 

Type 2 diabetes – amongst other concomitant diseases such as hypertension, asthma, 

multiple sclerosis, etc. 

Ranges of MMF dosing went from 500mg to 2000mg per day – these do not seem to 

be proportionate to the BMI (or reported body weight), as the higher dose was 

attributed indifferently to expected healthy and obese patients. Clinicians clarified the 

dosing strategy in the unit: MMF is usually delivered at 1000mg per day, and doses 

are increased (or decreased) as a function of the response (increase in case of low 

efficacy, decrease in case of side-effects). Doses can also be “spaced out” to limit the 

severity of side-effects (personal communication). 

As part of their kidney transplant and other concomitant diseases (full list available in 

Table C6), these patients are heavily medicated and other treatments include adoport, 

aspirin / paracetamol, predmisolone, rampiril, folic acids, omeprazole, etc., whose 

effects on the CES2 enzyme are not documented108. Contrarily to rifampicin patients, 

a third of the MMF patients present are potentially suffering from liver damage, as they 

present at least one LFT result as nonstandard. A statistical correlation between these 

LFT results and – separately - the responsive status reported by clinicians, and 

patients’ genotype for rs11075646 and rs8192925 could be attempted when the 

sample and data collection will be finalised. 

 

 

Precise response to treatment was not retrieved yet for the 18 samples patients but 

preliminary data was shared about the side-effects experienced by the MMF-treated 

patients (Table 5.18). Out of the 12 patients, 3 did not experience any side-effects, 2 

experienced only diarrhoea, 2 experiences only a low white blood count, 3 

experienced both (diarrhoea and low white blood count), 1 experienced anaemia (but 

analysis were planned to make sure it was not the sign of an autoimmune disease) 

and 1 was transferred from another hospital and therefore side-effect history was not 

available. 
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Clinicians provided the insight that patients experiencing severe diarrhoea, given the 

high risks of dehydration and therefore withdrawal, were administrated “spread out” 

MMF dosages: instead of delivering 1000mg once a day, they were administrated 

500mg twice a day. This was included in the dataset (Table 5.18), to estimate the 

degree of the reported side-effects. 

Even though the sample size was not high enough to draw any conclusion yet, the 

repartition of the different genotypes amongst these groups of patients experiencing 

similar side-effects seemed heterogenous, with for example patients not being double 

major homozygous for rs11075645 and rs8192925 experiencing either no side-effect, 

or only diarrhoea, or only low white blood count, or both of these main side-effects, or 

even the possible anaemia. It is important to note two possible biases in the study: i) 

side-effects can be due to a concomitant treatment, and ii) these patients have been 

treated with MMF for various lengths of time (6 weeks up to 8 years), therefore the 

longer-treated patients (patients R012 and R017) had more time to experience and 

report any sign of side-effects than the shorter-treated patients (patients R009, R011 

and R016). 
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MMF cohort 

Patient 

number 

Double major 

homozygosis 

Type of 

experienced 

side-effects 

Space out of 

daily MMF 

dosage? 

(compared to 

1g once a day) 

Date of MMF first 

dose 

R007 NO (double 

heterozygous) 

Low WBC YES March 2018 

R008 YES Diarrhoea NO April 2018 

R009 YES None NO April 2018 

R010 YES Diarrhoea 

and low WBC 

NO May 2018 

R011 YES None NO March 2018 

R012 YES Diarrhoea YES 2010 

R013 YES Diarrhoea 

and low WBC 

YES March 2017 

R014 NO (heterozygous for 

rs8192925) 

NC YES April 2018 

R015 YES Low WBC YES September 2017 

R016 NO (heterozygous for 

rs11075646) 

None YES April 2018 

R017 NO (heterozygous for 

rs11075646) 

Diarrhoea 

and low WBC 

YES July 2013 

R018 NO (heterozygous for 

rs11075646) 

Anaemia YES October 2016 

Table 5.18 

Preliminary clinical data about the side-effects experienced by the 12 patients 

in the Mycophenolate MoFetil (MMF) cohort. Reported side-effects include 

diarrhoea, low White Blood Count (WBC) and/or anaemia. They are reported along 

with the date of their introduction to MMF, and their genotype for rs11075646 and 

rs8192925. 
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Overall, this very preliminary data investigating the possible association of genotypes 

for rs11075646 and rs8192925 to the degree of response of patients treated with 

rifampicin or MMF was not able to provide any evidence yet to support or oppose this 

potential association - at the present time, but the study is ongoing and may provide 

answers in the future. 

 

5.4. Discussion 

Polymorphisms in xenobiotic metabolism genes have been shown to have a clinical 

impact on treatment efficacy and adverse effects experience in patients91,101,106,113-115. 

To elucidate if this is the case of CES2 as well, responsible for the metabolism of 

clinically relevant drugs such as rifampicin and MMF33,129,136,137,140,233, CES2 genetic 

variants were selected and allelic imbalance assays were performed, followed by the 

design of a clinical study. Amongst 18 “common” CES2 SNPs, 3 were predicted, using 

in silico tools to assess the expression patterns of factors potentially binding to CES2 

regulatory elements, to have the potential to affect the transcription or stability of CES2 

mRNA: rs11075646, rs8192925 and rs28382828. Using allelic imbalance assays, only 

the predicted potential effects of rs11075646 and rs8192925 were demonstrated, 

associated with a significant 3-fold increase (for 39 individuals heterozygous for 

rs11075646) and a significant 1.13-fold decrease (for 19 individuals heterozygous for 

rs11075646) of CES2 mRNA levels. An on-going clinical study was designed to 

investigate a possible association between patients genotype for rs11075646 and 

rs8192925 and their treatment response (in efficiency and experience of side-effects) 

to their CES2-metabolised treatment of rifampicin or MMF. The preliminary data was 

shared and discussed. 

 

Performing in silico predictions regarding the impact of genetic variants on gene 

expression or enzyme activity is common practice280,327. Yet, predictions are not 

evidence, they need to be confirmed. An allelic imbalance assay in individuals 

heterozygous for one genetic variant is thought to be a powerful tool to distinguish 

differences in gene expression – within each individual – that can be attributed to cis-
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regulatory elements179,180,333,335,336,351,352. As a functional effect from less substantial 

allelic imbalances was previously reported350, the considerable effect sizes found here 

suggest that polymorphisms could play an important role in differences in drug efficacy 

in-between patients. However, the allelic imbalance approach is only robust when 

there is no genetic imprinting affecting the gene expression352. This body of work did 

not study the CES2 gene imprinting and, to our knowledge, no data is available on the 

subject. To rule it out, a luciferase reporter assay was performed (data not shown), to 

express in hepatocytes this reporter enzyme under CES2 promoter or 3’-UTR, carrying 

the major or the minor variant for rs11075646 (for the promoter plasmid) or rs8192925 

(for the 3’-UTR plasmid). After a few months of troubleshooting the first step of this 

cloning experiment (using site-directed mutagenesis), both DNA constructs – received 

independently from respiratory collaborators and a renowned company – were 

revealed to be flawed (data not shown). Given the budget and time constraints of this 

thesis, this cloning experiment was aborted, and another approach was chosen: 

designing the clinical study presented in this chapter. The very limited sample size of 

patients included in the study at the time of thesis submission (and, most importantly, 

the current lack of information about the rifampicin-treated patients responding state) 

did not allow for a proper analysis of the potential association between their genotype 

for rs11075646 and rs8192925 and their response to treatment. 

 

This study focuses 3 “common” CES2 SNPs, their commonality being important here 

to be able to observe, if there is any, an impact on gene expression or enzyme activity 

which has the potential both to be relevant to a large proportion of the world population, 

and to be found in the limited sample size of our clinical study. Yet, it was reported 

that less common genetic variants could have a considerably larger effect on gene 

transcription or stability353. The selected SNPs were all exonic, although reports 

support the functional impact of intronic ones166. Moreover, even if rs11075646 and/or 

rs8192925 were the only CES2 genetic variants capable of impacting CES2 enzyme, 

there is no data about the potential effect of genotypes harbouring minor variants for 

both rs11075646 and rs8192925. Due to linkage disequilibrium, the allelic imbalance 

cohort did include individuals being double heterozygous for the variants of interest, 

rendering the findings less clear and less indisputable – the investigation could not be 

limited to an allelic imbalance observation. An unsuccessful cloning experiment and a 
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pilot clinical study were therefore performed. Several other weaknesses could be 

attributed to the clinical part of this body of work. As this is a pilot study, the observation 

of the following limitations was beneficial to improve the future of this ongoing clinical 

study. Initially, it was observed that participant rate data should be retrieved, in case 

specific genotype would impact on patients’ certainty and compliance to join the study. 

Then, despite the very preliminary data available at the time of submitting this thesis, 

two limitations were highlighted and considered of primary importance. Firstly, given 

that the responder groups for MMF patients focused on the side-effects they 

experience, additional samples may be required to normalise their side-effects 

depending on their treatment length (the longer they were under MMF, the more likely 

adverse effects can develop and be reported). Secondly, and most importantly, this 

pilot study shows that most of the patients in both cohorts are heavily medicated (due 

to their tuberculosis or kidney transplant, but also to concomitant diseases), this may 

impact on their xenobiotic metabolism108. This is particularly important for the MMF 

cohort as their experienced side-effects could be mistakenly attributed to MMF instead 

of their other treatments (for example adoport and/or prednisolone which are 

prescribed to most MMF-treated patients). This could bias any potential correlation (or 

lack thereof), advocating for the use of a bigger sample size. As CES2 has been 

particularly overlooked in studies108,146,339, the influence of their concomitant 

treatments on this enzyme - and therefore on the metabolism of both rifampicin and 

MMF - was not yet established and would need to be clarified in order to analyse the 

results of this pilot study properly. This is particularly important because of 

contradictory studies on the possible impact of CES2 polymorphisms on the enzyme 

activity or drug concentrations138,144,146,149,233. 

The CES2 enzyme has been particularly overlooked over the last decades, its 

importance in the xenobiotic metabolism is poorly characterized139,146,147,321,339. 

Polymorphism in the CES2 gene was rarely studied, and mainly focused on rare 

genetic variants138. In a recent article142, the studied SNPs were only selected given 

their presence in tuberculosis patients from South Asia, while the CES2 SNPs have 

been shown to be differentially distributed around the world147. rs11075646 and 

rs28382828 were not mentioned, and the potential effect of rs8192925 was just 

observed through differences in drug concentration in the organisms of the patients – 

discarding the potential influence of other CES2 genetic variants, trans-regulatory 
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elements and environmental factors. The preliminary data of the currently on-going 

clinical study being not analysable at the time of submitting this thesis, our study show 

only indirectly that rs11075646 and rs8192925 are associated to differences in the 

transcription or stability of CES2 mRNA. Yet differences at the mRNA levels have been 

correlated to differences at the protein levels for this enzyme325,326, therefore such 

differences could be associated potentially to differences in rifampicin or MMF 

metabolism. If the presence of the minor variant (homozygous-ly or not) for 

rs11075646 and/or rs8192925 has indeed an effect on the CES2 enzyme 

concentration in patient organism, this could impact the circulating concentration of 

their CES2-metabolised drugs and therefore their response to treatment. In the case 

of rifampicin and MMF, the current prescribed doses only consider body mass82,83,152, 

discarding the influence of genetic polymorphisms and their differential distribution 

between ethnic groups. Thus, the presence of the minor allele for rs11075646 could 

induce a decrease in drug concentrations and therefore a poor treatment efficiency in 

some patients, while the presence of the minor allele for rs8192925 could imply an 

increase in drug concentrations, associated to severe side-effects 

(hepatotoxicity129,151,152,324,343). Focussing on changes regarding rifampicin 

concentration, both scenarii could affect the drug-drug interactions associated to 

rifampicin45, could weaken a potential synergistic interaction to vancomycin towards 

MRSA infections - triggering de-novo antibiotic resistance27. 

 

As previously mentioned, allelic imbalance assay is a powerful tool to study the 

potential effect of one particular genetic variant on the gene expression. Assuming 

both i) that there is no gene imprinting for CES2, ii) that rs11075646 and rs8192925 

were validated as affecting the levels of mRNA, and iii) that there is indeed a strong 

correlation between CES2 mRNA and CES2 enzyme, rs1075646 and rs8192925 

could have a considerable impact on the metabolism of drugs metabolised by CES2. 

What would happen to patients carrying minor variants of both SNP is still to be 

elucidated. In a first step, the clinical study is still on-going, and its dataset will be 

finalised and analysed in due time. Given the magnitude of the allelic imbalances, the 

frequency of these SNPs and the Hardy-Weinburg equilibrium349 , it is expected that 

the sample size of 20 patients per treatment cohort could allow the discrimination – if 

any - of two groups of responders for both rifampicin and MMF, permitting the 
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observation of a potential association between the patient’s genotype for rs11075646 

and rs8192925 and their treatment response. Then, future work would be to analyse 

“in vitro” – as planned with the aborted cloning experiment – the impact of rs11075646 

on CES2 transactivation, and of rs8191925 on CES2 silencing. Using high-

performance liquid chromatography, it could also be possible to correlate directly the 

presence of the minor variant of each SNP (separately or not) to the levels of rifampicin 

and its metabolites in patients. Similarly, a systematic dosage of MMF absorbance in 

blood could be undertaken on the MMF-treated patients, this procedure being rarely 

performed at the RD&E hospital (personal communication). The observed clinical 

study limitations were considered, and changes have already been made – for 

example, patients with critically treatment inefficacy were included. Overall, this could 

help evidence if CES2 genetic variants impact on drug metabolism. If this is the case,  

tailoring the dosage of administered drugs to the patient genetic background could 

help optimise treatment efficacy, and - in the case of antibiotherapy - it could help fight 

against antibiotic resistance, which is predicted to cause 10 million deaths per year by 

2050181. 

 

In summary, this thesis chapter brings an insight on how the polymorphism in 

xenobiotic metabolism genes could alter the metabolism of clinically relevant drugs. 

We selected 3 CES2 genetic variants which could have an impact on rifampicin or 

MMF treatment experience and efficacy, through differences in its metabolism. In 

silico, rs11075646, rs8192925 and rs28382828 were predicted to affect such 

metabolism, and both the minor alleles for rs11075646 and rs8192925 were 

significantly associated to differences in CES2 mRNA levels. A pilot clinical study was 

designed to associate a phenotypical effect on patients, if there is any, to these 3 

SNPs. Preliminary data is shared and discussed. In case our hypothesis is confirmed, 

systematic genotyping could be performed before prescription, to tailor patients’ 

regimen to their genetic profile – as part of personalised medicine90,106,120. This would 

be beneficial to the patients: they would experience less adverse reactions; their 

treatment would be more efficient. In the case of antibiotherapies, this would help 

assessing our prescriptions, making sure we use the right antibiotic, at the right dose 

and for the right length of time, to reduce the probability of antibiotic resistance 

emergence27. 
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5.5. Reflection on the research 

This study acknowledged the potential metabolism-altering nature of 2 CES2 SNPs: 

rs11075646 and rs8192925. Both their minor alleles were significantly associated to 

differences in CES2 mRNA levels and a pilot clinical study was designed to associate 

a potential phenotypical effect on patients, if there is any, to these SNPs. 

Unfortunately, due to time constraints, only preliminary data from the clinical study 

were retrieved and discussed. Given more time, we could have perhaps reached a 

higher number of participants to our study, and obtained all important baseline data 

about them, allowing us to conclude on the possible association between their 

genotype and their response to treatment. It would have been also a good opportunity 

to find individuals carrying the minor allele for both SNPs, permitting their simultaneous 

study. 

In the event more time was allocated to this project, another time-consuming approach 

would have been to study all 1,977 genetic variants accounted for on CES2. We did 

select in silico the most common ones, yet rare SNPs could also potentially impact 

greatly individuals carrying their minor alleles homozygous-ly. 
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CHAPTER 6 – Discussion and future directions 

 

 

In this thesis, three novel studies were presented to investigate both the nature of the 

interaction of two clinically relevant antibiotics (vancomycin and rifampicin) and the 

potential impact xenobiotic metabolism polymorphisms could have on antibiotic 

bioavailability and interactions. Each empirical chapter (Chapters 3-5) was aimed to 

answer a distinct research question in this field and was therefore presented with its 

own context and conclusions. Throughout this final chapter, the key findings of this 

body of work are briefly summarized and considered in their framework, discussing 

their implications, strengths and limitations. Finally, the future work needed to improve 

our understanding in this field is highlighted, and perspectives on the importance of 

expanding our knowledge on this topic are shared. 

 

 

6.1. Summary of the key findings 

In light of the current literature on both the global spread of antibiotic resistance 

(particularly regarding Methicillin-Resistant Staphylococcus aureus – MRSA) and the 

clinical impact of genetic variations on xenobiotic genes, several unanswered 

questions were acknowledged and studied. 

 

The combination of vancomycin and rifampicin to treat MRSA infections, while 

avoiding the emergence of resistance, has shown critical discrepancies about its 

effectiveness, in vitro, in vivo and in clinical studies55,71-81. Some hypotheses have 

been drawn to explain the heterogeneity in the outcomes, such as the influence of 

differences in strains, in the nature of the infection, in the experimental techniques or 

between patients baseline parameters (age, immunity, xenobiotic metabolism 

genetics, etc)33,45. To elucidate the influence of such variables on laboratory practices, 

as reported in Chapter 3, one operator studied in vitro, in the same laboratory and 

using the same stock of supplies, the interaction of vancomycin and rifampicin towards 
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MRSA in various experimental settings. This study demonstrated that the type of 

interaction of these two antibiotics was particularly unclear: it seemed to depend on 

the experimental settings, and no synergy was accounted for. Planktonic and biofilm 

experiments showed significant antagonism (Chapter 3, pages 78-89), while two 

structured environments using soft or solid agar failed to deliver a clear answer 

(Chapter 3, pages 90-100). The usage of Etests was also questioned as this clinically-

used antibiotic susceptibility test concluded in an indifference between vancomycin 

and rifampicin, but also between a combination of two strips of the same antibiotic 

(Chapter 3, pages 100-107). Overall, no sign of synergy was observed between 

vancomycin and rifampicin towards MRSA. The unstable nature of vancomycin and 

rifampicin Minimum Inhibitory Concentrations (MICs) were acknowledged. 

Differences in the outcomes of clinical studies about the combination of vancomycin 

and rifampicin towards MRSA infections could also be potentially attributed to inter-

individual differences91,92,95-98. Indeed, literature reported that genetic variations (such 

as Single Nucleotide Polymorphisms - SNPs) on xenobiotic metabolism genes can 

possibly have an impact on enzyme activity98,110, affecting therefore drug 

concentrations and treatment effectiveness. Rifampicin is particularly interesting here 

because it is both metabolised by the Carboxylesterase 2 (CES2) enzyme136,138 and 

inducing its activity130,132,137,139. The CES2 gene being subjected to common 

polymorphisms, Chapter 5 focuses on the potential impact of 3 “common” SNPs: 

rs11075646, rs8192925 and rs28382828. With an allelic imbalance assay, it was 

demonstrated that the minor variant for rs11075646 was associated to a significant 3-

fold increase in the CES2 messenger RNA (mRNA) levels (Chapter 5, pages 189-

190), while the minor variant for rs8192925 was associated to a significant 1.13-fold 

decrease in the mRNA levels (Chapter 5, pages 191-192). No association was found 

between the minor variant for rs28382828 and mRNA levels (Chapter 5, pages 187-

189). This gave rise to a clinical study focusing on rs11075646 and rs8192925 and 

their potential phenotypical impact. Two cohorts were recruited: tuberculosis patients 

treated with rifampicin, and kidney-transplant patients submitted to Mycophenolate 

MoFetil (MMF) - a CES2-metabolised pro-immuno-suppressor149,150 (Chapter 5, pages 

193-196). This clinical study aims to observe an association between, on one hand, 

the clinical phenotype of these patients (differences in treatment response and in the 

experience of side-effects) and their genotype for rs11075646 and rs8192925. At the 
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time of submitting this thesis, most of the important baseline data about these patients 

was lacking, but extremely preliminary results could indicate a lack of association 

between those genetic polymorphisms and side-effects experienced by MMF-treated 

patients (Chapter 5, pages 197-205). 

More generally, it seems crucial to develop an extensive knowledge about both i) 

which enzymes are metabolising the clinically relevant drugs, and ii) which SNPs can 

potentially affect their gene expression or enzyme activity, especially because of the 

differential distribution of their variants in different ethnic groups. An in silico study was 

therefore performed in Chapter 4 to find the most “common” SNPs on the gene coding 

for CYP3A4, a xenobiotic enzyme of critical clinical importance106, and to investigate 

their potential effect on the CYP3A4 gene expression or enzyme activity. rs28988603, 

rs28988604, rs28969391, rs28371763, rs28988606, rs12721620, rs2242480 and 

rs2687116 were acknowledged (Chapter 4, pages 125-136), while the open access 

literature only reported the potential impact of rs2242480. The 8 SNPs of interest were 

classified according to their potential impact score (Chapter 4, pages 136-139) and 

then their distribution in the world was considered (Chapter 4, pages 139-146). Given 

the importance of the xenobiotic metabolism by CYP3A4, the high frequencies of those 

SNPs and their differential distribution in the world, it would be vital to take these SNPs 

into account before prescribing any of the numerous CYP3A4-metabolised drugs. 

 

 

6.2. General discussion of the empirical chapters and future 

perspectives 

This thesis aimed to provide both clarity about the nature of the interaction of 

vancomycin and rifampicin towards MRSA, and insights on the potential impact 

xenobiotic metabolism genetic variations could have on clinically-relevant antibiotic 

bioavailability and their interactions. 
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6.2.1. No sign of synergy between vancomycin and rifampicin towards 

Methicillin-Resistant Staphylococcus aureus  

With the same operator performing experiments in the same laboratory using the same 

materials, most of the variabilities between reported in vitro testing of the combination 

of vancomycin and rifampicin towards MRSA were eluded in Chapter 3. This is a 

significant improvement compared to the numerous articles from the literature which 

focused on one technique and compared directly their results to those provided by 

another one71,79. Here, one could observe that differences in experimental settings 

(planktonic, biofilm, cultures on and in agar, Etests) are associated to differences in 

the reported nature of the interaction of vancomycin and rifampicin. Depending on the 

type of experiments, the interaction of vancomycin and rifampicin towards MRSA is 

considered antagonist, indifferent or even undetermined. There was no sign of the 

synergy required to propose an efficient treatment, despite its past 

reports71,73,75,77,79,81. This conclusion is supported by studies demonstrating the 

influence of in vitro experimental conditions in their experimental outcomes195,196. With 

clinical settings already not following the same practices in term of antibiotic 

susceptibility testing and treatment selection (for example, there are no guidelines on 

the appropriate rifampicin dose, time of initiation and length of treatment45), and with 

vancomycin and rifampicin MICs proven particularly unstable, this could also shed light 

on why the conclusions from clinical studies were inconsistent. 

The limitations of this study are mostly related to the techniques. Several experiments 

were proven challenging to be performed, particularly because of extreme variability 

in the MICs of monotherapies in planktonic culture, but also because of difficulties in 

handling the Etests in combination (the validity of this technique was even questioned 

in Chapter 3, pages 100-107). Interestingly, most of the handling issues reported here 

could also be impacting operators in clinical diagnostic laboratories – another possible 

explanation for the published discrepancies. Improvements could be proposed, 

regarding the addition of an agar plating step before overnight culture, or the addition 

of a final day of planktonic culture in antibiotic-free media. Finally, the clinically relevant 

MRSA252 strain was used in this work and, yet given that inconsistencies in-between 

experimental settings have been attributed to differences in strains in the past, another 

MRSA strain could have been tested. The role of persister or tolerant bacterial cells 

was not studied here354, it could be elucidated using single-cell techniques for 
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example242-244. A first step in future work should therefore consider replicating these 

experiments with another MRSA strain, and perhaps to study sequential or cycling 

combinations instead of mixed combinations155,156. This could be done following a 

strict scheduling to avoid changes in circadian rhythm, as this was reported to possibly 

impact on laboratory experiment outcomes366. 

 

This finding corroborates reports stating that the combination of vancomycin and 

rifampicin may not be the best therapy to treat any type of MRSA infections55. Most of 

the recommendations involving vancomycin and rifampicin were made because of a 

lack of good alternatives (the other antibiotics not meeting the expected outcomes in 

some particular MRSA infections)82,83, an alternative and effective treatment needs 

therefore to be developed. Recent reports deemed sequential therapy of particular 

interest to avoid the emergence of resistance in bacterial infections155, yet this therapy 

is not recommended with non-synergistic antibiotics. Especially given antagonistic 

combinations may require higher drug dosages49,52,54 and both high doses of 

vancomycin and rifampicin are deemed toxic for the patients45,53,67. New antibiotics 

discovery6,182 or the development of MRSA vaccines355,356 should have better chances 

of success to fight against MRSA infections. 

 

6.2.2. In silico identification of eight common CYP3A4 variants with the potential 

to affect xenobiotic metabolism 

In Chapter 4, 8 common and potentially important SNPs were identified on the 

CYP3A4 gene. rs2242480 being already categorized as “important” by the scientific 

community232,254,301-311, our findings extend the scope of CYP3A4 polymorphisms that 

may be interesting, if not critical for some patients, to consider while prescribing one 

of the various CYP3A4-metabolised drugs. The potential impact of SNPs affecting the 

xenobiotic metabolism has been studied for decades98,110, with researches focussing 

particularly on CYP3A4 which code for a major enzyme of this metabolism101. It is 

therefore of significant interest that 7 of the uncovered “common” SNPs in our study 

(rs28988603, rs28988604, rs28969391, rs28371763, rs28988606, rs12721620 and 

rs2687116) have been overlooked in the past. 
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However, the potential impact of these SNPs has yet to be proven. Some in silico 

predictions have indeed being refuted in the past373. Can the presence of the minor 

variant of one only SNP actually alter the CYP3A4 gene expression or enzyme activity 

to the point of altering its target concentration? As CYP3A4 and CYP3A5 are often 

sharing drug specificity, could an alteration of CYP3A4 concentrations be counter-

balanced by the activity of CYP3A5? Despite these questions being left unanswered, 

these findings remain of significant interest to highlight the need to focus studies on 

the potential impact of xenobiotic metabolism gene polymorphisms on drug efficiency. 

Especially because of the differential distribution of those variants in different ethnic 

groups. 

 

It will be crucial to prove in vitro, in vivo and with clinical studies if there is a correlation 

between the minor variant of all those 8 identified SNPs and changes in CYP3A4 gene 

expression or enzyme activity. If there is a correlation, investigations should focus on 

the potential impact rs28988603, rs28988604, rs28969391, rs28371763, rs28988606, 

rs12721620, rs2242480 and rs2687116 can have, alone or together, on drug 

concentrations and clinical outcomes. 30% of the clinically relevant drug metabolism 

being attributed to CYP3A4/5, the potential impact of such polymorphisms could be 

critical for various types of diseases - especially given differential distribution of those 

variants in different ethnic groups. 

 

6.2.3. CES2 variants rs11074656 and rs8192925 could impact on patients’ 

xenobiotic metabolism, treatment efficacy and adverse effects 

In the past, the metabolism of rifampicin has been wrongfully attributed to the 

cytochrome P450 enzymes33,45, instead of the CES2 enzyme138. In the first part of 

Chapter 5, 3 SNPs on the CES2 gene (rs11075646, rs8192925 and rs28382828) were 

investigated and the findings provide first evidence of an association between the 

presence of the minor variants for either rs11075646 or rs8192925 and changes at the 

CES2 mRNA levels. It is unsurprising that the overlooked CES2 gene presents 

potentially important polymorphisms, as it is the case for most Phases I and II 

xenobiotic metabolism genes101,117,124,319,357. However, the size of the observed effects 

on the mRNA levels was unprecedented: using an allelic imbalance assay, a 
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significant 3-fold increase was associated with the presence of the minor variant for 

rs11075646. As this polymorphism is particularly common, it could have a critical 

phenotypical impact. Indeed, if CES2 mRNA levels are proportional to the CES2 

activity (as it has been reported recently325), patients carrying the minor variant for 

rs11075646, homozygous-ly or not, could potentially be quick metabolisers, who 

eliminate many clinically relevant drugs readily. These patients would need a higher 

dosage to improve treatment efficacy, or a different medicine when the prescribed 

drugs are considered toxic at high doses. The significant 1.13-fold decrease of CES2 

mRNA levels associated to the presence of the minor variant for rs8192925 could also 

be noteworthy, as similar effect size have been reported to have a phenotypical 

impact350. This would make the carrier of the minor variant for this SNP slow 

metabolisers, who are prone to develop more side-effects due to the toxicity of the 

drugs. In the case of rifampicin, both scenarii could lead to the emergence of antibiotic 

resistance27, impacting the patient recovery and the spread of resistances in the 

community. Given the differential distribution of those 2 variants in different ethnic 

groups, quick and slow metabolisers could be found at different frequencies in different 

populations. 

If allelic imbalance experiments are now particularly recognized, the findings from 

Chapter 5 need to be validated. An association between genotype and mRNA levels 

is not necessarily followed by an association between genotype and enzyme activity, 

let alone a causality between genotype and drug concentrations, or genotype and 

clinical outcome. Other genetic or transcriptomic processes can happen and impact 

on the effect of an observed alteration of the mRNA levels. Moreover, the fact that 

both rs11075646 and rs8192925 are showing divergent associations to CES2 mRNA 

levels will complicate the interpretations for patients carrying the minor variants for 

both SNPs, homozygous-ly or not. Future work includes the cloning experiments which 

were attempted before, with no success (data not shown). Indeed, it seemed important 

to validate the effect of rs11075646 and rs8192925 on the transactivation of the CES2 

gene by their disruption of the binding sites of transcription factors (for rs11075646) 

and microRNAs (for rs8192925). Cloning experiments were performed with the aim to 

express, with a luciferase reporter gene, the minor variant for each SNP in 

hepatocytes. These experiments were not successful due to flawed genetic plasmids, 

from both our collaborators and a registered company. Apart from this (still required) 
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validation, it would be interesting to investigate the other SNPs carried by the CES2 

gene. Then it would be possible to analyse the direct relationship between on, one 

hand, the CES2 genotype and, on the other hand, the drug metabolism, through drug 

concentrations. Even if only rs11075646 and rs8192925 have a possible impact on 

the CES2 gene expression or enzyme activity, nothing is known yet about the potential 

xenobiotic metabolism of patients carrying the minor variants for both SNPs – this 

would need to be elucidated. Another idea for the future, currently in development, 

would be to look at the association between the host genotype and bacterial survival 

outcome, with a co-culture of MRSA with hepatocytes in a media supplemented with 

antibiotics. Amongst the numerous drug metabolized by CES2, the case of rifampicin 

is of particular importance and would need to be closely investigated as this anti-

tuberculous agent is also inducing the CES2 metabolism139. 

In the second part of Chapter 5, the potential effect of rs11075646 and rs8192925 on 

the CES2 gene expression or enzyme activity was investigated indirectly, by 

developing a pilot clinical study in two cohorts of patients being treated with CES2-

metabolised drugs (rifampicin and MMF). Only the preliminary samples and data were 

available at the time of thesis submission, limiting the reported findings in this chapter. 

It was notably pointed out that the 12 MMF-treated patients seemed to experience 

side-effects independently of their genotype. This would need to be confirmed with a 

bigger sample size, in Hardy-Weinburg equilibrium349 (20 samples minimum), and a 

correction for the side-effects associated to their other medications. Another 

complication was the selection of patients: when they are deemed unresponsive to 

their treatment, they are readily redirected to another one, and could therefore not be 

selected in this study. Consequently, the cohorts were expected here to be of mildly-

impacting genotypes, if any. Importantly, by looking at the experience of side-effects 

in MMF patients, the factor “time” should be considered in the analysis, as the 

emergence of side-effects in patients can be missed in patients treated with MMF for 

only 6 weeks, compared to patients treated with it for 6 years. Another crucial limitation 

to our study, while observing liver function test results for rifampicin patients and side-

effects in MMF patients, was that these patients are heavily medicated, their other 

drugs either being potentially metabolised by CES2 as well, or being able to induce 

the CES2 metabolism, or being able to affect liver function test results and/or the 

experience of side-effects in patients. Finally, as developed in the Thesis Introduction, 
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other inter-individual differences could impact on drug concentrations and efficacy, 

such as the age, the sex, the body mass index, the immune system or concomitant 

diseases82,92,95-98. All these personal baseline data was differing between the recruited 

patients. 

Despite these limitations, it is important to note that clinicians were really interested to 

participate to this study, because they face patients being unresponsive with no proper 

cause (personal communication). Knowing if the xenobiotic metabolism of those 

patients is causing their lack of or inadequate response would allow clinicians to treat 

more efficiently their patients, whether the genotype for CES2 rs11075646 and 

rs8192925 is implicated or not. Future work would be therefore to expand this study 

to a bigger cohort, including patients having failed to respond to their treatment, which 

have been redirected to another regimen. By increasing the sample size, it would be 

easier to observe associations, if any, between the emergences of side-effects and 

the treatment length, as well as to distinguish the potential effect on side-effects and 

liver function tests between those due to the tested drugs and those due to the 

concomitant treatments. 

 

CES2 may be less well-known than the cytochromes p450, but this enzyme is involved 

in the metabolism of clinically-relevant drugs of all types: the potential impact of such 

polymorphisms could be life-saving. 

 

 

 

6.3. Implications and conclusions on the key findings 

In summary, this thesis has provided insights on why the combination of vancomycin 

and rifampicin may not be the best therapy to treat any type of MRSA infections. It has 

also significantly advanced our current knowledge on how the xenobiotic metabolism 

gene polymorphisms could have a potential impact on drug concentrations and clinical 

outcomes. It has highlighted the underestimated role of CES2 and identified in total 10 

common metabolism gene SNPs having such a potentiality: rs11075646 and 

rs8192925 on the CES2 gene, and rs28988603, rs28988604, rs28969391, 

rs28371763, rs28988606, rs12721620, rs2242480 and rs2687116 on the CYP3A4 
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gene. These SNPs are differentially distributed in different ethnic groups, their 

potential impact on drug metabolism could therefore be found at different frequencies 

in different descent populations. 

 

 

 

If future in vitro or clinical studies demonstrates, once and for all, that the combination 

of vancomycin and rifampicin is not beneficial to fight against MRSA infections, or if 

they show their type of interaction is still undetermined or variable depending on 

experiment settings, a new regimen will have to be recommended in practices – in 

order to treat the patients more effectively and decrease the selective pressure on the 

bacteria. Currently, alternatives can be prescribed for most types of MRSA infections 

(guidelines mention notably monotherapies of vancomycin, linezolid, daptomycin or 

tigecycline82,83), clear recommendations would need to be published to help the 

clinicians in their choice of prescriptions to avoid allergic reactions and unsuitability for 

children in some cases358. Vaccination could even be considered, if the current 

research on MRSA vaccines succeed. This would help the infected patients, but also 

their clinicians (who are following contradictory guidelines), other hospitalised patients 

(as MRSA is a common nosocomial bacterium) and the community (because of the 

cost of MRSA infections, amongst other reasons). 

 

On a bigger scale, the observed disparities in the interaction between two antibiotics 

depending on the experimental settings could be applied to other bacterial infections. 

This would be something to keep in mind while studying, for example, the combination 

of beta-lactam and/or carbapenem and/or aminoglycoside and/or ciprofloxacin against 

Pseudomonas aeruginosa infections359. The same type of selective pressure could be 

applied on this clinically-relevant bacteria. 

 

 

 

Both the studied CYP3A4 and CES2 genes coding for enzymes responsible for the 

metabolism of numerous clinically relevant drugs, future work is needed to elucidate 
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the actual impact of their common SNPs. More generally, it is required to expand our 

knowledge on which enzymes are metabolising the clinically relevant drugs, and which 

genetic variants can affect these enzyme concentrations or their activities. By clarifying 

this, it would then be possible to systematically qualify the nature of each drug-drug 

interaction, whether these drugs are used in combination to treat the same disease, 

or their concomitant use is purely fortuitous. This would allow the development of 

prescriptions that are tailored to the patients, which will doubtfully benefit them – they 

will be treated more efficiently while avoiding side-effects - and also the community. 

The final aim would be to develop the systematic genotyping of the patients for key 

SNPs in order to tailor their dosages to their genetic background - another step 

towards personalized medicine. This would have clinical implications for the patients, 

who will be treated more efficiently and with less experiences of side-effects. On a 

community perspective, a personalised prescription of antibiotics could lower the 

selective pressure on bacteria and help fighting against antibiotic resistance. This 

would benefit the health all the potential hospital in-patients, and the out-patients who 

are currently avoiding visiting a hospital because of those nosocomial infections. A 

more economical point of view would be that these advances could allow a decline of 

the cost of antibiotic resistance (less drug waste, shorter hospitalisations, and better 

productivity of the professionally active patients)360,361. Obviously, a strict ethical 

regulation would need to be designed in order to genotype the patients for thousands 

of SNPs before they are prescribed a medicine. This could even have political 

implications if we ask pharmaceutical companies to provide data on how exactly their 

drugs are metabolized by patients from various genetic backgrounds, during their 

research and development phases. 

 

 

 

The evidences presented in this thesis highlight the need to make sure the right drugs 

and the right dosages of said drugs are prescribed to patients. Given the global threat 

of antibiotic resistance, this is necessary to treat infectious diseases efficiently, but this 

can be also critical for other types of diseases (cancers, mental illnesses …) for which 

the clinical outcomes depend on the bioavailability of the administrated drugs too. 
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Altogether, these studies have provided a strong case on how important the study of 

drug interactions is, and how the xenobiotic metabolism gene polymorphism can act 

on it. Clearly, much more work is needed in this field, to both provide a suitable 

treatment for MRSA infections currently treated with vancomycin and rifampicin, and 

to make sure the scientific knowledge is comprehensive about which enzymes are 

metabolising the clinically relevant drugs, and which genetic variants can affect these 

enzyme concentrations or their activities. The findings in this thesis demonstrate the 

importance of addressing these issues in depth. 
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APPENDIX A - Chapter 3 - Interaction between vancomycin 

and rifampicin towards Methicillin-Resistant 

Staphylococcus aureus, in various experimental settings. 

 

 

A.1. Materials and Methods: 

 

A.1.1. Bacterial culture in a planktonic environment (broth dilutions) 

 

Hill fit: 

 

Assuming the data decreases monotonically with dose, a Hill function was fitted to the 

data – allowing the estimation of standard errors and standard deviations, with the 

visualisation of a Hill curve and a 95% confidence interval along it. As published 

earlier24, a Hill function takes the following form, with K the IC50 of the data, and 𝐻0 

and n two other parameters depending on the data fit:  

 

𝐻(𝐴) = 𝐻0  ×  
𝐾𝑛

𝐾𝑛 +  𝐴𝑛
 

 

 

 

Using MatLab, Professor Robert Beardmore’s best hill fit function (modelfun for non 

linear regression) was used, and adaptred as necessary: 
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modelfun = @(p,A)(p(1)+p(2)./((p(3)./A).^p(4) + 1)); 

    beta0=[0.1 2 3 4]; 

    mdl = NonLinearModel.fit(Dosages, DoseResponse,modelfun,beta0) 

    R2=mdl.Rsquared.Ordinary; 

    beta=mdl.Coefficients.Estimate; 

    [beta,resid,J,Sigma] = nlinfit(Dosages, DoseResponse,modelfun,beta); 

    xFit=linspace(0,1.1*max(Dosages),100); 

    [yFit, delta] = nlpredci(modelfun,xFit,beta,resid,'Covar',Sigma);     

    area(xFit',yFit+delta,yFit(end)-1.1*delta(end),'FaceColor',[0.9 0.9 0.9],'EdgeColor',[1 1 1]); 

    hold on 

    area(xFit',yFit-delta,yFit(end)-1.1*delta(end),'FaceColor',[1 1 1],'EdgeColor',[1 1 1]); 

    plot(xFit, yFit+delta, '-','Color',[0.5 0.5 0.5]); 

    plot(xFit, yFit-delta, '-','Color',[0.5 0.5 0.5]); 

    plot(xFit, yFit, 'k-','LineWidth',2); 

text(max(xFit),yFit(end)+1.1*delta(end),['R^2=',num2str(R2)],'FontSize',16,'HorizontalAlign','R

ight','VerticalAlign','bottom');%formatting 

    Y=myMeans;     

    ICs=[.5 .8 .95 .99];%to display the ICs on the graph 

    for k=1:length(ICs) 

        OD50=(1-ICs(k))*Y(1); 

        fromDose=find(yFit>=OD50); 

        IC50=interp1(yFit, xFit, OD50,'linear'); 

        plot([IC50 IC50], [-max(yFit) max(yFit)], ':', 'LineWidth', 1,'Color',[0.3 0.3 0.3]) 

        if ICs(k)==.7 

            s=1.05; 

        else 

            s=1; 

        end 

        text(s*IC50, max(yFit), ['IC_{',num2str(100*ICs(k)),'}'], 'FontSize', 14,'Color', [0.3 0.3 

0.3],'VerticalAlignment','bottom','HorizontalAlignment','center') 

    end     

    errorbar(dosages,myMeans,myStds,'.-k','markersize',30,'linewidth',1);     

    xlabel('dosage (ug/ml)') 

    ylabel('Density at 24h'); 

    axis([-.02*max(xFit) max(xFit) -1.3*max(delta) 1.1*max(yFit)]); 

    title('Dose response of E.coli(Wcl)'); 

end 

function y = ste(v) 

    y = std(v)/sqrt(length(v)); 

end 
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A.1.2. Bacterial culture inside a “square dish” structure 

 

Visual example of the methodology followed to analyse the halos of growth inhibition 

using ImageJ. 

 

 

Figure A1 

 

Visual example of the methodology followed on ImageJ to analyse the halos of 

growth inhibition for the “square dish” experiment, after removal of the 

background. Left – Localisation of the centre of the small dish, using a circle 

colocalising with the visible edges. Right – Creation of 3 angles of 3° (here, 1 is shown 

in vancomycin monotherapy) starting at the previously located centre of the small dish. 
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A.1.3. Bacterial culture on a “layer dish” structure 

Visual example of the methodology followed to analyse the halos of growth inhibition 

using ImageJ. 

 

 

 

Figure A2 

Illustration of the image analysis on ImageJ to extract the profile of the bacterial 

growth from the pole A (up) to the pole B (down) of one streak on a Petri dish. 

 

A.1.4. Plotting and statistics 

 

Methodology for statistical test on biofilm Optical Density (OD) data (interval data), 

using Stata: 

 

1- Is OD data normal? Shapiro–Wilk test was performed (swilk), p = 0.00060. OD 

data is normal. 

2- Is OD data parametric? One-sample variance-comparison test was performed 

(sdtest), p = 0.0314 to 0.0025 depending on the conditions tested. OD data is 

non-parametric (inequal variances). 

3- Is OD data ordinal data? Yes. 

4- For 2-10 unpaired samples/groups, Mann-Whitney test was performed, per 

couple of samples (ranksum). 
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Methodology for statistical test on “square dish” data (interval data), using Stata: 

 

Depending on the dataset: 

1- Is data normal? Shapiro–Wilk test was performed (swilk), p = 0.00553. Data is 

normal. 

2- Is data parametric? One-sample variance-comparison test was performed 

(sdtest), p = 0.0883 to 0.3598, depending on the conditions tested. Data is 

parametric (equal variances). 

3- Is data ordinal data? Yes. 

4- Two samples t-test was performed, for each couple of samples (ttest). 

Or 

1- Is data normal? Shapiro–Wilk test was performed (swilk), p = 0.009378. Data 

is not normal. 

2- For 2-10 unpaired samples (groups of data), Mann-Whitney test was 

performed, for each couple of samples (ranksum). 

3- Is data ordinal? Yes. 

4- For the three groups of data studied together, with different distribution (shape 

of the data), Kruskal-Wallis test for mean rank was performed (kwallis). 
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A.2. Results 

 

A.2.1. Bacterial culture in a planktonic environment (broth dilutions) 

 

 

Figure A3 

24-hour dose-response of rifampicin on Methicillin-Resistant Staphylococcus 

aureus, on two different days in dilution broth. The concentrations required to 

reach the Minimum Inhibitory Concentration (MIC) in monotherapy on Methicillin-

Resistant Staphylococcus aureus (MRSA) were fluctuating from one day to another. 

Example of two rifampicin monotherapies, one is significantly associated to a MIC of 

2ng/mL (left), and one to a MIC of 3ng/mL (right). The full points represent the average 

of the observed data, and the black vertical error bars the standard deviation between 

the observed data. A Hill equation is fitted to the data, with 95% confidence intervals 

around predicted mean, associated to the expected biochemical interaction of the 

bacteria and the antibiotic, in the grey area along the black curve (superimposed Hill 

curve). The data follows the Hill curve, with the correlation coefficient R2 indicated on 

the graph. The Inhibitory Concentrations 50 (IC50), 80 (IC50) and 95 (IC95) are 

indicated. 
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Figure A4 

 

Stable antagonism for the combination of vancomycin and rifampicin on 

Methicillin-Resistant Staphylococcus aureus, in broth dilution. A frown is 

observed here in 2D (A) and 3D (B) visualisations of the combination therapy as a 

function of the drug concentration delta factor or relative drug fraction θ and time, on 

the first day of the experiment from 11.7h to 24.3h. The antagonism of vancomycin 

and rifampicin is stable and significant (sig-ant), over time on the first day of the 

experiment, against Methicillin-Resistant Staphylococcus aureus (MRSA). The full 

points represent the average of the observed data, and the black vertical error bars 

the standard deviation between the observed data. A Hill equation is fitted to the data, 

with 95% confidence intervals around predicted mean, associated to the expected 

biochemical interaction of the bacteria and the antibiotic, in the grey area along the 

black curve (superimposed Hill curve). The data follows the Hill curve, with the 

correlation coefficient R2 indicated on the graph. Vanc stands for vancomycin and rif 

for rifampicin, and θ is expressed in vancomycin ratio in the combination (from 0 to 1). 

 

 

 

 

A.2.2. Bacterial culture in biofilms 

Each antibiotic was tested as monotherapy on the same plate as the combination 

assay. The following plots (Figures A5-A6) represent their optical density reads at 

600nm, before crystal staining. Well homogeneity was not insured before crystal 

staining; such dataset is therefore less quantitative than qualitative: “can the 

microplate reader detect a difference in absorbance from the negative control?”. If yes, 

it was attributed to bacterial growth. If no, there may be no growth, or there may be a 
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lack of homogeneity inside the well (bacteria growth could be inhibited locally to where 

the OD is measured). The data being less quantitative, no MIC or IC50 are provided. 

 

 

Figure A5 

Dose-response of MRSA252 in different concentrations of vancomycin (ng/mL) 

in a biofilm. Data collected as “optical density” at 600nm before the crystal violet 

staining. The full points represent the average of the observed data, and the black 

vertical error bars the standard deviation between the observed data (4 replicates). 
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Figure A6 

Dose-response of MRSA252 in different concentrations of rifampicin (ng/mL) in 

a biofilm. Data collected as “optical density” at 600nm before the crystal violet 

staining. The full points represent the average of the observed data, and the black 

vertical error bars the standard deviation between the observed data (4 replicates). 

 

 

 

 

Recording the optical density after the crystal violet stain of the biofilm of MRSA252 

allowed the quantification of the biofilm formation and removed the errors due to the 

difference in thickness of biofilm inside the wells of the microplate (by homogenising 

the disrupted biofilm inside the wells). The following plots (Figures A7-A8) represent 

the optical density reads at 600nm of both monotherapies, after crystal staining. This 

is the same experiment than in Figures A5-A6, therefore the concentrations used are 

the same. 
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Assuming the third data point in Figures A7-A8 were artefacts (based on Figures A5-

A6, this seemed to be the case), MIC in vancomycin was not reached – despite an 

apparent plateau. MIC for rifampicin was estimated to 6.25ng/mL. 

 

Figure A7 

Biofilm formation of MRSA252 in increasing concentrations of vancomycin 

(ng/mL) in a biofilm. Data collected as “optical density” at 600nm after the crystal 

violet staining. The full points represent the average of the observed data, and the 

black vertical error bars the standard deviation between the observed data (4 

replicates). 
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Figure A8 

Biofilm formation of MRSA252 in increasing concentrations of rifampicin 

(ng/mL) in a biofilm. Data collected as “optical density” at 600nm after the crystal 

violet staining. The full points represent the average of the observed data, and the 

black vertical error bars the standard deviation between the observed data (4 

replicates). 
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A.2.3. Bacterial culture on a “layer dish” structure 

 

 

Figure A9 

Examples of the discrepancies observed in the bacterial growth pattern on the 

antibiotic control dishes. On one day (A), the C1R2 control dish was inhibiting 

partially the growth of the bacteria, with 4.72MIC (Minimum Inhibitory Concentration) 

of rifampicin. The next day (B), there was no inhibition of the bacterial growth on the 

similar C1R2 control dish, despite increasing the concentration in rifampicin to 

5.66MIC. 
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Figure A10 

Examples of the discrepancies observed in the bacterial growth patterns on 

antibiotic control dishes produced on the same day, A - between replicated 

dishes, and B - between the two different control conditions of the same antibiotic 

(V1C2 and C1V2 being expected to provide a similar gradient of antibiotic inside the 

soft agar, allowing a similar bacterial growth pattern). 
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Figure A11 

For low doses of antibiotics, the MRSA252 growth patterns on the combination 

“layer dishes” vary and do not evidence any type of interaction between 

vancomycin and rifampicin. Using 4.6-times the Minimum Inhibitory Concentration 

(MIC) for vancomycin and 2.76-times the MIC for rifampicin, the antibiotic 

concentrations along the streaks are expressed as drug concentration delta factor or 

relative drug fraction θ (percentage of rifampicin / percentage of vancomycin) and the 

bacterial growth on five points of the streaks (θ = 0/100, = 25/75, = 50/50, = 75/25 and 

= 100/0) is in arbitrary (arb.) unit (0 stands for inhibition and 1 for growth). The dish 

“V1R2 day 1” (black) was produced on the same day as “R1V2 day 1” (light grey), and 

the dish “V1R2 day 2” was produced on the next day, using the same protocol – the 

same growth pattern was expected. Data represents the streaks from all replicates of 

the dishes (V1R2 or R1V2) produced on said-days. 
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A.2.4. Bacterial culture using Etests 

 

 

Figure A12 

 

Examples of differences in the observed antimicrobial susceptibility testing 

determination of the Minimum Inhibitory Concentration (MIC) of antibiotics used 

in monotherapy, using Etests for rifampicin (A and B) and vancomycin (C and D) on 

different days, on both LB (A and C) and MH (B and D) agar plates previously streaked 

with MRSA252. For rifampicin, the determined MICs were read here as: (LB) 0.003, 

0.012, (MH) 0.004 and 0.008 µg/mL. For vancomycin, the determined MICs were read 

as: (LB) 4, 0.038, (MH) 0.038 and 3 µg/mL. LB stands for Luria Bertani and MH for 

Muller-Hinton. 
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Figure A13 

 

Example of two Mueller Hinton-agar plates streaked, on the same day, with 

MRSA252 before the application of Etests for the combination of vancomycin 

(at 2 µg/mL) and rifampicin (at 0.004 µg/mL), with vancomycin being applied first 

(A) or rifampicin being applied first (B). The determined Minimum Inhibitory 

Concentrations for both antibiotics used in combination were read here as: (A) 1 µg/mL 

for vancomycin and 0.004µg/mL for rifampicin, and (B) 1µg/mL for vancomycin and 

0.003µg/mL for rifampicin. 

 

 

 

 

Figure A14 

Example of a Luria Bertani-agar plate streaked with MRSA252 before the 

application of the combination of two vancomycin strips (at 0.75µg/mL). The 

determined Minimum Inhibitory Concentrations for this combination was read as 

0.3µg/mL, and the Fractional Inhibitory Concentration Index (FICI) data was calculated 

as 1.01µg/mL, associating this combination to an indifference. 
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Computing FICI: 

 

FICI data is provided in the main chapters as the sum of ratios of the Minimum 

Inhibitory Concentration (MIC) of the combination of Antibiotics A and B divided by the 

MIC of the antibiotic A (or B) monotherapy, using previous day monotherapy MIC data 

(as in Clinical Diagnostic laboratories). Contrarily to this “method 1”, we could consider 

another way to calculate FICI: using the same day monotherapy MIC data (method 2). 

It is particularly important given the daily variability of the MICs (Figure 3.23). 

 

Table A1 shows the differences in FICI data between both methods, using the MIC 

data from Tables 3.5 and 3.7. The FICI were variating with MICs in monotherapy, to 

the point that 3 experiments (in bold) out of 13 had their antibiotic interpretation 

changed: a “real” combination with rifampicin on top (on MH-agar) and a double 

vancomycin combination (on LB-agar) were associated either to indifference (method 

1) or synergy (method 2), depending on the selected monotherapy MIC data. And, 

likewise, a double vancomycin combination (on MH-agar) was associated to either 

indifference (method 1) or antagonism (method 2). 

 



 

Experiments 

FICI results, depending on the experiment (A-D) and the 

method (1-2) 

A B C D 

1 2 1 2 1 2 1 2 

On 

MH-

agar 

plates 

Vancomycin 

on 

rifampicin 

0.83 2 NA 

Rifampicin 

on 

vancomycin 

1.16 1.75 1.25 0.5 0.58 1.56 1.26 0.68 

On 

LB-

agar 

plates 

Double 

vancomycin 

combination 

1.17 0.44 NA NA 0.84 1.66 NA 

Double 

rifampicin 

combination 

NA 2 0.75 NA 

On 

MH-

agar 

plates 

Double 

vancomycin 

combination 

NA 1.16 4.6 1.55 1.32 

Double 

rifampicin 

combination 

0.58 1.67 NA 1.75 0.58 

Table A1 

 

Examples of several experiment Fractional Inhibitory Concentration Index (FICI) 

results from antimicrobial susceptibility testing using Etest combinations of two 

- different or not - antibiotics, on Luria Bertani (LB) and Mueller-Hinton (MH) agar 

plates streaked with MRSA252. Two methods to calculate FICI were used: “1” 

selects for the monotherapy MIC data from the previous day, “2” for those from the 

same day. These experiments were conducted during the same couple of weeks using 

the same stock material to prepare the media. FICI ≤ 0.5 is correlated to a synergy of 

both drugs against the microorganism, 0.5 > FICI > 4.0 to indifference and FICI ≥ 4.0 

to antagonism. NA indicates an absence of validated experimental condition; no MIC 

was retrieved and therefore no FICI could be calculated. Bold shows experiments in 

which the two methods provide different interpretations. 
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APPENDIX B - Chapter 4 - In silico investigation of the 

potential impact of the most common variants on the 

CYP3A4 gene expression or enzyme activity. 

 

B.1. Materials and Methods 

B.1.1. Sequences 

Gene / Transcript 

variant 
Sequence reference 

Sequence 

length (bp) 
Link 

CYP3A4 gene NG_008421.1 (GenBank) 

 

or 

 

Genomic Sequence 

(chr7:99756960-99784188) 

(UCSC) 

34,205 FASTA 

or 

FASTA 

CYP3A4 transcript 

variant 1 (mRNA) 

NM_017460.5 

(NCBI Reference Sequence) 

2,792 FASTA 

CYP3A4 transcript 

variant 2 (mRNA) 

NM_001202855.2 

(NCBI Reference Sequence) 

2,789 FASTA 

Table B1 

Detail of the CYP3A4 sequences used in this study. mRNA stands for messenger 

RNA and bp for base pair. 

 

 

 

 

https://www.ncbi.nlm.nih.gov/nuccore/NG_008421.1?report=fasta
https://genome.ucsc.edu/cgi-bin/hgc?hgsid=689590151_l1Dn5cgJMyOJ7SqM7J8gczveoN4F&g=htcDnaNearGene&i=uc064fwx.1&c=chr7&l=99756959&r=99784188&o=knownGene&boolshad.hgSeq.promoter=0&hgSeq.promoterSize=1000&hgSeq.utrExon5=on&boolshad.hgSeq.utrExon5=0&hgSeq.cdsExon=on&boolshad.hgSeq.cdsExon=0&hgSeq.utrExon3=on&boolshad.hgSeq.utrExon3=0&hgSeq.intron=on&boolshad.hgSeq.intron=0&boolshad.hgSeq.downstream=0&hgSeq.downstreamSize=1000&hgSeq.granularity=gene&hgSeq.padding5=0&hgSeq.padding3=0&boolshad.hgSeq.splitCDSUTR=0&hgSeq.casing=exon&boolshad.hgSeq.maskRepeats=0&hgSeq.repMasking=lower&submit=submit
https://www.ncbi.nlm.nih.gov/nuccore/NM_017460.5?report=fasta
https://www.ncbi.nlm.nih.gov/nuccore/NM_001202855.2?report=fasta
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B.1.2. Identification of the CYP3A4 variants of interest 

The UCSC Genome Browser was used to identify the most “common” CYP3A4 

variants. “Common SNPs (150)” under the “Variations” tab allowed to display only 

those associated to a world Minor Allele Frequency of 1%. 

 

To select only the SNPs in i) exons, or ii) intronic and in vicinity (at maximum 100 

nucleotides) of the closest exon boundary, the locus of all “common” genetic variants 

was accessed (by clicking on the SNP), recorded and compared to the exon boundary 

loci. For example, the intronic rs2687107 (chr7:99,774,418-99,774,418) sits in-

between exon 3 (closest boundary at: chr7:99,778,028) and exon 4 (closest boundary 

at: chr7:99,772,684), yet it was not considered in the vicinity of them. 

 

 

 

 

 

B.1.3. In silico searches to predict the potential effect of the CYP3A4 variants 

Default parameters were used for the database searches, as advised by their manuals 

and as performed in the literature. Pre-set selections and parameters were kept, as 

follow: 

RegRNA 2.0: Transfac TFBS in human (score ≥ 0), miRNA Target Sites in human 

(score ≥ 170 and free-energy ≤ -25). 

Poly-miRTS: minimum conservation of 2. 

Human Splice Finder 3.1: MaxEnt (with a threshold of 3), ESE Finder matrices (Table 

B2), ESE matrices (threshold of 59.245 for 9G8 and 75.964 for Tra2- β), silencer motifs 

from Sironi et al. (threshold of 60), hnRNP matrixe (threshold of 65.476 for hnRNP 

A1), etc. 
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 HSF scale ESE Finder scale 

ESE Finder - SF2/ASF 72.98 1.956 

ESE Finder - SF2/ASF (IgM - BRCA1) 70.51 1.867 

ESE Finder - SC35 75.05 2.383 

ESE Finder - SRp40 78.08 2.67 

ESE Finder - SRp55 73.86 2.676 

Table B2 

Thresholds associated to the enhancers in ESE Finder 3.0, directly or through 

Human Splicing Finder 3.1. 

 

Fruit Fly: minimum score of 0.4 for both types of splice sites. 

ESE Finder 3.0: SR proteins (Table B2), Branch Sites (threshold of 0), human 5’- splice 

sites (threshold of 6.67) and human 3’- splice site (threshold of 6.632). 

SpliceAid 2: all available tissues were tested. 

mfold Web Server: conformation at 37°C, in a concentration of sodium cation of 1.0M, 

in absence of magnesium cation. 
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B.2. Results 

B.2.1. Identification of the most common and potentially altering CYP3A4 

variants 

 

 

 

Figure B1 

Distribution of all exonic Single Nucleotide Polymorphisms (SNPs) along the 

CYP3A4 gene. All exonic CYP3A4 SNPs are visualised from the 5’-Untranslated 

Region (UTR) to the 3’-UTR (both in white). The number of translated exonic SNPs 

are provided above the gene drawing, the position of the number indicating on which 

exon they are located. Similarly, the number of untranslated exonic SNPs are provided 

below the gene drawing, the position of the number indicating on which untranslated 

exon they are located. As 3,100 variants were counted on db150 and 439 exonic 

variants are presented here, the number of intronic CYP3A4 SNPs and unreferenced 

variants is of 2,611. Black vertical boxes represent the exons, black lines the introns. 
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In silico prediction of the effect of the eight CYP3A4 SNPs of interest 

 

Figure B2 

Conformation changes between the major and the minor variants of CYP3A4 

rs28988603, rs28988604 and rs28988606 at 37°C. AB- DNA (A) and RNA (B) folding 

conformation change between the major (left) and the minor variant (right) of 

rs28988603. C- RNA folding conformation change between the major (left) and the 

minor variant (right) of rs28988604. No DNA conformation change for rs28988604. 

DE- DNA (D) and RNA (E) folding conformation changes between the major (left), the 

minor variant T (middle) and the minor variant G (right) of rs28988606. Conformations 

retrieved from mfold. 
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B.2.2. Distribution of the genotypes for the eight variants of interest in the 

1000Genome Project 

 

rs2896939

1 

A > - 

rs2837176

3 

T > A 

rs2898860

4 

G > A 

rs2898860

6 

G > C or T 

rs2898860

3 

A > C 

rs1272162

0 

A > G 

rs224248

0 

T > C 

rs268711

6 

C > A 

# % 

-|- T|T A|A C|C C|C A|A T|T A|C 1 0.04 

-|- T|T A|A C|C C|C A|A T|T C|C 1 0.04 

-|- T|T A|A G|G A|A G|G T|T C|C 2 0.08 

-|- T|T A|G C|G A|C A|A T|T A|A 1 0.04 

-|- T|T A|G C|G A|C A|A T|T A|C 10 0.40 

-|- T|T A|G C|G A|C A|A T|T C|C 2 0.08 

-|- T|T A|G C|G A|C A|G T|T A|A 4 0.16 

-|- T|T A|G C|G A|C A|G T|T A|C 9 0.36 

-|- T|T A|G C|G A|C A|G T|T C|C 5 0.20 

-|- T|T A|G G|G A|A A|G T|T C|C 2 0.08 

-|- T|T A|G G|G A|A G|G C|T A|A 1 0.04 

-|- T|T A|G G|G A|A G|G C|T A|C 1 0.04 

-|- T|T A|G G|G A|A G|G T|T A|A 1 0.04 

-|- T|T A|G G|G A|A G|G T|T A|C 3 0.12 

-|- T|T A|G G|G A|A G|G T|T C|C 6 0.24 

-|- T|T G|G G|G A|A A|A T|T A|A 6 0.24 

-|- T|T G|G G|G A|A A|A T|T A|C 20 0.80 

-|- T|T G|G G|G A|A A|A T|T C|C 26 1.04 

-|- T|T G|G G|G A|A A|G T|T A|A 9 0.36 

-|- T|T G|G G|G A|A A|G T|T A|C 38 1.52 

-|- T|T G|G G|G A|A A|G T|T C|C 67 2.68 

-|- T|T G|G G|G A|A G|G C|C A|A 2 0.08 

-|- T|T G|G G|G A|A G|G C|T A|A 22 0.88 
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-|- T|T G|G G|G A|A G|G T|T A|A 93 3.71 

-|- T|T G|G G|G A|A G|G T|T A|C 29 1.16 

-|- T|T G|G G|G A|A G|G T|T C|C 38 1.52 

-|A A|T A|G C|G A|C A|G C|T A|A 1 0.04 

-|A A|T G|G G|G A|A A|G C|T A|C 3 0.12 

-|A A|T G|G G|G A|A G|G C|T A|A 14 0.56 

-|A T|T A|G C|G A|C A|G C|T A|A 3 0.12 

-|A T|T A|G C|G A|C A|G C|T A|C 4 0.16 

-|A T|T A|G C|G A|C A|G C|T C|C 1 0.04 

-|A T|T A|G C|G A|C A|G T|T A|A 1 0.04 

-|A T|T A|G C|G A|C A|G T|T A|C 7 0.28 

-|A T|T A|G C|G A|C A|G T|T C|C 7 0.28 

-|A T|T A|G C|G A|C G|G T|T A|C 1 0.04 

-|A T|T A|G G|G A|A A|G T|T A|A 1 0.04 

-|A T|T A|G G|G A|A G|G C|C A|A 19 0.76 

-|A T|T A|G G|G A|A G|G C|C A|C 1 0.04 

-|A T|T A|G G|G A|A G|G C|T A|A 9 0.36 

-|A T|T A|G G|G A|A G|G C|T A|C 8 0.32 

-|A T|T A|G G|G A|A G|G C|T C|C 1 0.04 

-|A T|T A|G G|G A|A G|G T|T A|C 2 0.08 

-|A T|T A|G G|G A|A G|G T|T C|C 7 0.28 

-|A T|T G|G G|G A|A A|G C|T A|A 14 0.56 

-|A T|T G|G G|G A|A A|G C|T A|C 50 2.00 

-|A T|T G|G G|G A|A A|G C|T C|C 20 0.80 

-|A T|T G|G G|G A|A A|G T|T A|A 5 0.20 

-|A T|T G|G G|G A|A A|G T|T A|C 25 1.00 

-|A T|T G|G G|G A|A A|G T|T C|C 61 2.44 
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-|A T|T G|G G|G A|A G|G C|C A|A 51 2.04 

-|A T|T G|G G|G A|A G|G C|T A|A 
43

6 

17.4

1 

-|A T|T G|G G|G A|A G|G C|T A|C 70 2.80 

-|A T|T G|G G|G A|A G|G C|T C|C 22 0.88 

-|A T|T G|G G|G A|A G|G T|T A|A 23 0.92 

-|A T|T G|G G|G A|A G|G T|T A|C 36 1.44 

-|A T|T G|G G|G A|A G|G T|T C|C 56 2.24 

A|A A|A G|G G|G A|A G|G C|C A|A 1 0.04 

A|A A|T G|G G|G A|A G|G C|C A|A 36 1.44 

A|A A|T G|G G|G A|A G|G C|T A|A 1 0.04 

A|A T|T G|G A|G A|A G|G C|C A|A 2 0.08 

A|A T|T G|G G|G A|A G|G C|C A|A 
91

9 

36.7

0 

A|A T|T G|G G|G A|A G|G C|C A|C 13 0.52 

A|A T|T G|G G|G A|A G|G C|C C|C 3 0.12 

A|A T|T G|G G|G A|A G|G C|T A|A 65 2.60 

A|A T|T G|G G|G A|A G|G C|T A|C 41 1.64 

A|A T|T G|G G|G A|A G|G C|T C|C 15 0.60 

A|A T|T G|G G|G A|A G|G T|T A|A 21 0.84 

A|A T|T G|G G|G A|A G|G T|T A|C 11 0.44 

A|A T|T G|G G|G A|A G|G T|T C|C 18 0.72 

Table B3 

Genotypic distribution of the 2504 individuals from 1000Genome Project for 

rs28969391, rs28371763, rs28988604, rs28988606, rs28988603, rs12721620, 

rs2242480 and rs2687116. 70 different genotypes were retrieved. “A > C” indicates 

that, for the studied variant, A is the major and ancestral variant, and C is the minor 

variant. The # column indicates the number of individuals from the world 1000Genome 

Project population associated to each genotype, % the percentage of these individuals 

in the project. A stands for Adenine, C for cytosine, G for guanine and T for thymine. 
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APPENDIX C - Chapter 5 - Investigating the impact of 

Carboxylesterase 2 genetic variants on host xenobiotic 

metabolism, treatment efficacy and adverse effects. 

 

 

C.1. Material and Methods 

C.1.1. Bioinformatics 

C.1.1.1. Identification of gene sequences and genetic variation 

The UCSC Genome Browser was used to identify the most “common” CYP3A4 

variants. “Common SNPs (150)” under the “Variations” tab allowed to display only 

those associated to a world Minor Allele Frequency of 1%. 

 

To measure the distance of the SNPs from consensus splice sites, the locus of all 

“common” genetic variants was accessed (by clicking on the SNP), recorded and 

compared to the exon boundary loci. For example, rs28382827 (chr16:66,943,992-

66,943,992) is located in the translated exon 13, associated to the closest exon 

boundary at chr16:66,943,839-66,943,839 – it is not considered in the vicinity of this 

boundary. 

 

C.1.1.2. In silico assessment of potential effects on RNA transcription or processing 

Default parameters were used for the database searches, as advised by their manuals 

and as performed in the literature. Pre-set selections and parameters were kept, as 

follow: 

RAVEN: “Exclude low-scoring hits option”, transcription factor (score threshold of 

80%), conservation cut-off of 0.4, minimum SNP-caused score difference of 1.5 and 

minimum specificity of 10 bits. RAVEN was searched on all available mapping for 

genes (BX538086, BC032095, AK095522, AL713761, Y09616, D50579, U60553, 

AI601196). 
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RegRNA 2.0: Transfac TFBS in human (score ≥ 0), miRNA Target Sites in human 

(score ≥ 170 and free-energy ≤ -25). 

Poly-miRTS: minimum conservation of 2. 

mfold Web Server: conformation at 37°C, in a concentration of sodium cation of 1.0M, 

in absence of magnesium cation. 
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C.1.2. Measurement of relative allelic expression 

C.1.2.1. Determination of genotypes 

 

 

Figure C1 

DNA conformation of the VIC-tagged allele (A) and the FAM-tagged allele (B) 

from the Custom Taqman Single Nucleotide Polymorphism Assay for 

rs28382828. Data from mfold. 

 



252 
 

Descriptions Sequences (5’- to 3’-) 

M13-cap 

for… 

Forward 

Primer 

TGTAAAACGACGGCCAGT 

Reverse 

Primer 

CAGGAACACGCTATGACC 

Primers 

as 

designed 

by 

Pyromark 

Forward 

Primer 

AGCCGAGGAGCCTGAAGA 

Reverse 

Primer 

GGATTAGGGGCATGAGCCAC 

Complete 

primers 

Forward 

Primer 

TGTAAAACGACGGCCAGTAGCCGAGGAGCCTGAAGA 

Reverse 

Primer 

CAGGAACACGCTATGACCGGATTAGGGGCATGAGCC

AC 

Table C1 

Primers to amplify both rs8192925 and rs28382828 by Polymerase Chain 

Reaction, selected with Pyromark Assay Design (Qiagen) and capped with a 

M13. 

 

 

C.1.2.2. Allelic imbalance assay 

Pyrosequencing allele quantification method 

Pyrosequencing allows simultaneous DNA sequencing and complementary strand 

amplification. For every incorporated nucleotide, a pyrophosphate is released, leading 

to a cascade of reactions generating light (depending on the nucleotide incorporated). 

The Pyrosequencing platform quantifies the light emission and compares it to the 

value resulting from the incorporation of the expected nucleotide. 

In a first step, a conventional Polymerase Chain Reaction (PCR) was performed on 

20ng gDNA or cDNA samples, using HotStar Taq MasterMix (Qiagen) and 10µM of 

each of the Forward and Reverse primers (Forward being 5’-biotinylated and both 

being provided with a M13-cap). After running in the thermal cycler (Table C2), the 

PCR product was quantified on SYTO60 stained-agarose gel using the LI-COR 

scanner to validate PCR efficiency. 
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 Time Temperature 

Step 1 15min 95°C 

Step 2 30sec 94°C (denaturation) 

Step 3 1min 60°C (annealing) 

Step 4 1min 72°C (synthesis) 

Step 5 Repeat steps 2-4 29 times 

Step 6 10min 73°C 

Table C2 

Cycles and parameters for the conventional PCR for pyrosequencing. Min and 

sec stand for minutes and seconds, respectively. 

 

8-38µL PCR products were immobilised with streptavidin beads in Binding Buffer, in 

the wells of 96-wells plates on a shaker for 10min. The Pyrosequencing Vacuum Prep 

Tool on the PyroMark station was used to pick the samples up. To separate DNA 

strands and release the samples into the PyroMark Q24 plate, the filter probes met 

successively 70% ethanol (EtOH), denaturing sodium hydroxide (NaOH) and 1x Wash 

Buffer. The samples were finally loaded in a PyroMark Q24 plate filled with 

Sequencing primer and Annealing Buffer. The plate was heated at 80°C for 90 sec 

and placed in the Pyrosequencer. A cartridge previously loaded with the enzyme, the 

substrate, and all four nucleotides, was placed inside the Pyrosequencer and it was 

set to dispense the nucleotides, to detect those included in the products and to record 

their accordance with the expected sequence (major variant). Divergences were 

reported by the accompanying software as percentages of sequences harbouring the 

major variant or not (from 0% - absence of the expected nucleotide, to 100% - only the 

expected nucleotide was introduced in the product at this position). 
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C.1.3. Clinical study 

Sample donation and baseline data collection 

 

Body Mass Index (BMI) was collected from recruited patients, or their height and 

weight as: 

𝐵𝑀𝐼 =  
𝑤𝑒𝑖𝑔ℎ𝑡 (𝑘𝑔)

ℎ𝑒𝑖𝑔ℎ𝑡 (𝑚) × ℎ𝑒𝑖𝑔ℎ𝑡 (𝑚)
. 

According to the National Health Service (NHS, https://www.nhs.uk/live-well/healthy-

weight/bmi-calculator/ ), BMI < 18.5 is associated to underweight patients, 18.5 ≤ BMI 

≤ 24.9 to patients with an healthy weight, 25 ≤ BMI < 30 for overweight patients, and  

BMI > 30 for obese patients. 

 

Baseline liver function test results were provided and included: ALanine Transaminase 

(ALT), Gamma-GlutamylTransferase (GGTP), BILirubin (BIL), ALkanine Phosphatase 

(ALP), ALBumin (ALB). Elevated levels of ALT, GGTP, BIL and ALP indicate a 

potential liver or bile duct damage. Higher-than-normal BIL are also indicative of a 

potential anaemia. Similarly, lower-than-normal levels of ALB are associated to 

potential liver damage. Normal ranges for these results are provided in Table C3362. 

 

 

 

 

 

 

 

 

 

https://www.nhs.uk/live-well/healthy-weight/bmi-calculator/
https://www.nhs.uk/live-well/healthy-weight/bmi-calculator/
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Normal results 

range 

Minimum normal 

value 

Maximum normal 

value 
Standard unit 

ALT 7 55 units per liter 

GGTP 8 61 units per liter 

BIL 

0.1 

 

1.71 

1.2 

 

20.5 

milligram per 

decilitre 

µmol per liter 

ALP 40 129 units per liter 

ALB 35 50 grams per liter 

Table C3 

Values of the normal ranges associated to the baseline liver function test 

results, with ALanine Transaminase (ALT), Gamma-GlutamylTransferase 

(GGTP), BILirubin (BIL), ALkanine Phosphatase (ALP), ALBumin (ALB). 

 

C.2. Results 

C.2.1. In silico predictions 

C.2.1.1. Selecting bioinformatics-ly the CES2 genetic variants of interest 

 

Figure C2 

Distribution of the 18 “common” Single Nucleotide Polymorphisms on the CES2 

gene (visualised from 5’- to 3’-UnTranslated Region). Drawing retrieved from 

LDLink. 
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Variant 

MAF 

(minor 

allele) 

Allele count 

Localisation 

on CES2 World Africa South 

Asia 

East 

Asia 

America Europe 

rs8045523 0.37 

(A) 

G: 

0.626 

(3137) 

A: 0.374 

(1871) 

 

G: 

0.222 

(293) 

A: 0.778 

(1029) 

 

G: 

0.781 

(764) 

A: 

0.219 

(214) 

 

G: 

0.730 

(736) 

A: 

0.270 

(272) 

 

G: 

0.733 

(509) 

A: 

0.267 

(185) 

 

G: 

0.830 

(835) 

A: 

0.170 

(171) 

 

Intron 3 

rs2241409 0.33 

(A) 

G: 

0.673 

(3369) 

A: 0.327 

(1639) 

 

G: 

0.396 

(523) 

A: 0.604 

(799) 

 

G: 

0.782 

(765) 

A: 

0.218 

(213) 

 

G: 

0.730 

(736) 

A: 

0.270 

(272) 

 

G: 

0.749 

(520) 

A: 

0.251 

(174) 

 

G: 

0.820 

(825) 

A: 

0.180 

(181) 

 

Intron 10 

rs4783745 0.32 

(G) 

A: 0.676 

(3384) 

G: 

0.324 

(1624) 

 

A: 0.396 

(523) 

G: 

0.604 

(799) 
 

A: 

0.781 

(764) 

G: 

0.219 

(214) 

 

 

A: 

0.730 

(736) 

G: 

0.270 

(272) 
 

A: 

0.754 

(523) 

G: 

0.246 

(171) 

 

A: 

0.833 

(838) 

G: 

0.167 

(168) 

 

Intron 1 

rs28382828 0.25 

(AGAA) 

-: 0.749 

(3752) 

AGAA: 

0.251 

(1256) 

 

 

-: 0.464 

(614) 

AGAA: 

0.536 

(708) 
 

-: 

0.945 

(924) 

AGAA: 

0.055 

(54) 

 

-: 

0.777 

(783) 

AGAA: 

0.223 

(225) 

 

-: 

0.784 

(544) 

AGAA: 

0.216 

(150) 

 

-: 

0.882 

(887) 

AGAA: 

0.118 

(119) 

 

Exon 12 

(in 3’-UTR) 

rs11075646 0.13 

(G) 

C: 0.867 

(4341) 

G: 

0.133 

(667) 

 

C: 0.685 

(906) 

G: 

0.315 

(416) 

 

 

C: 

0.926 

(906) 

G: 

0.074 

(72) 
 

C: 

0.960 

(968) 

G: 

0.040 

(40) 

 

C: 

0.935 

(649) 

G: 

0.065 

(45) 

 

C: 

0.907 

(912) 

G: 

0.093 

(94) 

 

Exon 1 

(in 5’-UTR) 

rs28382816 0.10 

(C) 

T: 0.904 

(4528) 

T: 0.740 

(978) 

T: 

0.895 

(875) 

T: 

1.000 

(1008) 

T: 

0.978 

(679) 

T: 

0.982 

(988) 

Intron 2 
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C: 0.096 

(480) 

 

C: 0.260 

(344) 

 

C: 

0.105 

(103) 

 

C: 

0.022 

(15) 

 

C: 

0.018 

(18) 

 

rs8192925 0.09 

(G) 

A: 0.907 

(4542) 

G: 

0.093 

(466) 

 

A: 0.983 

(1299) 

G: 

0.017 

(23) 

 

A: 

0.960 

(939) 

G: 

0.040 

(39) 

 

A: 

0.763 

(769) 

G: 

0.237 

(239) 

 

A: 

0.843 

(585) 

G: 

0.157 

(109) 

 

A: 

0.944 

(950) 

G: 

0.056 

(56) 

 

Exon 12 

(in 3’-UTR) 

rs28382825 0.08 

(A) 

G: 

0.924 

(4625) 

A: 0.076 

(383) 

 

G: 

0.811 

(1072) 

A: 0.189 

(250) 

 

G: 

0.945 

(924) 

A: 

0.055 

(54) 

 

G: 

0.960 

(968) 

A: 

0.040 

(40) 

 

G: 

0.978 

(679) 

A: 

0.022 

(15) 

 

G: 

0.976 

(982) 

A: 

0.024 

(24) 

 

Intron 10 

rs2303218 0.06 

(C) 

T: 0.940 

(4706) 

C: 0.060 

(302) 

 

 

T: 0.999 

(1321) 

C: 0.001 

(1) 
 

T: 

0.993 

(971) 

C: 

0.007 

(7) 

 

 

T: 

0.776 

(782) 

C: 

0.224 

(226) 
 

T: 

0.912 

(633) 

C: 

0.088 

(61) 

 

T: 

0.993 

(999) 

C: 

0.007 

(7) 

 

Intron 2 

rs11568311 0.05 

(A) 

G: 

0.950 

(4758) 

A: 0.050 

(250) 

G: 

0.897 

(1186) 

A: 0.103 

(136) 

 

G: 

0.983 

(961) 

A: 

0.017 

(17) 

 

G: 

1.000 

(1008) 

G: 

0.961 

(667) 

A: 

0.039 

(27) 

 

G: 

0.930 

(936) 

A: 

0.070 

(70 

 

Intron 1 

rs11863141 0.04 

(A) 

G: 

0.956 

(4790) 

A: 0.044 

(218) 

 

G: 

0.843 

(1115) 

A: 0.157 

(207) 

 
G: 

1.000 

(978) 
 

 
G: 

1.000 

(1008) 
 

G: 

0.984 

(683) 

A: 

0.016 

(11) 

 

 
G: 

1.000 

(1006) 
 

Exon 1 

(transcribed 

part, 

synonymous 

amino acid: 

CTG > CTA 

coding for a 

leucine) 
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rs28382829 0.04 

(A) 

G: 

0.963 

(4821) 

A: 0.037 

(187) 

 

G: 

0.957 

(1265) 

A: 0.043 

(57) 

 

G: 

0.896 

(876) 

A: 

0.104 

(102) 

 

G: 

1.000 

(1008) 

G: 

0.987 

(685) 

A: 

0.013 

(9) 

 

G: 

0.981 

(987) 

A: 

0.019 

(19) 

 

Exon 12 

(in 3’-UTR) 

rs2241410 0.03 

(A) 

C: 0.972 

(4869) 

A: 0.028 

(139) 

C: 1.000 

(1322) 

C: 

0.997 

(975) 

A: 

0.003 

(3) 

 

C: 

0.907 

(914) 

A: 

0.093 

(94) 

 

C: 

0.947 

(657) 

A: 

0.053 

(37) 

 

C: 

0.995 

(1001) 

A: 

0.005 

(5) 

 

Intron 2 

rs28382827 0.03 (T) 

 

C: 

0.966 

(4837) 

T: 0.034 

(171) 
 

C: 0.967 

(1278) 

T: 0.033 

(44) 

 

C: 

0.896 

(876) 

T: 

0.104 

(102) 

 

C: 

1.000 

(1008) 

C: 

0.990 

(687) 

T: 

0.010 

(7) 

 

C: 

0.982 

(988) 

T: 

0.018 

(18) 

 

Exon 12 

(transcribed 

part, 

synonymous 

amino acid: 

CTC > CTT 

coding for a 

leucine) 

rs11568314 0.02 (T) A: 0.984 

(4927) 

T: 0.016 

(81) 

 

 

A: 0.996 

(1317) 

T: 0.004 

(5) 
 

A: 

0.989 

(967) 

T: 

0.011 

(11) 

 

 
A: 

1.000 

(1008) 
 

A: 

0.978 

(679) 

T: 

0.022 

(15) 

 

A: 

0.950 

(956) 

T: 

0.050 

(50) 

 

Intron 1 

rs28382821 0.02 (T) C: 0.984 

(4926) 

T: 0.016 

(82) 

C: 0.939 

(1241) 

T: 0.061 

(81) 

 

C: 

1.000 

(978) 

C: 

1.000 

(1008) 

C: 

0.999 

(693) 

T: 

0.001 

(1) 

 

C: 

1.000 

(1006) 

Intron 5 

rs28382814 0.01 (T) C: 0.988 

(4946) 

T: 0.012 

(62) 

C: 0.998 

(1319) 

T: 0.002 

(3) 

 

C: 

0.984 

(962) 

T: 

0.016 

(16) 

C: 

1.000 

(1008) 

C: 

0.991 

(688) 

T: 

0.009 

(6) 

C: 

0.963 

(969) 

T: 

0.037 

(37) 

Intron 1 
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rs77295255 0.01 (T) C: 0.987 

(4944) 

T: 0.013 

(64) 

 

C: 0.952 

(1258) 

T: 0.048 

(64) 

 

C: 

1.000 

(978) 

C: 

1.000 

(1008) 

C: 

1.000 

(694) 

C: 

1.000 

(1006) 

Intron 10 

Table C4 

Minor Allele Frequencies (MAF), allele count in the world and in different ethnic 

groups (Africa, East Asia, South Asia, America and Europe) and localisation on 

the gene of the 18 most common CES2 Single Nucloetide Polymorphisms (found 

in at least 1% of the world population). Data retrieved from the 1000 Genome 

Project database and UCSC Genome Browser. UTR stands for UnTranslated Region, 

A for Adenine, C for cytosine, G for guanine and T for thymine. 

 

C.2.1.2. Investigating the potential impact of rs11075646, rs8192925 and rs28382828 

with bioinformatics 

 

 

Figure C3 

Concordant sequences between the nucleotides neighbouring rs11075646 

(highlighted in red) and the motif associated to the human CDP (Cux1) 

transcription factor (underlined), as reported in Jaspar. 
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Figure C4 

Bioinformatics evidences about the co-localisation of rs11075646 with the 

CDP_CR1 (and CDP_CR3 HD – data not shown) transcription factor. Data 

retrieved from RegRNA 2.0. A showing where the CDP_CR1 can localise on the CES2 

gene, B showing the RNAfold predicted structure (in yellow) and its flanking region. 

 

 

 rs11075646 rs8192925 rs28382828 

A
rc

h
iv

e
s
 n

a
m

e
s

 

rs60326948 rs58407178 rs139332152 

rs16957087 16:g.66977997A>G rs145299747 

16:g.66969176C>G 
ENST00000566869.1:n.147+

723A>G 
rs66487958 

ENST00000317091.4:c.-

171C>G 

ENST00000317091.4:c.*69A

>G 
rs35735195 

ENST00000566182.1:c.-

171C>G 

ENST00000568470.1:c.*183

7A>G 

16:g.66978228_66978229ins

AGAA 

ENST00000568470.1:c.-

171C>G 

ENST00000417689.1:c.*69A

>G 

ENST00000566869.1:n.147+

954_147+955insAGAA 

ENST00000561697.1:c.-

85+360C>G 
 

ENST00000317091.4:c.*300

_*301insAGAA 

ENST00000417689.1:c.-

171C>G 
 

ENST00000417689.1:c.*300

_*301insAGAA 

Table C5 

Names previously given to rs11075646, rs8192925 and rs28382828. 
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C.2.2. Measurement of relative allelic expression for rs11075646, rs8192925 and 

rs28382828 

C.2.2.1. Finding heterozygous samples for the three variants of interest in the Exeter 

10,000 cohort 

 

Figures C5 and C6 (next pages) – Matrixes of pairwise linkage disequilibrium 

statistics in the world population between the 18 “common” CES2 Single 

Nucleotide Polymorphisms: R2 followed by D’. Red shows the correlation in R2 or 

D’. Matrix retrieved from the LDLink tool, based on the 1000Genome Project database. 
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Figure C5 

 



263 
 

 

Figure C6 
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Figure C7 

Matrix of pairwise linkage disequilibrium statistics in the world population 

between rs11075646, rs8192925 and rs28382828. Red shows the correlation in D’, 

the value is provided. Matrix retrieved from the LDLink tool, based on the 

1000Genome Project database. 
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C.2.2.2. Investigating the effect of rs11075646, rs8192925 and rs28382828 on CES2 

expression 

 

 

Figure C8 

rs28382828 allelic imbalance assay statistics. Top – Allelic balance for rs28382828 

in samples heterozygous for both rs11075646 and rs28382828 (and homozygous for 

the major variant of rs8192925). Levene’s test for equality of variances, sig. 

(significance) = 0.214, therefore variances are assumed unequal, therefore an 

independent samples t-test was performed, associated to a p-value = 0.101. Bottom 

- Allelic balance for rs28382828 in samples heterozygous for both rs8192925 and 

rs28382828 (and homozygous for the major variant of rs11075646). Levene’s test for 

equality of variances, sig. = 0.032, therefore so variances are assumed equal, 

therefore an independent samples t-test was performed, associated to a p-value = 

0.601. 

 

 

Figure C9 

rs11075646 allelic imbalance assay statistics. Allelic imbalance for rs11075646 in 

samples heterozygous for rs11075646. Levene’s test for equality of variances, sig. 

(significance) ≤ 0.001, therefore variances are assumed equal, and an independent 

samples t-test was performed, associated to a p-value ≤ 0.001.  
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Figure C10 

rs8192925 allelic imbalance assay statistics. Allelic imbalance for rs8192925 in 

samples heterozygous for rs8192925. Levene’s test for equality of variances, sig. 

(significance) = 0.770, therefore variances are assumed unequal, and an independent 

samples t-test was performed, associated to a p-value ≤ 0.001.  
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C.2.3. Clinical study of rs11075646 and rs8192925 

Preliminary clinical data 

Concomitant treatments administrated to patients from both cohorts 

adcal d3 betnorate fortonir nebivolol rituximab 

infusion 

Adoport bisoprolol fostair nororapiol romiticline 

adoport erming bisoprolol 

fumarate 

fultium d3 nutritional 

supplements 

salbutamol 

alfacalciodol calcidien d3 furosemide oestrogen 

pessary 

sodium 

bicarbonate 

Amikacin carbocisteine gliclazide omeprazole spiriva 

respimat 

amitriptyline clofazimine insulatorol oxybutamin 

hydroclorin 

tazocin 

amplodopine colomycin 

nebulizer 

inhaled 

ciclesonide 

paracetamol tramadol 

Apixaban coracten inhaled 

salmeterol 

phospate-

somdoz 

ventolin 

arames 

surrechic 

cotrimoxazole insuman basal prednisolone verapamil 

Aspirin denosumab isoniazid prograf zopiclone 

Atemolol docusate 

sodium 

isosorbide pyrazinamide  

atorvastatin doxazosin lausoprasole pyridoxine  

Autodipine ethambutol lencanidipre ramitidine  

azithromycin fluorexine mebeverine rampiril  

beclometasone folic acid metformin 

hydrochloriol 

ranitidine  

Table C6 

List of concomitant treatments administrated to tuberculosis or kidney 

transplant patients. The treatments in bold are the ones delivered to many of the 

patients from the same cohort. 
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Concomitant diseases and symptoms experienced 

by patients from both cohort 

Rifampicin cohort (tuberculosis) MMF cohort (kidney transplant) 

Acid fast bacilli positive Alport syndrome 

Asthma 

Ankylosing spondylitis with 

NSAIDS 

Basal cell carcinomas Arthropathy 

Bronchiectasis BK virus nephropathy 

Cerebral vasculitis Coronary artery disease 

Infarct Deep vein thrombosis 

Lymphadenopathy Fenestration of lymphocele 

Mycobacterium avian intracellular infection 

Forearm vascularized composite 

allotransplantation 

Mycobacterium avium infection Gut 

P-ANCA positive vasculitis Haemodialysis 

Previous hysterectomy with secondary bowel 

perforation and colostomy Hemopoiesis 

Pseudomonas infection Hypertension 

Superimposed lower respiratory tract infection IgA neuropathy 

Vasculitis 

Infected collection around 

transplant pole 

XXX chromosome syndrome Liver unrelated transplant 

 Neck lipoma 

 Nephrectomy 

 

New onset diabetes mellitus after 

transplantation 

 

Non-ST segment elevation 

myocardial infarction 

 Obstructive sleep apnea 

 Pancreas transplant 

 Papilledema 



269 
 

 Peritoneal dialysis 

 Psoriasis 

 Reiter's disease 

 Supraventricular tachycardia 

 Type I diabetis 

 Type II diabetis 

 Uretic stone 

Table C7 

List of past and concomitant diseases and symptoms experienced by 

tuberculosis (left) or kidney transplant (right) patients. MMF stands for 

Mycophenolate Mofetil. 
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