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The Radiation Efficiency of a 
Small Loop Antenna 
For cave radio applications, we are not normally interested in the radiation from a 
loop antenna because the distance over which we are working is small (relative to a 
wavelength) and so only near-field effects need to be considered. However, it is still 
interesting to consider the radiation field, and to express the radiation efficiency in 
terms of the specific aperture where, just as for near-field operation, the number of 
turns on the antenna does not affect the result. David Gibson explains radiation 
resistance, summarises the equations and shows how the skin effect in the wire and 
the proximity effect between turns of the antenna winding can be taken into account. 

The main purpose of this note was 
originally to prepare the ground for any 
reader who wished to consult papers on 
the proximity effect, e.g. [Smith, 1972a; b], 
that discuss it alongside radiation efficien-
cy. One difficulty with those papers is in 
understanding the different notation in 
use, which this note hoped to clarify. How-
ever, I have now decided that, for cave 
radio purposes, a detailed study of the 
proximity effect is probably not required. 

Introduction and Background: 
Maxwell’s Equations 

The equations of electrostatics and 
magnetostatics allow us to describe the 
fields and forces that arise from electric 
charge and current. They tell us, for exam-
ple, that the magnetic field of an induction 
loop falls off with an inverse cube law, and 
that the magnetic field from a short wire 
falls off with a square law. The equations 
also tell us that, for a long wire, the mag-
netic field falls off with an inverse linear 
law. Thus, there is clearly much we can do 
with these laws, but the one thing they do 
not predict at all is radiation.  

In this respect, the equations are simi-
lar to Newton’s laws of motion, which do 
not, in any way, predict relativity. And, just 
as Einstein built on Newton’s work, show-
ing that very rapid motion gave rise to 
hitherto unexpected effects, so Maxwell 
built on the work of Ampère, Faraday, 
Gauss, Ørsted and others, showing that a 
rapid time variation of current gave rise to 
another hitherto unexpected effect. 

Maxwell’s equations demonstrate that 
the quasi-static near-fields are accomp-
anied by far-fields for E and H that fall off 
in an inverse linear fashion, giving rise to a 
square law for a radiation of power. 

For cave radio applications, we are not 
normally interested in the radiation from a 
loop antenna because it is so small, 
although Maxwell’s equations are necess-
ary to explain the ‘optimum frequency’ 

derivation for a cave radio system, (see 
[Gibson, 2010] §2.2.4). Radiation remains 
of interest, because it can be expressed in 
the same terminology (specific aperture) 
that we use for near-field systems. 

Radiation Resistance 
If we imagine the antenna as its 

Thévenin equivalent circuit, it is clear that 
the radiated power must be represented, 
from the point of view of the power 
source, by a resistance in which the power 
is dissipated. We call this the radiation 
resistance. Clearly, it is not a physical or 
‘ohmic’ resistance but, as far as the power 
source is concerned, it exists; and it allows 
us to easily model the system. Radiation 
resistance also plays a part in receiving 
antennas, but that is a difficult concept, 
which I will avoid discussing here. 

Given Maxwell’s equations, the radia-
tion resistance of a simple antenna is 
straightforward to calculate. We write 
down the fields produced by the current 
elements and we integrate those over a 
spherical surface that encloses the source 
at a sufficiently large distance that the 
near-field effects are played out inside it. 
This allows us to calculate the power flux 
across the surface of the sphere. Since we 
know the power P and the source current I 
the radiation resistance is simply R = P / I2. 

This procedure is covered in many 
textbooks. It can be shown that the 
radiated power of a small (relative to a 
wavelength) circular loop is1  
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If the number of turns is N and the 
area of the loop is A then, assuming the 
current is uniform along the total length of 
the wire (Nbk0 << 1), we can write the 
radiation resistance directly from (1) as  
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1  Symbols are listed at the end of this article. 

but you may see this quoted in different 
forms. We can note that… 

 
• The radiation resistance is proportional to the 

square of the number of turns. This immedi-
ately tells us that Rr is not a ‘normal’ resistance, 
which would be proportional to N, not to N2. 

• Rr is proportional to the inverse fourth power 
of frequency, so at the low frequencies we 
use for cave radio, it is practically zero. 

• For a source of zero size (A = 0) the radiation 
resistance is zero. You may find, on the Inter-
net, that Rr for an ‘infinitesimal’ dipole is fre-
quently given as 0.3 Ω. This is not true! 

Radiation Efficiency 
Although textbooks give formulas for 

radiation resistance, they do not, gener-
ally, discuss radiation efficiency. This is 
because, for normal radio applications, Rr 
is high (e.g. ≈73 Ω for a half-wave dipole) 
and it swamps the low ohmic resistance R. 
But in our case, Rr is much lower than R. 

The radiation efficiency is Rr/(R+Rr). 
But if Rr << R, as it usually is for cave radio, 
then a simpler formula, Rr/R – the radia-
tion fraction – will give a similar result. 

It is useful to express R in terms of a 
figure of merit that I call specific aperture 
Φ [Gibson, 1999], which is defined by  
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from which the ohmic resistance is just 

( )2NAR Φ=   (4) 

With the specific aperture Φ defined as  
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we can substitute (4) in (2) to get 
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The salient point is that the radiation 
fraction (and the radiation efficiency) does 
not depend on the number of turns! The 
result can be used alongside formulas for 
Q-factor and bandwidth which, likewise, 
do not depend on N when expressed in 
terms of Φ but this note is too short to give 
examples and develop the concept further. 
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Skin Effect 
In addition to assuming ‘small’ anten-

nas, (6) also assumes a uniform distribu-
tion of current across the antenna wire. In 
practice, this is not the case, due to the 
skin effect, which causes it to fall off as 
exp(–r/δ) where r is the distance from the 
surface of the wire and δ is the skin depth,  
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There is the additional assumption 
that δ << a. With this assumption, it can be 
shown that the total current is equivalent 
to a uniform current flowing in a skin of 
width δ. The cross-sectional area of the 
skin is 2πaδ so R is increased by  
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and Pr/P drops by this factor and is now  
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Multi-Turn Antennas –  
The Proximity Effect 

The proximity effect is similar in con-
cept to the skin effect – that is, a redistri-
bution of the current in the wires – but the 
proximity effect operates independently of 
the skin effect and has the effect of forcing 
the current to the outermost edges of a 
bundle of wires. We can consider two 
extreme cases – if the wires in the bundle 
are very close together then the current 
distribution is like that of a single larger 
wire and, if they are well spaced, they will 
behave like individual wires. In neither 
case is there any specific ‘proximity’ effect 
but, between the extremes, there is an 
additional effect. I described the proximity 
effect in [Gibson, 1995], referring to the 
classic Butterworth paper, to which 
[Smith, 1972a] also refers. In summary we 
can add a term to (6) to get  
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where Rp is the resistance due to the prox-
imity effect and Rs is due to the skin effect 
alone. There is the assumption that the 
current is uniform over the length of the 
wire; i.e. the length is much less than λ: 

10 <<bNk   (11) 

The million-dollar question is, of course, 
“how do we calculate Rp / Rs?”. 

Smith’s papers go into this in detail, 
but the analysis is complicated. Fortun-
ately, Figures 5 and 6, and Tables I and II in 
[Smith, 1972a] provide some answers, but 
my current thinking is that, in reality, we 
do not need to worry about the proximity 

effect, provided that we space our conduc-
tors by c/a > 2 and preferably c/a > 4, 
where c is Smith’s notation for the half-
spacing. That is, the conductors should be 
four radiuses apart. This conclusion is also 
reached by [Paul, 2009]. This spacing has 
other advantageous effects such as redu-
cing the mutual inductance [Gibson, 2019] 
and the self-capacitance. 

Why all the fuss about proximity effect 
in the past? Originally the problem was 
how to wind high-efficiency air-cored coils 
for RF applications in situations where the 
space for a winding was limited. One ques-
tion was how many turns should be 
crammed into the space. Our applications 
are slightly different, and we usually have 
the luxury of designing an antenna from 
scratch. It is therefore better to design to 
avoid both the skin and proximity effects. 

Non-Radiating Antennas 
For most cave radio antennas (10) is not 
helpful, because there is very little radia-
tion. But the net effect of (10) is to reduce 
Φ, whether there is radiation or not, to  
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Example: suppose we design a cave 
radio loop antenna. We space the turns to 
eliminate the proximity effect, and we 
calculate δ=0.3 mm with 2 mm dia. wire. 
(12) tells us that Φ will be reduced to 77% 
of the value we expected. So, using 2 mm 
wire to boost the mass of the antenna was 
possibly a counter-productive idea.  

(8) seems to suggest that there is a 
skin depth advantage if a < 2δ. This would 
be impossible and what it really indicates 
is that the formulation does not apply 
when δ << a is not true. Thus, it also indi-
cates that a < 2δ is a good design rule. 

Smith’s Analysis 
If you wish to study Smith’s results, 

you will hopefully find this introductory 
note useful. Smith does not use the con-
cept of a radiation fraction – he uses radia-
tion efficiency – so his expressions are a 
little more complicated. He also uses a 
different terminology, using “20” for 
Z0/6π, and n, β0, Rs, R0 where I use N, k0, Zs, 
Rs. Also, he does not simplify using Φ. But 
my (10) is equivalent to his (9). 

Smith uses surface resistance (a.k.a. 
surface impedance) in his formulations for 
radiation efficiency, rather than skin 
depth. The surface impedance Zs is  
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Now the skin resistance per unit length is  
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but ℓ = 2πbN and so we can write 

a
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There is no point in trying to substi-
tute that into (10) because Zs offers no 
advantage to us over δ as a way to charac-
terise the antenna – especially when we 
have already eliminated N . 

Concluding Remarks 
We have characterised the radiation 

efficiency of a loop antenna in terms of the 
specific aperture, allowing for skin depth 
in the wire and the proximity effect (10). 
However, we have asserted that a detailed 
study of proximity effect is not required – 
we just need to space the conductors by 
about two diameters. This principle 
applies to all antennas – even if non-
radiating – and it should be remembered 
that in most cases, small loop antennas do 
not radiate any appreciable power. In such 
a situation (6), (9) and (10) are clearly 
useless, but the general principles remain 
intact, with (3) and (12) applying. 
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Symbols Used in this Article 
λ Wavelength m 
σ Electrical conductivity of the wire S/m 
ρ Mass density of wire kg 
ω Angular frequency Hz 
µ Magnetic permeability of free space H/m 
δ Skin depth m 
Φ Specific aperture m2/√Ω 
A Area of loop m2 
a Radius of wire m 
b Radius of loop m 
c Half-spacing between turns m 
I Current A 
k0 Wave number, 2π/λ m–1 

ℓ Length m 
M Mass of wire in an antenna kg 
md Magnetic dipole moment, NIA Am2 

N Number of turns of wire – 
P Pr Antenna power: dissipated / radiated W 
R Ohmic resistance of antenna Ω 
Rp Rr Rs Resistance: proximity, radiation, skin Ω 
Z0 Zs Impedance: free space, surface Ω 

 


	Introduction and Background: Maxwell’s Equations
	Introduction and Background: Maxwell’s Equations
	Radiation Resistance
	Radiation Resistance
	Radiation Efficiency
	Radiation Efficiency
	Skin Effect
	Skin Effect
	Skin Effect
	Multi-Turn Antennas –  The Proximity Effect
	Multi-Turn Antennas –  The Proximity Effect
	Non-Radiating Antennas
	Non-Radiating Antennas
	Smith’s Analysis
	Smith’s Analysis
	Concluding Remarks
	Concluding Remarks
	References
	References
	Symbols Used in this Article
	Symbols Used in this Article

