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The Inductance of a Wire Hoop 
Many textbooks and webpages quote a formula for the inductance of a thin wire 
hoop, but few actually give the derivation. David Gibson had been confused by 
formulas that appeared to differ by a factor of two but has eventually decided where 
the subtle difference lies. This leads to an interesting possibility for the design of a 
wideband loop antenna with a lower Q-factor than is normally achievable.  

Occasionally, there are simple prob-
lems that one fails to get to grips with, and 
for me, this is one of them, which I have 
revisited several times, in puzzlement. 

In my PhD thesis, and for years after-
wards, I mis-quoted the formula for the 
self-inductance of a wire hoop as including 
an 8r/w term 1, without anybody noticing 
that it should be 8d/w. In CREG Journal 77 
[Gibson, 2012] I corrected that error, but 
did not spot a further mistake, concerning 
the placement of the brackets, which has 
eluded me all these years. The correct 
formula is 


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

 −µ≈ 28ln0 w

drL , with w << d (1) 

The factor of two difference between 
8d/w and 8r/w has puzzled me for a long 
while. The correct form, widely quoted 
and derived in, for example, [Ramo et al, 
1984; §4.7, p190] and [Paul, 2009; §4.1] 
uses 8d/w. But in [Clemmow, 1973; §4.4.1, 
p144] – my textbook of choice for 
electromagnetic theory – the term seemed 
to be given as 8r/w. After careful checking, 
I have now eventually decided that it is not 
a misprint – i.e. both formulas are correct! 

The subtle point I had missed is that 
Clemmow’s derivation is based on first 
obtaining the mutual inductance between 
two infinitesimally thin hoops of radius r, 
spaced by ∆r, resulting in a term of 8r/∆r. 
The next stage (which I missed, having 
interpreted 8r/∆r as 8r/w) considers the 
case where one filament is located at the 
centre of a thin wire of width 2∆r, which 
represents a uniformly-distributed current, 
whilst the other is along the inner edge of 
the wire, representing the boundary of the 
surface over which we integrate the flux 
density to calculate the inductance. This 
results in the term being 8r/a ≡ 8d/w. 

There is a bit of a conceptual difficulty 
here: why should the mutual inductance 
between two filaments a distance ∆r apart 
be the same as the self-inductance of a 
single hoop of width 2∆r? The answer is 
that the same magnetic fields arise.  

To some extent, the missing factor of 
two is not significant. Noting that ln2 ≈ 0.7, 
we can write the log term with only a 

                                                                                                               
1  The hoop’s radius is r, and d is its diameter. 

The wire’s radius is a, and w its diameter. 

small difference in the formulation as 
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We can also manipulate the term to give 
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which is a helpful simplification, meaning 
that we can re-write the inductance as  

w
drL ln0µ≈ , with w << d (2) 

Given that the traditional formula (1) 
is itself only an approximation, I am not 
sure why the above simplification is not 
more widely used. 

Mutual Inductance 
The observation about mutual induc-

tance leads to an interesting situation, 
which I described in CREGJ 77. Suppose 
we connect two concentric hoops in 
parallel (see Figure). What is the overall 
inductance? In this situation, we cannot 
treat the two hoops as filamentary – each 
has its own self-inductance – and there is a 
mutual inductance between them, given by 
using r/∆r in (1) or (2) instead of d/w. In 
simple circuit terms, we could say what is 
the inductance of two inductors, L1 and 
L2, connected in parallel, which have a 
mutual inductance of M? 

The exact solution to that problem is 
left as an exercise 2 for the reader. But the 
result is simplified by defining L = √(L1L2) 
and noting that if the two hoops are nearly 
the same size (i.e. ∆r/r << 1) then their 
self-inductances approximate to L, giving  

( )MLLtotal +≈ 2
1   (3) 

Thus, with no coupling (i.e. M = 0), the 
inductance is halved, and with full 
coupling (i.e. M = L) it is unchanged from L.  

This provides an interesting method of 
reducing the inductance of a hoop. We 
know from the formula for self-inductance 
that one method is simply to increase the 
width of the wire. But another method 
now appears to be to connect two concen-
tric hoops in parallel, a distance ∆r apart. 
We can substitute (3) in (2) using r/∆r to 
obtain M, to give 

                                                                                                               
2 Unless I missed a trick, it is surprisingly tedi-

ous. The answer is (L1L2–M2)/(L1+L2–2M) 

( )rarrLtotal ∆µ≈ ln0  (4) 

where, notably, the effective width of the 
hoop is the geometric mean of a and ∆r. 

We can analyse a similar abstract 
circuit with L1 and L2 in series and show 
that Ltotal is now four times the value in 
(3), which is what we would expect by 
adding the usual N2 term to (4). The Q-
factor will be unaltered because the hoop 
resistance will also be four times greater. 
The salient difference is that series-conn-
ected hoops may suffer from a greater 
degree of self-capacitance effects. 

 
 
 
 
 
 

Two concentric hoops, in parallel and in series – 
same reduced Q-factor but different inductance. 

 
It seems reasonable to assume that 

similar arguments of flux coupling and 
mutual inductance will apply to co-axial 
hoops. We can further infer that for any 
multi-turn loop, we should not use (1) or 
(2) without modifying w to take account of 
the ‘extent’ of the full winding 3. The sali-
ent point is that the turns need to be 
spaced and, perhaps, connected in parallel. 

Concluding Remarks 
The traditional formula for the induct-

ance of a wire hoop contains an 8d/w term 
(1), which can be simplified to (2). A simi-
lar formula applies to the mutual induc-
tance of two concentric hoops, with the 
term being 8r/∆r in (1). For two concen-
tric hoops in parallel, the inductance is (3) 
and (4). Thus, there is a reduction in the Q-
factor; it is lower than if a single hoop 
were formed of the same mass of wire. 
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3  There are plenty of approximate 

formulas for the inductance of squat 
solenoids, and the present note gives 
another perspective. 
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