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Many features of an object can influence how we predict and perceive its weight. The 

current study evaluated the relative contributions of sensory and conceptual processing 

of object features on weight perception. We employed a novel paradigm to investigate 

how container size and the amount of liquid inside can influence the perceived weight of 

bottles and the forces deployed when lifting them. Stimulus pairs always had the same 

mass but could vary in liquid volume (full vs half-full bottle) or size (large vs small bottle; 

size-weight illusion (SWI)). In Experiment 1, participants lifted the stimuli via strings, 

which served to isolate the influence of visual from kinaesthetic information about the 

size of stimuli on perception and lifting behaviour. In Experiment 2, participants lifted 

the stimuli via handles that were attached directly to the objects. This lifting style is more 

likely to include deviations from true vertical lifting, which should theoretically provide 

more kinaesthetic information about the size of the stimuli. Experiment 1 did not produce 

any weight illusion. Experiment 2 produced a weight illusion but only when container 

size differed. Thus, liquid volume did not influence perceived weight when container size 

was held constant in either experiment. Curiously, additional control experiments 

revealed that participants could not discriminate between the different sized bottles 

solely from the kinaesthetic information received from a handle-based lift, suggesting 

that size might be processed differently when making explicit perceptual judgements 

about it than when influencing weight perception. Together, these findings suggest that 

weight illusions are driven more strongly by the kinaesthetic processing of stimulus 

features than predictions arising from conceptual weight cues. 

  



1. Introduction 

The ability to predict an object’s weight is key to our skilled interactions with the 

physical world. When acting on an unfamiliar object, weight is predicted based on past 

experience with similar objects or objects with similar features and an appropriate 

motor response is selected (Gordon, Westling, Cole, & Johansson, 1993). These 

predictive processes allow us to interact with the objects around us with little delay 

between planning and carrying out actions. Research has shown that an object’s size is 

particularly influential in predicting its weight (Gordon, Forssberg, Johansson, & 

Westling, 1991).  

Research examining the forces deployed when lifting an object demonstrates that 

size provides a strong basis for sensorimotor predictions. Researchers can measure both 

the horizontal force applied by the fingers to grasp an object (grip force) and the vertical 

force applied by the muscles of the arm during lift-off (load force). The initial degree of 

force deployed is controlled by feedforward models that operate on predictions of 

heaviness (Chouinard, Leonard, & Paus, 2005; Johansson & Westling, 1984) and reflect 

the expectation of how much force is required to lift the object. In particular, forces 

deployed the first time an individual lifts an unfamiliar object reflects sensorimotor 

predictions of the object’s weight. For example, when lifting two novel objects of 

different sizes, greater force is typically applied to the larger one because larger objects 

frequently weigh more (Buckingham & Goodale, 2010b; Buckingham & Goodale, 2010c; 

Flanagan & Beltzner, 2000; Gordon et al., 1991; Grandy & Westwood, 2006).  

Predictions of weight based on an object’s size can also influence how heavy it 

feels when lifted. To illustrate, in a size-weight illusion (SWI) experiment, two or more 

objects appear identical except for their size, but have been engineered to have the same 

mass (Charpentier, 1886, 1891). In this unusual context, the expectation that the larger 



object is heavier is violated and instead, the smaller of the two SWI objects feels heavier 

(Buckingham & Goodale, 2013; Charpentier, 1886, 1891; Chouinard, Large, Chang, & 

Goodale, 2009; Flanagan & Beltzner, 2000). One explanation for the illusion relates to 

our conceptual understanding of the relationship between size and weight (Buckingham 

& Goodale, 2013; Buckingham & MacDonald, 2016). We learn early in life that the larger 

of two objects usually weighs more and this association is continually reinforced during 

our lifetime (Buckingham & Goodale, 2010c, 2013). When sensory input contradicts 

expectations, the opposite perceptual experience occurs in that the smaller object is felt 

as heavier. Examining the forces deployed when first lifting SWI objects tends to reflect 

this expectation of weight on the basis of size (Buckingham & Goodale, 2010c; 

Buckingham, Ranger, & Goodale, 2011b; Flanagan & Beltzner, 2000; Grandy & 

Westwood, 2006). During the initial lifts, which represent sensorimotor predictions of 

weight, greater force is typically deployed for the larger object than is needed, indicating 

that the object was lighter than expected. The reverse is typically true for the smaller 

object in that too little force is applied. A landmark study by Flanagan and Beltzner 

(2000) demonstrated that after a small number of lifts, the forces tend to change to 

reflect the objects’ true (equal) weight (see Buckingham & Goodale, 2010b; Buckingham 

et al., 2011b; Grandy & Westwood, 2006 for replications).  

The particular mechanism by which weight expectations influence perception is 

unknown (e.g., Buckingham & MacDonald, 2016). It may be that expectations contribute 

to perception in a top-down manner (Buckingham, 2014; Ellis & Lederman, 1998) 

whereby some conceptual understanding of the object’s features must be computed 

prior to lifting, providing context to influence the subsequent perceptual experience of 

weight based on predicted weight. However, recently Plaisier, Kuling, Brenner, and 

Smeets (2019) provided evidence against this idea. They demonstrated that participants 



still experienced the SWI even when they did not become aware of the objects’ size until 

after the lift had started (i.e., up to 400 ms after lift-off).  

Regardless, converging evidence from other weight illusions demonstrates that 

predicted weight can influence perceived weight (see Saccone & Chouinard, 2019b for a 

review). In these other weight illusions, a stimulus feature other than size is varied and 

it is this other feature that provides a conceptual cue to the object’s weight – that is, a cue 

that allows us to predict weight based on the learned association between that feature 

and weight. These conceptual cues to weight may depend primarily on the formation of 

semantic associations, which are operationally defined as knowledge acquired during 

our lifetime (Tulving, 1972). Weight illusion paradigms have exploited conceptual cues 

such as objects’ apparent material, density and unique identity – cues that normally 

predict weight differences but fail to do so in a contrived, weight illusion context when 

mass is held constant across the stimuli. When these typical feature-weight associations 

are violated, the opposite perceptual experience results, in a consistent manner to the 

SWI.  

To provide an example, in the material-weight illusion (Buckingham, Cant, & 

Goodale, 2009; Ellis & Lederman, 1999; Seashore, 1899; Wolfe, 1898), objects have the 

same size and mass but vary in their apparent material. For example, participants might 

be presented with two, equally-sized cubes that appear to be comprised of either 

Styrofoam or brass, but have in fact been modified to have the same mass. Styrofoam 

objects are normally lighter than brass objects but in the context of the illusion, where 

the objects weigh the same, the former is felt heavier. Thus, these other weight illusions 

provide converging evidence that predictions based on learned, conceptual feature-

weight associations typically produce the opposite perceptual experience when those 

predictions are not met.  



Although size can serve as a conceptual weight cue, Saccone and Chouinard 

(2019b) have reviewed evidence that size may also influence weight perception in a 

different manner. In brief, one reason that size may be different is that it can have a 

remarkably stronger and more consistent effect on illusory weight perception than 

other conceptual cues (e.g., Buckingham, Bieńkiewicz, Rohrbach, & Hermsdörfer, 2015; 

Buckingham & Goodale, 2013; Buckingham, Goodale, White, & Westwood, 2016; 

Saccone, Landry, & Chouinard, 2019). Another reason is that the effect of size on 

perceived weight seems to vary with sensory input modality. To explain, in the SWI, 

information about size is gained through some combination of visual, haptic, and 

kinaesthetic input. For example, when an object is viewed and held in the hand, its size 

is processed visually. Haptic information about its size is also received through the 

pressure exerted on the touch receptors in the skin. Kinaesthetic information is also 

obtained from the hand and arm muscles providing feedback signals to the brain about 

the object’s size and weight as the object is stabilised in the air. If object features 

influence perceived weight via semantic associations, then perception should not vary 

with the sensory modality providing the same feature information – in the way that 

patients with semantic dementia are equally impaired in processing semantic content of 

stimuli regardless of sensory input modality (Marinkovic et al., 2003; Patterson, Nestor, 

& Rogers, 2007).  

However, research demonstrates that a lift including haptic and somatosensory 

information about size produces a stronger SWI than visual information. Specifically, 

researchers have isolated the influence of visual information about size from 

somatosensory information by having participants lift stimuli via a string or pulley 

system (Buckingham, Milne, Byrne, & Goodale, 2015; Ellis & Lederman, 1993; Masin & 

Crestoni, 1988; Wolf, Bergmann Tiest, & Drewing, 2018). These paradigms still elicit the 



SWI; however, this visual-based version of the SWI tends to be weaker than when size is 

processed via somatosensation (Saccone et al., 2019; Wolf et al., 2018). Thus, size may 

not influence perception in the same manner as other conceptual weight cues that are 

based on semantic associations. The latter may depend more on low-level sensory 

mechanisms, with somatosensory channels exerting a stronger influence than visual 

channels (Saccone et al., 2019). 

Of interest, Plaisier and Smeets (2015) compared the effect of size on the SWI 

with a related conceptual weight cue: volume of material. They varied overall size but 

not volume of material by employing “spacer” objects. These objects each consisted of 

two small, shallow blocks (60 mm x 60 mm x 18 mm) that were connected by a 

cylindrical bar, akin to a miniature dumbbell. They varied the length of the connecting 

bar such that the two blocks were set different distances from one another. Thus, the 

overall size (i.e., outer edges) of the objects varied while volume of material was held 

constant, therefore providing roughly the same conceptual (i.e., volume) information 

about weight. Using these objects, the authors reported patterns of weight perception 

that mirrored the SWI – the “smaller” objects (i.e., blocks set closer together) were 

perceived as heavier than the “larger” ones (i.e., blocks set further apart). This study 

supports the view that the overall size of an object has a particularly strong influence on 

weight perception, more so than other features that provide conceptual information 

about weight.  

However, Plaisier and Smeets’ (2015) stimuli were rather unusual. It is uncertain 

how well participants could predict the weight of these unfamiliar dumbbell objects. 

Predictions were conceivably more difficult for these stimuli than for objects we 

typically handle, which are solid rather than separated. We are not accustomed to 

predicting the weight of objects for which overall size varies but the volume of material 



does not. On the contrary, we are much more accustomed to handling objects that have 

a constant size and changing content, for example, mugs, bottles, bags, suitcases. Given 

that predicted weight can influence perceived weight, the perceivers’ familiarity of the 

objects is a relevant consideration. Although the authors’ logic is sound – that volume of 

material should and does provide a conceptual cue to weight – perhaps when such 

unfamiliar or unusual objects are used, predictions relating to size simply override other 

weight cues such as volume of material. However, the idea that size cues exert a stronger 

influence on perception for unfamiliar objects would have to be tested with more 

common, ecologically valid objects, such as those used in the present investigation. 

Furthermore, Plaisier and Smeets (2015) did not measure forces applied during lifting 

and therefore did not examine how the properties of their task objects might influence 

sensorimotor predictions, which is arguably another important consideration for 

understanding weight perception (Dijker, 2014). In short, it is unclear as to why size 

influenced perception so strongly above volume of material in Plaisier and Smeets’ 

(2015) study. Is it because size represents a more familiar, well established weight cue 

in the context of such unusual objects, because size influences perception in a different 

way to other conceptual cues (Saccone & Chouinard, 2019b), or because size exerts 

different sensorimotor predictions than volume? 

To answer these questions, the present study examined predicted and perceived 

weight based on size cues compared with a highly familiar, conceptual cue to weight: 

liquid volume content. Liquid volume is a visual weight cue that is encountered 

frequently in daily life. Experience tells us that a full bottle of milk should be 

considerably heavier and require more force to lift than a bottle that only contains the 

last few mouthfuls. In this vein, Nowak and Hermsdörfer (2003) demonstrated that 

participants’ altered their maximum force and rates of force applied when lifting objects 



containing different levels of visible liquid volume. The containers had a constant size 

and therefore the liquid content was the feature providing the cue to weight. Although 

liquid volume is a highly familiar, conceptual cue to weight, it has not been examined in 

an illusory weight context before.  

Thus, the current study employed a novel paradigm to compare the effects of 

container size and liquid volume on perceived weight. Sensorimotor predictions of 

weight were also examined by measuring forces deployed during lifting. Stimuli were a 

pair of large, identical semi-transparent bottles; one appeared full of liquid and the other 

appeared half-full, but they were manipulated to have the same mass (see bottles A and 

B in Figure 1). The results from this stimulus pair were compared to a control 

experiment, in which different participants lifted a pair of bottles that met criteria for a 

SWI; namely the large, full bottle described above (bottle A in Figure 1), as well as a 

small, full bottle (bottle C in Figure 1) that had the same mass as the large one. 

Importantly, the small, full bottle was intended to have the same apparent liquid content 

as the half-full bottle. Thus, the higher-order, conceptual cue of liquid volume content 

was held constant across the two stimulus pairs, whereas overall size, which may 

influence weight perception in other ways above and beyond providing a conceptual 

cue, was varied only in the SWI (large and small) pair.  

 First, we hypothesised that liquid volume would influence both sensorimotor 

predictions (i.e., reflected in forces deployed during the initial lifts) and weight estimates 

throughout the entire testing session. Specifically, liquid content may provide a cue to 

weight such that greater lifting forces are deployed in initial trials for the full than half-

full bottle. Furthermore, in line with the perceptual experience of the SWI and other 

weight illusions, the half-full bottle may be perceived as heavier than the full bottle.  



Second, we hypothesised that container size would influence sensorimotor 

predictions (i.e., forces deployed during initial lifts) and exert an even stronger influence 

on perceived weight. Specifically, we predicted the typical findings with respect to 

sensorimotor predictions based on size in that greater lifting forces would be deployed 

in initial trials for the large compared to small bottle. We also predicted a stronger effect 

on perception for the large and small pair, meaning that there would be a greater 

difference in perceived heaviness between the large and small bottles than between the 

full and half-full bottles. In line with Flanagan and Beltzner’s (2000) landmark study that 

measured both forces and perception over the course of the experiment, we further 

predicted the difference in lifting forces across the stimuli to adapt over time, converging 

to reflect the true (i.e., equal) weights of the stimuli.   

This study comprises the following experiments. The first experiment used a 

paradigm in which participants lifted the bottle pairs via strings. This was the first SWI 

experiment to measure lifting forces using a strings-based lift. The second experiment 

was identical to the first except that the stimuli were lifted via a handle that was attached 

directly to the lids of the bottles. This lifting method is in line with many studies that 

have measured forces, including Flanagan and Beltzner (2000). After conducting these 

two experiments, we carried out additional control experiments to further understand 

the results obtained in the two main experiments. 

 

2. Experiment 1 

Experiment 1a determined if the conceptual weight cue of liquid volume would 

a) produce an illusory weight experience (i.e., the half-full bottles would feel heavier 

than the full bottle of equal mass) and b) demonstrate the typical pattern of 

sensorimotor predictions demonstrated in earlier studies (i.e., more forces would 



initially be applied to the full bottle than the half-full one and that differences in forces 

between the two bottles would disappear as the experiment progressed). In Experiment 

1a, the conceptual cue of liquid volume varied while the size of the bottles was held 

constant (full vs half-full bottles). These results were then compared to Experiment 1b, 

in which both liquid content and bottle size varied (SWI; large vs small bottles). Based 

on previous studies, we hypothesised that participants would perceive the SWI and that 

more forces would initially be applied to the larger object than the smaller one, but that 

force differences would dissipate as the experiment progressed. 

If both container size and liquid volume content influence predicted and 

perceived weight via conceptual cues, then visual information should suffice in 

producing a perceptual weight illusion for both stimulus pairs. Thus, in Experiments 1a 

and 1b, participants lifted the bottles via strings, in line with other SWI studies that have 

isolated visual information about size using this lifting style (Buckingham, Milne, et al., 

2015; Ellis & Lederman, 1993; Masin & Crestoni, 1988; Wolf et al., 2018). Previous 

studies using string-based lifts have never measured fingertip forces. Instead, forces 

have been measured in paradigms where participants lifted stimuli via a force 

transducer handle attached directly to the objects (Buckingham, Bieńkiewicz, et al., 

2015; Buckingham & Goodale, 2010a, 2010c, 2013; Buckingham, Goodale, et al., 2016; 

Buckingham et al., 2011b; Buckingham, Ranger, & Goodale, 2012; Flanagan & Beltzner, 

2000; Grandy & Westwood, 2006; Mon-Williams & Murray, 2000). In these cases, there 

could still be a degree of kinaesthetic feedback about stimulus size and distribution of 

mass from the torques applied during the lift. Conversely, lifting the same objects with 

strings should, in theory, eliminate this information completely as it only allows a truly 

vertical lift. The current study is the first to investigate forces applied to lift SWI objects 

when only the visual modality provides size information.  



2.1 Method 

2.1.1 Experiment 1a: Full and half-full bottles lifted with strings. 

2.1.1.1 Participants. Fourteen right-handed individuals (8 females, 6 males; age: 

M = 24.5 years, SD = 7.4 years) from the La Trobe University community were recruited 

for the experiment. This sample size is similar to other experiments reporting illusory 

weight perception that also measured force deployment (e.g., Baugh, Kao, Johansson, & 

Flanagan, 2012; Buckingham et al., 2011b, experiment 1). Handedness was measured 

with the 10-item Edinburgh Handedness Inventory (Oldfield, 1971). Participants were 

classed as right-handed if they reported using their right hand for at least 7 of the 10 tasks 

(e.g., writing, throwing, using a toothbrush) on the inventory. Participants had normal or 

corrected-to-normal vision and gave written informed consent to participate. These 

criteria apply to all experiments reported in this manuscript. All study procedures were 

approved by the La Trobe University Human Research Ethics Committee.  

 

 

 

Figure 1. Left panel: the experimental stimuli. All bottles weighed 409 g and contained 
fake coffee-flavoured milk. Experiment 1a used bottles A (full bottle) and B (half-full 
bottle). Experiment 1b used bottles A (large bottle) and C (small bottle). Middle panel: 

A B C 



the experimental apparatus from Experiment 1a. This example image depicts bottles A 
and B. Bottles rested on light sensor pads, which recorded when bottles were raised from 
the platform. Bottles were attached via strings to the force transducers, which rested on 
the top of the wooden frame. Right panel: Bottles A and B with transducer handles 
attached to the lids, which were employed in Experiment 2. 

  



2.1.1.2 Stimuli. Stimuli were two plastic bottles with 500ml capacity (height: 178 

mm; minimum diameter (bottle neck): 385 mm; maximum diameter: 720 mm). One 

bottle was full of opaque liquid that mimicked coffee-flavoured milk and the other 

approximately half-full of the same liquid (see Figure 1). The stimuli simulated a brand 

of cold coffee-flavoured milk that is familiar to Australians. The liquid in the bottles was 

made from PVA glue diluted with water and coloured with coffee so that it mimicked this 

drink in both colour and viscosity. Both bottles weighed 409 g. The half-full bottle 

contained a hidden tube of lead ballast to increase its weight, whereas an empty tube 

within the full bottle displaced enough liquid to reduce its weight to 409 g. Care was taken 

to ensure the weights were secured centrally inside the bottles and attached to the 

bottom to prevent an uneven distribution of mass, which can influence perceived 

heaviness (Amazeen & Turvey, 1996; Plaisier & Smeets, 2015).  

2.1.1.3 Apparatus. The main experimental apparatus consisted of a wooden 

frame (340 mm high, 340 mm wide), which rested on the table at which participants sat 

during the experiment. The bottles were placed inside the wooden frame (see Figure 1). 

The bottles’ lids were attached to non-stretch Dacron braided fishing line, which had been 

fed through holes in the top panel of the wooden frame. Strings were 110 mm in length. 

Connected to the other end of the strings were 3D printed handles equipped with six-axis 

force transducers (Nano17 F/T; ATI Industrial Automation, Garner, North Carolina, USA), 

which participants used to lift the bottles. The transducers recorded grip (horizontal) and 

load (vertical) forces during the lift for the index finger only (thus, both the grip and load 

forces reported in this paper are presumed to be half of what was actually applied during 

lifting). The wooden frame acted as a support for the transducers, holding them level 

before the lift began. The bottles rested on light sensor pads, which recorded when the 

bottles were raised from the platform.  



The experiment was controlled via a Dell Precision T1700 computer using a 

program designed in-house in MATLAB (The Mathworks, Inc., 2016, Natick, MA, USA). 

The program played two beeps to signal when the participant should lift and lower the 

bottles, and recorded the data from the force transducers and light sensors.  

2.1.1.4 Procedure. Participants sat at a table in front of the wooden frame so that 

they had a clear view of the stimuli throughout the experiment. Prior to the lifting task, 

participants were asked to estimate how heavy each object would be. Weight estimates 

were made using an absolute magnitude estimation procedure, whereby participants 

provided heaviness estimates using any scale they preferred, without specifying an 

anchor or lower and upper limits (Buckingham & Goodale, 2013; Buckingham et al., 

2011b; Flanagan, Bittner, & Johansson, 2008). It was made clear that a larger score 

corresponded to a heavier weight.  

Participants began the lifting trials after providing preliminary heaviness 

estimates. The experimenter began each trial by sounding a beep, which signalled 

participants to lift the stimulus. Participants remained seated and lifted each bottle with 

their right hand, gripping the force transducer with their index finger and thumb. They 

were asked to look at the bottle and to raise it approximately 5 cm from the platform, and 

to lift in a smooth, confident manner. They maintained their view of the bottle as they 

held it aloft for three seconds, after which a second beep would sound, prompting them 

to place the bottle down. After each lift, the participants were asked to report a weight 

judgement, using the same scale they used for the preliminary weight estimate. 

Participants were explicitly instructed to concentrate on their experience of the objects 

and report their perception for each lift. They were told that there was no right or wrong 

answer, and that they could keep their response the same throughout the experiment or 

change it, as long as it reflected their experience. 



The lifting procedure was repeated 20 times per bottle in alternation, for a total 

of 40 lifts. The starting bottle was counterbalanced across participants, as well as the side 

of the frame (right or left) in which the bottles appeared. After the experiment had 

finished, participants were thanked for their time, debriefed appropriately, and given a 

compensatory gift voucher.  

 

2.1.2 Experiment 1b: Large and small (SWI) bottles lifted with strings. 

2.1.2.1 Participants. Fourteen different participants (10 females, 4 males; age: M 

= 28.8 years, SD = 13.74 years) were recruited for Experiment 1b.  

 2.1.2.2 Apparatus, stimuli and procedure. Apparatus, stimuli and procedure 

were identical to Experiment 1a with the following exceptions. Participants lifted one 

large bottle of 500 ml capacity (identical to Experiment 1a) and one small bottle of 250 

ml capacity (height: 144 mm; minimum diameter (bottle neck): 385 mm; maximum 

diameter: 627 mm; see bottle C in Figure 1). Both bottles appeared full of the same 

opaque, coffee-coloured liquid. The large bottle was the same object employed in 

Experiment 1a as the “full bottle”. The small bottle’s weight was adjusted in the same 

manner as the half-full bottle in Experiment 1a, in that it contained an identical, hidden 

tube of lead ballast and weighed 409 g. Note that the small bottle in this experiment had 

approximately the same apparent amount of liquid as the half-full bottle. Owing to the 

difference in size for the two bottles in Experiment 1b, the string attached to the small 

bottle was 140 mm. 

 

2.1.3 Data analysis. The dependent measures (in italics) comprised perceptual 

ratings of heaviness as well as force and load phase data. Preliminary heaviness estimates 

and post-lift perceptual heaviness ratings comprised of magnitude estimates, which 



participants provided on an unconstrained numerical scale of their choosing. It is 

plausible that participants may alter how they scale their estimates after lifting objects 

for the first time compared to before. Thus, for the purposes of analyses, the preliminary 

heaviness estimates were not standardised whereas the post-lift perceptual ratings were 

standardised into Z scores, allowing for more meaningful comparisons across 

participants who used different scales. The Z scores were calculated by taking the 

participant’s overall mean score, subtracting it from each rating observation, then 

dividing this difference by the standard deviation of the mean. Force data were recorded 

at a sample rate of 400 Hz along the X, Y, and Z axes. The force data were smoothed using 

a fourth-order, zero-phase lag, low-pass Butterworth filter, with a cut-off frequency of 14 

Hz prior to analysis (Buckingham, Goodale, et al., 2016; Chouinard et al., 2009; Flanagan 

& Beltzner, 2000). These data yielded measures of grip force, defined as the force applied 

normal to the surface of the transducer handle (i.e., force applied horizontally), and load 

force, defined as the resultant vector of force tangential to the handle surface (i.e., force 

applied vertically).  

For each trial, the grip and load force signals, in Newtons (N), were plotted over 

time (seconds). The first peak in these signals after lift-off was selected by a rater (R.M.G.) 

as the maximum grip and load forces for that trial (Figure 2A). This method of identifying 

peak values is common in weight illusion studies that analyse force variables (Baugh et 

al., 2012; Buckingham et al., 2009; Buckingham et al., 2011b; Flanagan & Beltzner, 2000; 

Grandy & Westwood, 2006). To establish the rate at which these forces were applied, 

each force signal was differentiated using a three-point central difference equation to 

determine, at each time point, the rate of force applied in N/s (Chouinard et al., 2009; 

Flanagan & Beltzner, 2000). Here, peak values accounting for the rise in force at lift-off 

were taken as the maximum grip and load force rates (Figure 2B). Once again, the peak 



values were identified on a trial-by-trial basis by the same rater. In establishing these 

measurements, the rater selected on the plots where the peaks occurred and our program 

selected the true maximum point nearby, reducing error in our measures. Load phase 

duration was taken as the time between the moment the participant began applying a 

load force greater than 0.2 N to the point of object lift-off, as measured by the light sensor. 

Unlike the other measures, load phase durations were determined in a completely 

automated manner. A second rater (P.A.C.) independently processed (i.e., selected peaks 

in the force data) for five participants chosen at random. The inter-rater reliability 

between the two raters was excellent (peak grip force: r(198) = 0.99, p < .001; peak load 

force r(198) = 0.98, p < .001; peak rate in grip force: r(198) = 0.93, p < .001; peak rate in 

load force: r(198) = 0.99, p < .001; load phase: r(198) = 1, p < .001). 

In the manuscript, we present analyses that were conducted on the following 

dependent variables. To measure the effects of liquid content and container size on 

expected and perceived weight perception, we analysed the unstandardised, pre-lift 

weight estimates and the mean standardised post-lift perceptual heaviness ratings. To 

measure the effects of liquid content and container size on sensorimotor prediction and 

adaptation, we present the analysis of two of the force variables: mean peak grip and load 

force rates (Buckingham, Bieńkiewicz, et al., 2015; Buckingham & Goodale, 2010c; 

Buckingham, Goodale, et al., 2016). Arguably, these variables are more likely than the 

other force variables to reflect sensorimotor prediction because the peaks in the rates at 

which forces are applied occur during the earlier stages of the lift, and are therefore less 

influenced by sensorimotor feedback acquired during the lift (Johansson & Westling, 

1988). However, the analyses for the other force variables are presented in the 

Supplementary Material. Paired sample t-tests compared the pre-lift estimates across 

stimuli as unstandardised values. To echo what was said earlier, this was done in case 



participants used a different scale after lifting the objects for the first time, which would 

confound all perceptual measures if they were all standardised. All other variables were 

analysed with a 2 (Bottle; full/large, half-full/small) x 5 (Trial: 1, 5, 10, 15, 20) repeated 

measures ANOVA. Pairwise comparisons are presented with a family-wise Bonferroni 

correction applied. Greenhouse-Geisser corrections were applied whenever sphericity 

could not be assumed as determined by a Mauchly’s test. For a small number of trials, 

force data were missing owing to participant lifting errors (e.g., fumbling, lifting before 

the beep indicated the start of the trial). For the purpose of analysis, those data points 

were replaced with the mean of the immediately preceding and subsequent trials. Data 

analysis was identical for both experiments.  

In the interest of transparent statistical reporting, particularly as this is the first 

study to measure force and load phase variables when strings are used to lift the weight 

illusion stimuli, descriptive statistics from all force and load phase variables, and analyses 

on the variables not presented in the manuscript are reported in the Supplementary 

Material. The data are also publicly available at https://osf.io/n9aeu/. 

 

 

https://osf.io/n9aeu/


 

 

Figure 2. Illustrative example of the force variables. This figure shows the load force (A) 
and load force rate (B) in a representative participant on a given trial. The blue circles 
within the figure demonstrate how the peak values of grip and load force and their rates 
were selected on a trial-by-trial basis. In our experiments, the force transducers were 
calibrated to measure forces in Newtons. Recordings were taken from the index finger 
only. A light sensor recorded the time when lift off occurred (green line). The load phase 
was defined as the time in milliseconds from when the load force first reached 0.2 N (red 
line) to the time with lift off occurred. The load force signal was differentiated to 



determine the load force rate at each time point in Newtons per second. For every trial, 
the peak force and peak force rates (blue circles) were determined using a semi-
automated procedure whereby the experimenter (R.M.G.) selected on the plots where the 
peak signals occurred and computer program selected the true maximum point nearby.  
 

2.2 Results 

2.2.1 Experiment 1a: Full and half-full bottles lifted with strings. In summary, 

contrary to what we had hypothesised, participants reported that the full bottle felt 

heavier than the half-full one. Furthermore, the force data did not reflect our hypothesis 

that more force would be applied to the full compared to the half-full bottle at the start of 

the experiment and that the forces applied to the two objects would become more similar 

as the experiment progressed. 

2.2.1.1 Preliminary heaviness estimates prior to lifting. Unstandardised 

magnitude estimates made prior to lifting indicated a trend towards participants 

expecting the full bottle (M = 84.43, SD = 153.34) to be heavier than the half-full bottle (M 

= 44.18, SD = 78.79), t(13) = 2.01, p = .065, Cohen’s d = 0.33. Not quite reaching 

significance in this case could be explained by noise arising from the use of different 

scales across participants (e.g., scores ranged from 3-500). 

2.2.1.2 Perceptual heaviness ratings during lifting. Mean standardised 

perceptual ratings for the full and half-full bottles are displayed in Figure 3A. The 2 x 5 

repeated measures ANOVA revealed a main effect of Bottle, F(1, 13) = 9.56, p = .009, ηp2 

= .42. Contrary to our hypothesis, the full bottle was perceived as heavier than the half-

full bottle. There was no main effect of Trial, F(2, 24) = 2.24, p = .132, ηp2 = .15, indicating 

no evidence of significant change in the perceptual ratings across the experiment. The 

interaction between these two factors was also not significant, F(2, 25) = 0.13, p = .868, 

ηp2 = .01, indicating that this illusory weight difference between the bottles was perceived 

similarly throughout the experiment.  



2.2.1.3 Peak grip force rate. Mean peak grip force rates for the full and half-full 

bottles are displayed in Figure 3B. The 2 x 5 repeated measures ANOVA revealed neither 

a main effect of Bottle, F(1, 13) = 0.19, p = .670, ηp2 = .01, nor Trial, F(4, 52) = 0.71, p = 

.591, ηp2 = .05. The Bottle x Trial interaction was also not significant, F(4, 52) = 1.57, p = 

.197, ηp2 = .11.  

2.2.1.4 Peak load force rate. Mean peak load force rates for the full and half-full 

bottles are displayed in Figure 3C. The 2 x 5 repeated measures ANOVA revealed no main 

effect of Bottle, F(1, 13) = 0.29, p = .598, ηp2 = .02. There was a significant main effect of 

Trial, F(4, 52) = 4.60, p = .003, ηp2 = .26. Pairwise comparisons indicated significantly 

greater mean peak load forces in trial 15 compared to trial 1 (p = .006). None of the other 

comparisons were significant (all ps > .144). There was no significant interaction, F(4, 52) 

= 1.47, p = .223, ηp2 = .10.  

  



 

 

Figure 3. Mean standardised perceptual ratings (A), peak grip force rates (B) and peak 
load force rates (C) for the full (Bottle A in Figure 1) and half-full (Bottle B in Figure 1) 
bottles and image depicting a lifting trial (D) in Experiment 1a. The lifter reported a clear 
view of the stimuli at all times. Error bars denote standard errors around the mean. Cross 
(+) denotes a significant (p <.05) main effect of Bottle. Pound (#) denotes a significant (p 
<.05) main effect of Trial.  

 

2.2.2 Experiment 1b: Large and small (SWI) bottles lifted with strings. In 

summary, perceptual ratings did not reflect a SWI. In contrast to a typical SWI, 

participants reported that the large bottle felt heavier than the small one, but only for the 

first trial. For the remainder of the experiment, participants did not perceive a difference 

in weight between the bottles. The force data also did not reflect our hypotheses. Namely, 

the forces deployed in initial trials were not greater for the larger compared to the 

smaller bottle, nor did they become more similar as the experiment progressed. 

2.2.2.1 Preliminary heaviness estimates prior to lifting. Unstandardised 

magnitude estimates made prior to lifting indicated that participants expected the large 



bottle (M = 411.86, SD = 226.45) to be heavier than the small bottle (M = 216.71, SD = 

126.54), t(13) = 6.32, p < .001, Cohen’s d = 1.06. 

2.2.2.2 Perceptual heaviness ratings during lifting. Mean standardised 

perceptual ratings for the large and small bottles are displayed in Figure 4A. There was 

neither a main effect of Bottle, F(1, 13) = 0.97, p = .343, ηp2 = .07, nor Trial, F(1, 19) = 3.72, 

p = .056, ηp2 = .22. However, there was a significant Bottle x Trial interaction, F(2, 27) = 

8.59, p = .001, ηp2 = .40. Contrary to most past SWI experiments, and our hypothesis, 

pairwise comparisons revealed significantly heavier perceptual estimates for the large 

bottle than the small bottle in trial 1 (p = .006). There were no differences in perceived 

heaviness across the bottles for the other trials (all ps > .284).   

2.2.2.3 Peak grip force rate. Mean peak grip force rates for the large and small 

bottles across all trials are displayed in Figure 4B. There was neither a significant main 

effect of Bottle, F(1, 13) = 4.00, p = .067, ηp2 = .24, nor Trial, F(2, 24) = 2.46, p = .109, ηp2 = 

.16. The interaction was also not significant, F(2, 23) = 2.31, p = .128, ηp2 = .15.  

2.2.2.4 Peak load force rate. Mean peak load force rates for the large and small 

bottles across all trials are displayed in Figure 4C. There was neither a significant main 

effect of Bottle, F(1, 13) = 0.17, p = .688, ηp2 = .01, nor Trial, F(2, 24) = 0.58, p = .551, ηp2 = 

.04, and no significant interaction between the two factors, F(2, 32) = 1.52, p = .233, ηp2 = 

.10.  

 



 

Figure 4. Mean standardised perceptual ratings (A), peak grip force rates (B) and peak 
load force rates (C) for the large (Bottle A in Figure 1) and small (Bottle C in Figure 1) 
bottles and image depicting a lifting trial (D) in Experiment 1b. The lifter reported a clear 
view of the stimuli at all times. Error bars denote standard errors around the mean. 
Asterisk (*) denotes a significant (p <.05, Bonferroni family-wise corrected) pairwise 
comparison between the bottles within a trial. There were no significant (p <.05) main 
effects of Bottle or Trial. 
 

2.3 Discussion 

Results from Experiment 1 did not support our hypotheses. Instead, participants 

in Experiment 1a reported the opposite perceptual pattern to that predicted by weight 

illusions in that they perceived the full bottle as heavier than the half-full bottle. However, 

this same unusual, reverse weight illusion pattern was also evident in the first trial of the 

SWI experiment (Experiment 1b), in that participants initially reported the large bottle 

as heavier than the small one. One potential explanation for these findings is that the 

participants may have deduced (incorrectly) that the experimenter expected them to 



state that the full (or large) bottle felt heavier than the half-full (or small) bottle, in line 

with what one would expect under natural conditions. Within the experimental context, 

participants may have assumed a trick regarding the weight of the bottles and as such 

simply reported what they thought the experimenter wanted to hear or what they 

expected to be true. Interestingly, although participants reported this unusual pattern 

with the SWI bottles in the first trial of Experiment 1b, there appears to be a trend for a 

change in perceptual reports over the course of the experiment. Perhaps participants in 

Experiment 1b initially felt the same pressure to respond in a certain way as in 

Experiment 1a, but that the SWI, which is typically a remarkably strong effect (Saccone 

et al., 2019), began to override this tendency. Regardless, it is clear from Experiment 1a 

that liquid volume did not influence perceived weight in the manner predicted by other 

weight illusions. 

The force data in Experiment 1 did not demonstrate results similar to those in 

other studies where participants misapplied forces in line with predicted weight 

differences on initial trials but then learned to apply more veridical forces after repeated 

lifts (Buckingham & Goodale, 2010b; Buckingham & Goodale, 2010c; Buckingham et al., 

2011b; Buckingham et al., 2012; Flanagan & Beltzner, 2000; Grandy & Westwood, 2006). 

One issue to consider is that there are inconsistencies across these past studies with 

respect to which particular force variables are presented as evidence for sensorimotor 

prediction (i.e., differences in forces between objects) during initial trials and 

sensorimotor adaptation (i.e., the convergence of forces between objects) in subsequent 

trials. We will discuss this matter further in the General Discussion. Regardless, 

Experiment 1 did not produce what is generally considered to be the typical pattern for 

any of the force variables in a weight illusion experiment. Instead, the force data suggest 

a cautious approach to lifting the stimuli. For example, in Experiment 1b there was a 



pattern of overestimation in grip force rates for early compared to later trials but this did 

not differ statistically across the two bottles. The deployment of these forces may relate 

to the use of strings. It is possible that this unusual, artificial lifting style influenced 

participants’ strategy for applying forces compared to previous studies in which 

transducer handles were attached directly to objects. 

Overall, contrary to our hypotheses, neither stimulus pair produced the expected 

perceptual weight illusions in Experiment 1. These findings suggest that the conceptual 

cue of liquid volume does not elicit a typical illusory weight experience. However, given 

that the paradigm also did not produce findings that are typical of the (extremely robust) 

SWI when container size varied, it is difficult to draw definite conclusions about how the 

conceptual cue of liquid volume might influence predicted and perceived weight when 

vision is the only modality with which size information is provided.  

In contrast to the current experiment, past research using string-based lifts has 

demonstrated that visual information alone can elicit a SWI (Anderson, 1970; 

Buckingham, Milne, et al., 2015; Ellis & Lederman, 1993; Kawai, Henigman, MacKenzie, 

Kuang, & Faust, 2007; Masin & Crestoni, 1988; Werber & King, 1962; Wolf et al., 2018). 

However, in light of the current experiment’s failure to elicit a SWI, it may be that some 

additional somatosensory information about the stimuli is particularly important for the 

illusion. In this vein, evidence described earlier suggests that the illusion is stronger when 

test objects are held directly in the hands, and hence the lift includes haptic and 

kinaesthetic feedback about stimulus size (Ellis & Lederman, 1993; Plaisier & Smeets, 

2015; Wolf et al., 2018). Furthermore, as mentioned earlier, SWI studies that measure 

forces do so by having participants lift stimuli via an attached transducer handle. A recent 

meta-analysis by Saccone et al. (2019) demonstrated a weaker SWI when objects are 

lifted a) with strings than when they are lifted b) by a handle or hefted directly in the 



hands. Therefore, it seems that there is something about the somatosensory information 

received about the objects when they are handled - either directly or via an attached 

handle - that produces a stronger SWI than when they are lifted with a string. 

Although there is no direct tactile feedback of size during a handle-based lift, there 

might be more kinaesthetic feedback about size from the distribution of mass that is 

gained from the torques applied when lifting an object via a handle compared with a 

string. This is because the latter ensures that the stimuli are lifted vertically whereas the 

former may deviate from true vertical lifting even in the most coordinated participants. 

Any subtle rotational forces applied where the string is gripped is unlikely to give the 

lifter any additional information about the object, which is dangling on the other end of 

the string. In contrast, during a handle-based lift, the resistance of the object to rotational 

forces could still be detected kinaesthetically, which may provide subtle enough cues to 

some of its properties, such as size or distribution of mass. If kinaesthetic feedback is in 

fact important in driving the SWI, then this could indicate that size does not simply 

represent a conceptual cue to predicted and perceived weight. This possibility was 

investigated in Experiment 2. 

3. Experiment 2 

Experiment 2 was identical to Experiment 1 except that participants lifted stimuli 

via a force transducer that was attached directly to the lids of the bottles (see Figure 1, 

right panel). If object features influence perceived weight via a conceptual cue, one that 

relies on semantic associations, then perception should not vary according to which 

sensory modality provides information about that feature. Therefore, if kinaesthetic 

information about differently sized objects produces a stronger SWI than visual 

information, then this would suggest that size informs predicted and perceived weight 

via a different mechanism than conceptual cues such as liquid volume.  



With respect to the perceptual reports of weight, Experiment 2 had two competing 

hypotheses. First, if both liquid volume and container size influence perceived weight via 

a conceptual weight cue, then Experiment 2 was predicted to produce perceptual weight 

illusions for both stimulus pairs. That is, the half-full bottle may be perceived as heavier 

than the full bottle, and likewise the small bottle may be perceived as heavier than the 

large bottle. However, if size influences weight perception via additional mechanisms 

that are more sensory driven, in which kinaesthetic information exerts a particularly 

strong effect, then Experiment 2 should produce a stronger weight illusion when 

container size differs (i.e., large vs small).   

It is possible that the unusual lifting style in Experiment 1 produced the 

unexpected findings in the force data. Experiment 2 employed a lifting style that is 

commonly used in weight illusion studies that measure fingertip forces (e.g., Buckingham, 

Goodale, et al., 2016; Buckingham et al., 2011b; Buckingham et al., 2012; Flanagan & 

Beltzner, 2000; Grandy & Westwood, 2006). Therefore, Experiment 2 was deemed more 

likely to produce force data that reflects sensorimotor prediction in initial trials and 

sensorimotor adaptation in subsequent trials.  

 

3.1 Method 

3.1.1 Experiment 2a: Full and half-full bottles lifted with handles. 

3.1.1.1 Participants. Fourteen right-handers (11 females, 3 males; age: M = 21.79 

years, SD = 2.99 years) from the La Trobe University community participated in the 

experiment.  

3.1.1.2 Apparatus, stimuli and procedure. Apparatus, stimuli and procedures 

were identical to Experiment 1a except that participants lifted the bottles off of a table 



via force transducers attached directly to the bottle lids. Accordingly, the wooden frame 

and strings were not used.  

 

3.1.2 Experiment 2b: Large and small (SWI) bottles lifted with handles. 

3.1.2.1 Participants. Fourteen different right-handers (11 females, 3 males; age: 

M = 29.21 years, SD = 12.90 years) participated.  

 3.1.2.2 Apparatus, stimuli and procedure. Apparatus and procedure were 

identical to Experiment 2a. Stimuli were identical to those employed in Experiment 1b.  

 

3.1.3 Data analysis. Data analysis procedures were identical to Experiment 1.  

 

3.2 Results 

3.2.1 Experiment 2a: Full and half-full bottles lifted with handles. In 

Experiment 2a, participants did not perceive any difference in weight between the full 

and half-full bottles. Peak load force rates were greater for the full bottle than the half-

full bottle. However, there was no evidence suggesting that these force differences 

dissipated as the experiment progressed. 

3.2.1.1 Preliminary heaviness estimates prior to lifting. Unstandardised 

magnitude estimates made prior to lifting indicated that participants expected the full 

bottle (M = 275.29, SD = 363.69) to be heavier than the half-full bottle (M = 137.71, SD = 

181.79), t(13) = 2.83, p = .014, Cohen’s d = 0.48.  

3.2.1.2 Perceptual heaviness ratings during lifting. Mean standardised 

perceptual ratings for the full and half-full bottles are displayed in Figure 5A. There was 

neither a main effect of Bottle, F(1, 13) = 0.13, p = .722, ηp2 = .00, nor Trial, F(4, 52) = 0.04, 



p = .987, ηp2 = .00. The interaction between the two factors was also not significant, F(2, 

30) = 2.36, p = .105, ηp2 = .15.  

3.2.1.3 Peak grip force rate. Mean peak grip force rates for the full and half-full 

bottles are displayed in Figure 5B. There was neither a significant main effect of Bottle, 

F(1, 13) = 0.35, p = .565, ηp2 = .03, nor Trial, F(2, 29) = 1.63, p = .213, ηp2 = .11, and the 

interaction between the two factors was also not significant, F(2, 24) = 0.64, p = .524, ηp2 

= .05.   

3.2.1.4 Peak load force rate. Mean peak load force rates for the full and half-full 

bottles are displayed in Figure 5C. There was a significant main effect of Bottle, F(1, 13) 

= 6.56, p = .024, ηp2 = .34, reflecting higher peak load force rates for the full bottle than 

the half-full bottle. There was no significant main effect of Trial, F(3, 34) = 0.92, p = .428, 

ηp2 = .07, and the interaction between the two factors was also not significant, F(4, 52) = 

1.02, p = .408, ηp2 = .07.  

 



 

 

Figure 5. Mean standardised perceptual ratings (A), peak grip force rates (B) and peak 
load force rates (C) for the full (Bottle A in Figure 1) and half-full (Bottle B in Figure 1) 
bottles and image depicting a lifting trial (D) in Experiment 2a. Error bars denote 
standard errors around the mean. Cross (+) denotes a significant (p <.05) main effect of 
Bottle.  

 

3.2.2 Experiment 2b: Large and small (SWI) bottles lifted with handles.  In 

summary, participants initially reported the larger bottle as heavier, which is consistent 

with Experiment 1b. However, as the experiment progressed, the pattern reversed and 

participants reported a SWI from trial 10 onwards. Peak grip force rates demonstrated 

faster rate of force deployed for the large than small bottle. There was no evidence 

suggesting that this difference dissipated over time. 

3.2.2.1 Preliminary heaviness estimates prior to lifting. Unstandardised 

magnitude estimates made prior to lifting indicated that participants expected the large 



bottle (M = 221. 17, SD = 235.30) to be heavier than the small bottle (M = 124.39, SD = 

139.47), t(13) = 3.51, p = .004, Cohen’s d = 0.50.  

3.2.2.2 Perceptual heaviness ratings during lifting. Mean standardised 

perceptual ratings for the large and small bottles are displayed in Figure 6A. There was 

no significant main effect of Bottle, F(1, 13) = 2.39, p = .146, ηp2 = .16. There was a 

significant main effect of Trial, F(2, 24) = 4.63, p = .022, ηp2 = .26, although none of the 

pairwise comparisons survived the Bonferroni correction (all ps > .083). There was a 

strong, significant interaction between the two factors, F(2, 22) = 16.90, p < .001, ηp2 = 

.57. Pairwise comparisons revealed that for trial 1, the large bottle was perceived as 

heavier than the small bottle (p = .032), which is consistent with Experiment 1b. There 

was no difference in perceived heaviness across the bottles for trial 5 (p = .090), however, 

the small bottle was perceived as heavier in trials 10 (p = .006), 15 (p = .003) and 20 (p = 

.007). Thus, aside from in the early trials, participants perceived a robust SWI.   

3.2.2.3 Peak grip force rate. Mean peak grip force rates for the large and small 

bottles are displayed in Figure 6B. The ANOVA revealed a significant main effect of Bottle, 

F(1, 13) = 16.75, p = .001, ηp2 = .56, reflecting higher grip force rates for the large bottle. 

There was also a main effect of Trial, F(2, 25) = 3.98, p = .034, ηp2 = .23, although none of 

the pairwise comparisons survived the Bonferroni correction (all ps > .252). There was 

no interaction between the two factors, F(3, 33) = 0.84, p = .466, ηp2 = .06.   

3.2.2.4 Peak load force rate. Mean peak grip force rates for the large and small 

bottles are displayed in Figure 6C. There was neither a main effect of Bottle, F(1, 13) = 

1.19, p = .296, ηp2 = .08, nor Trial, F(4, 52) = 0.32, p = .862, ηp2 = .02, and no significant 

interaction, F(2, 28) = 0.33, p = .739, ηp2 = .03. 

  



 

Figure 6. Mean standardised perceptual ratings (A), peak grip force rates (B) and peak 
load force rates (C) for the large (Bottle A in Figure 1) and small (Bottle C in Figure 1) 
bottles and image depicting a lifting trial (D) in Experiment 2b. Error bars denote 
standard errors around the mean. Cross (+) denotes a significant (p <.05) main effect of 
Bottle. Pound (#) denotes a significant (p <.05) main effect of Trial. Asterisk (*) denotes 
a significant (p <.05, Bonferroni family-wise corrected) pairwise comparison between the 
bottles within a trial.  
 

3.3 Discussion 

Participants lifting objects with strings in Experiment 1 did not report a SWI, 

whereas participants lifting with handles directly mounted on the stimuli in Experiment 

2 experienced a SWI. Together, these findings suggest that some additional 

somatosensory processing of the differently sized objects is important for the illusion. Of 

note, participants initially reported the reverse pattern that the larger bottle was heavier, 

which is consistent with the early trials of Experiment 1a. Perhaps participants initially 

felt the same pressure to give a particular response – one consistent with what one would 



expect according to typical size or liquid volume cues to weight – but that the power of 

the illusion quickly prevailed. Thus, the paradigm in Experiment 2 elicited a SWI – yet 

participants did not report a weight difference between the full and half-full bottles. This 

finding suggests that when container size is held constant, liquid volume does not 

produce an illusory weight experience in the manner of other conceptual weight cues, 

such as material or identity. Taken together, Experiment 2 indicates that size may 

influence perceived weight via a different mechanism to other conceptual cues that elicit 

illusory weight experiences.   

Force data were relatively more typical in Experiment 2. Container size influenced 

the degree of force applied when lifting the bottles in Experiment 2b. Namely, higher grip 

force rates were deployed for the large than small bottle. Liquid volume exerted some 

influence on the force applied in Experiment 2a, in that peak load force rates were higher 

for the full bottle compared with the half-full bottle. These findings provide some 

evidence of the sensorimotor predictions that the full bottle would be heavier than the 

half-full bottle, and likewise for the large bottle compared with the small one. In other 

respects, the force data did not show the expected pattern, particularly regarding 

sensorimotor adaptation in later trials that is considered typical for weight illusion 

paradigms. That is, comparatively higher force rates evident for the full (Experiment 2a) 

and large bottles (Experiment 2b) did not diminish over the course of the experiment.  

The findings from Experiments 1 and 2 demonstrate that lifting objects by an 

attached handle is more likely to produce a SWI than a strings-based lift. However, it is 

unknown which particular information is received by the somatosensory system during 

this type of lift that accounts for a stronger or more reliable SWI. Although there is no 

haptic feedback about the dimensions of the object during a handle-based lift, because 

the object is not gripped directly in the hand, we have argued that during this type of lift 



there could be some information about size that can be detected via kinaesthetic 

feedback, perhaps via the torques applied during the lift. However, we note that there is 

no empirical evidence demonstrating that this is the case. This is surprising, given that so 

many contemporary SWI experiments have employed this lifting technique 

(Buckingham, Bieńkiewicz, et al., 2015; Buckingham & Goodale, 2010a, 2010c, 2013; 

Buckingham, Goodale, et al., 2016; Buckingham et al., 2011b; Buckingham et al., 2012; 

Flanagan & Beltzner, 2000; Grandy & Westwood, 2006; Mon-Williams & Murray, 2000). 

Accordingly, we conducted an additional control experiment to determine if size 

differences can be detected solely through the kinaesthetic information gained during a 

handle-based lift.  

We conducted further control experiments to address two other remaining issues. 

First, there is a potential alternative explanation for why participants reported a weight 

difference for the large/small bottles but not the full/half-full pair. Although we 

engineered the small and half-full bottles to have the same apparent liquid volume 

content (i.e., 250 ml in each), which ensured that the apparent liquid content was 

matched across the two stimulus pairs, it is unknown whether or not participants 

perceived comparable volume differences for the two pairs. There is evidence that 

perceived volume is influenced by container shape and size (e.g., Raghubir & Krishna, 

1999), which is relevant because the small and half-full bottles had different dimensions 

in our study. If participants perceived a greater difference in liquid content for the 

large/small bottles than for the full/half-full bottles, then this could explain why 

participants only reported a difference in perception for the former. Thus, perceived 

volume content of the stimuli was also tested in an additional control experiment. 

Second, there is a consideration regarding the paradigm used in the first two 

experiments. In some weight illusion studies, all stimuli are hidden from view except for 



the one object that is lifted in that particular trial (e.g., Buckingham & Goodale, 2010c; 

Buckingham et al., 2011b; Plaisier & Smeets, 2015). In our experiments, the stimulus pair 

was visible throughout all of the lifting trials. Perhaps having the two stimuli constantly 

visible influenced participants’ interpretation of the experiment. This is particularly 

relevant in light of the response bias that we suggest explains some curious results in 

Experiments 1 and 2. On this issue, Vicovaro and Burigana (2014) demonstrated a SWI 

of comparable strength when participants viewed and lifted stimulus pairs a) 

simultaneously, with one object in each hand, or b) consecutively, using the same hand to 

lift one object after the other. Both stimuli in the pair were constantly visible for both 

lifting methods, though. Accordingly, we aimed to confirm our perceptual findings in a 

new sample of participants who viewed and lifted one stimulus at a time.  

 

4. Additional Control Experiments 

The first control experiment aimed to determine if size differences between 

objects can be detected solely from the kinaesthetic information obtained during a 

handle-based lift. Participants’ vision was obscured as they lifted the bottle stimuli via a 

handle. For the sake of completeness, we also had them perform the same task lifting the 

stimuli via strings. Note that both lifting styles include lifting an object via the same sized 

handle – either attached directly to the bottle lid or to the other end of a string. However, 

we will continue to refer to the two lifting styles as handle- or strings-based. Participants 

were asked to judge the relative size of the objects that were attached to the handle, 

objects they could neither see nor touch.  

Second, we tested the perceived liquid volume content of the two bottle pairs from 

Experiments 1 and 2. Specifically, we investigated if the perceived difference in liquid 

content for the large/small pair was greater than for the full/half-full pair. Participants 



were presented with the two pairs and asked to report perceived volume content of each 

stimulus based only on visual information.  

Third, we aimed to confirm the weight perception findings from Experiments 1 

and 2 using a paradigm in which participants viewed and lifted only one stimulus at a 

time. In the interest of replication, we had participants lift the stimuli using both handles 

and strings.  

 

4.1 Method 

4.1.1 Participants. Sixteen right-handed individuals (8 females, 8 males; age: M = 

21.56 years, SD = 1.27 years) from the La Trobe University community participated in all 

tasks.  

4.1.2 Stimuli. We employed the three bottle stimuli from Experiments 1 (strings 

attached) and 2 (handles attached). We also used an additional set of stimuli during 

practice trials for the size perception task. Because we anticipated that reporting 

magnitude estimates of size for objects they could neither see nor touch would be an 

unusual and difficult task for participants, we also had them perform this task using a set 

of familiar objects that varied in size: six nested Russian wooden dolls (see Figure 7A). 

We did not attach handles to the dolls in order to test whether or not size differences 

could be discriminated for objects that were lifted directly. The dolls ranged in both 

height as well as diameter, meaning that participants’ grip aperture during the lift varied 

with the size of the doll (e.g., smallest doll: height = 35 mm, diameter at grip point = 

approximately 13 mm; largest doll: height = 146 mm, diameter at grip point: 

approximately 55 mm). 

4.1.3 Apparatus. The wooden frame from Experiment 1 was used for the strings-

based lifts. Because we were not measuring fingertip forces, we used 3D-printed replicas 



of the real transducer handles for the handle-based lifts. Additional apparatus for the 

experiment included vision-obscuring glasses. The lenses of the glasses were filled with 

black plasticine and blinders were attached to their sides to prevent peripheral visual 

access. The glasses were worn at all times during the size perception task and also in 

between trials of the other tasks, so that participants did not observe the experimenter 

handling the objects. Last, three transparent, plastic food storage containers were 

employed during the volume perception task. One was a large container (capacity: 1.8 L; 

approximately 850 mm x 850 mm x 2600 mm) and two were smaller (capacity: 0.9 L; 

approximately 900 mm x 900 mm x 1200 mm).  

4.1.4 Procedure. Participants performed the experiments in the same order 

(each detailed in subsections below). First, participants performed the size perception 

task, in which they lifted the nested dolls and the bottles one at a time, without visual 

access. This task was completed first so that size judgements were made before 

participants had ever seen or touched the objects. The volume perception task was 

performed second. Participants viewed but did not lift or touch the bottles, to ensure that 

volume content judgements were based on visual information only. Participants reported 

perceived volume in two ways, as detailed below, prior to judging the objects’ weight.  

4.1.4.1 Size perception without vision. Participants sat at a table wearing the 

vision-obscuring glasses. They were asked to lift various objects, one at a time, between 

the thumb and forefinger of their right hand and to provide magnitude estimates of each 

object’s size. Instructions for the magnitude estimates were comparable to Experiments 

1 and 2, with higher values denoting a larger size. The experimenter helped to guide the 

participants’ hand to touch the object to begin each lift. Participants first lifted the nested 

dolls. They grasped the top of the dolls directly.  



Participants then lifted each bottle stimulus from Experiments 1 and 2 in the same 

manner. In this case, participants were told they would be lifting different objects, each 

attached to the same-sized handle. They were asked to provide a magnitude estimate of 

size of the object that was attached to the handle, which they could not see. Each bottle 

was lifted twice with each lifting style (strings and handle) and lifting style was blocked 

in a counterbalanced order (i.e., participants completed all the strings-based or handle-

based trials first). Stimulus presentation order was randomised.  

4.1.4.2 Volume perception with vision. For trials in this task, the bottles were 

presented in the pairs from Experiments 1 and 2 (i.e., full/half-full and large/small). Each 

trial began with one of the two pairs placed side-by-side on the table in front of the 

participant. Participants then removed the vision-obscuring glasses and were asked not 

to touch the bottles. The two small, empty, food storage containers were placed in front 

of the bottles. Participants were given the large, transparent container, which was full of 

water, and asked to pour an amount of water into each of the two empty containers that 

would represent the amount of liquid contained in the two bottle stimuli. Participants 

were allowed to make adjustments to the amount of water in the two small containers 

until they were satisfied with the representative quantities. Then, the experimenter 

weighed each container, recorded the amount of water in each one (in grams, which 

converts to millilitres of water with parity), and then replaced the water from both small 

containers back into the large container for the next trial.  

As a second measure of perceived volume, participants were also asked to provide 

a magnitude estimate of the relative volume of liquid in each bottle stimulus, with larger 

numbers representing greater volumes. These two approaches for measuring perceived 

volume are known to correlate well (Saccone & Chouinard, 2019a). After the participants 

provided magnitude estimates, their vision was obscured and the experimenter swapped 



the left/right positions of the two bottles. The participant performed a second trial for 

that bottle pair. This procedure was then repeated for the second bottle pair. The order 

that each pair was presented, as well as the starting left/right position of each bottle, was 

counterbalanced across participants.  

4.1.4.3 Weight perception with vision. Participants viewed and lifted each bottle, 

one at a time, and provided magnitude estimates of weight as in Experiments 1 and 2. 

Because we suspected a response bias in the earlier experiments (i.e., participants 

responded in a manner they thought they should, which may not necessarily reflect what 

they perceived), we stressed more explicitly to participants in this experiment that we 

were interested in the weight they were experiencing, regardless of what they were 

expecting or what they believed they should be experiencing. The experimenter repeated 

this instruction several times with the aim of reducing the possibility of response bias. 

Participants lifted each bottle twice using each lifting style, for a total of 12 trials. Again, 

lifting style was blocked in a counterbalanced order. Stimulus presentation order was 

randomised.  

4.1.5 Data analysis. Magnitude estimates of size, volume, and weight were all 

transformed into Z scores in the same manner as in Experiments 1 and 2. Means of these 

standardised perceptual ratings of bottle size and weight were analysed with a 3 (Bottle; 

full, half-full, small) x 2 (Lifting style; strings, handle) repeated measures ANOVA. Mean 

standardised ratings of size for the nested dolls were analysed with a one-way repeated 

measures ANOVA, with Doll as a factor with 6 levels (dolls 1 (smallest) to 6 (largest)). To 

test the perceived volume difference across the two bottle pairs, perceptual estimates of 

volume were analysed with a 2 (Pair; full/half-full, large/small) x 2 (Apparent content; 

250 ml, 500 ml) repeated measures ANOVA. The same ANOVA model was also performed 



on the mean amount of water (ml) poured to represent the volume content of each bottle.  

Pairwise comparisons are presented with a family-wise Bonferroni correction applied. 

 

 

 

Figure 7. A: Photograph of the six nested Russian dolls used in the size perception task. 
The dolls ranged from smallest (height = 35 mm, diameter at grip point = approximately 
13 mm) to largest (height = 146 mm, diameter at grip point: approximately 55 mm). B: 
Mean perceptual size estimates for the six dolls. All family-wise Bonferroni-corrected 
pairwise comparisons were significant (all ps < .004), expect for the comparison between 
dolls 1 and 2 (p = .065). 
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4.2 Results 

In summary, the results demonstrated that participants could not detect size 

differences between the bottles when lifted via an attached handle or string. In contrast, 

they could discriminate size between the nested dolls. The perceptual ratings suggested 

a comparable difference in perceived volume across both bottle pairs, whereas the water 

pouring method revealed a greater difference in perceived volume for the full/half-full 

pair than the large/small pair. Regarding perceived weight, participants rated the small 

bottle as heavier than the large bottle when lifting via a handle but not when lifting via a 

string. There was no perceived weight difference between the full and half-full bottles for 

either lifting style.   

4.2.1 Size perception without vision.  

4.2.1.1 Dolls. Mean perceptual size ratings of the dolls are displayed in Figure 7B. 

There was a main effect of Doll, F(2.94, 75) = 249.98, p < .001, ηp2 = .94. Pairwise 

comparisons revealed significant differences between all possible pairs (all ps <.004) 

except for the comparison between the two smallest dolls (p = .065). These findings 

indicate that participants could use somatosensory information to estimate the size of 

the different dolls. Note that participants used a different grip aperture for each doll. 

4.2.1.2 Bottles. Mean perceptual size ratings of the bottles are displayed in Figure 

8A. There was neither a main effect of Bottle, F(2, 28) = 3.05, p = .063, ηp2 = .18, nor Lifting 

style, F(1, 14) = 0.21, p = .651, ηp2 = .02, and no interaction between the two factors, F(1, 

20) = 1.20, p = .307, ηp2 = .08. These findings contrast those obtained for the dolls. 

Somatosensory information did not allow participants to discriminate the differently 

sized bottles when they lifted the objects with a handle (with or without a string).  

4.2.2 Volume perception with vision. Mean amounts of water poured to 

represent the content of the two bottle pairs are displayed in the upper panel of Figure 



8B. There was no main effect of Pair, F(1, 15) = 0.25, p = .623, ηp2 = .02, demonstrating 

that overall the perceived volume of the full/half-full pair was comparable to the 

large/small pair. There was a main effect of Apparent content, F(1, 15) = 115.44, p < .001, 

ηp2 = .885, indicating greater perceived volume reported for the 500 ml bottle (full or 

large) than the bottles with 250 ml of apparent liquid (small and half-full bottles). There 

was also an interaction between Pair and Apparent content, F(1, 15) = 5.12, p = .039, ηp2 

= .255. Pairwise comparisons indicated significant differences between both the full and 

half-full bottles (p <.001) and the large and small bottles (p <.001). Of note, there was no 

difference between the small and half-full bottles (p = .74) or the large and full bottles 

(which were in fact the same bottle; p = .245). Paired sample t-tests explored the 

interaction further. Results suggest that the interaction is driven by a greater difference 

for the full/half-full pair, t(15) = 11.71, p <.001, Cohen’s d = 2.08, than the large/small 

pair, t(15) = 9.30, p <.001, Cohen’s d = 1.71. 

Mean perceptual volume ratings are displayed in the lower panel of Figure 8B. 

There was no main effect of Pair, F(1, 15) = 2.27, p = .153, ηp2 = .13, but there was a main 

effect of Apparent content, F(1, 15) = 982.66, p < .001, ηp2 = .99, with higher perceptual 

estimates for the full (large) bottle than the half-full or small bottles. There was no 

interaction, F(1, 15) = 0.42, p = .527, ηp2 = .03.  

4.2.3 Weight perception with vision. Perceptual heaviness ratings are displayed 

in Figure 8C. There was a main effect of Bottle, F(2, 30) = 9.00, p = .001, ηp2 = .38. Pairwise 

comparisons revealed that heaviness ratings were higher for the small bottle compared 

to the large (full) bottle (p = .026) as well as the half-full bottle (p = .002). There was no 

difference between the large (full) and half-full bottles (p > .999). There was also a main 

effect of Lifting style, F(1, 15) = 7.66, p = .014, ηp2 = .34, reflecting higher estimates when 

bottles were lifted with strings compared to handles. There was a significant interaction 



between the factors, F(1, 20) = 5.24, p = .024, ηp2 = .259. Pairwise comparisons revealed 

that when participants lifted bottles via a string, they rated the small bottle as heavier 

than the half-full bottle (p = .025) but there was no difference between the other bottles 

(ps > .917). When the bottles were lifted via a handle, the small bottle was perceived as 

heavier than both the large (full) bottle (p = .001) and the half-full bottle (p = .001), but 

there was no difference between the large (full) and half-full bottles (p = .351).  
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Figure 8. A: Mean perceptual size estimates of the small, half-full and large (full) bottles 
when lifted via strings and an attached handle. B, upper: Mean amounts of water poured 
to represent the content of each stimulus for the full/half-full pair and the large/small 
pair. The dashed lines represent the actual apparent liquid content of the stimuli (i.e., 250 
ml (half-full, small) or 500 ml (full, large). B, lower: and mean perceptual volume 
estimates for the full/half-full pair and the large/small pair. C: Mean perceptual heaviness 
estimates of the small, half-full and large (full) bottles when lifted via strings and an 
attached handle. Asterisk (*) denotes a significant (p < .05, Bonferroni family-wise 
correction where appropriate) pairwise comparison between stimuli/conditions. 
 

4.3 Discussion 

 A number of conclusions can be drawn from these additional experiments. First 

and foremost, the weight perception task replicated the main findings from Experiments 

1 and 2. Namely, the small bottle felt heavier than the large bottle when they were lifted 

via a handle but not when lifted with strings. There was no perceived weight difference 

between the full and half-full bottles for either lifting style. We did not replicate the 

unexpected reverse-weight illusion pattern found in Experiment 1a, which further 

supports the idea that this earlier finding is more likely to reflect a response bias than a 

true perceptual effect. Of note, participants in the control experiment also reported the 

small bottle as heavier than the half-full bottle when participants lifted with the handles. 

These two bottles were never compared in Experiments 1 and 2. This new information 

underscores that container size exerts a much stronger influence on perceived weight 

relative to the apparent amount of liquid content inside. Curiously, this effect was also 

present during the strings-based lifts. This latter finding should be interpreted with 

caution as it is unclear as to why lifting the full (large) bottle did not exert similar effects 

in this control experiment as well as in the Experiments 1 and 2. Future work could look 

into this matter further. 

Interestingly, our findings suggest that these differences in perceived weight 

across the lifting styles were not due to detected size differences in the stimuli, at least in 
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terms of a reported, conscious percept of size. Contrary to our hypothesis, participants 

could not discriminate between the differently sized bottles solely from the kinaesthetic 

information received from a handle-based lift. These findings are particularly interesting 

in light of the strong evidence our study provides that lifting style influences the strength 

or reliability of the SWI. Furthermore, although there were no perceived size differences 

for the bottles, participants could reliably detect differences in the nested dolls. Because 

participants lifted the dolls directly, rather than via a handle, we can reason that they 

received haptic information about the dolls’ varied sizes, as well as proprioceptive 

feedback about the varying grip aperture of the thumb and forefinger. Thus, participants 

were indeed capable of detecting size differences during this task, but not when lifting 

the objects indirectly via a handle (without or without a string).   

 Last, these findings rule out the possibility that differences in perceived volume 

content across the bottle pairs account for differences in perceived weight across the 

pairs. It was important to investigate if there was a greater difference in perceived 

volume for the large/small pair. Perceived volume as measured by the water pouring task 

indicated that there was in fact a greater difference in perceived volume for the full/half-

full pair. If anything, this finding suggests that there should be a greater expected weight 

difference for this pair than the large/small pair, according to the reasoning that 

predicted weight influences perceived weight. Participants’ perceptual ratings of volume 

indicated instead that differences in volume were comparable across the two pairs. We 

cannot conclude that there was no difference in perceived volume for the small bottle and 

the half-full bottle because these two were never directly compared. Regardless, these 

data demonstrate overall that differences in perceived volume for the two pairs do not 

explain our findings that container size influenced perceived weight in a paradigm where 

liquid volume content did not.  
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5. General Discussion 

The present study examined the effects of size and liquid volume content on the perceived 

weight of bottles and the forces applied when lifting them. This was the first study to 

examine the familiar weight cue of liquid volume in a weight illusion paradigm. We also 

varied lifting style to further evaluate the relative contributions of sensory versus 

conceptual processing on weight perception. In Experiment 1, participants lifted stimuli 

via strings, which served to isolate the influence of visual information about the stimuli 

on perception and lifting behaviour. This was the first study to examine force profiles 

when illusory objects were lifted with strings. Experiment 2 was identical to Experiment 

1, except that the objects were lifted via handles that were attached directly to them. This 

lifting style may, in theory, result in more kinaesthetic information about the size of 

stimuli than when the stimuli are lifted with strings. This is because a strings-based lift is 

more likely to ensure that the stimuli are lifted vertically. The results demonstrated that 

liquid volume does not influence perceived weight in an illusory context when container 

size is held constant. These findings were replicated in our additional control 

experiments, which also ruled out of the possibility that differences in perceived liquid 

content of the bottle pairs explained these differences in perceived weight. Additionally, 

a control experiment revealed that the extra kinaesthetic information obtained when 

objects are lifted by an attached handle rather than a string does not translate to a 

conscious percept of size. These findings from the size perception task add to the novel 

contribution of our study in examining these two lifting styles, which are commonly used 

in weight illusion paradigms. Overall, our results provide strong evidence that weight 
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perception in the SWI is more strongly driven by kinaesthetic processing mechanisms 

than predictions arising from conceptual weight cues.  

In the current study, liquid volume did not produce a perceptual weight illusion in 

the same manner as other conceptual cues in other studies (for a review, see Saccone & 

Chouinard, 2019b). This finding is surprising given that a) liquid volume is a highly 

familiar object feature that predicts weight (Nowak & Hermsdörfer, 2003) and b) there 

is strong evidence that other conceptual weight cues produce an illusory weight percept, 

such as material or identity (Baugh et al., 2012; Buckingham et al., 2009; Buckingham, 

Ranger, & Goodale, 2011a; Ellis & Lederman, 1998, 1999; Seashore, 1899; Wolfe, 1898). 

One possibility is that size cues overrode other information that should predict weight 

(i.e., liquid volume), in the same manner as other studies that varied size as well as 

another weight-predicting feature (Buckingham & Goodale, 2013; Buckingham, Goodale, 

et al., 2016; Plaisier & Smeets, 2015). Note that our findings are consistent with Plaisier 

and Smeets’ (2015) in this respect. However, this reasoning does not hold for other 

weight illusions, for example, the material-weight illusion. In this case, apparent material 

produces an illusory weight percept even though stimuli have the same physical size. It 

could be that conceptual-based effects are smaller and could not be detected in the 

present investigation. Regardless of why liquid volume did not produce a perceptual 

experience consistent with other weight illusions, the current findings demonstrate that 

container size influenced perceived weight in a paradigm where liquid volume content 

did not. These findings, coupled with evidence from previous literature (Buckingham, 

Bieńkiewicz, et al., 2015; Buckingham & Goodale, 2013; Buckingham, Goodale, et al., 

2016), suggests that size influences perception in a different way to other features that 

provide a conceptual cue to weight.   
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The current findings also point to a strong influence of kinaesthetic processing in 

the SWI. Visual information was not sufficient to produce a SWI in Experiment 1, but the 

illusion was elicited in Experiment 2 when additional information about the stimuli was 

gained through kinaesthetic channels via a handle-based lift. This finding contrasts 

numerous studies that have reported a SWI using strings (Anderson, 1970; Ellis & 

Lederman, 1993; Kawai et al., 2007; Masin & Crestoni, 1988; Werber & King, 1962; Wolf 

et al., 2018), including in as few as four participants (i.e., Buckingham, Milne, et al., 2015's 

sighted control group). We did find partial evidence of a strings-based SWI in the control 

experiment, in that the small bottle was rated as heavier than the larger, half-full bottle; 

however, there was no difference in perceived weight between the small and large (full) 

bottles. The reason the current paradigm did not produce a reliable effect when stimuli 

were lifted with strings is unknown. Nonetheless, our findings are consistent with 

existing literature suggesting haptic and/or kinaesthetic information about the stimuli 

drives the perceptual experience of the illusion more strongly than vision alone (Ellis & 

Lederman, 1993; Saccone et al., 2019; Wolf et al., 2018). Furthermore, there are 

documented failures to elicit the SWI when vision is obscured and stimuli are lifted with 

strings (e.g., experiment 2 in Ellis & Lederman, 1993; experiment 1 in Wolf et al., 2018), 

whereas when objects are hefted in the hands or lifted via a handle, there is a strong SWI 

even without visual access (see Saccone et al., 2019's meta-analysis for several 

examples).   

The notion that kinaesthetic feedback exerts a strong influence in the SWI is also 

supported by the neuropsychological literature. Although the SWI is demonstrably 

robust in spite of significant cerebellar (Rabe et al., 2009) and cortical damage 

(Buckingham, Bieńkiewicz, et al., 2015; Li, Randerath, Goldenberg, & Hermsdörfer, 2011; 

but see Halstead, 1945), one of the few documented cases of an absent SWI is provided 



CONTAINER SIZE, LIQUID VOLUME AND PERCEIVED WEIGHT 

 

 52 

by a patient with deafferentation. Buckingham, Michelakakis, and Cole (2016) report the 

case study of I.W., for whom tactile or proprioceptive feedback was lost after having 

acquired deafferentation 30 years prior. Accordingly, I.W. does not experience weight or 

heaviness via somatosensation, but rather is thought to infer mass from visual feedback 

of his lifting behaviour. Although he can discriminate between real weight differences to 

a comparable degree to a control group, I.W. does not experience a SWI.  

On balance, the current findings suggest that size does not influence perception in 

the same manner as other conceptual weight cues that rely on acquired, semantic 

associations. This study also suggests that information obtained through kinaesthetic 

channels is particularly important in driving the perceptual experience of the SWI. 

However, an important and novel finding from the current study is that the information 

provided during this process does not translate to a conscious perception of size. The 

processing of size can be fulfilled by different neural mechanisms depending on what it 

is used for (e.g., Goodale, Milner, Jakobson, & Carey, 1991; for a review, see Sperandio & 

Chouinard, 2015). Thus, it could be the case that processing size for the purposes of 

perceiving it may depend on a different set of mechanisms than those used to influence 

weight perception, which relies heavily on somatosensory feedback. The question 

remains as to precisely why a handle-based lift is more likely to produce a SWI than a 

strings-based lift. What is the particular variable(s) detected by the somatosensory 

system during a handle-based lift that influences perceived weight so strongly in the SWI? 

In considering this question, we must consider alternative accounts of the SWI than those 

emphasising feature-weight associations. These alternative accounts are often referred 

to as bottom-up accounts (see Buckingham, 2014, and Saccone et al., 2019 for reviews; 

also see the General Discussion of Plaisier et al., 2019).  
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The current findings support one bottom-up account of the SWI and weight 

perception more generally provided by Amazeen and Turvey (1996). They demonstrated 

that it was the distribution of mass within an object, rather than simply mass, that was a 

stronger predictor of perceived weight (but see Zhu, Shockley, Riley, Tolston, & Bingham, 

2013 for contrasting findings). Amazeen and Turvey provided evidence that kinaesthetic 

resistance to the rotational forces of the object is translated into a percept of weight. 

According to their account, rotational inertia is the critical variable accounting for the 

perceptual experience of the SWI. This explanation fits well with the findings in our study 

that indicate a driving role of kinaesthetic processing of objects that differ in size but not 

weight – kinaesthetic processing that does not translate to a conscious percept of size.   

Another account that could speak to an important role of kinaesthetic processing 

is provided by Zhu and Bingham (2011). Rather than proposing that a physical object 

feature like density influences weight perception, their account implicates an action-

relevant feature, drawing from Gibson’s (1979) ecological view of object perception. Zhu 

and Bingham argued that size has been a significant factor for humans in estimating the 

throwability (and therefore heaviness) of objects since the hunter-gatherer days. They 

proposed that the effect of size on weight perception relates to a readiness to judge the 

“throwability” of objects in order to acquire objects that can be thrown the furthest. It is 

possible that this evolutionary reliance on the physical size of stimuli means that it is 

prioritised over other weight cues when making heaviness judgements. Our findings 

could speak to their account in that kinaesthetically-derived information may be more 

closely related to judging throwability.  

There is other evidence in the weight illusion literature that supports these 

theories underscoring the influence of kinaesthetic, sensory processing rather than 

conceptual processing in the SWI. Consider that information about size and distribution 
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of mass can be detected kinaesthetically whereas other features such as apparent 

material or identity cannot. To illustrate, in the material-weight illusion and some other 

weight illusions (e.g., Ellis & Lederman, 1998), stimuli have the same size, as well as mass, 

and therefore do not include size differences across stimuli that can be detected 

kinaesthetically. A number of studies suggest that the SWI is a considerably stronger 

and/or more reliable illusion than the material-weight illusion (Buckingham, 

Bieńkiewicz, et al., 2015; Buckingham & Goodale, 2013; Saccone et al., 2019; Vicovaro & 

Burigana, 2017). Additionally, SWI research demonstrates that size can have a 

remarkably consistent influence on weight perception, even when other weight-

predicting features are varied (Buckingham & Goodale, 2013; Buckingham, Goodale, et 

al., 2016). Thus, the unique influence of kinaesthetic feedback from objects that differ in 

size could explain the stronger and more consistent effect of size on illusory weight 

perception in the SWI compared to other features in other weight illusions.  

With respect to our force data, the current study was the first to investigate force 

deployment in an illusory weight context where liquid content could inform 

sensorimotor prediction. In general, these data did not show the expected pattern that 

greater force would be applied for the full bottle during initial lifts. These findings are 

particularly notable in the case of Experiment 2, which employed the typical lifting 

technique for a weight illusion paradigm measuring fingertip forces. However, we note 

that our SWI experiment also produced force profiles that were not entirely consistent 

with previous studies. These findings speak to an important criticism raised in a review 

paper by Dijker (2014) on earlier studies recording force data. 

Dijker (2014) highlights the degree of inconsistency among published studies in 

terms of which particular force variables demonstrate sensorimotor adaptation to 

illusory stimuli and how quickly. He provided an example from Buckingham and Goodale 
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(2010b). In this SWI study, peak grip force and peak grip/load force rates showed the 

expected pattern, both in terms of initial sensorimotor predictions and adaptation. That 

is, greater forces were applied initially for the larger stimuli, and then this difference 

attenuated over a small number of trials as participants learned the true (i.e., equal) 

weights of the stimuli. However, peak load force showed poor adaptation over the course 

of the experiment; there was consistently greater peak load forces applied for the largest 

than the smallest object. This pattern is consistent with our Experiment 2b, in that peak 

grip force rates were consistently higher for the large bottle. In fact, we did not find 

evidence of statistically significant sensorimotor adaptation at all, with respect to 

statistical interaction effects between the factors of Bottle and Trial. We also note 

inconsistencies in terms of which particular force variables are reported in published 

studies. Some present peak rates of grip and load forces only (Buckingham, Bieńkiewicz, 

et al., 2015; Buckingham & Goodale, 2010c; Buckingham, Goodale, et al., 2016), whereas 

other studies present force rates as well as load phase durations (Buckingham et al., 

2011b). Others focus on either grip forces (Buckingham et al., 2012; Flanagan & Beltzner, 

2000) or load forces (Baugh, Yak, Johansson, & Flanagan, 2016; Flanagan et al., 2008), 

with or without load phase durations.  

In contrast, Mon-Williams and Murray (2000) reported all five variables as we 

have done in the current study (see Supplementary Material for analyses not reported in 

the manuscript). We feel this is more transparent. Choosing which variables to report 

over others in an inconsistent manner masks rather than eliminates Type 1 error. The 

risk for making this type of error remains the same regardless of the number of variables 

one chooses to report. Ultimately, selecting to report only a subset of them is 

counterproductive in the long run as it does now allow the validity of force data reported 

across different weight illusion studies to be fully evaluated. Further validity on the 
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recording of forces is warranted. Nonetheless, one should consider that we did not 

correct for acquiring and reporting multiple force measurements. Thus, one should deem 

our force results with a certain degree of caution until they are replicated. 

Aside from addressing the primary aim of comparing physical size and conceptual 

weight cues, this study also highlights an additional, important issue for the weight 

illusion literature. It is possible that demand effects or participants’ interpretation of the 

experimental context can influence results. The present study has demonstrated 

evidence of a response bias that is unlikely to reflect perception. Namely, the same, 

opposite pattern to what is typically seen in weight illusions was clearly evident in 

Experiment 1a, as well as the first trials of Experiments 1b, 2a and 2b. We can only 

speculate that this pattern relates to participants’ incorrect interpretation of the 

experiment and/or that they felt they should respond in a particular way. This reasoning 

is supported by the findings from our additional control experiment, in which 

participants were instructed with great emphasis to report their perceptual experience, 

regardless of their interpretation of the experiment. We note also that this additional 

weight perception experiment differed from Experiments 1 and 2 in that stimuli were 

viewed and lifted one at a time, which might have influenced participants’ interpretation 

and/or responses. The additional control experiment replicated the SWI found with the 

large and small bottles, whereas there were no differences in perceived weight between 

the full and half-full bottles. This pattern in the data was unexpected but highlight that 

these paradigms are subject to influence. It seems the SWI is a strong enough 

phenomenon to counteract this, whereas other weight illusions may not be.  
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Supplementary Material 

All variables were analysed with a 2 (Bottle; full (or large), half-full (or small) x 5 (Trial: 

1, 5, 10, 15, 20) repeated measures ANOVA. Pairwise comparisons are presented with a 

family-wise Bonferroni correction applied. Greenhouse-Geisser corrections were applied 

whenever sphericity could not be assumed as determined by a Mauchly’s test. 

 

Results 

Experiment 1a: Full and half-full bottles lifted with strings. 

Peak grip force. Mean peak grip force for the full and half-full bottles across trials 

are displayed in Figure S1A. The 2 x 5 repeated measures ANOVA revealed no significant 

main effect of Bottle, F(1, 13) = 0.33, p = .573, ηp2 = .03. There was a significant main effect 

of Trial, F(4, 52) = 3.64, p = .011, ηp2 = .22. Pairwise comparisons indicated significantly 

greater mean peak grip forces in trial 1 compared to trial 10 (p = .045). None of the other 

comparisons were significant (all ps > .153). The Bottle x Trial interaction was not 

significant, F(2, 23) = 0.98, p = .382, ηp2 = .07.  

Peak load force. Mean peak load force for the full and half-full bottles across all 

trials are displayed in Figure S1B. The 2 x 5 repeated measures ANOVA revealed a main 

effect of Bottle, F(1, 13) = 4.88, p = .046, ηp2 = .27, reflecting greater mean peak load forces 

for the full than half-full bottle. There was no significant main effect of Trial, F(4, 52) = 

1.45, p = .232, ηp2 = .10, and no significant interaction, F(4, 52) = 0.08, p = .989, ηp2 = .01.  

Load phase duration. Mean load phase duration for the full and half-full bottles 

are displayed in Figure S1C. There was no main effect of Bottle, F(1, 13) = 1.17, p = .299, 

ηp2 = .08. The main effect of Trial was significant, F(2, 28) = 8.21, p = .001, ηp2 = .39, 

reflecting longer mean load phase duration in trial 1 compared to trials 10 (p = .009) and 
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15 (p = .039). There were no differences across the other trials (all ps > .070). The 

interaction was not significant, F(4, 52) = 2.55, p = .050, ηp2 = .16.  

 

Figure S1. Mean peak grip forces (A), peak load forces (B) and load phase durations (C) 

for the full and half-full bottles in Experiment 1a. Error bars denote standard errors of 

the means. Cross (+) denotes a significant (p <.05) main effect of Bottle. Pound (#) 

denotes a significant (p <.05) main effect of Trial.  

 

 

Experiment 1b: Large and small (SWI) bottles lifted with strings. 

Peak grip force. Mean peak grip force for the large and small bottles across all 

trials are displayed in Figure S2A. The 2 x 5 repeated measures ANOVA revealed no main 

effect of Bottle, F(1, 13) = 0.33, p = .575, ηp2 = .03. There was a significant main effect of 
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Trial, F(3, 34) = 7.27, p = .001, ηp2 = .36. Pairwise comparisons indicated significantly 

greater mean peak grip forces in trial 1 compared to trials 15 (p = .003) and 20 (p = .003). 

None of the other comparisons were significant (all ps > .061). The interaction was also 

not significant, F(2, 23) = 0.83, p = .434, ηp2 = .06.  

Peak load force. Mean peak load force for the large and small bottles across all 

trials are displayed in Figure S2B. There was neither a significant main effect of Bottle, 

F(1, 13) = 3.409, p = .088, ηp2 = .21, nor Trial, F(4, 52) = 1.07, p = .382, ηp2 = .08. The 

interaction was also not significant, F(2, 26) = 0.75, p = .485, ηp2 = .05.  

Load phase duration. Mean load phase duration for the large and small bottles 

are displayed in Figure S2C. There was no significant main effect of Bottle, F(1, 13) = 0.06, 

p = .814, ηp2 = .00. There was a significant main effect of Trial, F(4, 52) = 5.35, p = .001, ηp2 

= .29. Pairwise comparisons indicated significantly longer load phase durations in trial 1 

compared to trials 10 (p = .036) and 15 (p = .034). None of the other comparisons were 

significant (all ps > .058). The interaction was also significant, F(4, 52) = 2.75, p = .038, 

ηp2 = .18, however, none of the comparisons survived the Bonferroni correction (all ps > 

.116).  

 

 

 

 

 

 

 



CONTAINER SIZE, LIQUID VOLUME AND PERCEIVED WEIGHT 

 

 69 

Figure S2. Mean peak grip forces (A), peak load forces (B) and load phase durations (C) 

for the large and small bottles in Experiment 1b. Error bars denote standard errors of the 

means. Pound (#) denotes a significant (p <.05) main effect of Trial.  

 

 

Experiment 2a: Full and half-full bottles lifted with handles. 

Peak grip force. Mean peak grip force for the full and half-full bottles across all 

trials are displayed in Figure S3A. There were no significant main effects of Bottle, F(1, 

13) = 0.10, p = .752, ηp2 = .01, nor Trial, F(2, 30) = 3.14, p = .052, ηp2 = .19, and the 

interaction between the two factors was also not significant, F(2, 29) = 0.62, p = .564, ηp2 

= .05.  

Peak load force. Mean peak load force for the full and half-full bottles across all 

trials are displayed in Figure S3B. There were no significant main effects of Bottle, F(1, 
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13) = 2.01, p = .180, ηp2 = .13, or Trial, F(4, 52) = 0.28, p = .893, ηp2 = .02, and the interaction 

between the two factors was also not significant F(4, 52) = 0.60, p = .666, ηp2 = .04.  

Load phase duration. Mean load phase durations for the full and half-full bottles 

are displayed in Figure S3C. There was no significant main effect of Bottle, F(1, 13) = 3.48, 

p = .085, ηp2 = .21, but there was a significant main effect of Trial, F(4, 52) = 6.36 p < .001, 

ηp2 = .33. However, none of the comparisons survived the Bonferroni correction (trials 1 

vs 10, p = .050, all other ps > .132). The Bottle x Trial interaction was not significant, F(4, 

52) = 2.41, p = .061, ηp2 = .16.  

 

Figure S3. Mean peak grip forces (A), peak load forces (B) and load phase durations (C) 

for the full and half-full bottles in Experiment 2a. Error bars denote standard errors of 

the means. Pound (#) denotes a significant (p <.05) main effect of Trial.  
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Experiment 2b: Large and small (SWI) bottles lifted with handles. 

Peak grip force. Mean peak grip force values for the large and small bottles are 

displayed in Figure S4A. There was a strong, significant main effect of Bottle, F(1, 13) = 

21.85, p < .001, ηp2 = .63, reflecting higher peak grip forces for the large bottle. There was 

also a significant main effect of Trial, F(2, 21) = 12.17, p = .001, ηp2 = .48. Pairwise 

comparisons revealed that peak grip forces were higher for trial 1 compared to trials 5 (p 

= .026), 10, (p = .017), 15 (p = .018) and 20 (p = .024). Peak grip forces were not 

significantly different across trials 5-20 (all ps = 1.00). The interaction between the two 

factors was not significant, F(2, 27) = 1.89, p = .169, ηp2 = .13.  

Peak load force. Mean peak load force values for the large and small bottles across 

all trials are displayed in Figure S4B. There was neither a main effect of Bottle, F(1, 13) = 

1.41, p = .257, ηp2 = .10, nor Trial, F(2, 28) = 1.45, p = .251, ηp2 = .10, and no significant 

interaction, F(4, 52) = 0.14, p = .966, ηp2 = .01.  

Load phase duration. Mean load phase durations for the large and small bottles 

are displayed in Figure S4C. There was no main effect of Bottle, F(1, 13) = 3.62, p = .079, 

ηp2 = .22, but there was a significant main effect of Trial, F(2, 31) = 4.44, p = .016, ηp2 = .26. 

Namely, load phases were longer for trial 1 compared to trial 5 (p = .010), whereas there 

were no significant differences between trials 5-20 (all ps > .056). The interaction was 

not significant, F(4, 52) = 0.46, p = .763, ηp2 = .03.  
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Figure S4. Mean peak grip forces (A), peak load forces (B) and load phase durations (C) 

for the large and small bottles in Experiment 2b. Error bars denote standard errors of the 

means. Cross (+) denotes a significant (p <.05) main effect of Bottle. Pound (#) denotes a 

significant (p <.05) main effect of Trial. 
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Table S1 

Mean (and standard error) peak grip forces, peak grip force rates, peak load forces, peak load force rates and load phase durations for the 

full and half-full bottles (Experiments 1a and 2a) and large and small bottles (Experiments 1b and 2b) for trials 1, 5, 10, 15, and 20. In 

Experiment 1, bottles were lifted via strings. In Experiment 2, bottles were lifted via an attached handle. 

Experiment 1a Full bottle Half-full bottle 

 Trial 1 Trial 5 Trial 10 Trial 15 Trial 20 Trial 1 Trial 5 Trial 10 Trial 15 Trial 20 

Peak grip force (N) 11.11 (1.32) 8.71 (0.87) 8.03 (1.38) 7.19 (0.60) 8.66 (0.87) 9.78 (0.74) 7.73 (1.05) 8.11 (0.81) 8.52 (0.98) 7.80 (0.95) 

Peak grip force rate (N/sec) 47.70 (7.29) 41.55 (4.30) 40.16 (5.27) 36.32 (3.55) 48.55 (5.05) 45.76 (4.60) 42.63 (7.22) 46.22 (6.26) 47.57 (7.24) 39.58 (5.89) 

Peak load force (N) 2.61 (0.15) 2.72 (0.16) 2.55 (0.09) 2.78 (0.13) 2.52 (0.09) 2.46 (0.18) 2.58 (0.15) 2.49 (0.11) 2.62 (0.09) 2.39 (0.11) 

Peak load force rate (N/sec) 16.37 (2.27) 20.04 (2.19) 18.78 (1.99) 19.38 (2.24) 21.79 (2.20) 14.97 (2.06) 19.69 (1.74) 17.93 (1.41) 22.70 (1.88) 18.25 (2.78) 

Load phase duration (ms) 494.75 

(62.99) 

351.04 

(34.12) 

302.18 

(39.14) 

340.68 

(36.02) 

275.79 

(31.48) 

470.79 

(54.44) 

303.16 

(39.33) 

322.38 

(29.78) 

247.46 

(32.81) 

353.21 

(50.71) 

Experiment 1b Large bottle Small bottle 

 Trial 1 Trial 5 Trial 10 Trial 15 Trial 20 Trial 1 Trial 5 Trial 10 Trial 15 Trial 20 

Peak grip force (N) 13.46 (2.12) 9.78 (1.61) 11.38 (3.23) 10.64 (2.67) 10.08 (2.26) 13.52 (2.69) 11.21 (2.60) 10.11 (2.13) 9.45 (1.75) 10.07 (2.13) 

Peak grip force rate (N/sec) 68.71 (13.69) 51.10 (8.75) 51.45 (8.97) 42.44 (5.58) 44.11 (6.72) 51.42 (7.79) 53.11 (10.11) 44.06 (8.11) 42.16 (3.83) 45.61 (6.81) 

Peak load force (N) 2.86 (0.19) 2.85 (0.25) 2.53 (0.13) 2.64 (0.10) 2.54 (0.14) 2.57 (0.19) 2.75 (0.19) 2.39 (0.16) 2.56 (0.13) 2.72 (0.15) 

Peak load force rate (N/sec) 20.96 (2.02) 20.79 (2.61) 20.50 (2.05) 18.66 (2.08) 18.90 (1.82) 18.72 (3.63) 23.26 (3.44) 16.91 (1.57) 19.15 (1.56) 19.69 (1.63) 

Load phase duration (ms) 380.86 

(38.18) 

289.79 

(32.99) 

296.00 

(38.38) 

320.68 

(50.44) 

366.93 

(56.07) 

477.86 

(48.19) 

246.29 

(75.12) 

338.32 

(45.14) 

265.64 

(67.59) 

281.57 

(79.36) 
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Experiment 2a Full bottle Half-full bottle 

 Trial 1 Trial 5 Trial 10 Trial 15 Trial 20 Trial 1 Trial 5 Trial 10 Trial 15 Trial 20 

Peak grip force (N) 10.47 (1.47) 7.98 (1.47) 7.57 (1.59) 7.80 (1.15) 7.32 (1.06) 10.12 (1.61) 8.21 (1.28) 8.76 (2.67) 7.27 (1.02) 7.28 (1.19) 

Peak grip force rate (N/sec) 51.78 (8.33) 39.67 (7.19) 43.71 (9.11) 44.65 (9.91) 37.69 (6.00) 46.70 (9.59) 42.54 (8.34) 48.87 (15.12) 37.22 (3.43) 35.23 (4.83) 

Peak load force (N) 2.34 (0.11) 2.37 (0.11) 2.26 (0.10) 2.34 (0.11) 2.32 (0.12) 2.18 (0.09)  2.23 (0.11) 2.25 (0.09) 2.27 (0.09) 2.39 (0.15) 

Peak load force rate (N/sec) 19.43 (2.33) 17.40 (1.43) 18.40 (1.39) 20.21 (2.32) 18.84 (1.96) 15.33 (1.22) 17.75 (1.71) 17.71 (1.83) 18.46 (1.87) 19.46 (1.62) 

Load phase duration (ms) 303.25 

(41.57) 

274.71 

(26.90) 

199.46 

(33.93) 

265.71 

(52.38) 

266.50 

(36.94) 

439.50 

(45.37) 

312.46 

(56.33) 

252.61 

(33.71) 

252.04 

(31.88) 

259.57 

(26.31) 

Experiment 2b Large bottle Small bottle 

 Trial 1 Trial 5 Trial 10 Trial 15 Trial 20 Trial 1 Trial 5 Trial 10 Trial 15 Trial 20 

Peak grip force (N) 9.90 (0.83) 6.68 (0.41) 6.45 (0.68) 6.67 (0.67) 6.49 (0.61) 13.39 (1.86) 8.23 (0.45) 7.09 (0.51) 7.63 (0.55) 7.03 (0.40) 

Peak grip force rate (N/sec) 50.72 (6.79) 42.66 (5.71) 42.33 (5.20) 39.63 (4.81) 34.75 (3.87) 66.68 (11.13) 47.46 (3.91) 49.58 (7.55) 40.96 (4.61) 41.45 (3.15) 

Peak load force (N) 2.53 (0.14) 2.44 (0.12) 2.26 (0.13) 2.49 (0.12) 2.49 (0.09) 2.59 (0.19) 2.52 (0.12) 2.43 (0.14) 2.52 (0.11) 2.56 (0.12) 

Peak load force rate (N/sec) 23.88 (3.85) 22.43 (2.87) 22.16 (2.78) 21.84 (2.46) 21.02 (2.67) 23.41 (3.34)  24.86 (2.45) 22.27 (2.82) 24.30 (2.35) 23.21 (1.82) 

Load phase duration (ms) 348.25 

(46.90) 

234.57 

(34.54) 

271.36 

(45.83) 

236.50 

(34.44) 

275.18 

(44.52) 

300.32 

(27.70) 

213.00 

(29.74)  

202.29 

(25.96)  

210.93 

(28.44)  

213.43 

(25.35)  

 

 


