
Extending Firing Rate Models to Include Ionic Effects

by

Tianke Li

University of Pittsburgh, 2019

Submitted to the Graduate Faculty of

the Department of Mathematics in partial fulfillment

of the requirements for the degree of

Bachelor’s of Philosophy

University of Pittsburgh

2019

CORE Metadata, citation and similar papers at core.ac.uk

Provided by D-Scholarship@Pitt

https://core.ac.uk/display/227535681?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


UNIVERSITY OF PITTSBURGH

DEPARTMENT OF MATHEMATICS

This thesis was presented

by

Tianke Li

It was defended on

July 25, 2019

and approved by

Bard Ermentrout, Department of Mathematics

Jonathan Rubin, Department of Mathematics

Jeffrey Wheeler, Departmental of Mathematics

Rachael Neilan, Duquesne University

Thesis Advisor: Bard Ermentrout, Department of Mathematics

ii



Copyright c© by Tianke Li

2019

iii



Extending Firing Rate Models to Include Ionic Effects

Tianke Li, B.Phil

University of Pittsburgh, 2019

Spiking models have been widely used to describe single neuron oscillation behaviors.

However, these models can be quite complex so that in order to incorporate them in net-

works, one approach is to use so-called firing rate models where the dynamics of the neuron

are reduced to the rate at which it fires when presented with a constant stimulus. In patho-

logical conditions such as epilepsy or when the neurons are driven too strongly, they can

stop firing due to a phenomenon known as depolarization block, which can come about due

to the accumulation of potassium ions in the intracellular space. In the project, we used

a well-known Wang-Buzsaki (WB) spiking model but also included an additional equation

considering extracellular potassium effects. Given that the extracellular potassium effects

is slow and synapses can be reasonably assumed as slow, we applied a slow-fast technique

on the WB model and derived a firing rate model describing the synapse-potassium system

qualitatively. The bifurcation of the reduced model suggests that the depolarization block

threshold can be viewed as the homoclinic bifurcation in the synapse-potassium system,

which would be depended upon the potassium sensitivity and the drift rate. In addition,

we implement our firing rate model into a two-nearest neighbor spatial model. The spatial-

temporal plots suggest our model behavior is consistent with experimental results. The

synaptic connectivity has positive effects on seizure propagation and somewhat negative ef-

fects on synchronization. On the other hand, the potassium diffusion has a positive influence

on synchronization. However, the influence of potassium sensitivity might be more complex.

While the neurons under normal physiological conditions can be driven into the seizure-like

oscillations in the network, the neurons under depolarization block seem to be a little bit

more complicated and require further explanation.
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1.0 Introduction

Neural oscillation is the fundamental mechanism of brain activity, which is driven by

either single neuron activities or interactions between neurons. The excitatory and inhibitory

neurons interact through neuron currents and extracellular micro-environments, resulting in

repetitive patterns of neuron activities ([21]).

An epileptic seizure is defined as a neurological disorder typically caused by neurons that

are fired in an abnormal, excessive and synchronized manner, that arise from the decreased

inhibition with excessive excitation ([24]). Experimental results suggest that subsequent

depolarization block in active fast-spiking neurons provoked large seizure amplitude and

propagation of epileptic seizures ([1]). Recent studies have shown that the inhibitory neurons

enter depolarization block and stop firing before or during seizure-like activities, which can

be a potential motif for the creation of the seizure-like behavior ([31]; [6]). It has been

well-known that a large increase in the extracellular potassium is highly associated with the

electrographic seizures ([27]; [4]), and the extracellular potassium accumulation may play a

casual role in the seizure creation and propagation ([11]). However, the mechanism of how

extracellular potassium accumulation may cause neurons to be susceptible to depolarization

block is still under examination ([20]; [17]).

Spiking models have been widely used to describe neuron oscillation behaviors. The most

famous of these is the Hodgkin-Huxley (HH) model. Hodgkin and Huxley ([14]) created

a conductance-based model in order to describe how action potentials are generated and

propagated in the squid giant axon. In their model, each neuron is modeled as a circuit

diagram, the semipermeable membrane is regarded as a capacitor separating the intracellular

environment from the extracellular micro environment, whose capacitance is defined as a

constant relating to the property of lipid bilayer. The leak and voltage-gated channels

(potassium channel and sodium channel, for example) are modeled as batteries, with such

battery resistance referring to the conductance of each channel respectively. The electric

potential of the batteries are both dependent on the membrane potential and time, while

the conductances are defined as functions of time.
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Figure 1: The Circuit diagram of Hodgkin-Huxley Model.

Due to the high complicity of the H-H model, many derivations have been made in order

to cooperate with specific conditions. Wang and Buzsaki ([29]) proposed a model taking

synaptic inhibition into consideration. Based on the Hodgkin-Huxley model, the researchers

structured the synaptic activities by the synaptic current, where the synaptic channels were

assumed to be slow comparing to the fast neuronal oscillations. Meanwhile, this model

assumed the activation gate of sodium channel to be fast. Consequently, the activation gate

was represented by its steady state instead of the kinetic equation.

However, neither of these previous models have taken extracellular microenvironments

into consideration. Kim and Nykamp ([17]) investigated the influence of depolarization

block on seizure-like activities in the excitatory and inhibitory neuron networks. By creating

a Wilson-Cowan ([30]) type model, they applied a bifurcation analysis. Consequently, they

found there was a bistability between seizure state and the normal physiological state, which

was created by the depolarization block. In addition, they also showed that the extracel-

lular potassium concentration would affect the threshold of depolarization block and would

consequently enable the neural network to generate tonic and clonic seizures.

In this study, we investigate the extracellular potassium effects at both the neuron and

network level. First, we create a Wang-Buzsaki (WB) type model while taking extracellular

potassium effect into consideration to analyze the behavior of single, self-coupled neurons.

Next, we derive our reduced firing rate model using slow-fast analysis technique. Afterwards,

we put our reduced model into a network and analyze the behavior of the network. Subse-

quently, the rest of the paper is organized as follows: Chapter 2 explains the way we create

2



our models, Chapter 3 describes the model results and analysis, and Chapter 4 presents our

discussions and conclusions.
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2.0 Methods

2.1 Full Model

To started with, we construct a self-coupled single neuron spiking model using a simplified

version of the WBmodel ([29]) while taking extracellular potassium effects into consideration.

The model obeys the current balance equation ([14]; [29]; [10]):

Cm
dV

dt
= −IL − INa − IK + Isyn + I0. (2.1)

The variables and parameters in the full model are shown in Table 1.

Under the conductance based mechanism ([14]; [29]), the currents can be calculated as :

IL = gL(V − EL)

INa = gNam
3h(V − ENa)

IK = gKn
4(V − EK)

Isyn = gsynsVdrive.

(2.2)

Adopting the Wang-Buzsaki ([29]) mechanism, we assume the activation process of

sodium channel was fast and substitute the activation variable m by its steady state, m∞.

The inactivation variable of sodium channel h and the activation variable of potassium n

obey the first-order kinetics as following:

τh
dh

dt
= φ(h∞ − h)

τn
dn

dt
= φ(n∞ − n)

(2.3)

where h∞ and n∞ are the steady states of h and n respectively, and τh and τn are time

constants following: τh = 1.0/(αh + βh) and τn = 1.0/(αn + βn).
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The steady states of the ionic gating variables follow x∞ = αx

αx+βx
for any x ∈ {m,n, h}

([14]; [10]). Additionally, the αx and βx are defined as:


αm(V ) = 0.1(V+35.0)

1.0−exp(− (V +35.0
10.0

)

βm(V ) = 4.0 exp(− (V+60.0)
18.0

)
αh(V ) = 0.07 exp(− (V+58.0)

20.0
)

βh(V ) = 1.0

1.0+exp(− (V +28.0)
10.0

)
αn(V ) = 0.01(V+34.0)

1.0−exp(− (V +34.0)
10.00)

)

βn(V ) = 0.125 exp(− (V+44.0)
80.0

)

(2.4)

where V is the membrane potential ([14]; [29]).

Next, we represent the synapses’ behavior by the synaptic currents. In addition to the

maximal conductance gsyn and driving voltage Vdrive, the synaptic current is also depended

upon its gating variable s, which represents the openness of synaptic ion channels. For the

computational convenience, we simplify the first order kinetics of the gating variable s as

([29]):

τs
ds

dt
= (ai(V )− s) (2.5)

where the firing function ai(V ) = ai0

(1+exp(−V −Vst
Vss

))
.

While the WB model treats the extracellular microenvironment as external and constant,

it fails to explain some phenomena such as epilepsy or depolarization block, which might come

through the accumulation of extracellular potassium. Taking such effects into consideration,

we treat the potassium effects as internal and assumed:

EK = 26.73 log(K/140)

τK
dK

dt
= (−(K −Kmin) + µkIK)

(2.6)
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2.2 Reduced Model

To develop a firing rate model that includes the effects of potassium accumulation, we

take the slow-fast approach in which we assume that the synapse and potassium dynamics

are slow compared to the spiking behavior of the neuron. While the latter assumption is

reasonable, the assumption of slow synapses is probably not biologically realistic. However,

slow synapses are just one way to reduce spiking models to firing rate models ([10]) so one

could also adapt a more heuristic approach ([17]). We will stick with the slow-fast approach

for simplicity. Let ε be small, and the self-coupled WB system can be written as:

X ′ = F (X, s,K) (2.7)

s′ = ε[ai(V )− s]/τs (2.8)

K ′ = ε[λ(Kmin −K) + µKIK ] (2.9)

where X represents the fast variables, (V, n, h). We first note that since we are using a

current-based synapse, we can replace s in the fast equation by, I = I0 + gsynVdrives. where

I0 is applied current. For each pair (I,K) we study the dynamics of the fast system. There

are two cases, either there is an equilibrium point, X̄(I,K), or a limit cycle, X̄(t, I,K)

with a period, T (I,K). In the former case, we just substitute the equilibrium into the slow

dynamics while in the latter case, we do the same but average over the period. Thus we

obtain:

ds

dt
= ε[āi(I,K)− s]/τs (2.10)

dK

dt
= ε[λ(Kmin −K) + µK ĪK(I,K)]. (2.11)

Let τ = εt, then we have d
dτ

= ε d
dt
. Hence we can simply the equations as:

ds

dτ
= [āi(I,K)− s]/τs (2.12)

dK

dτ
= [λ(Kmin −K) + µK ĪK(I,K)]. (2.13)
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Our strategy is to numerically compute the averages, āi amd ĪK over a range of values of

I,K and then try to come up with an approximate functional form for the two quantities that

will be used to analyze the reduced firing rate/potassium system. The value of parameters

are listed in Table 2.

Fixing K at a variety of values between 5 and 15, we increase I and use AUTO in the

XPP software to compute the averages. We generally find that for a fixed K, as I increases,

the fast system undergoes a saddle-node infinite cycle (SNIC) bifurcation and so the firing

rate and other quantities will have a roughly square-root dependence on the applied current

([23]; [10]). For larger K, the magnitude is amplified but, at higher currents, the limit cycle

disappears at a Hopf bifurcation and the firing rate goes to zero (as does āi). We plot some

of these curves in the subsequent chapters.

2.3 Network

Next, we implement our reduced model to further analyze the ionic effect in a network.

For simplicity, we create a chain of neurons contains 50 neuron cells, where each neuron cell

is coupled with the two other most adjacent neurons ([5]; [10]). Consequently, the synaptic

currents and chemical transmitters fired by adjacent cells would also have effects on the

neuron, which can be represented as:

Ii = i0 + gVdrive((1− 2p)si + p(si−1 + si+1)) (2.14)

where p represents the synaptic connectivity. Due to the complex dynamics of extracel-

lular microenvironment, the synaptic connectivity would not always remain at the highest

strength, and is often dependent upon the structure of neuron connection and subjected to

synaptic growth ([2]; [19]).

In addition to the synaptic currents, the diffusion effect of extracellular potassium, which

is dependent upon its location in the brain and affected by glial cells, also plays an important

role in seizure synchronization, as it might be able to redistribute the concentration of

7



extracellular potassium over the network ([25];[13]). In our model setting, we assume the

extracellular potassium could diffuse into the two adjacent cells:

K ′i = λ(Kmin − ki) + µKIK(Ii, Ki) + q(Ki+1 +Ki−1 − 2Ki) (2.15)

where q represents the potassium diffusibility.

Lastly, we have the synaptic function derived in our reduced model:

τs′i = −si + f(Ii, Ki) (2.16)

for any i ∈ {1, 2, · · · , 50} with s0 = s1, s51 = s50, K0 = K1, K51 = K50. Consequently, we

construct our network model, and will try to analyze the influence of synaptic connectivity

p, potassium diffusibility q, and the potassium sensitivity µk in the network.

8



Table 1: Variables and parameters in the full model

Variable Unit Description

V mV Membrane Potential

IL µA/cm2 Leakage current

INa µA/cm2 Sodium current

IK µA/cm2 Potassium current

Isyn µA/cm2 Synaptic current

EK mV Reversal potential of potassium current

K mM The extracellular Potassium Concentration

m Activating sodium gate

h Inactivating sodium gate

n Activating potassium gate

s Synaptic gate

Parameter Value Description

I0 1 µA/cm2 Applied current

Kmin 5 mM The minimum threshold needed for hyperkalaemia

φ 5 s−1 Time constant of gating variables

gL 0.1 mS Conductance of leak current

gNa 35 mS Conductance of sodium current

gK 9 mS Conductance of potassium current

gsyn 0.2mS Conductance of synaptic current

EL -65mV Reversal potential of leak current

ENa 35mV Reversal potential of sodium current

Vdrive 60mV Driving voltage of synaptic current

Vst -15mV Synaptic threshold

Vss 1mV

ai0 1

µk 0.3 Potassium sensitivity

τs 1000ms Time constant of synapse

τk 1000ms Time constant of extracellular potassium

9



Table 2: parameters in the reduced model and network

Parameter Value Description

I0 0 µA Applied current

Kmin 5 mV The threshold of hyperkalaemia

gsyn 0.2mS Conductance of synaptic current

µk 0.2 Potassium sensitivity

τs 1 Time constant of synapse

λ 1 Drift rate

10



3.0 Results

3.1 Full Model

We simulate the WB spiking model in order to analyze the extracellular potassium effect

on the depolarization block of self-excitatory neurons.

To start with, we investigate the voltage changes of self-excitatory neurons over time

under different potassium sensitivities µk. Figure 2a and 2b show that under normal condi-

tions, an increase in the potassium build up ability would reduce the amplitude of neuron

oscillation. As the potassium build up increases, Figure 2c suggests the condition that gener-

ates seizure-like oscillations. With continuing increase in the potassium build up, the period

of seizure-like oscillation increases until it reaches a full depolarization block as Figure 2d

suggested.

Figure 2: Voltage behavior over time.
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d: µK = 0.4, the pathological condi-

tion, depolarization block generated
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Next, we analyze the behavior of extracellular potassium and synapse over time. The

results are shown in Figure 3, where Figure 3a illustrates the behavior happens in the extra-

cellular potassium while Figure 3b illustrates the behavior happen in synapses firing level.

The red, green, blue and purple lines are representing the cases of µK = 0.1, 0.2, 0.3, 0.4

respectively. The initial condition has been set at the normal condition which keeps the

potassium at 5mM and the synapse also fires at the normal level. As we can see from the

Figure 3a, with the increase in the sensitivity, the reverse potential of extracellular potas-

sium has reached to higher levels. In particular, under the seizure-like bursting conditions

(as the blue curve suggested, when µk = 0.3), we can observe a slow oscillation in the re-

verse potential of the potassium. When the depolarization happens (as the purple curve

suggested,when µK = 0.4), the reverse potential of potassium gradually goes down to a fixed

level and remains there.

On the other hand, the synaptic firing level keeps dropping as the sensitivity increases.

Similar to the potassium, under the seizure-like conditions (the blue curve), we can also

observe a slow oscillation in the firing level of synapses. Additionally, we find that under the

depolarization block conditions, the synapses stop firing (the purple curve).

Figure 3: Potassium and synapses behavior over time under different conditions.
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3.2 Reduced Model

As we have discussed in the previous chapter, by applying fast slow analysis, we can

treat these slow factor as parameters in our full model. In addition, since we are using

the current-based model, we have our input current of firing rate as I = I0 + gsynVdrives.

Consequently, it is sufficient for us to just look at the variables I and K.

As mentioned in Chapter 2.2 , we approximate the average function of potassium current

and the synaptic firing rate. Thus, treating the input current I and potassium concentration

K as parameters, we are able to compute the functions of ĪK and āi. Using bifurcation

analysis, we calculated the average of IK and ai functions over I under differentK conditions,

and then we fitted this functions by hand. Some fitting results are shown below:

Figure 4: Some Fitting Results

IK

0

10

20

30

0 1 2 3 I

Numerical Result when K=10

Numerical Result when K=5

Approximation at K=10

Approximation at K=5

a: Fitting results of ĪK
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b: Fitting results of āi

We firstly fix K = 5mM and create the bifurcation of ĪK over I. We fit the equation

with the function:

g5(I) = 7.95
√
smax(I − 0.16) + 0.25smax(I − 0.16)2 (3.1)

where smax is a smoothed positive part function.

In addition, we find that the potassium has a modulation effect on the amplitude which

is depends on the potassium concentration level. Therefore, we fix I = 1µA and come up
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with the function of ĪK dependence on K to be:

amp0(K) = 6.8 +
28

1 + exp(−0.6(K − 13))
. (3.2)

By scaling the potassium influence on the amplitude amp(K) = amp0K/amp0(5), we came

up with our approximation function of gk(I,K) of ĪK :

gk(I,K) = g5(I)amp(K) (3.3)

Figure 4a provides some the fitting results when K = 5 and K = 10. The numerical

computation results are listed in dotted lines while our approximation are represented by

solid lines. As we can see from the figure, both the approximation at K = 5mM (the green

curve) and at K = 10mM (the purple curve) are fairly close to the numerical results.

On the other hand, our approximation of ai in Figure 4b might not be viewed as a good

fitting at the first glance, but it does reflect the synaptic firing rate qualitatively. As we

discussed in the previous chapter 2.2, the cut-off threshold for the fast system at the Hopf

bifurcation over K is fairly accurately modeled with the function:

Î(K) = − log(K/14.5)/0.44. (3.4)

As we can see from Figure 5, our approximation (the red curve) fits almost perfectly

with the numerical simulation results (the blue dotted curve), which separates the firing

cases from the cases of depolarization block. In addition, as we mentioned in the previous

Chapter 2.2, the synaptic firing rate has an approximately square-root dependence on the

input current I. Therefore, we constructed our approximation function f(I,K) of āi as:

f(I,K) =
0.054

√
smax(I − 0.51)

(1 + exp(0.5(I − Î(K))))
(3.5)
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Figure 5: The approximation of the fast-system Hopf bifurcation threshold.

Next, with the approximation functions in hand, we look at the s-K system. The first

step is to analyze the system behavior through phase plane. We start with the normal

physiological condition (Figure 6a), where the extracellular potassium and synapses firing

rate are maintained at a stable rate (at stable equilibrium). With the increase in the potas-

sium sensitivity µK , the fixed point moves towards a higher potassium concentration K and

lower firing rate s, which reveals the findings we have found in the full model (not shown

in the figure). When the µK passes some threshold, a stable limit cycle gradually emerged

(Figure 6b), suggesting there might exist a supercritical Hopf bifurcation in the system.

Progressively, such limit cycle enlarges with the increase in the in potassium sensitivity, and

unstable limit cycle can be observed. Figure 6c is an example under such conditions, where

inner red curve is the stable limit cycle, and the outer blue curve is the unstable limit cy-

cle. The points start inside the unstable cycle all converges towards the stable limit cycle,

while the ones outside the unstable limit cycle directly goes towards the other fixed point

which demonstrates the depolarization block condition. In addition, with the increase in the

µk, the stable and unstable limit cycles get together. However, when the µk passed through

some other threshold, both limit cycles disappear and all the points converge to a fixed point
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(Figure 6d), which might be caused by a homoclinic bifurcation.

Figure 6: Phase planes of the s-K system
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The bifurcation diagram over µk provides support to such hypothesis, as we can see in

Figure 7. In the figure, the red curve represents the stable branch, the black curves represent

the unstable branch, the green dotted curves represent the stable limit cycle, and the blue

curves represent the unstable limit cycle. A supercritcal Hopf bifurcation (the upper curve)

intersects with the saddle-node bifurcation (the lower curve). Consequently, we can see that

when µk initially increases from the physiological phase (the red curve), the synaptic firing

rate goes down along the red curve. When it passes some threshold, a supercritical Hopf

bifurcation happens and creates the stable and unstable limit cycles. But when the unstable
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limit cycle reaches the homoclinic bifurcation, the limit cycles disappear and jumps to the

fixed point of depolarization block.

Figure 7: The bifurcation diagram over µk.

HB
HC
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Besides µk, the drift rate λ also has strong impacts on the concentration of extracellular

potassium, and shapes the s-K system accordingly. While all of our previous works assume

that λ = 1, we conduct the bifurcation diagram of λ over µk (Figure 8a) to try to analyze such

effects. While the blue curve represents the Hopf bifurcation, the black line is when the Hopf

bifurcation joining stable and unstable limit cycles (the SNIC bifurcation). Therefore, the

region between these two curves should contain some bistability. For illustration purposes,

we create three phase planes, representing the Region 1 (Figure 8b), Region 2 (Figure 8c)

and Region 3 (Figure8d) of the bifurcation diagram (Figure 8a) respectively. As we can see

from these figures below, in the Region 1 above the blue curve (Figure 8b), the equilibrium is

at a fixed point which behaves similar to the physiological condition. On the other hand, the

Region 3 below the black curve (Figure 8d) has an equilibrium at a fixed point that synapses

stop firing, which behaves similar to the depolarization block. Meanwhile, the Region 2 in

the middle generates stable limit cycles, as our Figure 8c suggested.
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Figure 8: The effects of λ
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3.3 Network

The next step is to analyze the potassium effect in a neural network. For simplicity, we

create a neural network that only considers their closest neighbors effect. By manipulating

the parameters considering potassium diffusion, synaptic connectivity and potassium sen-

sitivities, we analyze their effects in the 2-nearest neighbor spatial model. The results are
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shown as the spatial-temporal plots in Figure 9, 10 and 11, where the horizontal axis is space

illustrating the seizure propagation and the vertical axis is time illustrating the changes in

the seizure behavior. The colors at each point represent the average firing level of the neuron

(between 1 and 0.1) at the specific time point and are explained using the color map, where

the dark blue represents the cases when neurons stop firing.

3.3.1 Synaptic Connectivity

Figure 9a and Figure 9b illustrates the effect of synaptic connectivity given the other

variables fixed. As we can see from these two plots, the synaptic connectivity both affects the

speed of seizure spread and synchronization. In particular, a higher synaptic connectivity

may results in a faster speed of spread and a weaker synchronization. For instance, if we

fix the potassium diffusion at q = 0.01, comparing the synaptic connectivity p = 0.12

(Figure 9a) with p = 0.15 (Figure 9b), one can clearly see a less steep slope for Figure 9b,

suggesting it takes less time to propagate the oscillation to the next cell. Meanwhile, a less

clear horizontal line suggests it mediates the synchronization effect. Moreover, as we can

see in the Figure 9b, when the synaptic mediation effect is relatively significant, the cells in

the middle part has much less synchronization comparing to the ones on the edges, but such

effects also gradually depletes over time.

Figure 9: Spatial-temporal plots under different synaptic connectivity
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3.3.2 Potassium Diffusion

On the other hand, the potassium diffusion plays a relatively minor role comparing to

synaptic connectivity. As Figure 10a and Figure 10b suggested, a higher potassium diffusion

results in a faster speed of synchronization, given the synaptic connectivity is fixed. To be

more specific, Figure 10 fixes the synaptic connectivity at p = 0.2 and compares the potas-

sium diffusion of q = 0.08 (Figure 10a) and q = 0.2 (Figure 10b). As we can see clearly, when

the potassium diffusion is low (Figure 10a), there will be little interactions between cells ex-

cept through synaptic firing, and each neuron are firing individually without clear horizontal

synchronization lines. Therefore, the cells are not very likely to synchronize. However, when

the potassium diffusion is high (Figure 10b), the cells will be able to communicate with their

neighbors quickly and hence the synchronization will be enhanced, as the clear horizontal

synchronization line suggested. When the potassium diffusion is strong, the neurons in the

middle of the chain would more likely to have a period of continuous spiking (constant firing

rate over time), but such behavior would gradually replaced by the synchronized oscillations,

which has been shown in our Figure 10b.

Figure 10: Spatial-temporal plots under different potassium diffusibility
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3.3.3 Potassium Sensitivity

The dynamics of potassium sensitivity seem to be a little more complex than the other

two. While the initial neurons in previous sections are assumed to undergo seizure-like activ-

ities, we are trying to address the potassium sensitivity effect and analyze the networks given

the different phases that the neurons might be in. We listed two representative patterns we

have found in the Figure 11. Figure 11a shows the network pattern for neurons under normal

physiological conditions. Given a strong potassium diffusion effect, some neurons may also

undergo a seizure-like oscillation. However, possibly with dominant synaptic connectivity

effect, the seizure synchronization effect is fairly weak. On the other hand, pathological neu-

rons may result prior neuron cells into infrequent oscillation through backward propagation

and create chaotic patterns, as Figure 11b suggested. Such effect might result from that the

potassium diffusion reduces local potassium concentration. However, it is also possible to be

resulted from the discrepancy in our model that the concentration of extracellular potassium

is lower than expected under depolarization block conditions, since our reduced model only

able to capture the lower fixed point rather than the bistability of the depolarization block.

Figure 11: Spatial-temporal plots for different potassium sensitivity
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4.0 Discussion

4.1 Conclusion

This project has explored the mechanism of the extracellular potassium affecting epilepsy

creation at both single cell and neuron network levels. Our WB type model has shown that

given all other conditions to be the same, the increase in the sensitivity of the potassium

channels may drive normal fast-spiking neuron cells to create slow seizure-like oscillations

or depolarization block (Figure 2). In addition, such increase in the potassium sensitivity

would depress the synapses firing and result in a rise of extracellular potassium concentration,

which consequently affect the threshold of depolarization block (Figure 3). We analyze such

phenomena in more detail using our reduced model, which is created through the slow-fast

analysis and captures the dynamic system qualitatively. By conducting bifurcation analysis

over µK , we found there exists a Hopf bifurcation intersects with a saddle-node bifurcation,

creating a bistability of the system (Figure 7). To be more specific, given that synapses are

firing above the threshold, increasing extracellular potassium sensitivity from physiological

conditions initially creates the limit cycles that portrays seizure-like oscillations through a

supercritical Hopf bifurcation. Progressively, such limit cycles enlarge along with µK until

it reaches the homoclinic bifurcation where the limit cycle is destroyed. Consequently, the

system rests in a fixed point which represents the depolarization block. Additionally, we

looked further into how the relationship between λ and µK affect the bistability (Figure 8),

which helps to improve the understanding of seizure generation.

Besides, our firing rate model also helps to explain neural behavior in the network. In

our 2-nearest neighbor networks, given that the first activated neuron undergo a seizure-like

activity, the synaptic connectivity has positive influence on seizure propagation but negative

influence on the synchronization (Figure 9). On the other hand, the potassium diffusion only

has positive influence on the synchronization (Figure 10). Besides, the potassium diffusion

and synaptic connection seem to have backpropagation effect onto the network, but such

effect behaves differently depending on the state of the first activated neuron (Figure 11).
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If the neuron is in the normal state, the network still is able to be activated and performs

somewhat seizure-like. On the other hand, if the neuron is in the depolarization block, the

network behaves a little strange, which may also result from the back-propagation effect of

synaptic connection and potassium diffusion.

4.2 Comparing to Experimental Results

Many previous in vitro studies analyzing extracellular potassium effects on epilepsy

started with increasing the extracellular potassium concentration and applying initial cur-

rent onto the neurons ([25]; [4]; [3]). However, due to the complicated dynamics in neural

activities, the effect of extracellular potassium is somewhat controversial. Early researchers

concluded that the extracellular potassium have little influence seizure generations ([15]; [12];

[22]). Such conclusions might be true under normal physiological conditions, but when the

concentration exceed the threshold, it might affect the membrane depolarization, create alter-

nations in synaptic functions and cause the depolarization block ([25]; [4]) in the seizure-like

neurons. However, the depolarization block threshold of the extracellular potassium concen-

tration might be too hard to compute ([25]; [3]; [17]). Such phenomenon is coherent with our

bifurcation results, as the threshold is not solely depended upon the concentration but other

factors such as potassium sensitivity and the drift rate. In addition, some abnormalities,

such as high extracellular potassium concentration in the absence of neuronal firing ([4]) or

the elevation of extracellular potassium concentration from bursting to seizure-like ([9]) can

also be revealed through our full model. Consequently, our model results provide theoretical

evidence to the hypothesis that the extracellular potassium concentration, though highly

correlated with epileptic seizures, might not be the only cause of the depolarization block,

as the potassium sensitivity plays a key role in the bifurcation structure.

In addition, our model helps to explain some seizure activity in neural network. For

instance, the synaptic remodeling and reorganization is widely seen during the epileptogenesis

period ([7]; [2]; [19]), which results in an increase in the synaptic connectivity. The seizure

spread concurs with our finding that the increase in synaptic connectivity would enhance the
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seizure propagation. Besides, our results suggest that the increase in synaptic connectivity

in neurons diminishes the seizure synchronization, which coincides with the clinical and

experimental results that synaptic remodeling or the GABA release can be used in mediating

seizure synchronization in neocortex ([6]; [2]; [19]).

The diffusion effect of extracellular potassium, though its exact role remains unclear, is

considered to be related to the seizure synchronization, and such effects may be depended

upon the spatial structure ([18]; [26];[13]). Our model results support the conclusion that

the potassium diffusion accelerates the seizure synchronization process, while its effects on

propagation are not clearly seen in our model. Furthermore, our model helps to explain

that the neurons in the network are more susceptible towards seizure-like oscillation and

depolarization block. Nonetheless, our model is generally coherent with the experimental

findings and contributes to the understanding of epileptogenesis.

4.3 Comparing to Other Computational Models

Since the extracellular microenvironment has complex feedback loops interacting with

neurons and might be too hard to be studied experimentally ([13]), many computational

models have been constructed to analyze such issues.

Earlier research have shown that the changes of ion concentration would affect the ion

currents and membrane potentials, which consequently influence the epileptiform neuronal

behavior, though the exact role of extracellular potassium remains controversial ([28]; [16]).

The potassium diffusion ability, the strength of sodium-potassium pumps and the glial cells

ability of clearing up extracellular potassium in the single neuron model may all create

seizure-like slow oscillations and depolarization block when only ion concentration effects are

considered in the model ([8]). The model reveals the importance of extracellular potassium

clearing up ability, which in our model is represented by the potassium sensitivity µk. And

our result is consistent with their findings. The higher potassium sensitivity drives normal

neurons into the seizure-like phase through a homoclinic bifurcation and gradually results in

the depolarization block through a Hopf bifurcation.
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However, Cressman’s model does not take the chemical communication between neurons

into consideration, where synaptic firing plays an important role in seizure propagation

and synchronization observed in experimental findings ([13]). Accordingly, Bacak construct

a conductance-based model that both the potassium current and the leakage current are

dependent on extracellular potassium concentration, and examines the bursting patterns

when synaptic interactions are blocked ([3]). It turns out that the endogenous bursting can

not be observed under such circumstances. Hence, the effects of extracellular potassium

might be plausible under the in vivo physiological conditions, and additional conditions such

as synaptic excitability should be taken into consideration ([3]). The finding in Bacak’s

model reveals the importance of synaptic communications. Consequently, we represent the

synaptic communication by the synaptic firing rate, generalizing the use of our model to fit

for the in vivo cases.

Still, the model constructed by Bacak ([3]) does not provide any insightful explanation of

extracellular potassium mechanism. Kim and Nykamp ([17]) constructed models describing

the bifurcation structure of the seizure-like activities resulting from depolarization block in

the neurons. They found that the physiological and seizure-like states can co-exist, where

the seizure-state may occur through saddle-node or homoclinic bifurcation. Such feature is

also captured in our model. In addition, they proposed that the threshold of depolarization

block is affected by the extracellular potassium concentration, which is further explained

through our model. Instead of the extracellular potassium concentration, the threshold of

depolarization block can be revealed as the homoclinic bifurcation point in the s-K system,

hence should be depended up on the potassium sensitivity. In addition, since the region

of bistablity is related with the λ, its value should also have impacts on the bifurcation

structure and consequently regulates the threshold of depolarization block.

4.4 Limitations and Further Research

Our models provide insights of the mechanism of extracellular potassium and contribute

to the understanding of epileptogenesis. Even so, there are a few improvements and further
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research can be made based on our work. The first thing is the fitting accuracy. As one

may notice, the amplitude of the oscillations might be larger than the reasonable scale under

either in vitro or in vivo conditions. Such discrepancy might result from our hand-fitted

current functions, which generally captured the shape of the real data, but the actual fitting

might need to be improved. Besides, the neuronal networks in realistic biological settings

are weigh more complicated than a chain where only two nearest neighbors can influence a

neuron, hence some other models, such as a full connected network or other type networks

can also be analyzed using our approaches.

In addition, the concentration of extracellular potassium under depolarization block in

our reduced model might be lower than some in vitro experiments suggested. Our model is

only capable to capture the lower node but not able to reveal the bistability of the depolar-

ization block. Such phenomena result from the complicated influence of the initial applied

current I0, which requires further analysis. Consequently, our analysis of the network under

depolarization block conditions might not be exact.
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